cranelift_codegen/verifier/
mod.rs

1//! A verifier for ensuring that functions are well formed.
2//! It verifies:
3//!
4//! block integrity
5//!
6//! - All instructions reached from the `block_insts` iterator must belong to
7//!   the block as reported by `inst_block()`.
8//! - Every block must end in a terminator instruction, and no other instruction
9//!   can be a terminator.
10//! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`.
11//!
12//! Instruction integrity
13//!
14//! - The instruction format must match the opcode.
15//! - All result values must be created for multi-valued instructions.
16//! - All referenced entities must exist. (Values, blocks, stack slots, ...)
17//! - Instructions must not reference (eg. branch to) the entry block.
18//!
19//! SSA form
20//!
21//! - Values must be defined by an instruction that exists and that is inserted in
22//!   a block, or be an argument of an existing block.
23//! - Values used by an instruction must dominate the instruction.
24//!
25//! Control flow graph and dominator tree integrity:
26//!
27//! - All predecessors in the CFG must be branches to the block.
28//! - All branches to a block must be present in the CFG.
29//! - A recomputed dominator tree is identical to the existing one.
30//! - The entry block must not be a cold block.
31//!
32//! Type checking
33//!
34//! - Compare input and output values against the opcode's type constraints.
35//!   For polymorphic opcodes, determine the controlling type variable first.
36//! - Branches and jumps must pass arguments to destination blocks that match the
37//!   expected types exactly. The number of arguments must match.
38//! - All blocks in a jump table must take no arguments.
39//! - Function calls are type checked against their signature.
40//! - The entry block must take arguments that match the signature of the current
41//!   function.
42//! - All return instructions must have return value operands matching the current
43//!   function signature.
44//!
45//! Global values
46//!
47//! - Detect cycles in global values.
48//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
49//!
50//! Memory types
51//!
52//! - Ensure that struct fields are in offset order.
53//! - Ensure that struct fields are completely within the overall
54//!   struct size, and do not overlap.
55//!
56//! TODO:
57//! Ad hoc checking
58//!
59//! - Stack slot loads and stores must be in-bounds.
60//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
61//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
62//!   range for their polymorphic type.
63//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
64//!   of arguments must match the destination type, and the lane indexes must be in range.
65
66use crate::dbg::DisplayList;
67use crate::dominator_tree::DominatorTree;
68use crate::entity::SparseSet;
69use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
70use crate::ir::ExceptionTableItem;
71use crate::ir::entities::AnyEntity;
72use crate::ir::instructions::{CallInfo, InstructionFormat, ResolvedConstraint};
73use crate::ir::{self, ArgumentExtension, BlockArg, ExceptionTable};
74use crate::ir::{
75    ArgumentPurpose, Block, Constant, DynamicStackSlot, FuncRef, Function, GlobalValue, Inst,
76    JumpTable, MemFlags, MemoryTypeData, Opcode, SigRef, StackSlot, Type, Value, ValueDef,
77    ValueList, types,
78};
79use crate::isa::TargetIsa;
80use crate::print_errors::pretty_verifier_error;
81use crate::settings::FlagsOrIsa;
82use crate::timing;
83use alloc::collections::BTreeSet;
84use alloc::string::{String, ToString};
85use alloc::vec::Vec;
86use core::fmt::{self, Display, Formatter};
87
88/// A verifier error.
89#[derive(Debug, PartialEq, Eq, Clone)]
90pub struct VerifierError {
91    /// The entity causing the verifier error.
92    pub location: AnyEntity,
93    /// Optionally provide some context for the given location; e.g., for `inst42` provide
94    /// `Some("v3 = iconst.i32 0")` for more comprehensible errors.
95    pub context: Option<String>,
96    /// The error message.
97    pub message: String,
98}
99
100// This is manually implementing Error and Display instead of using thiserror to reduce the amount
101// of dependencies used by Cranelift.
102impl std::error::Error for VerifierError {}
103
104impl Display for VerifierError {
105    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
106        match &self.context {
107            None => write!(f, "{}: {}", self.location, self.message),
108            Some(context) => write!(f, "{} ({}): {}", self.location, context, self.message),
109        }
110    }
111}
112
113/// Convenience converter for making error-reporting less verbose.
114///
115/// Converts a tuple of `(location, context, message)` to a `VerifierError`.
116/// ```
117/// use cranelift_codegen::verifier::VerifierErrors;
118/// use cranelift_codegen::ir::Inst;
119/// let mut errors = VerifierErrors::new();
120/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type"));
121/// // note the double parenthenses to use this syntax
122/// ```
123impl<L, C, M> From<(L, C, M)> for VerifierError
124where
125    L: Into<AnyEntity>,
126    C: Into<String>,
127    M: Into<String>,
128{
129    fn from(items: (L, C, M)) -> Self {
130        let (location, context, message) = items;
131        Self {
132            location: location.into(),
133            context: Some(context.into()),
134            message: message.into(),
135        }
136    }
137}
138
139/// Convenience converter for making error-reporting less verbose.
140///
141/// Same as above but without `context`.
142impl<L, M> From<(L, M)> for VerifierError
143where
144    L: Into<AnyEntity>,
145    M: Into<String>,
146{
147    fn from(items: (L, M)) -> Self {
148        let (location, message) = items;
149        Self {
150            location: location.into(),
151            context: None,
152            message: message.into(),
153        }
154    }
155}
156
157/// Result of a step in the verification process.
158///
159/// Functions that return `VerifierStepResult` should also take a
160/// mutable reference to `VerifierErrors` as argument in order to report
161/// errors.
162///
163/// Here, `Ok` represents a step that **did not lead to a fatal error**,
164/// meaning that the verification process may continue. However, other (non-fatal)
165/// errors might have been reported through the previously mentioned `VerifierErrors`
166/// argument.
167pub type VerifierStepResult = Result<(), ()>;
168
169/// Result of a verification operation.
170///
171/// Unlike `VerifierStepResult` which may be `Ok` while still having reported
172/// errors, this type always returns `Err` if an error (fatal or not) was reported.
173pub type VerifierResult<T> = Result<T, VerifierErrors>;
174
175/// List of verifier errors.
176#[derive(Debug, Default, PartialEq, Eq, Clone)]
177pub struct VerifierErrors(pub Vec<VerifierError>);
178
179// This is manually implementing Error and Display instead of using thiserror to reduce the amount
180// of dependencies used by Cranelift.
181impl std::error::Error for VerifierErrors {}
182
183impl VerifierErrors {
184    /// Return a new `VerifierErrors` struct.
185    #[inline]
186    pub fn new() -> Self {
187        Self(Vec::new())
188    }
189
190    /// Return whether no errors were reported.
191    #[inline]
192    pub fn is_empty(&self) -> bool {
193        self.0.is_empty()
194    }
195
196    /// Return whether one or more errors were reported.
197    #[inline]
198    pub fn has_error(&self) -> bool {
199        !self.0.is_empty()
200    }
201
202    /// Return a `VerifierStepResult` that is fatal if at least one error was reported,
203    /// and non-fatal otherwise.
204    #[inline]
205    pub fn as_result(&self) -> VerifierStepResult {
206        if self.is_empty() { Ok(()) } else { Err(()) }
207    }
208
209    /// Report an error, adding it to the list of errors.
210    pub fn report(&mut self, error: impl Into<VerifierError>) {
211        self.0.push(error.into());
212    }
213
214    /// Report a fatal error and return `Err`.
215    pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult {
216        self.report(error);
217        Err(())
218    }
219
220    /// Report a non-fatal error and return `Ok`.
221    pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult {
222        self.report(error);
223        Ok(())
224    }
225}
226
227impl From<Vec<VerifierError>> for VerifierErrors {
228    fn from(v: Vec<VerifierError>) -> Self {
229        Self(v)
230    }
231}
232
233impl From<VerifierErrors> for Vec<VerifierError> {
234    fn from(errors: VerifierErrors) -> Vec<VerifierError> {
235        errors.0
236    }
237}
238
239impl From<VerifierErrors> for VerifierResult<()> {
240    fn from(errors: VerifierErrors) -> VerifierResult<()> {
241        if errors.is_empty() {
242            Ok(())
243        } else {
244            Err(errors)
245        }
246    }
247}
248
249impl Display for VerifierErrors {
250    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
251        for err in &self.0 {
252            writeln!(f, "- {err}")?;
253        }
254        Ok(())
255    }
256}
257
258/// Verify `func`.
259pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
260    func: &Function,
261    fisa: FOI,
262) -> VerifierResult<()> {
263    let _tt = timing::verifier();
264    let mut errors = VerifierErrors::default();
265    let verifier = Verifier::new(func, fisa.into());
266    let result = verifier.run(&mut errors);
267    if errors.is_empty() {
268        result.unwrap();
269        Ok(())
270    } else {
271        Err(errors)
272    }
273}
274
275/// Verify `func` after checking the integrity of associated context data structures `cfg` and
276/// `domtree`.
277pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
278    func: &Function,
279    cfg: &ControlFlowGraph,
280    domtree: &DominatorTree,
281    fisa: FOI,
282    errors: &mut VerifierErrors,
283) -> VerifierStepResult {
284    let _tt = timing::verifier();
285    let verifier = Verifier::new(func, fisa.into());
286    if cfg.is_valid() {
287        verifier.cfg_integrity(cfg, errors)?;
288    }
289    if domtree.is_valid() {
290        verifier.domtree_integrity(domtree, errors)?;
291    }
292    verifier.run(errors)
293}
294
295#[derive(Clone, Copy, Debug)]
296enum BlockCallTargetType {
297    Normal,
298    ExNormalRet,
299    Exception,
300}
301
302struct Verifier<'a> {
303    func: &'a Function,
304    expected_cfg: ControlFlowGraph,
305    expected_domtree: DominatorTree,
306    isa: Option<&'a dyn TargetIsa>,
307}
308
309impl<'a> Verifier<'a> {
310    pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
311        let expected_cfg = ControlFlowGraph::with_function(func);
312        let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
313        Self {
314            func,
315            expected_cfg,
316            expected_domtree,
317            isa: fisa.isa,
318        }
319    }
320
321    /// Determine a contextual error string for an instruction.
322    #[inline]
323    fn context(&self, inst: Inst) -> String {
324        self.func.dfg.display_inst(inst).to_string()
325    }
326
327    // Check for:
328    //  - cycles in the global value declarations.
329    //  - use of 'vmctx' when no special parameter declares it.
330    fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
331        let mut cycle_seen = false;
332        let mut seen = SparseSet::new();
333
334        'gvs: for gv in self.func.global_values.keys() {
335            seen.clear();
336            seen.insert(gv);
337
338            let mut cur = gv;
339            loop {
340                match self.func.global_values[cur] {
341                    ir::GlobalValueData::Load { base, .. }
342                    | ir::GlobalValueData::IAddImm { base, .. } => {
343                        if seen.insert(base).is_some() {
344                            if !cycle_seen {
345                                errors.report((
346                                    gv,
347                                    format!("global value cycle: {}", DisplayList(seen.as_slice())),
348                                ));
349                                // ensures we don't report the cycle multiple times
350                                cycle_seen = true;
351                            }
352                            continue 'gvs;
353                        }
354
355                        cur = base;
356                    }
357                    _ => break,
358                }
359            }
360
361            match self.func.global_values[gv] {
362                ir::GlobalValueData::VMContext { .. } => {
363                    if self
364                        .func
365                        .special_param(ir::ArgumentPurpose::VMContext)
366                        .is_none()
367                    {
368                        errors.report((gv, format!("undeclared vmctx reference {gv}")));
369                    }
370                }
371                ir::GlobalValueData::IAddImm {
372                    base, global_type, ..
373                } => {
374                    if !global_type.is_int() {
375                        errors.report((
376                            gv,
377                            format!("iadd_imm global value with non-int type {global_type}"),
378                        ));
379                    } else if let Some(isa) = self.isa {
380                        let base_type = self.func.global_values[base].global_type(isa);
381                        if global_type != base_type {
382                            errors.report((
383                                gv,
384                                format!(
385                                    "iadd_imm type {global_type} differs from operand type {base_type}"
386                                ),
387                            ));
388                        }
389                    }
390                }
391                ir::GlobalValueData::Load { base, .. } => {
392                    if let Some(isa) = self.isa {
393                        let base_type = self.func.global_values[base].global_type(isa);
394                        let pointer_type = isa.pointer_type();
395                        if base_type != pointer_type {
396                            errors.report((
397                                gv,
398                                format!(
399                                    "base {base} has type {base_type}, which is not the pointer type {pointer_type}"
400                                ),
401                            ));
402                        }
403                    }
404                }
405                _ => {}
406            }
407        }
408
409        // Invalid global values shouldn't stop us from verifying the rest of the function
410        Ok(())
411    }
412
413    fn verify_memory_types(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
414        // Verify that all fields are statically-sized and lie within
415        // the struct, do not overlap, and are in offset order
416        for (mt, mt_data) in &self.func.memory_types {
417            match mt_data {
418                MemoryTypeData::Struct { size, fields } => {
419                    let mut last_offset = 0;
420                    for field in fields {
421                        if field.offset < last_offset {
422                            errors.report((
423                                mt,
424                                format!(
425                                    "memory type {} has a field at offset {}, which is out-of-order",
426                                    mt, field.offset
427                                ),
428                            ));
429                        }
430                        last_offset = match field.offset.checked_add(u64::from(field.ty.bytes())) {
431                            Some(o) => o,
432                            None => {
433                                errors.report((
434                                        mt,
435                                        format!(
436                                            "memory type {} has a field at offset {} of size {}; offset plus size overflows a u64",
437                                            mt, field.offset, field.ty.bytes()),
438                                ));
439                                break;
440                            }
441                        };
442
443                        if last_offset > *size {
444                            errors.report((
445                                        mt,
446                                        format!(
447                                            "memory type {} has a field at offset {} of size {} that overflows the struct size {}",
448                                            mt, field.offset, field.ty.bytes(), *size),
449                                          ));
450                        }
451                    }
452                }
453                _ => {}
454            }
455        }
456
457        Ok(())
458    }
459
460    /// Check that the given block can be encoded as a BB, by checking that only
461    /// branching instructions are ending the block.
462    fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult {
463        match self.func.is_block_basic(block) {
464            Ok(()) => Ok(()),
465            Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
466        }
467    }
468
469    fn block_integrity(
470        &self,
471        block: Block,
472        inst: Inst,
473        errors: &mut VerifierErrors,
474    ) -> VerifierStepResult {
475        let is_terminator = self.func.dfg.insts[inst].opcode().is_terminator();
476        let is_last_inst = self.func.layout.last_inst(block) == Some(inst);
477
478        if is_terminator && !is_last_inst {
479            // Terminating instructions only occur at the end of blocks.
480            return errors.fatal((
481                inst,
482                self.context(inst),
483                format!("a terminator instruction was encountered before the end of {block}"),
484            ));
485        }
486        if is_last_inst && !is_terminator {
487            return errors.fatal((block, "block does not end in a terminator instruction"));
488        }
489
490        // Instructions belong to the correct block.
491        let inst_block = self.func.layout.inst_block(inst);
492        if inst_block != Some(block) {
493            return errors.fatal((
494                inst,
495                self.context(inst),
496                format!("should belong to {block} not {inst_block:?}"),
497            ));
498        }
499
500        // Parameters belong to the correct block.
501        for &arg in self.func.dfg.block_params(block) {
502            match self.func.dfg.value_def(arg) {
503                ValueDef::Param(arg_block, _) => {
504                    if block != arg_block {
505                        return errors.fatal((arg, format!("does not belong to {block}")));
506                    }
507                }
508                _ => {
509                    return errors.fatal((arg, "expected an argument, found a result"));
510                }
511            }
512        }
513
514        Ok(())
515    }
516
517    fn instruction_integrity(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
518        let inst_data = &self.func.dfg.insts[inst];
519        let dfg = &self.func.dfg;
520
521        // The instruction format matches the opcode
522        if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
523            return errors.fatal((
524                inst,
525                self.context(inst),
526                "instruction opcode doesn't match instruction format",
527            ));
528        }
529
530        let expected_num_results = dfg.num_expected_results_for_verifier(inst);
531
532        // All result values for multi-valued instructions are created
533        let got_results = dfg.inst_results(inst).len();
534        if got_results != expected_num_results {
535            return errors.fatal((
536                inst,
537                self.context(inst),
538                format!("expected {expected_num_results} result values, found {got_results}"),
539            ));
540        }
541
542        self.verify_entity_references(inst, errors)
543    }
544
545    fn verify_entity_references(
546        &self,
547        inst: Inst,
548        errors: &mut VerifierErrors,
549    ) -> VerifierStepResult {
550        use crate::ir::instructions::InstructionData::*;
551
552        for arg in self.func.dfg.inst_values(inst) {
553            self.verify_inst_arg(inst, arg, errors)?;
554
555            // All used values must be attached to something.
556            let original = self.func.dfg.resolve_aliases(arg);
557            if !self.func.dfg.value_is_attached(original) {
558                errors.report((
559                    inst,
560                    self.context(inst),
561                    format!("argument {arg} -> {original} is not attached"),
562                ));
563            }
564        }
565
566        for &res in self.func.dfg.inst_results(inst) {
567            self.verify_inst_result(inst, res, errors)?;
568        }
569
570        match self.func.dfg.insts[inst] {
571            MultiAry { ref args, .. } => {
572                self.verify_value_list(inst, args, errors)?;
573            }
574            Jump { destination, .. } => {
575                self.verify_block(inst, destination.block(&self.func.dfg.value_lists), errors)?;
576            }
577            Brif {
578                arg,
579                blocks: [block_then, block_else],
580                ..
581            } => {
582                self.verify_value(inst, arg, errors)?;
583                self.verify_block(inst, block_then.block(&self.func.dfg.value_lists), errors)?;
584                self.verify_block(inst, block_else.block(&self.func.dfg.value_lists), errors)?;
585            }
586            BranchTable { table, .. } => {
587                self.verify_jump_table(inst, table, errors)?;
588            }
589            Call {
590                opcode,
591                func_ref,
592                ref args,
593                ..
594            } => {
595                self.verify_func_ref(inst, func_ref, errors)?;
596                self.verify_value_list(inst, args, errors)?;
597                self.verify_callee_patchability(inst, func_ref, opcode, errors)?;
598            }
599            CallIndirect {
600                sig_ref, ref args, ..
