cranelift_codegen/verifier/
mod.rs

1//! A verifier for ensuring that functions are well formed.
2//! It verifies:
3//!
4//! block integrity
5//!
6//! - All instructions reached from the `block_insts` iterator must belong to
7//!   the block as reported by `inst_block()`.
8//! - Every block must end in a terminator instruction, and no other instruction
9//!   can be a terminator.
10//! - Every value in the `block_params` iterator belongs to the block as reported by `value_block`.
11//!
12//! Instruction integrity
13//!
14//! - The instruction format must match the opcode.
15//! - All result values must be created for multi-valued instructions.
16//! - All referenced entities must exist. (Values, blocks, stack slots, ...)
17//! - Instructions must not reference (eg. branch to) the entry block.
18//!
19//! SSA form
20//!
21//! - Values must be defined by an instruction that exists and that is inserted in
22//!   a block, or be an argument of an existing block.
23//! - Values used by an instruction must dominate the instruction.
24//!
25//! Control flow graph and dominator tree integrity:
26//!
27//! - All predecessors in the CFG must be branches to the block.
28//! - All branches to a block must be present in the CFG.
29//! - A recomputed dominator tree is identical to the existing one.
30//! - The entry block must not be a cold block.
31//!
32//! Type checking
33//!
34//! - Compare input and output values against the opcode's type constraints.
35//!   For polymorphic opcodes, determine the controlling type variable first.
36//! - Branches and jumps must pass arguments to destination blocks that match the
37//!   expected types exactly. The number of arguments must match.
38//! - All blocks in a jump table must take no arguments.
39//! - Function calls are type checked against their signature.
40//! - The entry block must take arguments that match the signature of the current
41//!   function.
42//! - All return instructions must have return value operands matching the current
43//!   function signature.
44//!
45//! Global values
46//!
47//! - Detect cycles in global values.
48//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
49//!
50//! Memory types
51//!
52//! - Ensure that struct fields are in offset order.
53//! - Ensure that struct fields are completely within the overall
54//!   struct size, and do not overlap.
55//!
56//! TODO:
57//! Ad hoc checking
58//!
59//! - Stack slot loads and stores must be in-bounds.
60//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
61//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
62//!   range for their polymorphic type.
63//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
64//!   of arguments must match the destination type, and the lane indexes must be in range.
65
66use crate::dbg::DisplayList;
67use crate::dominator_tree::DominatorTree;
68use crate::entity::SparseSet;
69use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
70use crate::ir::ExceptionTableItem;
71use crate::ir::entities::AnyEntity;
72use crate::ir::instructions::{CallInfo, InstructionFormat, ResolvedConstraint};
73use crate::ir::{self, ArgumentExtension, BlockArg, ExceptionTable};
74use crate::ir::{
75    ArgumentPurpose, Block, Constant, DynamicStackSlot, FuncRef, Function, GlobalValue, Inst,
76    JumpTable, MemFlags, MemoryTypeData, Opcode, SigRef, StackSlot, Type, Value, ValueDef,
77    ValueList, types,
78};
79use crate::isa::TargetIsa;
80use crate::print_errors::pretty_verifier_error;
81use crate::settings::FlagsOrIsa;
82use crate::timing;
83use alloc::collections::BTreeSet;
84use alloc::string::{String, ToString};
85use alloc::vec::Vec;
86use core::fmt::{self, Display, Formatter};
87
88/// A verifier error.
89#[derive(Debug, PartialEq, Eq, Clone)]
90pub struct VerifierError {
91    /// The entity causing the verifier error.
92    pub location: AnyEntity,
93    /// Optionally provide some context for the given location; e.g., for `inst42` provide
94    /// `Some("v3 = iconst.i32 0")` for more comprehensible errors.
95    pub context: Option<String>,
96    /// The error message.
97    pub message: String,
98}
99
100// This is manually implementing Error and Display instead of using thiserror to reduce the amount
101// of dependencies used by Cranelift.
102impl std::error::Error for VerifierError {}
103
104impl Display for VerifierError {
105    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
106        match &self.context {
107            None => write!(f, "{}: {}", self.location, self.message),
108            Some(context) => write!(f, "{} ({}): {}", self.location, context, self.message),
109        }
110    }
111}
112
113/// Convenience converter for making error-reporting less verbose.
