wasmtime_wasi/
pipe.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
//! Virtual pipes.
//!
//! These types provide easy implementations of `WasiFile` that mimic much of the behavior of Unix
//! pipes. These are particularly helpful for redirecting WASI stdio handles to destinations other
//! than OS files.
//!
//! Some convenience constructors are included for common backing types like `Vec<u8>` and `String`,
//! but the virtual pipes can be instantiated with any `Read` or `Write` type.
//!
use crate::poll::Subscribe;
use crate::{HostInputStream, HostOutputStream, StreamError};
use anyhow::anyhow;
use bytes::Bytes;
use std::sync::{Arc, Mutex};
use tokio::sync::mpsc;

pub use crate::write_stream::AsyncWriteStream;

#[derive(Debug, Clone)]
pub struct MemoryInputPipe {
    buffer: Arc<Mutex<Bytes>>,
}

impl MemoryInputPipe {
    pub fn new(bytes: impl Into<Bytes>) -> Self {
        Self {
            buffer: Arc::new(Mutex::new(bytes.into())),
        }
    }

    pub fn is_empty(&self) -> bool {
        self.buffer.lock().unwrap().is_empty()
    }
}

#[async_trait::async_trait]
impl HostInputStream for MemoryInputPipe {
    fn read(&mut self, size: usize) -> Result<Bytes, StreamError> {
        let mut buffer = self.buffer.lock().unwrap();
        if buffer.is_empty() {
            return Err(StreamError::Closed);
        }

        let size = size.min(buffer.len());
        let read = buffer.split_to(size);
        Ok(read)
    }
}

#[async_trait::async_trait]
impl Subscribe for MemoryInputPipe {
    async fn ready(&mut self) {}
}

#[derive(Debug, Clone)]
pub struct MemoryOutputPipe {
    capacity: usize,
    buffer: Arc<Mutex<bytes::BytesMut>>,
}

impl MemoryOutputPipe {
    pub fn new(capacity: usize) -> Self {
        MemoryOutputPipe {
            capacity,
            buffer: std::sync::Arc::new(std::sync::Mutex::new(bytes::BytesMut::new())),
        }
    }

    pub fn contents(&self) -> bytes::Bytes {
        self.buffer.lock().unwrap().clone().freeze()
    }

    pub fn try_into_inner(self) -> Option<bytes::BytesMut> {
        std::sync::Arc::into_inner(self.buffer).map(|m| m.into_inner().unwrap())
    }
}

impl HostOutputStream for MemoryOutputPipe {
    fn write(&mut self, bytes: Bytes) -> Result<(), StreamError> {
        let mut buf = self.buffer.lock().unwrap();
        if bytes.len() > self.capacity - buf.len() {
            return Err(StreamError::Trap(anyhow!(
                "write beyond capacity of MemoryOutputPipe"
            )));
        }
        buf.extend_from_slice(bytes.as_ref());
        // Always ready for writing
        Ok(())
    }
    fn flush(&mut self) -> Result<(), StreamError> {
        // This stream is always flushed
        Ok(())
    }
    fn check_write(&mut self) -> Result<usize, StreamError> {
        let consumed = self.buffer.lock().unwrap().len();
        if consumed < self.capacity {
            Ok(self.capacity - consumed)
        } else {
            // Since the buffer is full, no more bytes will ever be written
            Err(StreamError::Closed)
        }
    }
}

#[async_trait::async_trait]
impl Subscribe for MemoryOutputPipe {
    async fn ready(&mut self) {}
}

/// Provides a [`HostInputStream`] impl from a [`tokio::io::AsyncRead`] impl
pub struct AsyncReadStream {
    closed: bool,
    buffer: Option<Result<Bytes, StreamError>>,
    receiver: mpsc::Receiver<Result<Bytes, StreamError>>,
    join_handle: Option<crate::runtime::AbortOnDropJoinHandle<()>>,
}

