1use crate::dbg::DisplayList;
67use crate::dominator_tree::DominatorTree;
68use crate::entity::SparseSet;
69use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
70use crate::ir::ExceptionTableItem;
71use crate::ir::entities::AnyEntity;
72use crate::ir::instructions::{CallInfo, InstructionFormat, ResolvedConstraint};
73use crate::ir::{self, ArgumentExtension, BlockArg, ExceptionTable};
74use crate::ir::{
75 ArgumentPurpose, Block, Constant, DynamicStackSlot, FuncRef, Function, GlobalValue, Inst,
76 JumpTable, MemFlags, MemoryTypeData, Opcode, SigRef, StackSlot, Type, Value, ValueDef,
77 ValueList, types,
78};
79use crate::isa::TargetIsa;
80use crate::print_errors::pretty_verifier_error;
81use crate::settings::FlagsOrIsa;
82use crate::timing;
83use alloc::collections::BTreeSet;
84use alloc::string::{String, ToString};
85use alloc::vec::Vec;
86use core::fmt::{self, Display, Formatter};
87
88#[derive(Debug, PartialEq, Eq, Clone)]
90pub struct VerifierError {
91 pub location: AnyEntity,
93 pub context: Option<String>,
96 pub message: String,
98}
99
100impl std::error::Error for VerifierError {}
103
104impl Display for VerifierError {
105 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
106 match &self.context {
107 None => write!(f, "{}: {}", self.location, self.message),
108 Some(context) => write!(f, "{} ({}): {}", self.location, context, self.message),
109 }
110 }
111}
112
113impl<L, C, M> From<(L, C, M)> for VerifierError
124where
125 L: Into<AnyEntity>,
126 C: Into<String>,
127 M: Into<String>,
128{
129 fn from(items: (L, C, M)) -> Self {
130 let (location, context, message) = items;
131 Self {
132 location: location.into(),
133 context: Some(context.into()),
134 message: message.into(),
135 }
136 }
137}
138
139impl<L, M> From<(L, M)> for VerifierError
143where
144 L: Into<AnyEntity>,
145 M: Into<String>,
146{
147 fn from(items: (L, M)) -> Self {
148 let (location, message) = items;
149 Self {
150 location: location.into(),
151 context: None,
152 message: message.into(),
153 }
154 }
155}
156
157pub type VerifierStepResult = Result<(), ()>;
168
169pub type VerifierResult<T> = Result<T, VerifierErrors>;
174
175#[derive(Debug, Default, PartialEq, Eq, Clone)]
177pub struct VerifierErrors(pub Vec<VerifierError>);
178
179impl std::error::Error for VerifierErrors {}
182
183impl VerifierErrors {
184 #[inline]
186 pub fn new() -> Self {
187 Self(Vec::new())
188 }
189
190 #[inline]
192 pub fn is_empty(&self) -> bool {
193 self.0.is_empty()
194 }
195
196 #[inline]
198 pub fn has_error(&self) -> bool {
199 !self.0.is_empty()
200 }
201
202 #[inline]
205 pub fn as_result(&self) -> VerifierStepResult {
206 if self.is_empty() { Ok(()) } else { Err(()) }
207 }
208
209 pub fn report(&mut self, error: impl Into<VerifierError>) {
211 self.0.push(error.into());
212 }
213
214 pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult {
216 self.report(error);
217 Err(())
218 }
219
220 pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult {
222 self.report(error);
223 Ok(())
224 }
225}
226
227impl From<Vec<VerifierError>> for VerifierErrors {
228 fn from(v: Vec<VerifierError>) -> Self {
229 Self(v)
230 }
231}
232
233impl From<VerifierErrors> for Vec<VerifierError> {
234 fn from(errors: VerifierErrors) -> Vec<VerifierError> {
235 errors.0
236 }
237}
238
239impl From<VerifierErrors> for VerifierResult<()> {
240 fn from(errors: VerifierErrors) -> VerifierResult<()> {
241 if errors.is_empty() {
242 Ok(())
243 } else {
244 Err(errors)
245 }
246 }
247}
248
249impl Display for VerifierErrors {
250 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
251 for err in &self.0 {
252 writeln!(f, "- {err}")?;
253 }
254 Ok(())
255 }
256}
257
258pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
260 func: &Function,
261 fisa: FOI,
262) -> VerifierResult<()> {
263 let _tt = timing::verifier();
264 let mut errors = VerifierErrors::default();
265 let verifier = Verifier::new(func, fisa.into());
266 let result = verifier.run(&mut errors);
267 if errors.is_empty() {
268 result.unwrap();
269 Ok(())
270 } else {
271 Err(errors)
272 }
273}
274
275pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
278 func: &Function,
279 cfg: &ControlFlowGraph,
280 domtree: &DominatorTree,
281 fisa: FOI,
282 errors: &mut VerifierErrors,
283) -> VerifierStepResult {
284 let _tt = timing::verifier();
285 let verifier = Verifier::new(func, fisa.into());
286 if cfg.is_valid() {
287 verifier.cfg_integrity(cfg, errors)?;
288 }
289 if domtree.is_valid() {
290 verifier.domtree_integrity(domtree, errors)?;
291 }
292 verifier.run(errors)
293}
294
295#[derive(Clone, Copy, Debug)]
296enum BlockCallTargetType {
297 Normal,
298 ExNormalRet,
299 Exception,
300}
301
302struct Verifier<'a> {
303 func: &'a Function,
304 expected_cfg: ControlFlowGraph,
305 expected_domtree: DominatorTree,
306 isa: Option<&'a dyn TargetIsa>,
307}
308
309impl<'a> Verifier<'a> {
310 pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
311 let expected_cfg = ControlFlowGraph::with_function(func);
312 let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
313 Self {
314 func,
315 expected_cfg,
316 expected_domtree,
317 isa: fisa.isa,
318 }
319 }
320
321 #[inline]
323 fn context(&self, inst: Inst) -> String {
324 self.func.dfg.display_inst(inst).to_string()
325 }
326
327 fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
331 let mut cycle_seen = false;
332 let mut seen = SparseSet::new();
333
334 'gvs: for gv in self.func.global_values.keys() {
335 seen.clear();
336 seen.insert(gv);
337
338 let mut cur = gv;
339 loop {
340 match self.func.global_values[cur] {
341 ir::GlobalValueData::Load { base, .. }
342 | ir::GlobalValueData::IAddImm { base, .. } => {
343 if seen.insert(base).is_some() {
344 if !cycle_seen {
345 errors.report((
346 gv,
347 format!("global value cycle: {}", DisplayList(seen.as_slice())),
348 ));
349 cycle_seen = true;
351 }
352 continue 'gvs;
353 }
354
355 cur = base;
356 }
357 _ => break,
358 }
359 }
360
361 match self.func.global_values[gv] {
362 ir::GlobalValueData::VMContext { .. } => {
363 if self
364 .func
365 .special_param(ir::ArgumentPurpose::VMContext)
366 .is_none()
367 {
368 errors.report((gv, format!("undeclared vmctx reference {gv}")));
369 }
370 }
371 ir::GlobalValueData::IAddImm {
372 base, global_type, ..