601            } => {
602                self.verify_sig_ref(inst, sig_ref, errors)?;
603                self.verify_value_list(inst, args, errors)?;
604            }
605            TryCall {
606                func_ref,
607                ref args,
608                exception,
609                ..
610            } => {
611                self.verify_func_ref(inst, func_ref, errors)?;
612                self.verify_value_list(inst, args, errors)?;
613                self.verify_exception_table(inst, exception, errors)?;
614                self.verify_exception_compatible_abi(inst, exception, errors)?;
615            }
616            TryCallIndirect {
617                ref args,
618                exception,
619                ..
620            } => {
621                self.verify_value_list(inst, args, errors)?;
622                self.verify_exception_table(inst, exception, errors)?;
623                self.verify_exception_compatible_abi(inst, exception, errors)?;
624            }
625            FuncAddr { func_ref, .. } => {
626                self.verify_func_ref(inst, func_ref, errors)?;
627            }
628            StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
629                self.verify_stack_slot(inst, stack_slot, errors)?;
630            }
631            DynamicStackLoad {
632                dynamic_stack_slot, ..
633            }
634            | DynamicStackStore {
635                dynamic_stack_slot, ..
636            } => {
637                self.verify_dynamic_stack_slot(inst, dynamic_stack_slot, errors)?;
638            }
639            UnaryGlobalValue { global_value, .. } => {
640                self.verify_global_value(inst, global_value, errors)?;
641            }
642            NullAry {
643                opcode: Opcode::GetPinnedReg,
644            }
645            | Unary {
646                opcode: Opcode::SetPinnedReg,
647                ..
648            } => {
649                if let Some(isa) = &self.isa {
650                    if !isa.flags().enable_pinned_reg() {
651                        return errors.fatal((
652                            inst,
653                            self.context(inst),
654                            "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
655                        ));
656                    }
657                } else {
658                    return errors.fatal((
659                        inst,
660                        self.context(inst),
661                        "GetPinnedReg/SetPinnedReg need an ISA!",
662                    ));
663                }
664            }
665            NullAry {
666                opcode: Opcode::GetFramePointer | Opcode::GetReturnAddress,
667            } => {
668                if let Some(isa) = &self.isa {
669                    // Backends may already rely on this check implicitly, so do
670                    // not relax it without verifying that it is safe to do so.
671                    if !isa.flags().preserve_frame_pointers() {
672                        return errors.fatal((
673                            inst,
674                            self.context(inst),
675                            "`get_frame_pointer`/`get_return_address` cannot be used without \
676                             enabling `preserve_frame_pointers`",
677                        ));
678                    }
679                } else {
680                    return errors.fatal((
681                        inst,
682                        self.context(inst),
683                        "`get_frame_pointer`/`get_return_address` require an ISA!",
684                    ));
685                }
686            }
687            LoadNoOffset {
688                opcode: Opcode::Bitcast,
689                flags,
690                arg,
691            } => {
692                self.verify_bitcast(inst, flags, arg, errors)?;
693            }
694            LoadNoOffset { opcode, arg, .. } if opcode.can_load() => {
695                self.verify_is_address(inst, arg, errors)?;
696            }
697            Load { opcode, arg, .. } if opcode.can_load() => {
698                self.verify_is_address(inst, arg, errors)?;
699            }
700            AtomicCas {
701                opcode,
702                args: [p, _, _],
703                ..
704            } if opcode.can_load() || opcode.can_store() => {
705                self.verify_is_address(inst, p, errors)?;
706            }
707            AtomicRmw {
708                opcode,
709                args: [p, _],
710                ..
711            } if opcode.can_load() || opcode.can_store() => {
712                self.verify_is_address(inst, p, errors)?;
713            }
714            Store {
715                opcode,
716                args: [_, p],
717                ..
718            } if opcode.can_store() => {
719                self.verify_is_address(inst, p, errors)?;
720            }
721            StoreNoOffset {
722                opcode,
723                args: [_, p],
724                ..
725            } if opcode.can_store() => {
726                self.verify_is_address(inst, p, errors)?;
727            }
728            UnaryConst {
729                opcode: opcode @ (Opcode::Vconst | Opcode::F128const),
730                constant_handle,
731                ..
732            } => {
733                self.verify_constant_size(inst, opcode, constant_handle, errors)?;
734            }
735
736            ExceptionHandlerAddress { block, imm, .. } => {
737                self.verify_block(inst, block, errors)?;
738                self.verify_try_call_handler_index(inst, block, imm.into(), errors)?;
739            }
740
741            // Exhaustive list so we can't forget to add new formats
742            AtomicCas { .. }
743            | AtomicRmw { .. }
744            | LoadNoOffset { .. }
745            | StoreNoOffset { .. }
746            | Unary { .. }
747            | UnaryConst { .. }
748            | UnaryImm { .. }
749            | UnaryIeee16 { .. }
750            | UnaryIeee32 { .. }
751            | UnaryIeee64 { .. }
752            | Binary { .. }
753            | BinaryImm8 { .. }
754            | BinaryImm64 { .. }
755            | Ternary { .. }
756            | TernaryImm8 { .. }
757            | Shuffle { .. }
758            | IntAddTrap { .. }
759            | IntCompare { .. }
760            | IntCompareImm { .. }
761            | FloatCompare { .. }
762            | Load { .. }
763            | Store { .. }
764            | Trap { .. }
765            | CondTrap { .. }
766            | NullAry { .. } => {}
767        }
768
769        Ok(())
770    }
771
772    fn verify_block(
773        &self,
774        loc: impl Into<AnyEntity>,
775        e: Block,
776        errors: &mut VerifierErrors,
777    ) -> VerifierStepResult {
778        if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) {
779            return errors.fatal((loc, format!("invalid block reference {e}")));
780        }
781        if let Some(entry_block) = self.func.layout.entry_block() {
782            if e == entry_block {
783                return errors.fatal((loc, format!("invalid reference to entry block {e}")));
784            }
785        }
786        Ok(())
787    }
788
789    fn verify_sig_ref(
790        &self,
791        inst: Inst,
792        s: SigRef,
793        errors: &mut VerifierErrors,
794    ) -> VerifierStepResult {
795        if !self.func.dfg.signatures.is_valid(s) {
796            errors.fatal((
797                inst,
798                self.context(inst),
799                format!("invalid signature reference {s}"),
800            ))
801        } else {
802            Ok(())
803        }
804    }
805
806    fn verify_func_ref(
807        &self,
808        inst: Inst,
809        f: FuncRef,
810        errors: &mut VerifierErrors,
811    ) -> VerifierStepResult {
812        if !self.func.dfg.ext_funcs.is_valid(f) {
813            errors.nonfatal((
814                inst,
815                self.context(inst),
816                format!("invalid function reference {f}"),
817            ))
818        } else {
819            Ok(())
820        }
821    }
822
823    fn verify_stack_slot(
824        &self,
825        inst: Inst,
826        ss: StackSlot,
827        errors: &mut VerifierErrors,
828    ) -> VerifierStepResult {
829        if !self.func.sized_stack_slots.is_valid(ss) {
830            errors.nonfatal((inst, self.context(inst), format!("invalid stack slot {ss}")))
831        } else {
832            Ok(())
833        }
834    }
835
836    fn verify_dynamic_stack_slot(
837        &self,
838        inst: Inst,
839        ss: DynamicStackSlot,
840        errors: &mut VerifierErrors,
841    ) -> VerifierStepResult {
842        if !self.func.dynamic_stack_slots.is_valid(ss) {
843            errors.nonfatal((
844                inst,
845                self.context(inst),
846                format!("invalid dynamic stack slot {ss}"),
847            ))
848        } else {
849            Ok(())
850        }
851    }
852
853    fn verify_global_value(
854        &self,
855        inst: Inst,
856        gv: GlobalValue,
857        errors: &mut VerifierErrors,
858    ) -> VerifierStepResult {
859        if !self.func.global_values.is_valid(gv) {
860            errors.nonfatal((
861                inst,
862                self.context(inst),
863                format!("invalid global value {gv}"),
864            ))
865        } else {
866            Ok(())
867        }
868    }
869
870    fn verify_value_list(
871        &self,
872        inst: Inst,
873        l: &ValueList,
874        errors: &mut VerifierErrors,
875    ) -> VerifierStepResult {
876        if !l.is_valid(&self.func.dfg.value_lists) {
877            errors.nonfatal((
878                inst,
879                self.context(inst),
880                format!("invalid value list reference {l:?}"),
881            ))
882        } else {
883            Ok(())
884        }
885    }
886
887    fn verify_jump_table(
888        &self,
889        inst: Inst,
890        j: JumpTable,
891        errors: &mut VerifierErrors,
892    ) -> VerifierStepResult {
893        if !self.func.stencil.dfg.jump_tables.is_valid(j) {
894            errors.nonfatal((
895                inst,
896                self.context(inst),
897                format!("invalid jump table reference {j}"),
898            ))
899        } else {
900            let pool = &self.func.stencil.dfg.value_lists;
901            for block in self.func.stencil.dfg.jump_tables[j].all_branches() {
902                self.verify_block(inst, block.block(pool), errors)?;
903            }
904            Ok(())
905        }
906    }
907
908    fn verify_exception_table(
909        &self,
910        inst: Inst,
911        et: ExceptionTable,
912        errors: &mut VerifierErrors,
913    ) -> VerifierStepResult {
914        // Verify that the exception table reference itself is valid.