impl AsyncReadStream {
    /// Create a [`AsyncReadStream`]. In order to use the [`HostInputStream`] impl
    /// provided by this struct, the argument must impl [`tokio::io::AsyncRead`].
    pub fn new<T: tokio::io::AsyncRead + Send + Unpin + 'static>(mut reader: T) -> Self {
        let (sender, receiver) = mpsc::channel(1);
        let join_handle = crate::runtime::spawn(async move {
            loop {
                use tokio::io::AsyncReadExt;
                let mut buf = bytes::BytesMut::with_capacity(4096);
                let sent = match reader.read_buf(&mut buf).await {
                    Ok(nbytes) if nbytes == 0 => sender.send(Err(StreamError::Closed)).await,
                    Ok(_) => sender.send(Ok(buf.freeze())).await,
                    Err(e) => {
                        sender
                            .send(Err(StreamError::LastOperationFailed(e.into())))
                            .await
                    }
                };
                if sent.is_err() {
                    // no more receiver - stop trying to read
                    break;
                }
            }
        });
        AsyncReadStream {
            closed: false,
            buffer: None,
            receiver,
            join_handle: Some(join_handle),
        }
    }
}

#[async_trait::async_trait]
impl HostInputStream for AsyncReadStream {
    fn read(&mut self, size: usize) -> Result<Bytes, StreamError> {
        use mpsc::error::TryRecvError;

        match self.buffer.take() {
            Some(Ok(mut bytes)) => {
                // TODO: de-duplicate the buffer management with the case below
                let len = bytes.len().min(size);
                let rest = bytes.split_off(len);
                if !rest.is_empty() {
                    self.buffer = Some(Ok(rest));
                }
                return Ok(bytes);
            }
            Some(Err(e)) => {
                self.closed = true;
                return Err(e);
            }
            None => {}
        }

        match self.receiver.try_recv() {
            Ok(Ok(mut bytes)) => {
                let len = bytes.len().min(size);
                let rest = bytes.split_off(len);
                if !rest.is_empty() {
                    self.buffer = Some(Ok(rest));
                }

                Ok(bytes)
            }
            Ok(Err(e)) => {
                self.closed = true;
                Err(e)
            }
            Err(TryRecvError::Empty) => Ok(Bytes::new()),
            Err(TryRecvError::Disconnected) => Err(StreamError::Trap(anyhow!(
                "AsyncReadStream sender died - should be impossible"
            ))),
        }
    }

    async fn cancel(&mut self) {
        match self.join_handle.take() {
            Some(task) => _ = task.cancel().await,
            None => {}
        }
    }
}
#[async_trait::async_trait]
impl Subscribe for AsyncReadStream {
    async fn ready(&mut self) {
        if self.buffer.is_some() || self.closed {
            return;
        }
        match self.receiver.recv().await {
            Some(res) => self.buffer = Some(res),
            None => {
                panic!("no more sender for an open AsyncReadStream - should be impossible")
            }
        }
    }
}

/// An output stream that consumes all input written to it, and is always ready.
#[derive(Copy, Clone)]
pub struct SinkOutputStream;

impl HostOutputStream for SinkOutputStream {
    fn write(&mut self, _buf: Bytes) -> Result<(), StreamError> {
        Ok(())
    }
    fn flush(&mut self) -> Result<(), StreamError> {
        // This stream is always flushed
        Ok(())
    }

    fn check_write(&mut self) -> Result<usize, StreamError> {
        // This stream is always ready for writing.
        Ok(usize::MAX)
    }
}

#[async_trait::async_trait]
impl Subscribe for SinkOutputStream {
    async fn ready(&mut self) {}
}

/// A stream that is ready immediately, but will always report that it's closed.
#[derive(Copy, Clone)]
pub struct ClosedInputStream;

#[async_trait::async_trait]
impl HostInputStream for ClosedInputStream {
    fn read(&mut self, _size: usize) -> Result<Bytes, StreamError> {
        Err(StreamError::Closed)
    }
}

#[async_trait::async_trait]
impl Subscribe for ClosedInputStream {
    async fn ready(&mut self) {}
}

/// An output stream that is always closed.
#[derive(Copy, Clone)]
pub struct ClosedOutputStream;

impl HostOutputStream for ClosedOutputStream {
    fn write(&mut self, _: Bytes) -> Result<(), StreamError> {
        Err(StreamError::Closed)
    }
    fn flush(&mut self) -> Result<(), StreamError> {
        Err(StreamError::Closed)
    }

    fn check_write(&mut self) -> Result<usize, StreamError> {
        Err(StreamError::Closed)
    }
}

#[async_trait::async_trait]
impl Subscribe for ClosedOutputStream {
    async fn ready(&mut self) {}
}

#[cfg(test)]
mod test {
    use super::*;
    use std::time::Duration;
    use tokio::io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt};