373 } => {
374 if !global_type.is_int() {
375 errors.report((
376 gv,
377 format!("iadd_imm global value with non-int type {global_type}"),
378 ));
379 } else if let Some(isa) = self.isa {
380 let base_type = self.func.global_values[base].global_type(isa);
381 if global_type != base_type {
382 errors.report((
383 gv,
384 format!(
385 "iadd_imm type {global_type} differs from operand type {base_type}"
386 ),
387 ));
388 }
389 }
390 }
391 ir::GlobalValueData::Load { base, .. } => {
392 if let Some(isa) = self.isa {
393 let base_type = self.func.global_values[base].global_type(isa);
394 let pointer_type = isa.pointer_type();
395 if base_type != pointer_type {
396 errors.report((
397 gv,
398 format!(
399 "base {base} has type {base_type}, which is not the pointer type {pointer_type}"
400 ),
401 ));
402 }
403 }
404 }
405 _ => {}
406 }
407 }
408
409 Ok(())
411 }
412
413 fn verify_memory_types(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
414 for (mt, mt_data) in &self.func.memory_types {
417 match mt_data {
418 MemoryTypeData::Struct { size, fields } => {
419 let mut last_offset = 0;
420 for field in fields {
421 if field.offset < last_offset {
422 errors.report((
423 mt,
424 format!(
425 "memory type {} has a field at offset {}, which is out-of-order",
426 mt, field.offset
427 ),
428 ));
429 }
430 last_offset = match field.offset.checked_add(u64::from(field.ty.bytes())) {
431 Some(o) => o,
432 None => {
433 errors.report((
434 mt,
435 format!(
436 "memory type {} has a field at offset {} of size {}; offset plus size overflows a u64",
437 mt, field.offset, field.ty.bytes()),
438 ));
439 break;
440 }
441 };
442
443 if last_offset > *size {
444 errors.report((
445 mt,
446 format!(
447 "memory type {} has a field at offset {} of size {} that overflows the struct size {}",
448 mt, field.offset, field.ty.bytes(), *size),
449 ));
450 }
451 }
452 }
453 _ => {}
454 }
455 }
456
457 Ok(())
458 }
459
460 fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult {
463 match self.func.is_block_basic(block) {
464 Ok(()) => Ok(()),
465 Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
466 }
467 }
468
469 fn block_integrity(
470 &self,
471 block: Block,
472 inst: Inst,
473 errors: &mut VerifierErrors,
474 ) -> VerifierStepResult {
475 let is_terminator = self.func.dfg.insts[inst].opcode().is_terminator();
476 let is_last_inst = self.func.layout.last_inst(block) == Some(inst);
477
478 if is_terminator && !is_last_inst {
479 return errors.fatal((
481 inst,
482 self.context(inst),
483 format!("a terminator instruction was encountered before the end of {block}"),
484 ));
485 }
486 if is_last_inst && !is_terminator {
487 return errors.fatal((block, "block does not end in a terminator instruction"));
488 }
489
490 let inst_block = self.func.layout.inst_block(inst);
492 if inst_block != Some(block) {
493 return errors.fatal((
494 inst,
495 self.context(inst),
496 format!("should belong to {block} not {inst_block:?}"),
497 ));
498 }
499
500 for &arg in self.func.dfg.block_params(block) {
502 match self.func.dfg.value_def(arg) {
503 ValueDef::Param(arg_block, _) => {
504 if block != arg_block {
505 return errors.fatal((arg, format!("does not belong to {block}")));
506 }
507 }
508 _ => {
509 return errors.fatal((arg, "expected an argument, found a result"));
510 }
511 }
512 }
513
514 Ok(())
515 }
516
517 fn instruction_integrity(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
518 let inst_data = &self.func.dfg.insts[inst];
519 let dfg = &self.func.dfg;
520
521 if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
523 return errors.fatal((
524 inst,
525 self.context(inst),
526 "instruction opcode doesn't match instruction format",
527 ));
528 }
529
530 let expected_num_results = dfg.num_expected_results_for_verifier(inst);
531
532 let got_results = dfg.inst_results(inst).len();
534 if got_results != expected_num_results {
535 return errors.fatal((
536 inst,
537 self.context(inst),
538 format!("expected {expected_num_results} result values, found {got_results}"),
539 ));
540 }
541
542 self.verify_entity_references(inst, errors)
543 }
544
545 fn verify_entity_references(
546 &self,
547 inst: Inst,
548 errors: &mut VerifierErrors,
549 ) -> VerifierStepResult {
550 use crate::ir::instructions::InstructionData::*;
551
552 for arg in self.func.dfg.inst_values(inst) {
553 self.verify_inst_arg(inst, arg, errors)?;
554
555 let original = self.func.dfg.resolve_aliases(arg);
557 if !self.func.dfg.value_is_attached(original) {
558 errors.report((
559 inst,
560 self.context(inst),
561 format!("argument {arg} -> {original} is not attached"),
562 ));
563 }
564 }
565
566 for &res in self.func.dfg.inst_results(inst) {
567 self.verify_inst_result(inst, res, errors)?;
568 }
569
570 match self.func.dfg.insts[inst] {
571 MultiAry { ref args, .. } => {
572 self.verify_value_list(inst, args, errors)?;
573 }
574 Jump { destination, .. } => {
575 self.verify_block(inst, destination.block(&self.func.dfg.value_lists), errors)?;
576 }
577 Brif {
578 arg,
579 blocks: [block_then, block_else],
580 ..
581 } => {
582 self.verify_value(inst, arg, errors)?;
583 self.verify_block(inst, block_then.block(&self.func.dfg.value_lists), errors)?;
584 self.verify_block(inst, block_else.block(&self.func.dfg.value_lists), errors)?;
585 }
586 BranchTable { table, .. } => {
587 self.verify_jump_table(inst, table, errors)?;
588 }
589 Call {
590 opcode,
591 func_ref,
592 ref args,
593 ..
594 } => {
595 self.verify_func_ref(inst, func_ref, errors)?;
596 self.verify_value_list(inst, args, errors)?;
597 self.verify_callee_patchability(inst, func_ref, opcode, errors)?;
598 }
599 CallIndirect {
600 sig_ref, ref args, ..
601 } => {
602 self.verify_sig_ref(inst, sig_ref, errors)?;
603 self.verify_value_list(inst, args, errors)?;
604 }
605 TryCall {
606 func_ref,
607 ref args,
608 exception,
609 ..
610 } => {
611 self.verify_func_ref(inst, func_ref, errors)?;
612 self.verify_value_list(inst, args, errors)?;
613 self.verify_exception_table(inst, exception, errors)?;
614 self.verify_exception_compatible_abi(inst, exception, errors)?;
615 }
616 TryCallIndirect {
617 ref args,
618 exception,
619 ..
620 } => {
621 self.verify_value_list(inst, args, errors)?;
622 self.verify_exception_table(inst, exception, errors)?;
623 self.verify_exception_compatible_abi(inst, exception, errors)?;
624 }
625 FuncAddr { func_ref, .. } => {
626 self.verify_func_ref(inst, func_ref, errors)?;
627 }
628 StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
629 self.verify_stack_slot(inst, stack_slot, errors)?;
630 }
631 DynamicStackLoad {
632 dynamic_stack_slot, ..
633 }
634 | DynamicStackStore {
635 dynamic_stack_slot, ..
636 } => {
637 self.verify_dynamic_stack_slot(inst, dynamic_stack_slot, errors)?;
638 }
639 UnaryGlobalValue { global_value, .. } => {
640 self.verify_global_value(inst, global_value, errors)?;
641 }
642 NullAry {
643 opcode: Opcode::GetPinnedReg,
644 }
645 | Unary {
646 opcode: Opcode::SetPinnedReg,
647 ..
648 } => {
649 if let Some(isa) = &self.isa {
650 if !isa.flags().enable_pinned_reg() {
651 return errors.fatal((
652 inst,
653 self.context(inst),
654 "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
655 ));
656 }
657 } else {
658 return errors.fatal((
659 inst,
660 self.context(inst),
661 "GetPinnedReg/SetPinnedReg need an ISA!",
662 ));
663 }
664 }
665 NullAry {
666 opcode: Opcode::GetFramePointer | Opcode::GetReturnAddress,
667 } => {
668 if let Some(isa) = &self.isa {
669 if !isa.flags().preserve_frame_pointers() {
672 return errors.fatal((
673 inst,
674 self.context(inst),
675 "`get_frame_pointer`/`get_return_address` cannot be used without \
676 enabling `preserve_frame_pointers`",
677 ));
678 }
679 } else {
680 return errors.fatal((
681 inst,
682 self.context(inst),
683 "`get_frame_pointer`/`get_return_address` require an ISA!",
684 ));
685 }
686 }
687 LoadNoOffset {
688 opcode: Opcode::Bitcast,
689 flags,
690 arg,
691 } => {
692 self.verify_bitcast(inst, flags, arg, errors)?;
693 }
694 LoadNoOffset { opcode, arg, .. } if opcode.can_load() => {
695 self.verify_is_address(inst, arg, errors)?;
696 }
697 Load { opcode, arg, .. } if opcode.can_load() => {
698 self.verify_is_address(inst, arg, errors)?;
699 }
700 AtomicCas {
701 opcode,
702 args: [p, _, _],
703 ..
704 } if opcode.can_load() || opcode.can_store() => {
705 self.verify_is_address(inst, p, errors)?;
706 }
707 AtomicRmw {
708 opcode,
709 args: [p, _],
710 ..