915        if !self.func.stencil.dfg.exception_tables.is_valid(et) {
916            errors.nonfatal((
917                inst,
918                self.context(inst),
919                format!("invalid exception table reference {et}"),
920            ))?;
921        }
922
923        let pool = &self.func.stencil.dfg.value_lists;
924        let exdata = &self.func.stencil.dfg.exception_tables[et];
925
926        // Verify that the exception table's signature reference
927        // is valid.
928        self.verify_sig_ref(inst, exdata.signature(), errors)?;
929
930        // Verify that the exception table's block references are valid.
931        for block in exdata.all_branches() {
932            self.verify_block(inst, block.block(pool), errors)?;
933        }
934        Ok(())
935    }
936
937    fn verify_exception_compatible_abi(
938        &self,
939        inst: Inst,
940        et: ExceptionTable,
941        errors: &mut VerifierErrors,
942    ) -> VerifierStepResult {
943        let callee_sig_ref = self.func.dfg.exception_tables[et].signature();
944        let callee_sig = &self.func.dfg.signatures[callee_sig_ref];
945        let callee_call_conv = callee_sig.call_conv;
946        if !callee_call_conv.supports_exceptions() {
947            errors.nonfatal((
948                inst,
949                self.context(inst),
950                format!(
951                    "calling convention `{callee_call_conv}` of callee does not support exceptions"
952                ),
953            ))?;
954        }
955        Ok(())
956    }
957
958    fn verify_callee_patchability(
959        &self,
960        inst: Inst,
961        func_ref: FuncRef,
962        opcode: Opcode,
963        errors: &mut VerifierErrors,
964    ) -> VerifierStepResult {
965        let ir::ExtFuncData {
966            patchable,
967            colocated,
968            signature,
969            name: _,
970        } = self.func.dfg.ext_funcs[func_ref];
971        let signature = &self.func.dfg.signatures[signature];
972        if patchable && (opcode == Opcode::ReturnCall || opcode == Opcode::ReturnCallIndirect) {
973            errors.fatal((
974                inst,
975                self.context(inst),
976                "patchable funcref cannot be used in a return_call".to_string(),
977            ))?;
978        }
979        if patchable && !colocated {
980            errors.fatal((
981                inst,
982                self.context(inst),
983                "patchable call to non-colocated function".to_string(),
984            ))?;
985        }
986        if patchable && !signature.returns.is_empty() {
987            errors.fatal((
988                inst,
989                self.context(inst),
990                "patchable call cannot occur to a function with return values".to_string(),
991            ))?;
992        }
993        Ok(())
994    }
995
996    fn verify_value(
997        &self,
998        loc_inst: Inst,
999        v: Value,
1000        errors: &mut VerifierErrors,
1001    ) -> VerifierStepResult {
1002        let dfg = &self.func.dfg;
1003        if !dfg.value_is_valid(v) {
1004            errors.nonfatal((
1005                loc_inst,
1006                self.context(loc_inst),
1007                format!("invalid value reference {v}"),
1008            ))
1009        } else {
1010            Ok(())
1011        }
1012    }
1013
1014    fn verify_inst_arg(
1015        &self,
1016        loc_inst: Inst,
1017        v: Value,
1018        errors: &mut VerifierErrors,
1019    ) -> VerifierStepResult {
1020        self.verify_value(loc_inst, v, errors)?;
1021
1022        let dfg = &self.func.dfg;
1023        let loc_block = self
1024            .func
1025            .layout
1026            .inst_block(loc_inst)
1027            .expect("Instruction not in layout.");
1028        let is_reachable = self.expected_domtree.is_reachable(loc_block);
1029
1030        // SSA form
1031        match dfg.value_def(v) {
1032            ValueDef::Result(def_inst, _) => {
1033                // Value is defined by an instruction that exists.
1034                if !dfg.inst_is_valid(def_inst) {
1035                    return errors.fatal((
1036                        loc_inst,
1037                        self.context(loc_inst),
1038                        format!("{v} is defined by invalid instruction {def_inst}"),
1039                    ));
1040                }
1041                // Defining instruction is inserted in a block.
1042                if self.func.layout.inst_block(def_inst) == None {
1043                    return errors.fatal((
1044                        loc_inst,
1045                        self.context(loc_inst),
1046                        format!("{v} is defined by {def_inst} which has no block"),
1047                    ));
1048                }
1049                // Defining instruction dominates the instruction that uses the value.
1050                if is_reachable {
1051                    if !self
1052                        .expected_domtree
1053                        .dominates(def_inst, loc_inst, &self.func.layout)
1054                    {
1055                        return errors.fatal((
1056                            loc_inst,
1057                            self.context(loc_inst),
1058                            format!("uses value {v} from non-dominating {def_inst}"),
1059                        ));
1060                    }
1061                    if def_inst == loc_inst {
1062                        return errors.fatal((
1063                            loc_inst,
1064                            self.context(loc_inst),
1065                            format!("uses value {v} from itself"),
1066                        ));
1067                    }
1068                }
1069            }
1070            ValueDef::Param(block, _) => {
1071                // Value is defined by an existing block.
1072                if !dfg.block_is_valid(block) {
1073                    return errors.fatal((
1074                        loc_inst,
1075                        self.context(loc_inst),
1076                        format!("{v} is defined by invalid block {block}"),
1077                    ));
1078                }
1079                // Defining block is inserted in the layout
1080                if !self.func.layout.is_block_inserted(block) {
1081                    return errors.fatal((
1082                        loc_inst,
1083                        self.context(loc_inst),
1084                        format!("{v} is defined by {block} which is not in the layout"),
1085                    ));
1086                }
1087                let user_block = self.func.layout.inst_block(loc_inst).expect("Expected instruction to be in a block as we're traversing code already in layout");
1088                // The defining block dominates the instruction using this value.
1089                if is_reachable && !self.expected_domtree.block_dominates(block, user_block) {
1090                    return errors.fatal((
1091                        loc_inst,
1092                        self.context(loc_inst),
1093                        format!("uses value arg from non-dominating {block}"),
1094                    ));
1095                }
1096            }
1097            ValueDef::Union(_, _) => {
1098                // Nothing: union nodes themselves have no location,
1099                // so we cannot check any dominance properties.
1100            }
1101        }
1102        Ok(())
1103    }
1104
1105    fn verify_inst_result(
1106        &self,
1107        loc_inst: Inst,
1108        v: Value,
1109        errors: &mut VerifierErrors,
1110    ) -> VerifierStepResult {
1111        self.verify_value(loc_inst, v, errors)?;
1112
1113        match self.func.dfg.value_def(v) {
1114            ValueDef::Result(def_inst, _) => {
1115                if def_inst != loc_inst {
1116                    errors.fatal((
1117                        loc_inst,
1118                        self.context(loc_inst),
1119                        format!("instruction result {v} is not defined by the instruction"),
1120                    ))
1121                } else {
1122                    Ok(())
1123                }
1124            }
1125            ValueDef::Param(_, _) => errors.fatal((
1126                loc_inst,
1127                self.context(loc_inst),
1128                format!("instruction result {v} is not defined by the instruction"),
1129            )),
1130            ValueDef::Union(_, _) => errors.fatal((
1131                loc_inst,
1132                self.context(loc_inst),
1133                format!("instruction result {v} is a union node"),
1134            )),
1135        }
1136    }
1137
1138    fn verify_bitcast(
1139        &self,
1140        inst: Inst,
1141        flags: MemFlags,
1142        arg: Value,
1143        errors: &mut VerifierErrors,
1144    ) -> VerifierStepResult {
1145        let typ = self.func.dfg.ctrl_typevar(inst);
1146        let value_type = self.func.dfg.value_type(arg);
1147
1148        if typ.bits() != value_type.bits() {
1149            errors.fatal((
1150                inst,
1151                format!(
1152                    "The bitcast argument {} has a type of {} bits, which doesn't match an expected type of {} bits",
1153                    arg,
1154                    value_type.bits(),
1155                    typ.bits()
1156                ),
1157            ))
1158        } else if flags != MemFlags::new()
1159            && flags != MemFlags::new().with_endianness(ir::Endianness::Little)
1160            && flags != MemFlags::new().with_endianness(ir::Endianness::Big)
1161        {
1162            errors.fatal((
1163                inst,
1164                "The bitcast instruction only accepts the `big` or `little` memory flags",
1165            ))
1166        } else if flags == MemFlags::new() && typ.lane_count() != value_type.lane_count() {
1167            errors.fatal((
1168                inst,
1169                "Byte order specifier required for bitcast instruction changing lane count",
1170            ))
1171        } else {
1172            Ok(())
1173        }
1174    }
1175
1176    fn verify_constant_size(
1177        &self,
1178        inst: Inst,
1179        opcode: Opcode,
1180        constant: Constant,
1181        errors: &mut VerifierErrors,
1182    ) -> VerifierStepResult {
1183        let type_size = match opcode {
1184            Opcode::F128const => types::F128.bytes(),
1185            Opcode::Vconst => self.func.dfg.ctrl_typevar(inst).bytes(),
1186            _ => unreachable!("unexpected opcode {opcode:?}"),
1187        } as usize;
1188        let constant_size = self.func.dfg.constants.get(constant).len();
1189        if type_size != constant_size {
1190            errors.fatal((
1191                inst,
1192                format!(
1193                    "The instruction expects {constant} to have a size of {type_size} bytes but it has {constant_size}"
1194                ),
1195            ))
1196        } else {
1197            Ok(())
1198        }
1199    }
1200
1201    fn verify_is_address(
1202        &self,
1203        loc_inst: Inst,
1204        v: Value,
1205        errors: &mut VerifierErrors,
1206    ) -> VerifierStepResult {
1207        if let Some(isa) = self.isa {
1208            let pointer_width = isa.triple().pointer_width()?;
1209            let value_type = self.func.dfg.value_type(v);
1210            let expected_width = pointer_width.bits() as u32;
1211            let value_width = value_type.bits();
1212            if expected_width != value_width {
1213                errors.nonfatal((
1214                    loc_inst,
1215                    self.context(loc_inst),
1216                    format!("invalid pointer width (got {value_width}, expected {expected_width}) encountered {v}"),
1217                ))
1218            } else {
1219                Ok(())
1220            }
1221        } else {
1222            Ok(())
1223        }
1224    }
1225
1226    fn domtree_integrity(
1227        &self,
1228        domtree: &DominatorTree,
1229        errors: &mut VerifierErrors,
1230    ) -> VerifierStepResult {
1231        // We consider two `DominatorTree`s to be equal if they return the same immediate
1232        // dominator for each block. Therefore the current domtree is valid if it matches the freshly
1233        // computed one.