114///
115/// Converts a tuple of `(location, context, message)` to a `VerifierError`.
116/// ```
117/// use cranelift_codegen::verifier::VerifierErrors;
118/// use cranelift_codegen::ir::Inst;
119/// let mut errors = VerifierErrors::new();
120/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type"));
121/// // note the double parenthenses to use this syntax
122/// ```
123impl<L, C, M> From<(L, C, M)> for VerifierError
124where
125    L: Into<AnyEntity>,
126    C: Into<String>,
127    M: Into<String>,
128{
129    fn from(items: (L, C, M)) -> Self {
130        let (location, context, message) = items;
131        Self {
132            location: location.into(),
133            context: Some(context.into()),
134            message: message.into(),
135        }
136    }
137}
138
139/// Convenience converter for making error-reporting less verbose.
140///
141/// Same as above but without `context`.
142impl<L, M> From<(L, M)> for VerifierError
143where
144    L: Into<AnyEntity>,
145    M: Into<String>,
146{
147    fn from(items: (L, M)) -> Self {
148        let (location, message) = items;
149        Self {
150            location: location.into(),
151            context: None,
152            message: message.into(),
153        }
154    }
155}
156
157/// Result of a step in the verification process.
158///
159/// Functions that return `VerifierStepResult` should also take a
160/// mutable reference to `VerifierErrors` as argument in order to report
161/// errors.
162///
163/// Here, `Ok` represents a step that **did not lead to a fatal error**,
164/// meaning that the verification process may continue. However, other (non-fatal)
165/// errors might have been reported through the previously mentioned `VerifierErrors`
166/// argument.
167pub type VerifierStepResult = Result<(), ()>;
168
169/// Result of a verification operation.
170///
171/// Unlike `VerifierStepResult` which may be `Ok` while still having reported
172/// errors, this type always returns `Err` if an error (fatal or not) was reported.
173pub type VerifierResult<T> = Result<T, VerifierErrors>;
174
175/// List of verifier errors.
176#[derive(Debug, Default, PartialEq, Eq, Clone)]
177pub struct VerifierErrors(pub Vec<VerifierError>);
178
179// This is manually implementing Error and Display instead of using thiserror to reduce the amount
180// of dependencies used by Cranelift.
181impl std::error::Error for VerifierErrors {}
182
183impl VerifierErrors {
184    /// Return a new `VerifierErrors` struct.
185    #[inline]
186    pub fn new() -> Self {
187        Self(Vec::new())
188    }
189
190    /// Return whether no errors were reported.
191    #[inline]
192    pub fn is_empty(&self) -> bool {
193        self.0.is_empty()
194    }
195
196    /// Return whether one or more errors were reported.
197    #[inline]
198    pub fn has_error(&self) -> bool {
199        !self.0.is_empty()
200    }
201
202    /// Return a `VerifierStepResult` that is fatal if at least one error was reported,
203    /// and non-fatal otherwise.
204    #[inline]
205    pub fn as_result(&self) -> VerifierStepResult {
206        if self.is_empty() { Ok(()) } else { Err(()) }
207    }
208
209    /// Report an error, adding it to the list of errors.
210    pub fn report(&mut self, error: impl Into<VerifierError>) {
211        self.0.push(error.into());
212    }
213
214    /// Report a fatal error and return `Err`.
215    pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult {
216        self.report(error);
217        Err(())
218    }
219
220    /// Report a non-fatal error and return `Ok`.
221    pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult {
222        self.report(error);
223        Ok(())
224    }
225}
226
227impl From<Vec<VerifierError>> for VerifierErrors {
228    fn from(v: Vec<VerifierError>) -> Self {
229        Self(v)
230    }
231}
232
233impl From<VerifierErrors> for Vec<VerifierError> {
234    fn from(errors: VerifierErrors) -> Vec<VerifierError> {
235        errors.0
236    }
237}
238
239impl From<VerifierErrors> for VerifierResult<()> {
240    fn from(errors: VerifierErrors) -> VerifierResult<()> {
241        if errors.is_empty() {
242            Ok(())
243        } else {
244            Err(errors)
245        }
246    }
247}
248
249impl Display for VerifierErrors {
250    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
251        for err in &self.0 {
252            writeln!(f, "- {err}")?;
253        }
254        Ok(())
255    }
256}
257
258/// Verify `func`.
259pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
260    func: &Function,
261    fisa: FOI,
262) -> VerifierResult<()> {
263    let _tt = timing::verifier();
264    let mut errors = VerifierErrors::default();
265    let verifier = Verifier::new(func, fisa.into());
266    let result = verifier.run(&mut errors);
267    if errors.is_empty() {
268        result.unwrap();
269        Ok(())
270    } else {
271        Err(errors)
272    }
273}
274
275/// Verify `func` after checking the integrity of associated context data structures `cfg` and
276/// `domtree`.
277pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
278    func: &Function,
279    cfg: &ControlFlowGraph,
280    domtree: &DominatorTree,
281    fisa: FOI,
282    errors: &mut VerifierErrors,
283) -> VerifierStepResult {
284    let _tt = timing::verifier();
285    let verifier = Verifier::new(func, fisa.into());
286    if cfg.is_valid() {
287        verifier.cfg_integrity(cfg, errors)?;
288    }
289    if domtree.is_valid() {
290        verifier.domtree_integrity(domtree, errors)?;
291    }
292    verifier.run(errors)
293}
294
295#[derive(Clone, Copy, Debug)]
296enum BlockCallTargetType {
297    Normal,
298    ExNormalRet,
299    Exception,
300}
301
302struct Verifier<'a> {
303    func: &'a Function,
304    expected_cfg: ControlFlowGraph,
305    expected_domtree: DominatorTree,
306    isa: Option<&'a dyn TargetIsa>,
307}
308
309impl<'a> Verifier<'a> {
310    pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
311        let expected_cfg = ControlFlowGraph::with_function(func);
312        let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
313        Self {
314            func,
315            expected_cfg,
316            expected_domtree,
317            isa: fisa.isa,
318        }
319    }
320
321    /// Determine a contextual error string for an instruction.
322    #[inline]
323    fn context(&self, inst: Inst) -> String {
324        self.func.dfg.display_inst(inst).to_string()
325    }
326
327    // Check for:
328    //  - cycles in the global value declarations.
329    //  - use of 'vmctx' when no special parameter declares it.
330    fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
331        let mut cycle_seen = false;
332        let mut seen = SparseSet::new();
333
334        'gvs: for gv in self.func.global_values.keys() {
335            seen.clear();
336            seen.insert(gv);
337
338            let mut cur = gv;
339            loop {
340                match self.func.global_values[cur] {
341                    ir::GlobalValueData::Load { base, .. }
342                    | ir::GlobalValueData::IAddImm { base, .. } => {
343                        if seen.insert(base).is_some() {
344                            if !cycle_seen {
345                                errors.report((
346                                    gv,
347                                    format!("global value cycle: {}", DisplayList(seen.as_slice())),
348                                ));
349                                // ensures we don't report the cycle multiple times
350                                cycle_seen = true;
351                            }
352                            continue 'gvs;
353                        }
354
355                        cur = base;
356                    }
357                    _ => break,
358                }
359            }
360
361            match self.func.global_values[gv] {
362                ir::GlobalValueData::VMContext { .. } => {
363                    if self
364                        .func
365                        .special_param(ir::ArgumentPurpose::VMContext)
366                        .is_none()
367                    {
368                        errors.report((gv, format!("undeclared vmctx reference {gv}")));
369                    }
370                }
371                ir::GlobalValueData::IAddImm {
372                    base, global_type, ..