711 } if opcode.can_load() || opcode.can_store() => {
712 self.verify_is_address(inst, p, errors)?;
713 }
714 Store {
715 opcode,
716 args: [_, p],
717 ..
718 } if opcode.can_store() => {
719 self.verify_is_address(inst, p, errors)?;
720 }
721 StoreNoOffset {
722 opcode,
723 args: [_, p],
724 ..
725 } if opcode.can_store() => {
726 self.verify_is_address(inst, p, errors)?;
727 }
728 UnaryConst {
729 opcode: opcode @ (Opcode::Vconst | Opcode::F128const),
730 constant_handle,
731 ..
732 } => {
733 self.verify_constant_size(inst, opcode, constant_handle, errors)?;
734 }
735
736 ExceptionHandlerAddress { block, imm, .. } => {
737 self.verify_block(inst, block, errors)?;
738 self.verify_try_call_handler_index(inst, block, imm.into(), errors)?;
739 }
740
741 AtomicCas { .. }
743 | AtomicRmw { .. }
744 | LoadNoOffset { .. }
745 | StoreNoOffset { .. }
746 | Unary { .. }
747 | UnaryConst { .. }
748 | UnaryImm { .. }
749 | UnaryIeee16 { .. }
750 | UnaryIeee32 { .. }
751 | UnaryIeee64 { .. }
752 | Binary { .. }
753 | BinaryImm8 { .. }
754 | BinaryImm64 { .. }
755 | Ternary { .. }
756 | TernaryImm8 { .. }
757 | Shuffle { .. }
758 | IntAddTrap { .. }
759 | IntCompare { .. }
760 | IntCompareImm { .. }
761 | FloatCompare { .. }
762 | Load { .. }
763 | Store { .. }
764 | Trap { .. }
765 | CondTrap { .. }
766 | NullAry { .. } => {}
767 }
768
769 Ok(())
770 }
771
772 fn verify_block(
773 &self,
774 loc: impl Into<AnyEntity>,
775 e: Block,
776 errors: &mut VerifierErrors,
777 ) -> VerifierStepResult {
778 if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) {
779 return errors.fatal((loc, format!("invalid block reference {e}")));
780 }
781 if let Some(entry_block) = self.func.layout.entry_block() {
782 if e == entry_block {
783 return errors.fatal((loc, format!("invalid reference to entry block {e}")));
784 }
785 }
786 Ok(())
787 }
788
789 fn verify_sig_ref(
790 &self,
791 inst: Inst,
792 s: SigRef,
793 errors: &mut VerifierErrors,
794 ) -> VerifierStepResult {
795 if !self.func.dfg.signatures.is_valid(s) {
796 errors.fatal((
797 inst,
798 self.context(inst),
799 format!("invalid signature reference {s}"),
800 ))
801 } else {
802 Ok(())
803 }
804 }
805
806 fn verify_func_ref(
807 &self,
808 inst: Inst,
809 f: FuncRef,
810 errors: &mut VerifierErrors,
811 ) -> VerifierStepResult {
812 if !self.func.dfg.ext_funcs.is_valid(f) {
813 errors.nonfatal((
814 inst,
815 self.context(inst),
816 format!("invalid function reference {f}"),
817 ))
818 } else {
819 Ok(())
820 }
821 }
822
823 fn verify_stack_slot(
824 &self,
825 inst: Inst,
826 ss: StackSlot,
827 errors: &mut VerifierErrors,
828 ) -> VerifierStepResult {
829 if !self.func.sized_stack_slots.is_valid(ss) {
830 errors.nonfatal((inst, self.context(inst), format!("invalid stack slot {ss}")))
831 } else {
832 Ok(())
833 }
834 }
835
836 fn verify_dynamic_stack_slot(
837 &self,
838 inst: Inst,
839 ss: DynamicStackSlot,
840 errors: &mut VerifierErrors,
841 ) -> VerifierStepResult {
842 if !self.func.dynamic_stack_slots.is_valid(ss) {
843 errors.nonfatal((
844 inst,
845 self.context(inst),
846 format!("invalid dynamic stack slot {ss}"),
847 ))
848 } else {
849 Ok(())
850 }
851 }
852
853 fn verify_global_value(
854 &self,
855 inst: Inst,
856 gv: GlobalValue,
857 errors: &mut VerifierErrors,
858 ) -> VerifierStepResult {
859 if !self.func.global_values.is_valid(gv) {
860 errors.nonfatal((
861 inst,
862 self.context(inst),
863 format!("invalid global value {gv}"),
864 ))
865 } else {
866 Ok(())
867 }
868 }
869
870 fn verify_value_list(
871 &self,
872 inst: Inst,
873 l: &ValueList,
874 errors: &mut VerifierErrors,
875 ) -> VerifierStepResult {
876 if !l.is_valid(&self.func.dfg.value_lists) {
877 errors.nonfatal((
878 inst,
879 self.context(inst),
880 format!("invalid value list reference {l:?}"),
881 ))
882 } else {
883 Ok(())
884 }
885 }
886
887 fn verify_jump_table(
888 &self,
889 inst: Inst,
890 j: JumpTable,
891 errors: &mut VerifierErrors,
892 ) -> VerifierStepResult {
893 if !self.func.stencil.dfg.jump_tables.is_valid(j) {
894 errors.nonfatal((
895 inst,
896 self.context(inst),
897 format!("invalid jump table reference {j}"),
898 ))
899 } else {
900 let pool = &self.func.stencil.dfg.value_lists;
901 for block in self.func.stencil.dfg.jump_tables[j].all_branches() {
902 self.verify_block(inst, block.block(pool), errors)?;
903 }
904 Ok(())
905 }
906 }
907
908 fn verify_exception_table(
909 &self,
910 inst: Inst,
911 et: ExceptionTable,
912 errors: &mut VerifierErrors,
913 ) -> VerifierStepResult {
914 if !self.func.stencil.dfg.exception_tables.is_valid(et) {
916 errors.nonfatal((
917 inst,
918 self.context(inst),
919 format!("invalid exception table reference {et}"),
920 ))?;
921 }
922
923 let pool = &self.func.stencil.dfg.value_lists;
924 let exdata = &self.func.stencil.dfg.exception_tables[et];
925
926 self.verify_sig_ref(inst, exdata.signature(), errors)?;
929
930 for block in exdata.all_branches() {
932 self.verify_block(inst, block.block(pool), errors)?;
933 }
934 Ok(())
935 }
936
937 fn verify_exception_compatible_abi(
938 &self,
939 inst: Inst,
940 et: ExceptionTable,
941 errors: &mut VerifierErrors,
942 ) -> VerifierStepResult {
943 let callee_sig_ref = self.func.dfg.exception_tables[et].signature();
944 let callee_sig = &self.func.dfg.signatures[callee_sig_ref];
945 let callee_call_conv = callee_sig.call_conv;
946 if !callee_call_conv.supports_exceptions() {
947 errors.nonfatal((
948 inst,
949 self.context(inst),
950 format!(
951 "calling convention `{callee_call_conv}` of callee does not support exceptions"
952 ),
953 ))?;
954 }
955 Ok(())
956 }
957
958 fn verify_callee_patchability(
959 &self,
960 inst: Inst,
961 func_ref: FuncRef,
962 opcode: Opcode,
963 errors: &mut VerifierErrors,
964 ) -> VerifierStepResult {
965 let ir::ExtFuncData {
966 patchable,
967 colocated,
968 signature,
969 name: _,
970 } = self.func.dfg.ext_funcs[func_ref];
971 let signature = &self.func.dfg.signatures[signature];
972 if patchable && (opcode == Opcode::ReturnCall || opcode == Opcode::ReturnCallIndirect) {
973 errors.fatal((
974 inst,
975 self.context(inst),
976 "patchable funcref cannot be used in a return_call".to_string(),
977 ))?;
978 }
979 if patchable && !colocated {
980 errors.fatal((
981 inst,
982 self.context(inst),
983 "patchable call to non-colocated function".to_string(),
984 ))?;
985 }
986 if patchable && !signature.returns.is_empty() {
987 errors.fatal((
988 inst,
989 self.context(inst),
990 "patchable call cannot occur to a function with return values".to_string(),
991 ))?;
992 }
993 Ok(())
994 }
995
996 fn verify_value(
997 &self,
998 loc_inst: Inst,
999 v: Value,
1000 errors: &mut VerifierErrors,
1001 ) -> VerifierStepResult {
1002 let dfg = &self.func.dfg;
1003 if !dfg.value_is_valid(v) {
1004 errors.nonfatal((
1005 loc_inst,
1006 self.context(loc_inst),
1007 format!("invalid value reference {v}"),
1008 ))
1009 } else {
1010 Ok(())
1011 }
1012 }
1013
1014 fn verify_inst_arg(
1015 &self,
1016 loc_inst: Inst,
1017 v: Value,