    // This is a gross way to handle CI running under qemu for non-x86 architectures.
    #[cfg(not(target_arch = "x86_64"))]
    const TEST_ITERATIONS: usize = 10;

    #[cfg(target_arch = "x86_64")]
    const TEST_ITERATIONS: usize = 100;

    async fn resolves_immediately<F, O>(fut: F) -> O
    where
        F: futures::Future<Output = O>,
    {
        // The input `fut` should resolve immediately, but in case it
        // accidentally doesn't don't hang the test indefinitely. Provide a
        // generous timeout to account for CI sensitivity and various systems.
        tokio::time::timeout(Duration::from_secs(2), fut)
            .await
            .expect("operation timed out")
    }

    async fn never_resolves<F: futures::Future>(fut: F) {
        // The input `fut` should never resolve, so only give it a small window
        // of budget before we time out. If `fut` is actually resolved this
        // should show up as a flaky test.
        tokio::time::timeout(Duration::from_millis(10), fut)
            .await
            .err()
            .expect("operation should time out");
    }

    pub fn simplex(size: usize) -> (impl AsyncRead, impl AsyncWrite) {
        let (a, b) = tokio::io::duplex(size);
        let (_read_half, write_half) = tokio::io::split(a);
        let (read_half, _write_half) = tokio::io::split(b);
        (read_half, write_half)
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    async fn empty_read_stream() {
        let mut reader = AsyncReadStream::new(tokio::io::empty());

        // In a multi-threaded context, the value of state is not deterministic -- the spawned
        // reader task may run on a different thread.
        match reader.read(10) {
            // The reader task ran before we tried to read, and noticed that the input was empty.
            Err(StreamError::Closed) => {}

            // The reader task hasn't run yet. Call `ready` to await and fill the buffer.
            Ok(bs) => {
                assert!(bs.is_empty());
                resolves_immediately(reader.ready()).await;
                assert!(matches!(reader.read(0), Err(StreamError::Closed)));
            }
            res => panic!("unexpected: {res:?}"),
        }
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    async fn infinite_read_stream() {
        let mut reader = AsyncReadStream::new(tokio::io::repeat(0));

        let bs = reader.read(10).unwrap();
        if bs.is_empty() {
            // Reader task hasn't run yet. Call `ready` to await and fill the buffer.
            resolves_immediately(reader.ready()).await;
            // Now a read should succeed
            let bs = reader.read(10).unwrap();
            assert_eq!(bs.len(), 10);
        } else {
            assert_eq!(bs.len(), 10);
        }

        // Subsequent reads should succeed
        let bs = reader.read(10).unwrap();
        assert_eq!(bs.len(), 10);

        // Even 0-length reads should succeed and show its open
        let bs = reader.read(0).unwrap();
        assert_eq!(bs.len(), 0);
    }

    async fn finite_async_reader(contents: &[u8]) -> impl AsyncRead + Send + 'static {
        let (r, mut w) = simplex(contents.len());
        w.write_all(contents).await.unwrap();
        r
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    async fn finite_read_stream() {
        let mut reader = AsyncReadStream::new(finite_async_reader(&[1; 123]).await);

        let bs = reader.read(123).unwrap();
        if bs.is_empty() {
            // Reader task hasn't run yet. Call `ready` to await and fill the buffer.
            resolves_immediately(reader.ready()).await;
            // Now a read should succeed
            let bs = reader.read(123).unwrap();
            assert_eq!(bs.len(), 123);
        } else {
            assert_eq!(bs.len(), 123);
        }

        // The AsyncRead's should be empty now, but we have a race where the reader task hasn't
        // yet send that to the AsyncReadStream.
        match reader.read(0) {
            Err(StreamError::Closed) => {} // Correct!
            Ok(bs) => {
                assert!(bs.is_empty());
                // Need to await to give this side time to catch up
                resolves_immediately(reader.ready()).await;
                // Now a read should show closed
                assert!(matches!(reader.read(0), Err(StreamError::Closed)));
            }
            res => panic!("unexpected: {res:?}"),
        }
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    // Test that you can write items into the stream, and they get read out in the order they were
    // written, with the proper indications of readiness for reading:
    async fn multiple_chunks_read_stream() {
        let (r, mut w) = simplex(1024);
        let mut reader = AsyncReadStream::new(r);

        w.write_all(&[123]).await.unwrap();

        let bs = reader.read(1).unwrap();
        if bs.is_empty() {
            // Reader task hasn't run yet. Call `ready` to await and fill the buffer.
            resolves_immediately(reader.ready()).await;
            // Now a read should succeed
            let bs = reader.read(1).unwrap();
            assert_eq!(*bs, [123u8]);
        } else {
            assert_eq!(*bs, [123u8]);
        }