1234        for block in self.func.layout.blocks() {
1235            let expected = self.expected_domtree.idom(block);
1236            let got = domtree.idom(block);
1237            if got != expected {
1238                return errors.fatal((
1239                    block,
1240                    format!("invalid domtree, expected idom({block}) = {expected:?}, got {got:?}"),
1241                ));
1242            }
1243        }
1244        // We also verify if the postorder defined by `DominatorTree` is sane
1245        if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
1246            return errors.fatal((
1247                AnyEntity::Function,
1248                "incorrect number of Blocks in postorder traversal",
1249            ));
1250        }
1251        for (index, (&test_block, &true_block)) in domtree
1252            .cfg_postorder()
1253            .iter()
1254            .zip(self.expected_domtree.cfg_postorder().iter())
1255            .enumerate()
1256        {
1257            if test_block != true_block {
1258                return errors.fatal((
1259                    test_block,
1260                    format!(
1261                        "invalid domtree, postorder block number {index} should be {true_block}, got {test_block}"
1262                    ),
1263                ));
1264            }
1265        }
1266        Ok(())
1267    }
1268
1269    fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1270        if let Some(block) = self.func.layout.entry_block() {
1271            let expected_types = &self.func.signature.params;
1272            let block_param_count = self.func.dfg.num_block_params(block);
1273
1274            if block_param_count != expected_types.len() {
1275                return errors.fatal((
1276                    block,
1277                    format!(
1278                        "entry block parameters ({}) must match function signature ({})",
1279                        block_param_count,
1280                        expected_types.len()
1281                    ),
1282                ));
1283            }
1284
1285            for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() {
1286                let arg_type = self.func.dfg.value_type(arg);
1287                if arg_type != expected_types[i].value_type {
1288                    errors.report((
1289                        block,
1290                        format!(
1291                            "entry block parameter {} expected to have type {}, got {}",
1292                            i, expected_types[i], arg_type
1293                        ),
1294                    ));
1295                }
1296            }
1297        }
1298
1299        errors.as_result()
1300    }
1301
1302    fn check_entry_not_cold(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1303        if let Some(entry_block) = self.func.layout.entry_block() {
1304            if self.func.layout.is_cold(entry_block) {
1305                return errors
1306                    .fatal((entry_block, format!("entry block cannot be marked as cold")));
1307            }
1308        }
1309        errors.as_result()
1310    }
1311
1312    fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1313        let inst_data = &self.func.dfg.insts[inst];
1314        let constraints = inst_data.opcode().constraints();
1315
1316        let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
1317            // For polymorphic opcodes, determine the controlling type variable first.
1318            let ctrl_type = self.func.dfg.ctrl_typevar(inst);
1319
1320            if !value_typeset.contains(ctrl_type) {
1321                errors.report((
1322                    inst,
1323                    self.context(inst),
1324                    format!(
1325                        "has an invalid controlling type {ctrl_type} (allowed set is {value_typeset:?})"
1326                    ),
1327                ));
1328            }
1329
1330            ctrl_type
1331        } else {
1332            // Non-polymorphic instructions don't check the controlling type variable, so `Option`
1333            // is unnecessary and we can just make it `INVALID`.
1334            types::INVALID
1335        };
1336
1337        // Typechecking instructions is never fatal
1338        let _ = self.typecheck_results(inst, ctrl_type, errors);
1339        let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
1340        let _ = self.typecheck_variable_args(inst, errors);
1341        let _ = self.typecheck_return(inst, errors);
1342        let _ = self.typecheck_special(inst, errors);
1343
1344        Ok(())
1345    }
1346
1347    fn typecheck_results(
1348        &self,
1349        inst: Inst,
1350        ctrl_type: Type,
1351        errors: &mut VerifierErrors,
1352    ) -> VerifierStepResult {
1353        let mut i = 0;
1354        for &result in self.func.dfg.inst_results(inst) {
1355            let result_type = self.func.dfg.value_type(result);
1356            let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
1357            if let Some(expected_type) = expected_type {
1358                if result_type != expected_type {
1359                    errors.report((
1360                        inst,
1361                        self.context(inst),
1362                        format!(
1363                            "expected result {i} ({result}) to have type {expected_type}, found {result_type}"
1364                        ),
1365                    ));
1366                }
1367            } else {
1368                return errors.nonfatal((
1369                    inst,
1370                    self.context(inst),
1371                    "has more result values than expected",
1372                ));
1373            }
1374            i += 1;
1375        }
1376
1377        // There aren't any more result types left.
1378        if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
1379            return errors.nonfatal((
1380                inst,
1381                self.context(inst),
1382                "has fewer result values than expected",
1383            ));
1384        }
1385        Ok(())
1386    }
1387
1388    fn typecheck_fixed_args(
1389        &self,
1390        inst: Inst,
1391        ctrl_type: Type,
1392        errors: &mut VerifierErrors,
1393    ) -> VerifierStepResult {
1394        let constraints = self.func.dfg.insts[inst].opcode().constraints();
1395
1396        for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
1397            let arg_type = self.func.dfg.value_type(arg);
1398            match constraints.value_argument_constraint(i, ctrl_type) {
1399                ResolvedConstraint::Bound(expected_type) => {
1400                    if arg_type != expected_type {
1401                        errors.report((
1402                            inst,
1403                            self.context(inst),
1404                            format!(
1405                                "arg {i} ({arg}) has type {arg_type}, expected {expected_type}"
1406                            ),
1407                        ));
1408                    }
1409                }
1410                ResolvedConstraint::Free(type_set) => {
1411                    if !type_set.contains(arg_type) {
1412                        errors.report((
1413                            inst,
1414                            self.context(inst),
1415                            format!(
1416                                "arg {i} ({arg}) with type {arg_type} failed to satisfy type set {type_set:?}"
1417                            ),
1418                        ));
1419                    }
1420                }
1421            }
1422        }
1423        Ok(())
1424    }
1425
1426    /// Typecheck both instructions that contain variable arguments like calls, and those that
1427    /// include references to basic blocks with their arguments.
1428    fn typecheck_variable_args(
1429        &self,
1430        inst: Inst,
1431        errors: &mut VerifierErrors,
1432    ) -> VerifierStepResult {
1433        match &self.func.dfg.insts[inst] {
1434            ir::InstructionData::Jump { destination, .. } => {
1435                self.typecheck_block_call(inst, destination, BlockCallTargetType::Normal, errors)?;
1436            }
1437            ir::InstructionData::Brif {
1438                blocks: [block_then, block_else],
1439                ..
1440            } => {
1441                self.typecheck_block_call(inst, block_then, BlockCallTargetType::Normal, errors)?;
1442                self.typecheck_block_call(inst, block_else, BlockCallTargetType::Normal, errors)?;
1443            }
1444            ir::InstructionData::BranchTable { table, .. } => {
1445                for block in self.func.stencil.dfg.jump_tables[*table].all_branches() {
1446                    self.typecheck_block_call(inst, block, BlockCallTargetType::Normal, errors)?;
1447                }
1448            }
1449            ir::InstructionData::TryCall { exception, .. }
1450            | ir::InstructionData::TryCallIndirect { exception, .. } => {
1451                let exdata = &self.func.dfg.exception_tables[*exception];
1452                self.typecheck_block_call(
1453                    inst,
1454                    exdata.normal_return(),
1455                    BlockCallTargetType::ExNormalRet,
1456                    errors,
1457                )?;
1458                for item in exdata.items() {
1459                    match item {
1460                        ExceptionTableItem::Tag(_, block_call)
1461                        | ExceptionTableItem::Default(block_call) => {
1462                            self.typecheck_block_call(
1463                                inst,
1464                                &block_call,
1465                                BlockCallTargetType::Exception,
1466                                errors,
1467                            )?;
1468                        }
1469                        ExceptionTableItem::Context(_) => {}
1470                    }
1471                }
1472            }
1473            inst => debug_assert!(!inst.opcode().is_branch()),
1474        }
1475
1476        match self.func.dfg.insts[inst]
1477            .analyze_call(&self.func.dfg.value_lists, &self.func.dfg.exception_tables)
1478        {
1479            CallInfo::Direct(func_ref, args) => {
1480                let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1481                let arg_types = self.func.dfg.signatures[sig_ref]
1482                    .params
1483                    .iter()
1484                    .map(|a| a.value_type);
1485                self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1486            }
1487            CallInfo::DirectWithSig(func_ref, sig_ref, args) => {
1488                let expected_sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1489                let sigdata = &self.func.dfg.signatures;
1490                // Compare signatures by value, not by ID -- any
1491                // equivalent signature ID is acceptable.