1018 errors: &mut VerifierErrors,
1019 ) -> VerifierStepResult {
1020 self.verify_value(loc_inst, v, errors)?;
1021
1022 let dfg = &self.func.dfg;
1023 let loc_block = self
1024 .func
1025 .layout
1026 .inst_block(loc_inst)
1027 .expect("Instruction not in layout.");
1028 let is_reachable = self.expected_domtree.is_reachable(loc_block);
1029
1030 match dfg.value_def(v) {
1032 ValueDef::Result(def_inst, _) => {
1033 if !dfg.inst_is_valid(def_inst) {
1035 return errors.fatal((
1036 loc_inst,
1037 self.context(loc_inst),
1038 format!("{v} is defined by invalid instruction {def_inst}"),
1039 ));
1040 }
1041 if self.func.layout.inst_block(def_inst) == None {
1043 return errors.fatal((
1044 loc_inst,
1045 self.context(loc_inst),
1046 format!("{v} is defined by {def_inst} which has no block"),
1047 ));
1048 }
1049 if is_reachable {
1051 if !self
1052 .expected_domtree
1053 .dominates(def_inst, loc_inst, &self.func.layout)
1054 {
1055 return errors.fatal((
1056 loc_inst,
1057 self.context(loc_inst),
1058 format!("uses value {v} from non-dominating {def_inst}"),
1059 ));
1060 }
1061 if def_inst == loc_inst {
1062 return errors.fatal((
1063 loc_inst,
1064 self.context(loc_inst),
1065 format!("uses value {v} from itself"),
1066 ));
1067 }
1068 }
1069 }
1070 ValueDef::Param(block, _) => {
1071 if !dfg.block_is_valid(block) {
1073 return errors.fatal((
1074 loc_inst,
1075 self.context(loc_inst),
1076 format!("{v} is defined by invalid block {block}"),
1077 ));
1078 }
1079 if !self.func.layout.is_block_inserted(block) {
1081 return errors.fatal((
1082 loc_inst,
1083 self.context(loc_inst),
1084 format!("{v} is defined by {block} which is not in the layout"),
1085 ));
1086 }
1087 let user_block = self.func.layout.inst_block(loc_inst).expect("Expected instruction to be in a block as we're traversing code already in layout");
1088 if is_reachable && !self.expected_domtree.block_dominates(block, user_block) {
1090 return errors.fatal((
1091 loc_inst,
1092 self.context(loc_inst),
1093 format!("uses value arg from non-dominating {block}"),
1094 ));
1095 }
1096 }
1097 ValueDef::Union(_, _) => {
1098 }
1101 }
1102 Ok(())
1103 }
1104
1105 fn verify_inst_result(
1106 &self,
1107 loc_inst: Inst,
1108 v: Value,
1109 errors: &mut VerifierErrors,
1110 ) -> VerifierStepResult {
1111 self.verify_value(loc_inst, v, errors)?;
1112
1113 match self.func.dfg.value_def(v) {
1114 ValueDef::Result(def_inst, _) => {
1115 if def_inst != loc_inst {
1116 errors.fatal((
1117 loc_inst,
1118 self.context(loc_inst),
1119 format!("instruction result {v} is not defined by the instruction"),
1120 ))
1121 } else {
1122 Ok(())
1123 }
1124 }
1125 ValueDef::Param(_, _) => errors.fatal((
1126 loc_inst,
1127 self.context(loc_inst),
1128 format!("instruction result {v} is not defined by the instruction"),
1129 )),
1130 ValueDef::Union(_, _) => errors.fatal((
1131 loc_inst,
1132 self.context(loc_inst),
1133 format!("instruction result {v} is a union node"),
1134 )),
1135 }
1136 }
1137
1138 fn verify_bitcast(
1139 &self,
1140 inst: Inst,
1141 flags: MemFlags,
1142 arg: Value,
1143 errors: &mut VerifierErrors,
1144 ) -> VerifierStepResult {
1145 let typ = self.func.dfg.ctrl_typevar(inst);
1146 let value_type = self.func.dfg.value_type(arg);
1147
1148 if typ.bits() != value_type.bits() {
1149 errors.fatal((
1150 inst,
1151 format!(
1152 "The bitcast argument {} has a type of {} bits, which doesn't match an expected type of {} bits",
1153 arg,
1154 value_type.bits(),
1155 typ.bits()
1156 ),
1157 ))
1158 } else if flags != MemFlags::new()
1159 && flags != MemFlags::new().with_endianness(ir::Endianness::Little)
1160 && flags != MemFlags::new().with_endianness(ir::Endianness::Big)
1161 {
1162 errors.fatal((
1163 inst,
1164 "The bitcast instruction only accepts the `big` or `little` memory flags",
1165 ))
1166 } else if flags == MemFlags::new() && typ.lane_count() != value_type.lane_count() {
1167 errors.fatal((
1168 inst,
1169 "Byte order specifier required for bitcast instruction changing lane count",
1170 ))
1171 } else {
1172 Ok(())
1173 }
1174 }
1175
1176 fn verify_constant_size(
1177 &self,
1178 inst: Inst,
1179 opcode: Opcode,
1180 constant: Constant,
1181 errors: &mut VerifierErrors,
1182 ) -> VerifierStepResult {
1183 let type_size = match opcode {
1184 Opcode::F128const => types::F128.bytes(),
1185 Opcode::Vconst => self.func.dfg.ctrl_typevar(inst).bytes(),
1186 _ => unreachable!("unexpected opcode {opcode:?}"),
1187 } as usize;
1188 let constant_size = self.func.dfg.constants.get(constant).len();
1189 if type_size != constant_size {
1190 errors.fatal((
1191 inst,
1192 format!(
1193 "The instruction expects {constant} to have a size of {type_size} bytes but it has {constant_size}"
1194 ),
1195 ))
1196 } else {
1197 Ok(())
1198 }
1199 }
1200
1201 fn verify_is_address(
1202 &self,
1203 loc_inst: Inst,
1204 v: Value,
1205 errors: &mut VerifierErrors,
1206 ) -> VerifierStepResult {
1207 if let Some(isa) = self.isa {
1208 let pointer_width = isa.triple().pointer_width()?;
1209 let value_type = self.func.dfg.value_type(v);
1210 let expected_width = pointer_width.bits() as u32;
1211 let value_width = value_type.bits();
1212 if expected_width != value_width {
1213 errors.nonfatal((
1214 loc_inst,
1215 self.context(loc_inst),
1216 format!("invalid pointer width (got {value_width}, expected {expected_width}) encountered {v}"),
1217 ))
1218 } else {
1219 Ok(())
1220 }
1221 } else {
1222 Ok(())
1223 }
1224 }
1225
1226 fn domtree_integrity(
1227 &self,
1228 domtree: &DominatorTree,
1229 errors: &mut VerifierErrors,
1230 ) -> VerifierStepResult {
1231 for block in self.func.layout.blocks() {
1235 let expected = self.expected_domtree.idom(block);
1236 let got = domtree.idom(block);
1237 if got != expected {
1238 return errors.fatal((
1239 block,
1240 format!("invalid domtree, expected idom({block}) = {expected:?}, got {got:?}"),
1241 ));
1242 }
1243 }
1244 if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
1246 return errors.fatal((
1247 AnyEntity::Function,
1248 "incorrect number of Blocks in postorder traversal",
1249 ));
1250 }
1251 for (index, (&test_block, &true_block)) in domtree
1252 .cfg_postorder()
1253 .iter()
1254 .zip(self.expected_domtree.cfg_postorder().iter())
1255 .enumerate()
1256 {
1257 if test_block != true_block {
1258 return errors.fatal((
1259 test_block,
1260 format!(
1261 "invalid domtree, postorder block number {index} should be {true_block}, got {test_block}"
1262 ),
1263 ));
1264 }
1265 }
1266 Ok(())
1267 }
1268
1269 fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1270 if let Some(block) = self.func.layout.entry_block() {
1271 let expected_types = &self.func.signature.params;
1272 let block_param_count = self.func.dfg.num_block_params(block);
1273
1274 if block_param_count != expected_types.len() {
1275 return errors.fatal((
1276 block,
1277 format!(
1278 "entry block parameters ({}) must match function signature ({})",
1279 block_param_count,
1280 expected_types.len()
1281 ),
1282 ));
1283 }
1284