        // The stream should be empty and open now:
        let bs = reader.read(1).unwrap();
        assert!(bs.is_empty());

        // We can wait on readiness and it will time out:
        never_resolves(reader.ready()).await;

        // Still open and empty:
        let bs = reader.read(1).unwrap();
        assert!(bs.is_empty());

        // Put something else in the stream:
        w.write_all(&[45]).await.unwrap();

        // Wait readiness (yes we could possibly win the race and read it out faster, leaving that
        // out of the test for simplicity)
        resolves_immediately(reader.ready()).await;

        // read the something else back out:
        let bs = reader.read(1).unwrap();
        assert_eq!(*bs, [45u8]);

        // nothing else in there:
        let bs = reader.read(1).unwrap();
        assert!(bs.is_empty());

        // We can wait on readiness and it will time out:
        never_resolves(reader.ready()).await;

        // nothing else in there:
        let bs = reader.read(1).unwrap();
        assert!(bs.is_empty());

        // Now close the pipe:
        drop(w);

        // Wait readiness (yes we could possibly win the race and read it out faster, leaving that
        // out of the test for simplicity)
        resolves_immediately(reader.ready()).await;

        // empty and now closed:
        assert!(matches!(reader.read(1), Err(StreamError::Closed)));
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    // At the moment we are restricting AsyncReadStream from buffering more than 4k. This isn't a
    // suitable design for all applications, and we will probably make a knob or change the
    // behavior at some point, but this test shows the behavior as it is implemented:
    async fn backpressure_read_stream() {
        let (r, mut w) = simplex(16 * 1024); // Make sure this buffer isn't a bottleneck
        let mut reader = AsyncReadStream::new(r);

        let writer_task = tokio::task::spawn(async move {
            // Write twice as much as we can buffer up in an AsyncReadStream:
            w.write_all(&[123; 8192]).await.unwrap();
            w
        });

        resolves_immediately(reader.ready()).await;

        // Now we expect the reader task has sent 4k from the stream to the reader.
        // Try to read out one bigger than the buffer available:
        let bs = reader.read(4097).unwrap();
        assert_eq!(bs.len(), 4096);

        // Allow the crank to turn more:
        resolves_immediately(reader.ready()).await;

        // Again we expect the reader task has sent 4k from the stream to the reader.
        // Try to read out one bigger than the buffer available:
        let bs = reader.read(4097).unwrap();
        assert_eq!(bs.len(), 4096);

        // The writer task is now finished - join with it:
        let w = resolves_immediately(writer_task).await;

        // And close the pipe:
        drop(w);

        // Allow the crank to turn more:
        resolves_immediately(reader.ready()).await;

        // Now we expect the reader to be empty, and the stream closed:
        assert!(matches!(reader.read(4097), Err(StreamError::Closed)));
    }

    #[test_log::test(test_log::test(tokio::test(flavor = "multi_thread")))]
    async fn sink_write_stream() {
        let mut writer = AsyncWriteStream::new(2048, tokio::io::sink());
        let chunk = Bytes::from_static(&[0; 1024]);

        let readiness = resolves_immediately(writer.write_ready())
            .await
            .expect("write_ready does not trap");
        assert_eq!(readiness, 2048);
        // I can write whatever:
        writer.write(chunk.clone()).expect("write does not error");

        // This may consume 1k of the buffer:
        let readiness = resolves_immediately(writer.write_ready())
            .await
            .expect("write_ready does not trap");
        assert!(
            readiness == 1024 || readiness == 2048,
            "readiness should be 1024 or 2048, got {readiness}"
        );

        if readiness == 1024 {
            writer.write(chunk.clone()).expect("write does not error");

            let readiness = resolves_immediately(writer.write_ready())
                .await
                .expect("write_ready does not trap");
            assert!(
                readiness == 1024 || readiness == 2048,
                "readiness should be 1024 or 2048, got {readiness}"
            );
        }
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    async fn closed_write_stream() {
        // Run many times because the test is nondeterministic:
        for n in 0..TEST_ITERATIONS {
            closed_write_stream_(n).await
        }
    }
    #[tracing::instrument]
    async fn closed_write_stream_(n: usize) {
        let (reader, writer) = simplex(1);
        let mut writer = AsyncWriteStream::new(1024, writer);