373                } => {
374                    if !global_type.is_int() {
375                        errors.report((
376                            gv,
377                            format!("iadd_imm global value with non-int type {global_type}"),
378                        ));
379                    } else if let Some(isa) = self.isa {
380                        let base_type = self.func.global_values[base].global_type(isa);
381                        if global_type != base_type {
382                            errors.report((
383                                gv,
384                                format!(
385                                    "iadd_imm type {global_type} differs from operand type {base_type}"
386                                ),
387                            ));
388                        }
389                    }
390                }
391                ir::GlobalValueData::Load { base, .. } => {
392                    if let Some(isa) = self.isa {
393                        let base_type = self.func.global_values[base].global_type(isa);
394                        let pointer_type = isa.pointer_type();
395                        if base_type != pointer_type {
396                            errors.report((
397                                gv,
398                                format!(
399                                    "base {base} has type {base_type}, which is not the pointer type {pointer_type}"
400                                ),
401                            ));
402                        }
403                    }
404                }
405                _ => {}
406            }
407        }
408
409        // Invalid global values shouldn't stop us from verifying the rest of the function
410        Ok(())
411    }
412
413    fn verify_memory_types(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
414        // Verify that all fields are statically-sized and lie within
415        // the struct, do not overlap, and are in offset order
416        for (mt, mt_data) in &self.func.memory_types {
417            match mt_data {
418                MemoryTypeData::Struct { size, fields } => {
419                    let mut last_offset = 0;
420                    for field in fields {
421                        if field.offset < last_offset {
422                            errors.report((
423                                mt,
424                                format!(
425                                    "memory type {} has a field at offset {}, which is out-of-order",
426                                    mt, field.offset
427                                ),
428                            ));
429                        }
430                        last_offset = match field.offset.checked_add(u64::from(field.ty.bytes())) {
431                            Some(o) => o,
432                            None => {
433                                errors.report((
434                                        mt,
435                                        format!(
436                                            "memory type {} has a field at offset {} of size {}; offset plus size overflows a u64",
437                                            mt, field.offset, field.ty.bytes()),
438                                ));
439                                break;
440                            }
441                        };
442
443                        if last_offset > *size {
444                            errors.report((
445                                        mt,
446                                        format!(
447                                            "memory type {} has a field at offset {} of size {} that overflows the struct size {}",
448                                            mt, field.offset, field.ty.bytes(), *size),
449                                          ));
450                        }
451                    }
452                }
453                _ => {}
454            }
455        }
456
457        Ok(())
458    }
459
460    /// Check that the given block can be encoded as a BB, by checking that only
461    /// branching instructions are ending the block.
462    fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult {
463        match self.func.is_block_basic(block) {
464            Ok(()) => Ok(()),
465            Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
466        }
467    }
468
469    fn block_integrity(
470        &self,
471        block: Block,
472        inst: Inst,
473        errors: &mut VerifierErrors,
474    ) -> VerifierStepResult {
475        let is_terminator = self.func.dfg.insts[inst].opcode().is_terminator();
476        let is_last_inst = self.func.layout.last_inst(block) == Some(inst);
477
478        if is_terminator && !is_last_inst {
479            // Terminating instructions only occur at the end of blocks.
480            return errors.fatal((
481                inst,
482                self.context(inst),
483                format!("a terminator instruction was encountered before the end of {block}"),
484            ));
485        }
486        if is_last_inst && !is_terminator {
487            return errors.fatal((block, "block does not end in a terminator instruction"));
488        }
489
490        // Instructions belong to the correct block.
491        let inst_block = self.func.layout.inst_block(inst);
492        if inst_block != Some(block) {
493            return errors.fatal((
494                inst,
495                self.context(inst),
496                format!("should belong to {block} not {inst_block:?}"),
497            ));
498        }
499
500        // Parameters belong to the correct block.
501        for &arg in self.func.dfg.block_params(block) {
502            match self.func.dfg.value_def(arg) {
503                ValueDef::Param(arg_block, _) => {
504                    if block != arg_block {
505                        return errors.fatal((arg, format!("does not belong to {block}")));
506                    }
507                }
508                _ => {
509                    return errors.fatal((arg, "expected an argument, found a result"));
510                }
511            }
512        }
513
514        Ok(())
515    }
516
517    fn instruction_integrity(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
518        let inst_data = &self.func.dfg.insts[inst];
519        let dfg = &self.func.dfg;
520
521        // The instruction format matches the opcode
522        if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
523            return errors.fatal((
524                inst,
525                self.context(inst),
526                "instruction opcode doesn't match instruction format",
527            ));
528        }
529
530        let expected_num_results = dfg.num_expected_results_for_verifier(inst);
531
532        // All result values for multi-valued instructions are created
533        let got_results = dfg.inst_results(inst).len();
534        if got_results != expected_num_results {
535            return errors.fatal((
536                inst,
537                self.context(inst),
538                format!("expected {expected_num_results} result values, found {got_results}"),
539            ));
540        }
541
542        self.verify_entity_references(inst, errors)
543    }
544
545    fn verify_entity_references(
546        &self,
547        inst: Inst,
548        errors: &mut VerifierErrors,
549    ) -> VerifierStepResult {
550        use crate::ir::instructions::InstructionData::*;
551
552        for arg in self.func.dfg.inst_values(inst) {
553            self.verify_inst_arg(inst, arg, errors)?;
554
555            // All used values must be attached to something.