1285 for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() {
1286 let arg_type = self.func.dfg.value_type(arg);
1287 if arg_type != expected_types[i].value_type {
1288 errors.report((
1289 block,
1290 format!(
1291 "entry block parameter {} expected to have type {}, got {}",
1292 i, expected_types[i], arg_type
1293 ),
1294 ));
1295 }
1296 }
1297 }
1298
1299 errors.as_result()
1300 }
1301
1302 fn check_entry_not_cold(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1303 if let Some(entry_block) = self.func.layout.entry_block() {
1304 if self.func.layout.is_cold(entry_block) {
1305 return errors
1306 .fatal((entry_block, format!("entry block cannot be marked as cold")));
1307 }
1308 }
1309 errors.as_result()
1310 }
1311
1312 fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1313 let inst_data = &self.func.dfg.insts[inst];
1314 let constraints = inst_data.opcode().constraints();
1315
1316 let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
1317 let ctrl_type = self.func.dfg.ctrl_typevar(inst);
1319
1320 if !value_typeset.contains(ctrl_type) {
1321 errors.report((
1322 inst,
1323 self.context(inst),
1324 format!(
1325 "has an invalid controlling type {ctrl_type} (allowed set is {value_typeset:?})"
1326 ),
1327 ));
1328 }
1329
1330 ctrl_type
1331 } else {
1332 types::INVALID
1335 };
1336
1337 let _ = self.typecheck_results(inst, ctrl_type, errors);
1339 let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
1340 let _ = self.typecheck_variable_args(inst, errors);
1341 let _ = self.typecheck_return(inst, errors);
1342 let _ = self.typecheck_special(inst, errors);
1343
1344 Ok(())
1345 }
1346
1347 fn typecheck_results(
1348 &self,
1349 inst: Inst,
1350 ctrl_type: Type,
1351 errors: &mut VerifierErrors,
1352 ) -> VerifierStepResult {
1353 let mut i = 0;
1354 for &result in self.func.dfg.inst_results(inst) {
1355 let result_type = self.func.dfg.value_type(result);
1356 let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
1357 if let Some(expected_type) = expected_type {
1358 if result_type != expected_type {
1359 errors.report((
1360 inst,
1361 self.context(inst),
1362 format!(
1363 "expected result {i} ({result}) to have type {expected_type}, found {result_type}"
1364 ),
1365 ));
1366 }
1367 } else {
1368 return errors.nonfatal((
1369 inst,
1370 self.context(inst),
1371 "has more result values than expected",
1372 ));
1373 }
1374 i += 1;
1375 }
1376
1377 if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
1379 return errors.nonfatal((
1380 inst,
1381 self.context(inst),
1382 "has fewer result values than expected",
1383 ));
1384 }
1385 Ok(())
1386 }
1387
1388 fn typecheck_fixed_args(
1389 &self,
1390 inst: Inst,
1391 ctrl_type: Type,
1392 errors: &mut VerifierErrors,
1393 ) -> VerifierStepResult {
1394 let constraints = self.func.dfg.insts[inst].opcode().constraints();
1395
1396 for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
1397 let arg_type = self.func.dfg.value_type(arg);
1398 match constraints.value_argument_constraint(i, ctrl_type) {
1399 ResolvedConstraint::Bound(expected_type) => {
1400 if arg_type != expected_type {
1401 errors.report((
1402 inst,
1403 self.context(inst),
1404 format!(
1405 "arg {i} ({arg}) has type {arg_type}, expected {expected_type}"
1406 ),
1407 ));
1408 }
1409 }
1410 ResolvedConstraint::Free(type_set) => {
1411 if !type_set.contains(arg_type) {
1412 errors.report((
1413 inst,
1414 self.context(inst),
1415 format!(
1416 "arg {i} ({arg}) with type {arg_type} failed to satisfy type set {type_set:?}"
1417 ),
1418 ));
1419 }
1420 }
1421 }
1422 }
1423 Ok(())
1424 }
1425
1426 fn typecheck_variable_args(
1429 &self,
1430 inst: Inst,
1431 errors: &mut VerifierErrors,
1432 ) -> VerifierStepResult {
1433 match &self.func.dfg.insts[inst] {
1434 ir::InstructionData::Jump { destination, .. } => {
1435 self.typecheck_block_call(inst, destination, BlockCallTargetType::Normal, errors)?;
1436 }
1437 ir::InstructionData::Brif {
1438 blocks: [block_then, block_else],
1439 ..
1440 } => {
1441 self.typecheck_block_call(inst, block_then, BlockCallTargetType::Normal, errors)?;
1442 self.typecheck_block_call(inst, block_else, BlockCallTargetType::Normal, errors)?;
1443 }
1444 ir::InstructionData::BranchTable { table, .. } => {
1445 for block in self.func.stencil.dfg.jump_tables[*table].all_branches() {
1446 self.typecheck_block_call(inst, block, BlockCallTargetType::Normal, errors)?;
1447 }
1448 }
1449 ir::InstructionData::TryCall { exception, .. }
1450 | ir::InstructionData::TryCallIndirect { exception, .. } => {
1451 let exdata = &self.func.dfg.exception_tables[*exception];
1452 self.typecheck_block_call(
1453 inst,
1454 exdata.normal_return(),
1455 BlockCallTargetType::ExNormalRet,
1456 errors,
1457 )?;
1458 for item in exdata.items() {
1459 match item {
1460 ExceptionTableItem::Tag(_, block_call)
1461 | ExceptionTableItem::Default(block_call) => {
1462 self.typecheck_block_call(
1463 inst,
1464 &block_call,
1465 BlockCallTargetType::Exception,
1466 errors,
1467 )?;
1468 }
1469 ExceptionTableItem::Context(_) => {}
1470 }
1471 }
1472 }
1473 inst => debug_assert!(!inst.opcode().is_branch()),
1474 }
1475
1476 match self.func.dfg.insts[inst]
1477 .analyze_call(&self.func.dfg.value_lists, &self.func.dfg.exception_tables)
1478 {
1479 CallInfo::Direct(func_ref, args) => {
1480 let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1481 let arg_types = self.func.dfg.signatures[sig_ref]
1482 .params
1483 .iter()
1484 .map(|a| a.value_type);
1485 self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1486 }
1487 CallInfo::DirectWithSig(func_ref, sig_ref, args) => {
1488 let expected_sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1489 let sigdata = &self.func.dfg.signatures;
1490 if sigdata[sig_ref] != sigdata[expected_sig_ref] {
1493 errors.nonfatal((
1494 inst,
1495 self.context(inst),
1496 format!(
1497 "exception table signature {sig_ref} did not match function {func_ref}'s signature {expected_sig_ref}"
1498 ),
1499 ))?;
1500 }
1501 let arg_types = self.func.dfg.signatures[sig_ref]
1502 .params
1503 .iter()
1504 .map(|a| a.value_type);
1505 self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1506 }
1507 CallInfo::Indirect(sig_ref, args) => {
1508 let arg_types = self.func.dfg.signatures[sig_ref]
1509 .params
1510 .iter()
1511 .map(|a| a.value_type);
1512 self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1513 }
1514 CallInfo::NotACall => {}
1515 }
1516 Ok(())
1517 }
1518
1519 fn typecheck_block_call(
1520 &self,
1521 inst: Inst,
1522 block: &ir::BlockCall,
1523 target_type: BlockCallTargetType,
1524 errors: &mut VerifierErrors,
1525 ) -> VerifierStepResult {
1526 let pool = &self.func.dfg.value_lists;
1527 let block_params = self.func.dfg.block_params(block.block(pool));
1528 let args = block.args(pool);
1529 if args.len() != block_params.len() {
1530 return errors.nonfatal((
1531 inst,
1532 self.context(inst),
1533 format!(
1534 "mismatched argument count for `{}`: got {}, expected {}",
1535 self.func.dfg.display_inst(inst),