        // Drop the reader to allow the worker to transition to the closed state eventually.
        drop(reader);

        // First the api is going to report the last operation failed, then subsequently
        // it will be reported as closed. We set this flag once we see LastOperationFailed.
        let mut should_be_closed = false;

        // Write some data to the stream to ensure we have data that cannot be flushed.
        let chunk = Bytes::from_static(&[0; 1]);
        writer
            .write(chunk.clone())
            .expect("first write should succeed");

        // The rest of this test should be valid whether or not we check write readiness:
        let mut write_ready_res = None;
        if n % 2 == 0 {
            let r = resolves_immediately(writer.write_ready()).await;
            // Check write readiness:
            match r {
                // worker hasn't processed write yet:
                Ok(1023) => {}
                // worker reports failure:
                Err(StreamError::LastOperationFailed(_)) => {
                    tracing::debug!("discovered stream failure in first write_ready");
                    should_be_closed = true;
                }
                r => panic!("unexpected write_ready: {r:?}"),
            }
            write_ready_res = Some(r);
        }

        // When we drop the simplex reader, that causes the simplex writer to return BrokenPipe on
        // its write. Now that the buffering crank has turned, our next write will give BrokenPipe.
        let flush_res = writer.flush();
        match flush_res {
            // worker reports failure:
            Err(StreamError::LastOperationFailed(_)) => {
                tracing::debug!("discovered stream failure trying to flush");
                assert!(!should_be_closed);
                should_be_closed = true;
            }
            // Already reported failure, now closed
            Err(StreamError::Closed) => {
                assert!(
                    should_be_closed,
                    "expected a LastOperationFailed before we see Closed. {write_ready_res:?}"
                );
            }
            // Also possible the worker hasn't processed write yet:
            Ok(()) => {}
            Err(e) => panic!("unexpected flush error: {e:?} {write_ready_res:?}"),
        }

        // Waiting for the flush to complete should always indicate that the channel has been
        // closed.
        match resolves_immediately(writer.write_ready()).await {
            // worker reports failure:
            Err(StreamError::LastOperationFailed(_)) => {
                tracing::debug!("discovered stream failure trying to flush");
                assert!(!should_be_closed);
            }
            // Already reported failure, now closed
            Err(StreamError::Closed) => {
                assert!(should_be_closed);
            }
            r => {
                panic!("stream should be reported closed by the end of write_ready after flush, got {r:?}. {write_ready_res:?} {flush_res:?}")
            }
        }
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    async fn multiple_chunks_write_stream() {
        // Run many times because the test is nondeterministic:
        for n in 0..TEST_ITERATIONS {
            multiple_chunks_write_stream_aux(n).await
        }
    }
    #[tracing::instrument]
    async fn multiple_chunks_write_stream_aux(_: usize) {
        use std::ops::Deref;

        let (mut reader, writer) = simplex(1024);
        let mut writer = AsyncWriteStream::new(1024, writer);

        // Write a chunk:
        let chunk = Bytes::from_static(&[123; 1]);

        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert_eq!(permit, 1024);

        writer.write(chunk.clone()).expect("write does not trap");

        // At this point the message will either be waiting for the worker to process the write, or
        // it will be buffered in the simplex channel.
        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert!(matches!(permit, 1023 | 1024));

        let mut read_buf = vec![0; chunk.len()];
        let read_len = reader.read_exact(&mut read_buf).await.unwrap();
        assert_eq!(read_len, chunk.len());
        assert_eq!(read_buf.as_slice(), chunk.deref());

        // Write a second, different chunk:
        let chunk2 = Bytes::from_static(&[45; 1]);

        // We're only guaranteed to see a consistent write budget if we flush.
        writer.flush().expect("channel is still alive");

        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert_eq!(permit, 1024);

        writer.write(chunk2.clone()).expect("write does not trap");

        // At this point the message will either be waiting for the worker to process the write, or
        // it will be buffered in the simplex channel.
        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert!(matches!(permit, 1023 | 1024));

        let mut read2_buf = vec![0; chunk2.len()];
        let read2_len = reader.read_exact(&mut read2_buf).await.unwrap();
        assert_eq!(read2_len, chunk2.len());
        assert_eq!(read2_buf.as_slice(), chunk2.deref());