556            let original = self.func.dfg.resolve_aliases(arg);
557            if !self.func.dfg.value_is_attached(original) {
558                errors.report((
559                    inst,
560                    self.context(inst),
561                    format!("argument {arg} -> {original} is not attached"),
562                ));
563            }
564        }
565
566        for &res in self.func.dfg.inst_results(inst) {
567            self.verify_inst_result(inst, res, errors)?;
568        }
569
570        match self.func.dfg.insts[inst] {
571            MultiAry { ref args, .. } => {
572                self.verify_value_list(inst, args, errors)?;
573            }
574            Jump { destination, .. } => {
575                self.verify_block(inst, destination.block(&self.func.dfg.value_lists), errors)?;
576            }
577            Brif {
578                arg,
579                blocks: [block_then, block_else],
580                ..
581            } => {
582                self.verify_value(inst, arg, errors)?;
583                self.verify_block(inst, block_then.block(&self.func.dfg.value_lists), errors)?;
584                self.verify_block(inst, block_else.block(&self.func.dfg.value_lists), errors)?;
585            }
586            BranchTable { table, .. } => {
587                self.verify_jump_table(inst, table, errors)?;
588            }
589            Call {
590                func_ref, ref args, ..
591            } => {
592                self.verify_func_ref(inst, func_ref, errors)?;
593                self.verify_value_list(inst, args, errors)?;
594            }
595            CallIndirect {
596                sig_ref, ref args, ..
597            } => {
598                self.verify_sig_ref(inst, sig_ref, errors)?;
599                self.verify_value_list(inst, args, errors)?;
600            }
601            TryCall {
602                func_ref,
603                ref args,
604                exception,
605                ..
606            } => {
607                self.verify_func_ref(inst, func_ref, errors)?;
608                self.verify_value_list(inst, args, errors)?;
609                self.verify_exception_table(inst, exception, errors)?;
610                self.verify_exception_compatible_abi(inst, exception, errors)?;
611            }
612            TryCallIndirect {
613                ref args,
614                exception,
615                ..
616            } => {
617                self.verify_value_list(inst, args, errors)?;
618                self.verify_exception_table(inst, exception, errors)?;
619                self.verify_exception_compatible_abi(inst, exception, errors)?;
620            }
621            FuncAddr { func_ref, .. } => {
622                self.verify_func_ref(inst, func_ref, errors)?;
623            }
624            StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
625                self.verify_stack_slot(inst, stack_slot, errors)?;
626            }
627            DynamicStackLoad {
628                dynamic_stack_slot, ..
629            }
630            | DynamicStackStore {
631                dynamic_stack_slot, ..
632            } => {
633                self.verify_dynamic_stack_slot(inst, dynamic_stack_slot, errors)?;
634            }
635            UnaryGlobalValue { global_value, .. } => {
636                self.verify_global_value(inst, global_value, errors)?;
637            }
638            NullAry {
639                opcode: Opcode::GetPinnedReg,
640            }
641            | Unary {
642                opcode: Opcode::SetPinnedReg,
643                ..
644            } => {
645                if let Some(isa) = &self.isa {
646                    if !isa.flags().enable_pinned_reg() {
647                        return errors.fatal((
648                            inst,
649                            self.context(inst),
650                            "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
651                        ));
652                    }
653                } else {
654                    return errors.fatal((
655                        inst,
656                        self.context(inst),
657                        "GetPinnedReg/SetPinnedReg need an ISA!",
658                    ));
659                }
660            }
661            NullAry {
662                opcode: Opcode::GetFramePointer | Opcode::GetReturnAddress,
663            } => {
664                if let Some(isa) = &self.isa {
665                    // Backends may already rely on this check implicitly, so do
666                    // not relax it without verifying that it is safe to do so.