1536 args.len(),
1537 block_params.len(),
1538 ),
1539 ));
1540 }
1541 for (arg, param) in args.zip(block_params.iter()) {
1542 let Some(arg_ty) = self.block_call_arg_ty(arg, inst, target_type, errors)? else {
1543 continue;
1544 };
1545 let param_ty = self.func.dfg.value_type(*param);
1546 if arg_ty != param_ty {
1547 errors.nonfatal((
1548 inst,
1549 self.context(inst),
1550 format!("arg {arg} has type {arg_ty}, expected {param_ty}"),
1551 ))?;
1552 }
1553 }
1554 Ok(())
1555 }
1556
1557 fn block_call_arg_ty(
1558 &self,
1559 arg: BlockArg,
1560 inst: Inst,
1561 target_type: BlockCallTargetType,
1562 errors: &mut VerifierErrors,
1563 ) -> Result<Option<Type>, ()> {
1564 match arg {
1565 BlockArg::Value(v) => Ok(Some(self.func.dfg.value_type(v))),
1566 BlockArg::TryCallRet(_) | BlockArg::TryCallExn(_) => {
1567 let et = match self.func.dfg.insts[inst].exception_table() {
1569 Some(et) => et,
1570 None => {
1571 errors.fatal((
1572 inst,
1573 self.context(inst),
1574 format!(
1575 "`retN` block argument in block-call not on `try_call` instruction"
1576 ),
1577 ))?;
1578 unreachable!()
1579 }
1580 };
1581 let exdata = &self.func.dfg.exception_tables[et];
1582 let sig = &self.func.dfg.signatures[exdata.signature()];
1583
1584 match (arg, target_type) {
1585 (BlockArg::TryCallRet(i), BlockCallTargetType::ExNormalRet)
1586 if (i as usize) < sig.returns.len() =>
1587 {
1588 Ok(Some(sig.returns[i as usize].value_type))
1589 }
1590 (BlockArg::TryCallRet(_), BlockCallTargetType::ExNormalRet) => {
1591 errors.fatal((
1592 inst,
1593 self.context(inst),
1594 format!("out-of-bounds `retN` block argument"),
1595 ))?;
1596 unreachable!()
1597 }
1598 (BlockArg::TryCallRet(_), _) => {
1599 errors.fatal((
1600 inst,
1601 self.context(inst),
1602 format!("`retN` block argument used outside normal-return target of `try_call`"),
1603 ))?;
1604 unreachable!()
1605 }
1606 (BlockArg::TryCallExn(i), BlockCallTargetType::Exception) => {
1607 if let Some(isa) = self.isa {
1608 match sig
1609 .call_conv
1610 .exception_payload_types(isa.pointer_type())
1611 .get(i as usize)
1612 {
1613 Some(ty) => Ok(Some(*ty)),
1614 None => {
1615 errors.fatal((
1616 inst,
1617 self.context(inst),
1618 format!("out-of-bounds `exnN` block argument"),
1619 ))?;
1620 unreachable!()
1621 }
1622 }
1623 } else {
1624 Ok(None)
1625 }
1626 }
1627 (BlockArg::TryCallExn(_), _) => {
1628 errors.fatal((
1629 inst,
1630 self.context(inst),
1631 format!("`exnN` block argument used outside normal-return target of `try_call`"),
1632 ))?;
1633 unreachable!()
1634 }
1635 _ => unreachable!(),
1636 }
1637 }
1638 }
1639 }
1640
1641 fn typecheck_variable_args_iterator(
1642 &self,
1643 inst: Inst,
1644 iter: impl ExactSizeIterator<Item = Type>,
1645 variable_args: &[Value],
1646 errors: &mut VerifierErrors,
1647 ) -> VerifierStepResult {
1648 let mut i = 0;
1649
1650 for expected_type in iter {
1651 if i >= variable_args.len() {
1652 i += 1;
1654 continue;
1655 }
1656 let arg = variable_args[i];
1657 let arg_type = self.func.dfg.value_type(arg);
1658 if expected_type != arg_type {
1659 errors.report((
1660 inst,
1661 self.context(inst),
1662 format!(
1663 "arg {} ({}) has type {}, expected {}",
1664 i, variable_args[i], arg_type, expected_type
1665 ),
1666 ));
1667 }
1668 i += 1;
1669 }
1670 if i != variable_args.len() {
1671 return errors.nonfatal((
1672 inst,
1673 self.context(inst),
1674 format!(
1675 "mismatched argument count for `{}`: got {}, expected {}",
1676 self.func.dfg.display_inst(inst),
1677 variable_args.len(),
1678 i,
1679 ),
1680 ));
1681 }
1682 Ok(())
1683 }
1684
1685 fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1686 match self.func.dfg.insts[inst] {
1687 ir::InstructionData::MultiAry {
1688 opcode: Opcode::Return,
1689 args,
1690 } => {
1691 let types = args
1692 .as_slice(&self.func.dfg.value_lists)
1693 .iter()
1694 .map(|v| self.func.dfg.value_type(*v));
1695 self.typecheck_return_types(
1696 inst,
1697 types,
1698 errors,
1699 "arguments of return must match function signature",
1700 )?;
1701 }
1702 ir::InstructionData::Call {
1703 opcode: Opcode::ReturnCall,
1704 func_ref,
1705 ..
1706 } => {
1707 let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1708 self.typecheck_tail_call(inst, sig_ref, errors)?;
1709 }
1710 ir::InstructionData::CallIndirect {
1711 opcode: Opcode::ReturnCallIndirect,
1712 sig_ref,
1713 ..
1714 } => {
1715 self.typecheck_tail_call(inst, sig_ref, errors)?;
1716 }
1717 inst => debug_assert!(!inst.opcode().is_return()),
1718 }
1719 Ok(())
1720 }
1721
1722 fn typecheck_tail_call(
1723 &self,
1724 inst: Inst,
1725 sig_ref: SigRef,
1726 errors: &mut VerifierErrors,
1727 ) -> VerifierStepResult {
1728 let signature = &self.func.dfg.signatures[sig_ref];
1729 let cc = signature.call_conv;
1730 if !cc.supports_tail_calls() {
1731 errors.report((
1732 inst,
1733 self.context(inst),
1734 format!("calling convention `{cc}` does not support tail calls"),
1735 ));
1736 }
1737 if cc != self.func.signature.call_conv {
1738 errors.report((
1739 inst,
1740 self.context(inst),
1741 "callee's calling convention must match caller",
1742 ));
1743 }
1744 let types = signature.returns.iter().map(|param| param.value_type);
1745 self.typecheck_return_types(inst, types, errors, "results of callee must match caller")?;
1746 Ok(())
1747 }
1748
1749 fn typecheck_return_types(
1750 &self,
1751 inst: Inst,
1752 actual_types: impl ExactSizeIterator<Item = Type>,
1753 errors: &mut VerifierErrors,
1754 message: &str,
1755 ) -> VerifierStepResult {
1756 let expected_types = &self.func.signature.returns;
1757 if actual_types.len() != expected_types.len() {
1758 return errors.nonfatal((inst, self.context(inst), message));
1759 }
1760 for (i, (actual_type, &expected_type)) in actual_types.zip(expected_types).enumerate() {
1761 if actual_type != expected_type.value_type {
1762 errors.report((
1763 inst,
1764 self.context(inst),
1765 format!(
1766 "result {i} has type {actual_type}, must match function signature of \
1767 {expected_type}"
1768 ),
1769 ));
1770 }
1771 }
1772 Ok(())
1773 }
1774
1775 fn typecheck_special(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1778 match self.func.dfg.insts[inst] {
1779 ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
1780 if let Some(isa) = self.isa {
1781 let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
1782 let global_type = self.func.global_values[global_value].global_type(isa);
1783 if inst_type != global_type {
1784 return errors.nonfatal((
1785 inst, self.context(inst),
1786 format!(
1787 "global_value instruction with type {inst_type} references global value with type {global_type}"
1788 )),
1789 );
1790 }
1791 }
1792 }
1793 _ => {}
1794 }
1795 Ok(())
1796 }
1797
1798 fn cfg_integrity(
1799 &self,
1800 cfg: &ControlFlowGraph,
1801 errors: &mut VerifierErrors,
1802 ) -> VerifierStepResult {
1803 let mut expected_succs = BTreeSet::<Block>::new();
1804 let mut got_succs = BTreeSet::<Block>::new();
1805 let mut expected_preds = BTreeSet::<Inst>::new();