1492                if sigdata[sig_ref] != sigdata[expected_sig_ref] {
1493                    errors.nonfatal((
1494                        inst,
1495                        self.context(inst),
1496                        format!(
1497                            "exception table signature {sig_ref} did not match function {func_ref}'s signature {expected_sig_ref}"
1498                        ),
1499                    ))?;
1500                }
1501                let arg_types = self.func.dfg.signatures[sig_ref]
1502                    .params
1503                    .iter()
1504                    .map(|a| a.value_type);
1505                self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1506            }
1507            CallInfo::Indirect(sig_ref, args) => {
1508                let arg_types = self.func.dfg.signatures[sig_ref]
1509                    .params
1510                    .iter()
1511                    .map(|a| a.value_type);
1512                self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1513            }
1514            CallInfo::NotACall => {}
1515        }
1516        Ok(())
1517    }
1518
1519    fn typecheck_block_call(
1520        &self,
1521        inst: Inst,
1522        block: &ir::BlockCall,
1523        target_type: BlockCallTargetType,
1524        errors: &mut VerifierErrors,
1525    ) -> VerifierStepResult {
1526        let pool = &self.func.dfg.value_lists;
1527        let block_params = self.func.dfg.block_params(block.block(pool));
1528        let args = block.args(pool);
1529        if args.len() != block_params.len() {
1530            return errors.nonfatal((
1531                inst,
1532                self.context(inst),
1533                format!(
1534                    "mismatched argument count for `{}`: got {}, expected {}",
1535                    self.func.dfg.display_inst(inst),
1536                    args.len(),
1537                    block_params.len(),
1538                ),
1539            ));
1540        }
1541        for (arg, param) in args.zip(block_params.iter()) {
1542            let Some(arg_ty) = self.block_call_arg_ty(arg, inst, target_type, errors)? else {
1543                continue;
1544            };
1545            let param_ty = self.func.dfg.value_type(*param);
1546            if arg_ty != param_ty {
1547                errors.nonfatal((
1548                    inst,
1549                    self.context(inst),
1550                    format!("arg {arg} has type {arg_ty}, expected {param_ty}"),
1551                ))?;
1552            }
1553        }
1554        Ok(())
1555    }
1556
1557    fn block_call_arg_ty(
1558        &self,
1559        arg: BlockArg,
1560        inst: Inst,
1561        target_type: BlockCallTargetType,
1562        errors: &mut VerifierErrors,
1563    ) -> Result<Option<Type>, ()> {
1564        match arg {
1565            BlockArg::Value(v) => Ok(Some(self.func.dfg.value_type(v))),
1566            BlockArg::TryCallRet(_) | BlockArg::TryCallExn(_) => {
1567                // Get the invoked signature.
1568                let et = match self.func.dfg.insts[inst].exception_table() {
1569                    Some(et) => et,
1570                    None => {
1571                        errors.fatal((
1572                            inst,
1573                            self.context(inst),
1574                            format!(
1575                                "`retN` block argument in block-call not on `try_call` instruction"
1576                            ),
1577                        ))?;
1578                        unreachable!()
1579                    }
1580                };
1581                let exdata = &self.func.dfg.exception_tables[et];
1582                let sig = &self.func.dfg.signatures[exdata.signature()];
1583
1584                match (arg, target_type) {
1585                    (BlockArg::TryCallRet(i), BlockCallTargetType::ExNormalRet)
1586                        if (i as usize) < sig.returns.len() =>
1587                    {
1588                        Ok(Some(sig.returns[i as usize].value_type))
1589                    }
1590                    (BlockArg::TryCallRet(_), BlockCallTargetType::ExNormalRet) => {
1591                        errors.fatal((
1592                            inst,
1593                            self.context(inst),
1594                            format!("out-of-bounds `retN` block argument"),
1595                        ))?;
1596                        unreachable!()
1597                    }
1598                    (BlockArg::TryCallRet(_), _) => {
1599                        errors.fatal((
1600                            inst,
1601                            self.context(inst),
1602                            format!("`retN` block argument used outside normal-return target of `try_call`"),
1603                        ))?;
1604                        unreachable!()
1605                    }
1606                    (BlockArg::TryCallExn(i), BlockCallTargetType::Exception) => {
1607                        if let Some(isa) = self.isa {
1608                            match sig
1609                                .call_conv
1610                                .exception_payload_types(isa.pointer_type())
1611                                .get(i as usize)
1612                            {
1613                                Some(ty) => Ok(Some(*ty)),
1614                                None => {
1615                                    errors.fatal((
1616                                        inst,
1617                                        self.context(inst),
1618                                        format!("out-of-bounds `exnN` block argument"),
1619                                    ))?;
1620                                    unreachable!()
1621                                }
1622                            }
1623                        } else {
1624                            Ok(None)
1625                        }
1626                    }
1627                    (BlockArg::TryCallExn(_), _) => {
1628                        errors.fatal((
1629                            inst,
1630                            self.context(inst),
1631                            format!("`exnN` block argument used outside normal-return target of `try_call`"),
1632                        ))?;
1633                        unreachable!()
1634                    }
1635                    _ => unreachable!(),
1636                }
1637            }
1638        }
1639    }
1640
1641    fn typecheck_variable_args_iterator(
1642        &self,
1643        inst: Inst,
1644        iter: impl ExactSizeIterator<Item = Type>,
1645        variable_args: &[Value],
1646        errors: &mut VerifierErrors,
1647    ) -> VerifierStepResult {
1648        let mut i = 0;
1649
1650        for expected_type in iter {
1651            if i >= variable_args.len() {
1652                // Result count mismatch handled below, we want the full argument count first though
1653                i += 1;
1654                continue;
1655            }
1656            let arg = variable_args[i];
1657            let arg_type = self.func.dfg.value_type(arg);
1658            if expected_type != arg_type {
1659                errors.report((
1660                    inst,
1661                    self.context(inst),
1662                    format!(
1663                        "arg {} ({}) has type {}, expected {}",
1664                        i, variable_args[i], arg_type, expected_type
1665                    ),
1666                ));
1667            }
1668            i += 1;
1669        }
1670        if i != variable_args.len() {
1671            return errors.nonfatal((
1672                inst,
1673                self.context(inst),
1674                format!(
1675                    "mismatched argument count for `{}`: got {}, expected {}",
1676                    self.func.dfg.display_inst(inst),
1677                    variable_args.len(),
1678                    i,
1679                ),
1680            ));
1681        }
1682        Ok(())
1683    }
1684
1685    fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1686        match self.func.dfg.insts[inst] {
1687            ir::InstructionData::MultiAry {
1688                opcode: Opcode::Return,
1689                args,
1690            } => {
1691                let types = args
1692                    .as_slice(&self.func.dfg.value_lists)
1693                    .iter()
1694                    .map(|v| self.func.dfg.value_type(*v));
1695                self.typecheck_return_types(
1696                    inst,
1697                    types,
1698                    errors,
1699                    "arguments of return must match function signature",
1700                )?;
1701            }
1702            ir::InstructionData::Call {
1703                opcode: Opcode::ReturnCall,
1704                func_ref,
1705                ..
1706            } => {
1707                let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1708                self.typecheck_tail_call(inst, sig_ref, errors)?;
1709            }
1710            ir::InstructionData::CallIndirect {
1711                opcode: Opcode::ReturnCallIndirect,
1712                sig_ref,
1713                ..
1714            } => {
1715                self.typecheck_tail_call(inst, sig_ref, errors)?;
1716            }
1717            inst => debug_assert!(!inst.opcode().is_return()),
1718        }
1719        Ok(())
1720    }
1721
1722    fn typecheck_tail_call(
1723        &self,
1724        inst: Inst,
1725        sig_ref: SigRef,
1726        errors: &mut VerifierErrors,
1727    ) -> VerifierStepResult {
1728        let signature = &self.func.dfg.signatures[sig_ref];
1729        let cc = signature.call_conv;
1730        if !cc.supports_tail_calls() {
1731            errors.report((
1732                inst,
1733                self.context(inst),
1734                format!("calling convention `{cc}` does not support tail calls"),
1735            ));
1736        }
1737        if cc != self.func.signature.call_conv {
1738            errors.report((
1739                inst,
1740                self.context(inst),
1741                "callee's calling convention must match caller",
1742            ));
1743        }
1744        let types = signature.returns.iter().map(|param| param.value_type);
1745        self.typecheck_return_types(inst, types, errors, "results of callee must match caller")?;
1746        Ok(())
1747    }
1748
1749    fn typecheck_return_types(
1750        &self,
1751        inst: Inst,
1752        actual_types: impl ExactSizeIterator<Item = Type>,
1753        errors: &mut VerifierErrors,
1754        message: &str,
1755    ) -> VerifierStepResult {
1756        let expected_types = &self.func.signature.returns;
1757        if actual_types.len() != expected_types.len() {
1758            return errors.nonfatal((inst, self.context(inst), message));
1759        }
1760        for (i, (actual_type, &expected_type)) in actual_types.zip(expected_types).enumerate() {
1761            if actual_type != expected_type.value_type {
1762                errors.report((
1763                    inst,
1764                    self.context(inst),
1765                    format!(
1766                        "result {i} has type {actual_type}, must match function signature of \
1767                         {expected_type}"
1768                    ),
1769                ));
1770            }
1771        }
1772        Ok(())
1773    }
1774
1775    // Check special-purpose type constraints that can't be expressed in the normal opcode
1776    // constraints.