667                    if !isa.flags().preserve_frame_pointers() {
668                        return errors.fatal((
669                            inst,
670                            self.context(inst),
671                            "`get_frame_pointer`/`get_return_address` cannot be used without \
672                             enabling `preserve_frame_pointers`",
673                        ));
674                    }
675                } else {
676                    return errors.fatal((
677                        inst,
678                        self.context(inst),
679                        "`get_frame_pointer`/`get_return_address` require an ISA!",
680                    ));
681                }
682            }
683            LoadNoOffset {
684                opcode: Opcode::Bitcast,
685                flags,
686                arg,
687            } => {
688                self.verify_bitcast(inst, flags, arg, errors)?;
689            }
690            LoadNoOffset { opcode, arg, .. } if opcode.can_load() => {
691                self.verify_is_address(inst, arg, errors)?;
692            }
693            Load { opcode, arg, .. } if opcode.can_load() => {
694                self.verify_is_address(inst, arg, errors)?;
695            }
696            AtomicCas {
697                opcode,
698                args: [p, _, _],
699                ..
700            } if opcode.can_load() || opcode.can_store() => {
701                self.verify_is_address(inst, p, errors)?;
702            }
703            AtomicRmw {
704                opcode,
705                args: [p, _],
706                ..
707            } if opcode.can_load() || opcode.can_store() => {
708                self.verify_is_address(inst, p, errors)?;
709            }
710            Store {
711                opcode,
712                args: [_, p],
713                ..
714            } if opcode.can_store() => {
715                self.verify_is_address(inst, p, errors)?;
716            }
717            StoreNoOffset {
718                opcode,
719                args: [_, p],
720                ..
721            } if opcode.can_store() => {
722                self.verify_is_address(inst, p, errors)?;
723            }
724            UnaryConst {
725                opcode: opcode @ (Opcode::Vconst | Opcode::F128const),
726                constant_handle,
727                ..
728            } => {
729                self.verify_constant_size(inst, opcode, constant_handle, errors)?;
730            }
731
732            ExceptionHandlerAddress { block, imm, .. } => {
733                self.verify_block(inst, block, errors)?;
734                self.verify_try_call_handler_index(inst, block, imm.into(), errors)?;
735            }
736
737            // Exhaustive list so we can't forget to add new formats
738            AtomicCas { .. }
739            | AtomicRmw { .. }
740            | LoadNoOffset { .. }
741            | StoreNoOffset { .. }
742            | Unary { .. }
743            | UnaryConst { .. }
744            | UnaryImm { .. }
745            | UnaryIeee16 { .. }
746            | UnaryIeee32 { .. }
747            | UnaryIeee64 { .. }
748            | Binary { .. }
749            | BinaryImm8 { .. }
750            | BinaryImm64 { .. }
751            | Ternary { .. }
752            | TernaryImm8 { .. }
753            | Shuffle { .. }
754            | IntAddTrap { .. }
755            | IntCompare { .. }
756            | IntCompareImm { .. }
757            | FloatCompare { .. }
758            | Load { .. }
759            | Store { .. }
760            | Trap { .. }
761            | CondTrap { .. }
762            | NullAry { .. } => {}
763        }
764
765        Ok(())
766    }
767
768    fn verify_block(
769        &self,
770        loc: impl Into<AnyEntity>,
771        e: Block,
772        errors: &mut VerifierErrors,
773    ) -> VerifierStepResult {
774        if !self.func.dfg.block_is_valid(e) || !self.func.layout.is_block_inserted(e) {
775            return errors.fatal((loc, format!("invalid block reference {e}")));
776        }
777        if let Some(entry_block) = self.func.layout.entry_block() {
778            if e == entry_block {
779                return errors.fatal((loc, format!("invalid reference to entry block {e}")));
780            }
781        }
782        Ok(())
783    }