1806 let mut got_preds = BTreeSet::<Inst>::new();
1807
1808 for block in self.func.layout.blocks() {
1809 expected_succs.extend(self.expected_cfg.succ_iter(block));
1810 got_succs.extend(cfg.succ_iter(block));
1811
1812 let missing_succs: Vec<Block> =
1813 expected_succs.difference(&got_succs).cloned().collect();
1814 if !missing_succs.is_empty() {
1815 errors.report((
1816 block,
1817 format!("cfg lacked the following successor(s) {missing_succs:?}"),
1818 ));
1819 continue;
1820 }
1821
1822 let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect();
1823 if !excess_succs.is_empty() {
1824 errors.report((
1825 block,
1826 format!("cfg had unexpected successor(s) {excess_succs:?}"),
1827 ));
1828 continue;
1829 }
1830
1831 expected_preds.extend(
1832 self.expected_cfg
1833 .pred_iter(block)
1834 .map(|BlockPredecessor { inst, .. }| inst),
1835 );
1836 got_preds.extend(
1837 cfg.pred_iter(block)
1838 .map(|BlockPredecessor { inst, .. }| inst),
1839 );
1840
1841 let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
1842 if !missing_preds.is_empty() {
1843 errors.report((
1844 block,
1845 format!("cfg lacked the following predecessor(s) {missing_preds:?}"),
1846 ));
1847 continue;
1848 }
1849
1850 let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
1851 if !excess_preds.is_empty() {
1852 errors.report((
1853 block,
1854 format!("cfg had unexpected predecessor(s) {excess_preds:?}"),
1855 ));
1856 continue;
1857 }
1858
1859 expected_succs.clear();
1860 got_succs.clear();
1861 expected_preds.clear();
1862 got_preds.clear();
1863 }
1864 errors.as_result()
1865 }
1866
1867 fn immediate_constraints(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1868 let inst_data = &self.func.dfg.insts[inst];
1869
1870 match *inst_data {
1871 ir::InstructionData::Store { flags, .. } => {
1872 if flags.readonly() {
1873 errors.fatal((
1874 inst,
1875 self.context(inst),
1876 "A store instruction cannot have the `readonly` MemFlag",
1877 ))
1878 } else {
1879 Ok(())
1880 }
1881 }
1882 ir::InstructionData::BinaryImm8 {
1883 opcode: ir::instructions::Opcode::Extractlane,
1884 imm: lane,
1885 arg,
1886 ..
1887 }
1888 | ir::InstructionData::TernaryImm8 {
1889 opcode: ir::instructions::Opcode::Insertlane,
1890 imm: lane,
1891 args: [arg, _],
1892 ..
1893 } => {
1894 let ty = self.func.dfg.value_type(arg);
1897 if lane as u32 >= ty.lane_count() {
1898 errors.fatal((
1899 inst,
1900 self.context(inst),
1901 format!("The lane {lane} does not index into the type {ty}",),
1902 ))
1903 } else {
1904 Ok(())
1905 }
1906 }
1907 ir::InstructionData::Shuffle {
1908 opcode: ir::instructions::Opcode::Shuffle,
1909 imm,
1910 ..
1911 } => {
1912 let imm = self.func.dfg.immediates.get(imm).unwrap().as_slice();
1913 if imm.len() != 16 {
1914 errors.fatal((
1915 inst,
1916 self.context(inst),
1917 format!("the shuffle immediate wasn't 16-bytes long"),
1918 ))
1919 } else if let Some(i) = imm.iter().find(|i| **i >= 32) {
1920 errors.fatal((
1921 inst,
1922 self.context(inst),
1923 format!("shuffle immediate index {i} is larger than the maximum 31"),
1924 ))
1925 } else {
1926 Ok(())
1927 }
1928 }
1929 _ => Ok(()),
1930 }
1931 }
1932
1933 fn iconst_bounds(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1934 use crate::ir::instructions::InstructionData::UnaryImm;
1935
1936 let inst_data = &self.func.dfg.insts[inst];
1937 if let UnaryImm {
1938 opcode: Opcode::Iconst,
1939 imm,
1940 } = inst_data
1941 {
1942 let ctrl_typevar = self.func.dfg.ctrl_typevar(inst);
1943 let bounds_mask = match ctrl_typevar {
1944 types::I8 => u8::MAX.into(),
1945 types::I16 => u16::MAX.into(),
1946 types::I32 => u32::MAX.into(),
1947 types::I64 => u64::MAX,
1948 _ => unreachable!(),
1949 };
1950
1951 let value = imm.bits() as u64;
1952 if value & bounds_mask != value {
1953 errors.fatal((
1954 inst,
1955 self.context(inst),
1956 "constant immediate is out of bounds",
1957 ))
1958 } else {
1959 Ok(())
1960 }
1961 } else {
1962 Ok(())
1963 }
1964 }
1965
1966 fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1967 let params = self
1968 .func
1969 .signature
1970 .params
1971 .iter()
1972 .enumerate()
1973 .map(|p| (true, p));
1974 let returns = self
1975 .func
1976 .signature
1977 .returns
1978 .iter()
1979 .enumerate()
1980 .map(|p| (false, p));
1981
1982 for (is_argument, (i, param)) in params.chain(returns) {
1983 let is_return = !is_argument;
1984 let item = if is_argument {
1985 "Parameter"
1986 } else {
1987 "Return value"
1988 };
1989
1990 if param.value_type == types::INVALID {
1991 errors.report((
1992 AnyEntity::Function,
1993 format!("{item} at position {i} has an invalid type"),
1994 ));
1995 }
1996
1997 if let ArgumentPurpose::StructArgument(_) = param.purpose {
1998 if is_return {
1999 errors.report((
2000 AnyEntity::Function,
2001 format!("{item} at position {i} can't be an struct argument"),
2002 ))
2003 }
2004 }
2005
2006 let ty_allows_extension = param.value_type.is_int();
2007 let has_extension = param.extension != ArgumentExtension::None;
2008 if !ty_allows_extension && has_extension {
2009 errors.report((
2010 AnyEntity::Function,
2011 format!(
2012 "{} at position {} has invalid extension {:?}",
2013 item, i, param.extension
2014 ),
2015 ));
2016 }
2017 }
2018
2019 if errors.has_error() { Err(()) } else { Ok(()) }
2020 }
2021
2022 fn verify_try_call_handler_index(
2023 &self,
2024 inst: Inst,
2025 block: Block,
2026 index_imm: i64,
2027 errors: &mut VerifierErrors,
2028 ) -> VerifierStepResult {
2029 if index_imm < 0 {
2030 return errors.fatal((
2031 inst,
2032 format!("exception handler index {index_imm} cannot be negative"),
2033 ));
2034 }
2035 let Ok(index) = usize::try_from(index_imm) else {
2036 return errors.fatal((
2037 inst,
2038 format!("exception handler index {index_imm} is out-of-range"),
2039 ));
2040 };
2041 let Some(terminator) = self.func.layout.last_inst(block) else {
2042 return errors.fatal((
2043 inst,
2044 format!("referenced block {block} does not have a terminator"),
2045 ));
2046 };
2047 let Some(et) = self.func.dfg.insts[terminator].exception_table() else {
2048 return errors.fatal((
2049 inst,
2050 format!("referenced block {block} does not end in a try_call"),
2051 ));
2052 };
2053
2054 let etd = &self.func.dfg.exception_tables[et];
2055 let num_exceptional_edges = etd.all_branches().len() - 1;
2060 if index >= num_exceptional_edges {
2061 return errors.fatal((
2062 inst,
2063 format!("exception handler index {index_imm} is out-of-range"),
2064 ));
2065 }
2066
2067 Ok(())
2068 }
2069
2070 pub fn debug_tags(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
2071 let op = self.func.dfg.insts[inst].opcode();
2073 let tags_allowed = op.is_call() || op == Opcode::SequencePoint;
2074 let has_tags = self.func.debug_tags.has(inst);
2075 if has_tags && !tags_allowed {
2076 return errors.fatal((
2077 inst,
2078 "debug tags present on non-call, non-sequence point instruction".to_string(),
2079 ));
2080 }
2081
2082 Ok(())
2083 }
2084