1777    fn typecheck_special(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1778        match self.func.dfg.insts[inst] {
1779            ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
1780                if let Some(isa) = self.isa {
1781                    let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
1782                    let global_type = self.func.global_values[global_value].global_type(isa);
1783                    if inst_type != global_type {
1784                        return errors.nonfatal((
1785                            inst, self.context(inst),
1786                            format!(
1787                                "global_value instruction with type {inst_type} references global value with type {global_type}"
1788                            )),
1789                        );
1790                    }
1791                }
1792            }
1793            _ => {}
1794        }
1795        Ok(())
1796    }
1797
1798    fn cfg_integrity(
1799        &self,
1800        cfg: &ControlFlowGraph,
1801        errors: &mut VerifierErrors,
1802    ) -> VerifierStepResult {
1803        let mut expected_succs = BTreeSet::<Block>::new();
1804        let mut got_succs = BTreeSet::<Block>::new();
1805        let mut expected_preds = BTreeSet::<Inst>::new();
1806        let mut got_preds = BTreeSet::<Inst>::new();
1807
1808        for block in self.func.layout.blocks() {
1809            expected_succs.extend(self.expected_cfg.succ_iter(block));
1810            got_succs.extend(cfg.succ_iter(block));
1811
1812            let missing_succs: Vec<Block> =
1813                expected_succs.difference(&got_succs).cloned().collect();
1814            if !missing_succs.is_empty() {
1815                errors.report((
1816                    block,
1817                    format!("cfg lacked the following successor(s) {missing_succs:?}"),
1818                ));
1819                continue;
1820            }
1821
1822            let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect();
1823            if !excess_succs.is_empty() {
1824                errors.report((
1825                    block,
1826                    format!("cfg had unexpected successor(s) {excess_succs:?}"),
1827                ));
1828                continue;
1829            }
1830
1831            expected_preds.extend(
1832                self.expected_cfg
1833                    .pred_iter(block)
1834                    .map(|BlockPredecessor { inst, .. }| inst),
1835            );
1836            got_preds.extend(
1837                cfg.pred_iter(block)
1838                    .map(|BlockPredecessor { inst, .. }| inst),
1839            );
1840
1841            let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
1842            if !missing_preds.is_empty() {
1843                errors.report((
1844                    block,
1845                    format!("cfg lacked the following predecessor(s) {missing_preds:?}"),
1846                ));
1847                continue;
1848            }
1849
1850            let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
1851            if !excess_preds.is_empty() {
1852                errors.report((
1853                    block,
1854                    format!("cfg had unexpected predecessor(s) {excess_preds:?}"),
1855                ));
1856                continue;
1857            }
1858
1859            expected_succs.clear();
1860            got_succs.clear();
1861            expected_preds.clear();
1862            got_preds.clear();
1863        }
1864        errors.as_result()
1865    }
1866
1867    fn immediate_constraints(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1868        let inst_data = &self.func.dfg.insts[inst];
1869
1870        match *inst_data {
1871            ir::InstructionData::Store { flags, .. } => {
1872                if flags.readonly() {
1873                    errors.fatal((
1874                        inst,
1875                        self.context(inst),
1876                        "A store instruction cannot have the `readonly` MemFlag",
1877                    ))
1878                } else {
1879                    Ok(())
1880                }
1881            }
1882            ir::InstructionData::BinaryImm8 {
1883                opcode: ir::instructions::Opcode::Extractlane,
1884                imm: lane,
1885                arg,
1886                ..
1887            }
1888            | ir::InstructionData::TernaryImm8 {
1889                opcode: ir::instructions::Opcode::Insertlane,
1890                imm: lane,
1891                args: [arg, _],
1892                ..
1893            } => {
1894                // We must be specific about the opcodes above because other instructions are using
1895                // the same formats.
1896                let ty = self.func.dfg.value_type(arg);
1897                if lane as u32 >= ty.lane_count() {
1898                    errors.fatal((
1899                        inst,
1900                        self.context(inst),
1901                        format!("The lane {lane} does not index into the type {ty}",),
1902                    ))
1903                } else {
1904                    Ok(())
1905                }
1906            }
1907            ir::InstructionData::Shuffle {
1908                opcode: ir::instructions::Opcode::Shuffle,
1909                imm,
1910                ..
1911            } => {
1912                let imm = self.func.dfg.immediates.get(imm).unwrap().as_slice();
1913                if imm.len() != 16 {
1914                    errors.fatal((
1915                        inst,
1916                        self.context(inst),
1917                        format!("the shuffle immediate wasn't 16-bytes long"),
1918                    ))
1919                } else if let Some(i) = imm.iter().find(|i| **i >= 32) {
1920                    errors.fatal((
1921                        inst,
1922                        self.context(inst),
1923                        format!("shuffle immediate index {i} is larger than the maximum 31"),
1924                    ))
1925                } else {
1926                    Ok(())
1927                }
1928            }
1929            _ => Ok(()),
1930        }
1931    }
1932
1933    fn iconst_bounds(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1934        use crate::ir::instructions::InstructionData::UnaryImm;
1935
1936        let inst_data = &self.func.dfg.insts[inst];
1937        if let UnaryImm {
1938            opcode: Opcode::Iconst,
1939            imm,
1940        } = inst_data
1941        {
1942            let ctrl_typevar = self.func.dfg.ctrl_typevar(inst);
1943            let bounds_mask = match ctrl_typevar {
1944                types::I8 => u8::MAX.into(),
1945                types::I16 => u16::MAX.into(),
1946                types::I32 => u32::MAX.into(),
1947                types::I64 => u64::MAX,
1948                _ => unreachable!(),
1949            };
1950
1951            let value = imm.bits() as u64;
1952            if value & bounds_mask != value {
1953                errors.fatal((
1954                    inst,
1955                    self.context(inst),
1956                    "constant immediate is out of bounds",
1957                ))
1958            } else {
1959                Ok(())
1960            }
1961        } else {
1962            Ok(())
1963        }
1964    }
1965
1966    fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1967        let params = self
1968            .func
1969            .signature
1970            .params
1971            .iter()
1972            .enumerate()
1973            .map(|p| (true, p));
1974        let returns = self
1975            .func
1976            .signature
1977            .returns
1978            .iter()
1979            .enumerate()
1980            .map(|p| (false, p));
1981
1982        for (is_argument, (i, param)) in params.chain(returns) {
1983            let is_return = !is_argument;
1984            let item = if is_argument {
1985                "Parameter"
1986            } else {
1987                "Return value"
1988            };
1989
1990            if param.value_type == types::INVALID {
1991                errors.report((
1992                    AnyEntity::Function,
1993                    format!("{item} at position {i} has an invalid type"),
1994                ));
1995            }
1996
1997            if let ArgumentPurpose::StructArgument(_) = param.purpose {
1998                if is_return {
1999                    errors.report((
2000                        AnyEntity::Function,
2001                        format!("{item} at position {i} can't be an struct argument"),
2002                    ))
2003                }
2004            }
2005
2006            let ty_allows_extension = param.value_type.is_int();
2007            let has_extension = param.extension != ArgumentExtension::None;
2008            if !ty_allows_extension && has_extension {
2009                errors.report((
2010                    AnyEntity::Function,
2011                    format!(
2012                        "{} at position {} has invalid extension {:?}",
2013                        item, i, param.extension
2014                    ),
2015                ));
2016            }
2017        }
2018
2019        if errors.has_error() { Err(()) } else { Ok(()) }
2020    }
2021
2022    fn verify_try_call_handler_index(
2023        &self,
2024        inst: Inst,
2025        block: Block,
2026        index_imm: i64,
2027        errors: &mut VerifierErrors,
2028    ) -> VerifierStepResult {
2029        if index_imm < 0 {
2030            return errors.fatal((
2031                inst,
2032                format!("exception handler index {index_imm} cannot be negative"),
2033            ));
2034        }
2035        let Ok(index) = usize::try_from(index_imm) else {
2036            return errors.fatal((
2037                inst,
2038                format!("exception handler index {index_imm} is out-of-range"),
2039            ));
2040        };
2041        let Some(terminator) = self.func.layout.last_inst(block) else {
2042            return errors.fatal((
2043                inst,
2044                format!("referenced block {block} does not have a terminator"),
2045            ));
2046        };
2047        let Some(et) = self.func.dfg.insts[terminator].exception_table() else {
2048            return errors.fatal((
2049                inst,
2050                format!("referenced block {block} does not end in a try_call"),
2051            ));
2052        };
2053
2054        let etd = &self.func.dfg.exception_tables[et];
2055        // The exception table's out-edges consist of all exceptional
2056        // edges first, followed by the normal return last. For N
2057        // out-edges, there are N-1 exception handlers that can be
2058        // selected.