784
785    fn verify_sig_ref(
786        &self,
787        inst: Inst,
788        s: SigRef,
789        errors: &mut VerifierErrors,
790    ) -> VerifierStepResult {
791        if !self.func.dfg.signatures.is_valid(s) {
792            errors.fatal((
793                inst,
794                self.context(inst),
795                format!("invalid signature reference {s}"),
796            ))
797        } else {
798            Ok(())
799        }
800    }
801
802    fn verify_func_ref(
803        &self,
804        inst: Inst,
805        f: FuncRef,
806        errors: &mut VerifierErrors,
807    ) -> VerifierStepResult {
808        if !self.func.dfg.ext_funcs.is_valid(f) {
809            errors.nonfatal((
810                inst,
811                self.context(inst),
812                format!("invalid function reference {f}"),
813            ))
814        } else {
815            Ok(())
816        }
817    }
818
819    fn verify_stack_slot(
820        &self,
821        inst: Inst,
822        ss: StackSlot,
823        errors: &mut VerifierErrors,
824    ) -> VerifierStepResult {
825        if !self.func.sized_stack_slots.is_valid(ss) {
826            errors.nonfatal((inst, self.context(inst), format!("invalid stack slot {ss}")))
827        } else {
828            Ok(())
829        }
830    }
831
832    fn verify_dynamic_stack_slot(
833        &self,
834        inst: Inst,
835        ss: DynamicStackSlot,
836        errors: &mut VerifierErrors,
837    ) -> VerifierStepResult {
838        if !self.func.dynamic_stack_slots.is_valid(ss) {
839            errors.nonfatal((
840                inst,
841                self.context(inst),
842                format!("invalid dynamic stack slot {ss}"),
843            ))
844        } else {
845            Ok(())
846        }
847    }
848
849    fn verify_global_value(
850        &self,
851        inst: Inst,
852        gv: GlobalValue,
853        errors: &mut VerifierErrors,
854    ) -> VerifierStepResult {
855        if !self.func.global_values.is_valid(gv) {
856            errors.nonfatal((
857                inst,
858                self.context(inst),
859                format!("invalid global value {gv}"),
860            ))
861        } else {
862            Ok(())
863        }
864    }
865
866    fn verify_value_list(
867        &self,
868        inst: Inst,
869        l: &ValueList,
870        errors: &mut VerifierErrors,
871    ) -> VerifierStepResult {
872        if !l.is_valid(&self.func.dfg.value_lists) {
873            errors.nonfatal((
874                inst,
875                self.context(inst),
876                format!("invalid value list reference {l:?}"),
877            ))
878        } else {
879            Ok(())
880        }
881    }
882
883    fn verify_jump_table(
884        &self,
885        inst: Inst,
886        j: JumpTable,
887        errors: &mut VerifierErrors,
888    ) -> VerifierStepResult {
889        if !self.func.stencil.dfg.jump_tables.is_valid(j) {
890            errors.nonfatal((
891                inst,
892                self.context(inst),
893                format!("invalid jump table reference {j}"),
894            ))
895        } else {
896            let pool = &self.func.stencil.dfg.value_lists;
897            for block in self.func.stencil.dfg.jump_tables[j].all_branches() {
898                self.verify_block(inst, block.block(pool), errors)?;
899            }
900            Ok(())
901        }
902    }
903
904    fn verify_exception_table(
905        &self,
906        inst: Inst,
907        et: ExceptionTable,
908        errors: &mut VerifierErrors,
909    ) -> VerifierStepResult {
910        // Verify that the exception table reference itself is valid.
911        if !self.func.stencil.dfg.exception_tables.is_valid(et) {
912            errors.nonfatal((
913                inst,
914                self.context(inst),
915                format!("invalid exception table reference {et}"),
916            ))?;
917        }
918
919        let pool = &self.func.stencil.dfg.value_lists;
920        let exdata = &self.func.stencil.dfg.exception_tables[et];
921
922        // Verify that the exception table's signature reference
923        // is valid.
924        self.verify_sig_ref(inst, exdata.signature(), errors)?;
925
926        // Verify that the exception table's block references are valid.