2085 pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
2086 self.verify_global_values(errors)?;
2087 self.verify_memory_types(errors)?;
2088 self.typecheck_entry_block_params(errors)?;
2089 self.check_entry_not_cold(errors)?;
2090 self.typecheck_function_signature(errors)?;
2091
2092 for block in self.func.layout.blocks() {
2093 if self.func.layout.first_inst(block).is_none() {
2094 return errors.fatal((block, format!("{block} cannot be empty")));
2095 }
2096 for inst in self.func.layout.block_insts(block) {
2097 crate::trace!("verifying {inst:?}: {}", self.func.dfg.display_inst(inst));
2098 self.block_integrity(block, inst, errors)?;
2099 self.instruction_integrity(inst, errors)?;
2100 self.typecheck(inst, errors)?;
2101 self.immediate_constraints(inst, errors)?;
2102 self.iconst_bounds(inst, errors)?;
2103 self.debug_tags(inst, errors)?;
2104 }
2105
2106 self.encodable_as_bb(block, errors)?;
2107 }
2108
2109 if !errors.is_empty() {
2110 log::warn!(
2111 "Found verifier errors in function:\n{}",
2112 pretty_verifier_error(self.func, None, errors.clone())
2113 );
2114 }
2115
2116 Ok(())
2117 }
2118}
2119
2120#[cfg(test)]
2121mod tests {
2122 use super::{Verifier, VerifierError, VerifierErrors};
2123 use crate::ir::instructions::{InstructionData, Opcode};
2124 use crate::ir::{AbiParam, Function, Type, types};
2125 use crate::settings;
2126
2127 macro_rules! assert_err_with_msg {
2128 ($e:expr, $msg:expr) => {
2129 match $e.0.get(0) {
2130 None => panic!("Expected an error"),
2131 Some(&VerifierError { ref message, .. }) => {
2132 if !message.contains($msg) {
2133 #[cfg(feature = "std")]
2134 panic!("'{}' did not contain the substring '{}'", message, $msg);
2135 #[cfg(not(feature = "std"))]
2136 panic!("error message did not contain the expected substring");
2137 }
2138 }
2139 }
2140 };
2141 }
2142
2143 #[test]
2144 fn empty() {
2145 let func = Function::new();
2146 let flags = &settings::Flags::new(settings::builder());
2147 let verifier = Verifier::new(&func, flags.into());
2148 let mut errors = VerifierErrors::default();
2149
2150 assert_eq!(verifier.run(&mut errors), Ok(()));
2151 assert!(errors.0.is_empty());
2152 }
2153
2154 #[test]
2155 fn bad_instruction_format() {
2156 let mut func = Function::new();
2157 let block0 = func.dfg.make_block();
2158 func.layout.append_block(block0);
2159 let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
2160 opcode: Opcode::F32const,
2161 imm: 0.into(),
2162 });
2163 func.layout.append_inst(nullary_with_bad_opcode, block0);
2164 let destination = func.dfg.block_call(block0, &[]);
2165 func.stencil.layout.append_inst(
2166 func.stencil.dfg.make_inst(InstructionData::Jump {
2167 opcode: Opcode::Jump,
2168 destination,
2169 }),
2170 block0,
2171 );
2172 let flags = &settings::Flags::new(settings::builder());
2173 let verifier = Verifier::new(&func, flags.into());
2174 let mut errors = VerifierErrors::default();
2175
2176 let _ = verifier.run(&mut errors);
2177
2178 assert_err_with_msg!(errors, "instruction format");
2179 }
2180
2181 fn test_iconst_bounds(immediate: i64, ctrl_typevar: Type) -> VerifierErrors {
2182 let mut func = Function::new();
2183 let block0 = func.dfg.make_block();
2184 func.layout.append_block(block0);
2185
2186 let test_inst = func.dfg.make_inst(InstructionData::UnaryImm {
2187 opcode: Opcode::Iconst,
2188 imm: immediate.into(),
2189 });
2190
2191 let end_inst = func.dfg.make_inst(InstructionData::MultiAry {
2192 opcode: Opcode::Return,
2193 args: Default::default(),
2194 });
2195
2196 func.dfg.make_inst_results(test_inst, ctrl_typevar);
2197 func.layout.append_inst(test_inst, block0);
2198 func.layout.append_inst(end_inst, block0);
2199
2200 let flags = &settings::Flags::new(settings::builder());
2201 let verifier = Verifier::new(&func, flags.into());
2202 let mut errors = VerifierErrors::default();
2203
2204 let _ = verifier.run(&mut errors);
2205 errors
2206 }
2207
2208 fn test_iconst_bounds_err(immediate: i64, ctrl_typevar: Type) {
2209 assert_err_with_msg!(
2210 test_iconst_bounds(immediate, ctrl_typevar),
2211 "constant immediate is out of bounds"
2212 );
2213 }
2214
2215 fn test_iconst_bounds_ok(immediate: i64, ctrl_typevar: Type) {
2216 assert!(test_iconst_bounds(immediate, ctrl_typevar).is_empty());
2217 }
2218
2219 #[test]
2220 fn negative_iconst_8() {
2221 test_iconst_bounds_err(-10, types::I8);
2222 }
2223
2224 #[test]
2225 fn negative_iconst_32() {
2226 test_iconst_bounds_err(-1, types::I32);
2227 }
2228
2229 #[test]
2230 fn large_iconst_8() {
2231 test_iconst_bounds_err(1 + u8::MAX as i64, types::I8);
2232 }
2233
2234 #[test]
2235 fn large_iconst_16() {
2236 test_iconst_bounds_err(10 + u16::MAX as i64, types::I16);
2237 }
2238
2239 #[test]
2240 fn valid_iconst_8() {
2241 test_iconst_bounds_ok(10, types::I8);
2242 }
2243
2244 #[test]
2245 fn valid_iconst_32() {
2246 test_iconst_bounds_ok(u32::MAX as i64, types::I32);
2247 }
2248
2249 #[test]
2250 fn test_function_invalid_param() {
2251 let mut func = Function::new();
2252 func.signature.params.push(AbiParam::new(types::INVALID));
2253
2254 let mut errors = VerifierErrors::default();
2255 let flags = &settings::Flags::new(settings::builder());
2256 let verifier = Verifier::new(&func, flags.into());
2257
2258 let _ = verifier.typecheck_function_signature(&mut errors);
2259 assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
2260 }
2261
2262 #[test]
2263 fn test_function_invalid_return_value() {
2264 let mut func = Function::new();
2265 func.signature.returns.push(AbiParam::new(types::INVALID));
2266
2267 let mut errors = VerifierErrors::default();
2268 let flags = &settings::Flags::new(settings::builder());
2269 let verifier = Verifier::new(&func, flags.into());
2270
2271 let _ = verifier.typecheck_function_signature(&mut errors);
2272 assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
2273 }
2274
2275 #[test]
2276 fn test_printing_contextual_errors() {
2277 let mut func = Function::new();
2279 let block0 = func.dfg.make_block();
2280 func.layout.append_block(block0);
2281
2282 let inst = func.dfg.make_inst(InstructionData::UnaryIeee64 {
2284 opcode: Opcode::F64const,
2285 imm: 0.0.into(),
2286 });
2287 func.layout.append_inst(inst, block0);
2288
2289 let mut errors = VerifierErrors::default();
2291 let flags = &settings::Flags::new(settings::builder());
2292 let verifier = Verifier::new(&func, flags.into());
2293
2294 let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
2297 assert_eq!(
2298 format!("{}", errors.0[0]),
2299 "inst0 (f64const 0.0): has fewer result values than expected"
2300 )
2301 }
2302
2303 #[test]
2304 fn test_empty_block() {
2305 let mut func = Function::new();
2306 let block0 = func.dfg.make_block();
2307 func.layout.append_block(block0);
2308
2309 let flags = &settings::Flags::new(settings::builder());
2310 let verifier = Verifier::new(&func, flags.into());
2311 let mut errors = VerifierErrors::default();
2312 let _ = verifier.run(&mut errors);
2313
2314 assert_err_with_msg!(errors, "block0 cannot be empty");
2315 }
2316}