2059        let num_exceptional_edges = etd.all_branches().len() - 1;
2060        if index >= num_exceptional_edges {
2061            return errors.fatal((
2062                inst,
2063                format!("exception handler index {index_imm} is out-of-range"),
2064            ));
2065        }
2066
2067        Ok(())
2068    }
2069
2070    pub fn debug_tags(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
2071        // Tags can only be present on calls and sequence points.
2072        let op = self.func.dfg.insts[inst].opcode();
2073        let tags_allowed = op.is_call() || op == Opcode::SequencePoint;
2074        let has_tags = self.func.debug_tags.has(inst);
2075        if has_tags && !tags_allowed {
2076            return errors.fatal((
2077                inst,
2078                "debug tags present on non-call, non-sequence point instruction".to_string(),
2079            ));
2080        }
2081
2082        Ok(())
2083    }
2084
2085    pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
2086        self.verify_global_values(errors)?;
2087        self.verify_memory_types(errors)?;
2088        self.typecheck_entry_block_params(errors)?;
2089        self.check_entry_not_cold(errors)?;
2090        self.typecheck_function_signature(errors)?;
2091
2092        for block in self.func.layout.blocks() {
2093            if self.func.layout.first_inst(block).is_none() {
2094                return errors.fatal((block, format!("{block} cannot be empty")));
2095            }
2096            for inst in self.func.layout.block_insts(block) {
2097                crate::trace!("verifying {inst:?}: {}", self.func.dfg.display_inst(inst));
2098                self.block_integrity(block, inst, errors)?;
2099                self.instruction_integrity(inst, errors)?;
2100                self.typecheck(inst, errors)?;
2101                self.immediate_constraints(inst, errors)?;
2102                self.iconst_bounds(inst, errors)?;
2103                self.debug_tags(inst, errors)?;
2104            }
2105
2106            self.encodable_as_bb(block, errors)?;
2107        }
2108
2109        if !errors.is_empty() {
2110            log::warn!(
2111                "Found verifier errors in function:\n{}",
2112                pretty_verifier_error(self.func, None, errors.clone())
2113            );
2114        }
2115
2116        Ok(())
2117    }
2118}
2119
2120#[cfg(test)]
2121mod tests {
2122    use super::{Verifier, VerifierError, VerifierErrors};
2123    use crate::ir::instructions::{InstructionData, Opcode};
2124    use crate::ir::{AbiParam, Function, Type, types};
2125    use crate::settings;
2126
2127    macro_rules! assert_err_with_msg {
2128        ($e:expr, $msg:expr) => {
2129            match $e.0.get(0) {
2130                None => panic!("Expected an error"),
2131                Some(&VerifierError { ref message, .. }) => {
2132                    if !message.contains($msg) {
2133                        #[cfg(feature = "std")]
2134                        panic!("'{}' did not contain the substring '{}'", message, $msg);
2135                        #[cfg(not(feature = "std"))]
2136                        panic!("error message did not contain the expected substring");
2137                    }
2138                }
2139            }
2140        };
2141    }
2142
2143    #[test]
2144    fn empty() {
2145        let func = Function::new();
2146        let flags = &settings::Flags::new(settings::builder());
2147        let verifier = Verifier::new(&func, flags.into());
2148        let mut errors = VerifierErrors::default();
2149
2150        assert_eq!(verifier.run(&mut errors), Ok(()));
2151        assert!(errors.0.is_empty());
2152    }
2153
2154    #[test]
2155    fn bad_instruction_format() {
2156        let mut func = Function::new();
2157        let block0 = func.dfg.make_block();
2158        func.layout.append_block(block0);
2159        let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
2160            opcode: Opcode::F32const,
2161            imm: 0.into(),
2162        });
2163        func.layout.append_inst(nullary_with_bad_opcode, block0);
2164        let destination = func.dfg.block_call(block0, &[]);
2165        func.stencil.layout.append_inst(
2166            func.stencil.dfg.make_inst(InstructionData::Jump {
2167                opcode: Opcode::Jump,
2168                destination,
2169            }),
2170            block0,
2171        );
2172        let flags = &settings::Flags::new(settings::builder());
2173        let verifier = Verifier::new(&func, flags.into());
2174        let mut errors = VerifierErrors::default();
2175
2176        let _ = verifier.run(&mut errors);
2177
2178        assert_err_with_msg!(errors, "instruction format");
2179    }
2180
2181    fn test_iconst_bounds(immediate: i64, ctrl_typevar: Type) -> VerifierErrors {
2182        let mut func = Function::new();
2183        let block0 = func.dfg.make_block();
2184        func.layout.append_block(block0);
2185
2186        let test_inst = func.dfg.make_inst(InstructionData::UnaryImm {
2187            opcode: Opcode::Iconst,
2188            imm: immediate.into(),
2189        });
2190
2191        let end_inst = func.dfg.make_inst(InstructionData::MultiAry {
2192            opcode: Opcode::Return,
2193            args: Default::default(),
2194        });
2195
2196        func.dfg.make_inst_results(test_inst, ctrl_typevar);
2197        func.layout.append_inst(test_inst, block0);
2198        func.layout.append_inst(end_inst, block0);
2199
2200        let flags = &settings::Flags::new(settings::builder());
2201        let verifier = Verifier::new(&func, flags.into());
2202        let mut errors = VerifierErrors::default();
2203
2204        let _ = verifier.run(&mut errors);
2205        errors
2206    }
2207
2208    fn test_iconst_bounds_err(immediate: i64, ctrl_typevar: Type) {
2209        assert_err_with_msg!(
2210            test_iconst_bounds(immediate, ctrl_typevar),
2211            "constant immediate is out of bounds"
2212        );
2213    }
2214
2215    fn test_iconst_bounds_ok(immediate: i64, ctrl_typevar: Type) {
2216        assert!(test_iconst_bounds(immediate, ctrl_typevar).is_empty());
2217    }
2218
2219    #[test]
2220    fn negative_iconst_8() {
2221        test_iconst_bounds_err(-10, types::I8);
2222    }
2223
2224    #[test]
2225    fn negative_iconst_32() {
2226        test_iconst_bounds_err(-1, types::I32);
2227    }
2228
2229    #[test]
2230    fn large_iconst_8() {
2231        test_iconst_bounds_err(1 + u8::MAX as i64, types::I8);
2232    }
2233
2234    #[test]
2235    fn large_iconst_16() {
2236        test_iconst_bounds_err(10 + u16::MAX as i64, types::I16);
2237    }
2238
2239    #[test]
2240    fn valid_iconst_8() {
2241        test_iconst_bounds_ok(10, types::I8);
2242    }
2243
2244    #[test]
2245    fn valid_iconst_32() {
2246        test_iconst_bounds_ok(u32::MAX as i64, types::I32);
2247    }
2248
2249    #[test]
2250    fn test_function_invalid_param() {
2251        let mut func = Function::new();
2252        func.signature.params.push(AbiParam::new(types::INVALID));
2253
2254        let mut errors = VerifierErrors::default();
2255        let flags = &settings::Flags::new(settings::builder());
2256        let verifier = Verifier::new(&func, flags.into());
2257
2258        let _ = verifier.typecheck_function_signature(&mut errors);
2259        assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
2260    }
2261
2262    #[test]
2263    fn test_function_invalid_return_value() {
2264        let mut func = Function::new();
2265        func.signature.returns.push(AbiParam::new(types::INVALID));
2266
2267        let mut errors = VerifierErrors::default();
2268        let flags = &settings::Flags::new(settings::builder());
2269        let verifier = Verifier::new(&func, flags.into());
2270
2271        let _ = verifier.typecheck_function_signature(&mut errors);
2272        assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
2273    }
2274
2275    #[test]
2276    fn test_printing_contextual_errors() {
2277        // Build function.
2278        let mut func = Function::new();
2279        let block0 = func.dfg.make_block();
2280        func.layout.append_block(block0);
2281
2282        // Build instruction "f64const 0.0" (missing one required result)
2283        let inst = func.dfg.make_inst(InstructionData::UnaryIeee64 {
2284            opcode: Opcode::F64const,
2285            imm: 0.0.into(),
2286        });
2287        func.layout.append_inst(inst, block0);
2288
2289        // Setup verifier.
2290        let mut errors = VerifierErrors::default();
2291        let flags = &settings::Flags::new(settings::builder());
2292        let verifier = Verifier::new(&func, flags.into());
2293
2294        // Now the error message, when printed, should contain the instruction sequence causing the
2295        // error (i.e. f64const 0.0) and not only its entity value (i.e. inst0)
2296        let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
2297        assert_eq!(
2298            format!("{}", errors.0[0]),
2299            "inst0 (f64const 0.0): has fewer result values than expected"
2300        )
2301    }
2302
2303    #[test]
2304    fn test_empty_block() {
2305        let mut func = Function::new();
2306        let block0 = func.dfg.make_block();
2307        func.layout.append_block(block0);
2308
2309        let flags = &settings::Flags::new(settings::builder());
2310        let verifier = Verifier::new(&func, flags.into());
2311        let mut errors = VerifierErrors::default();
2312        let _ = verifier.run(&mut errors);
2313
2314        assert_err_with_msg!(errors, "block0 cannot be empty");
2315    }
2316}