        // We're only guaranteed to see a consistent write budget if we flush.
        writer.flush().expect("channel is still alive");

        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert_eq!(permit, 1024);
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    async fn backpressure_write_stream() {
        // Run many times because the test is nondeterministic:
        for n in 0..TEST_ITERATIONS {
            backpressure_write_stream_aux(n).await
        }
    }
    #[tracing::instrument]
    async fn backpressure_write_stream_aux(_: usize) {
        use futures::future::poll_immediate;

        // The channel can buffer up to 1k, plus another 1k in the stream, before not
        // accepting more input:
        let (mut reader, writer) = simplex(1024);
        let mut writer = AsyncWriteStream::new(1024, writer);

        let chunk = Bytes::from_static(&[0; 1024]);

        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert_eq!(permit, 1024);

        writer.write(chunk.clone()).expect("write succeeds");

        // We might still be waiting for the worker to process the message, or the worker may have
        // processed it and released all the budget back to us.
        let permit = poll_immediate(writer.write_ready()).await;
        assert!(matches!(permit, None | Some(Ok(1024))));

        // Given a little time, the worker will process the message and release all the budget
        // back.
        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert_eq!(permit, 1024);

        // Now fill the buffer between here and the writer task. This should always indicate
        // back-pressure because now both buffers (simplex and worker) are full.
        writer.write(chunk.clone()).expect("write does not trap");

        // Try shoving even more down there, and it shouldn't accept more input:
        writer
            .write(chunk.clone())
            .err()
            .expect("unpermitted write does trap");

        // No amount of waiting will resolve the situation, as nothing is emptying the simplex
        // buffer.
        never_resolves(writer.write_ready()).await;

        // There is 2k buffered between the simplex and worker buffers. I should be able to read
        // all of it out:
        let mut buf = [0; 2048];
        reader.read_exact(&mut buf).await.unwrap();

        // and no more:
        never_resolves(reader.read(&mut buf)).await;

        // Now the backpressure should be cleared, and an additional write should be accepted.
        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("ready is ok");
        assert_eq!(permit, 1024);

        // and the write succeeds:
        writer.write(chunk.clone()).expect("write does not trap");
    }

    #[test_log::test(tokio::test(flavor = "multi_thread"))]
    async fn backpressure_write_stream_with_flush() {
        for n in 0..TEST_ITERATIONS {
            backpressure_write_stream_with_flush_aux(n).await;
        }
    }

    async fn backpressure_write_stream_with_flush_aux(_: usize) {
        // The channel can buffer up to 1k, plus another 1k in the stream, before not
        // accepting more input:
        let (mut reader, writer) = simplex(1024);
        let mut writer = AsyncWriteStream::new(1024, writer);

        let chunk = Bytes::from_static(&[0; 1024]);

        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write should be ready");
        assert_eq!(permit, 1024);

        writer.write(chunk.clone()).expect("write succeeds");

        writer.flush().expect("flush succeeds");

        // Waiting for write_ready to resolve after a flush should always show that we have the
        // full budget available, as the message will have flushed to the simplex channel.
        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("write_ready succeeds");
        assert_eq!(permit, 1024);

        // Write enough to fill the simplex buffer:
        writer.write(chunk.clone()).expect("write does not trap");

        // Writes should be refused until this flush succeeds.
        writer.flush().expect("flush succeeds");

        // Try shoving even more down there, and it shouldn't accept more input:
        writer
            .write(chunk.clone())
            .err()
            .expect("unpermitted write does trap");

        // No amount of waiting will resolve the situation, as nothing is emptying the simplex
        // buffer.
        never_resolves(writer.write_ready()).await;

        // There is 2k buffered between the simplex and worker buffers. I should be able to read
        // all of it out:
        let mut buf = [0; 2048];
        reader.read_exact(&mut buf).await.unwrap();

        // and no more:
        never_resolves(reader.read(&mut buf)).await;

        // Now the backpressure should be cleared, and an additional write should be accepted.
        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("ready is ok");
        assert_eq!(permit, 1024);

        // and the write succeeds:
        writer.write(chunk.clone()).expect("write does not trap");

        writer.flush().expect("flush succeeds");

        let permit = resolves_immediately(writer.write_ready())
            .await
            .expect("ready is ok");
        assert_eq!(permit, 1024);
    }
}