927        for block in exdata.all_branches() {
928            self.verify_block(inst, block.block(pool), errors)?;
929        }
930        Ok(())
931    }
932
933    fn verify_exception_compatible_abi(
934        &self,
935        inst: Inst,
936        et: ExceptionTable,
937        errors: &mut VerifierErrors,
938    ) -> VerifierStepResult {
939        let callee_sig_ref = self.func.dfg.exception_tables[et].signature();
940        let callee_sig = &self.func.dfg.signatures[callee_sig_ref];
941        let callee_call_conv = callee_sig.call_conv;
942        if !callee_call_conv.supports_exceptions() {
943            errors.nonfatal((
944                inst,
945                self.context(inst),
946                format!(
947                    "calling convention `{callee_call_conv}` of callee does not support exceptions"
948                ),
949            ))?;
950        }
951        Ok(())
952    }
953
954    fn verify_value(
955        &self,
956        loc_inst: Inst,
957        v: Value,
958        errors: &mut VerifierErrors,
959    ) -> VerifierStepResult {
960        let dfg = &self.func.dfg;
961        if !dfg.value_is_valid(v) {
962            errors.nonfatal((
963                loc_inst,
964                self.context(loc_inst),
965                format!("invalid value reference {v}"),
966            ))
967        } else {
968            Ok(())
969        }
970    }
971
972    fn verify_inst_arg(
973        &self,
974        loc_inst: Inst,
975        v: Value,
976        errors: &mut VerifierErrors,
977    ) -> VerifierStepResult {
978        self.verify_value(loc_inst, v, errors)?;
979
980        let dfg = &self.func.dfg;
981        let loc_block = self
982            .func
983            .layout
984            .inst_block(loc_inst)
985            .expect("Instruction not in layout.");
986        let is_reachable = self.expected_domtree.is_reachable(loc_block);
987
988        // SSA form
989        match dfg.value_def(v) {
990            ValueDef::Result(def_inst, _) => {
991                // Value is defined by an instruction that exists.
992                if !dfg.inst_is_valid(def_inst) {
993                    return errors.fatal((
994                        loc_inst,
995                        self.context(loc_inst),
996                        format!("{v} is defined by invalid instruction {def_inst}"),
997                    ));
998                }
999                // Defining instruction is inserted in a block.
1000                if self.func.layout.inst_block(def_inst) == None {
1001                    return errors.fatal((
1002                        loc_inst,
1003                        self.context(loc_inst),
1004                        format!("{v} is defined by {def_inst} which has no block"),
1005                    ));
1006                }
1007                // Defining instruction dominates the instruction that uses the value.
1008                if is_reachable {
1009                    if !self
1010                        .expected_domtree
1011                        .dominates(def_inst, loc_inst, &self.func.layout)
1012                    {
1013                        return errors.fatal((
1014                            loc_inst,
1015                            self.context(loc_inst),
1016                            format!("uses value {v} from non-dominating {def_inst}"),
1017                        ));
1018                    }
1019                    if def_inst == loc_inst {
1020                        return errors.fatal((
1021                            loc_inst,
1022                            self.context(loc_inst),
1023                            format!("uses value {v} from itself"),
1024                        ));
1025                    }
1026                }
1027            }
1028            ValueDef::Param(block, _) => {
1029                // Value is defined by an existing block.
1030                if !dfg.block_is_valid(block) {
1031                    return errors.fatal((
1032                        loc_inst,
1033                        self.context(loc_inst),
1034                        format!("{v} is defined by invalid block {block}"),
1035                    ));
1036                }
1037                // Defining block is inserted in the layout
1038                if !self.func.layout.is_block_inserted(block) {
1039                    return errors.fatal((
1040                        loc_inst,
1041                        self.context(loc_inst),
1042                        format!("{v} is defined by {block} which is not in the layout"),
1043                    ));
1044                }
1045                let user_block = self.func.layout.inst_block(loc_inst).expect("Expected instruction to be in a block as we're traversing code already in layout");
1046                // The defining block dominates the instruction using this value.
1047                if is_reachable && !self.expected_domtree.block_dominates(block, user_block) {
1048                    return errors.fatal((
1049                        loc_inst,
1050                        self.context(loc_inst),
1051                        format!("uses value arg from non-dominating {block}"),
1052                    ));
1053                }
1054            }
1055            ValueDef::Union(_, _) => {
1056                // Nothing: union nodes themselves have no location,
1057                // so we cannot check any dominance properties.
1058            }
1059        }
1060        Ok(())
1061    }
1062
1063    fn verify_inst_result(
1064        &self,
1065        loc_inst: Inst,
1066        v: Value,
1067        errors: &mut VerifierErrors,
1068    ) -> VerifierStepResult {
1069        self.verify_value(loc_inst, v, errors)?;
1070
1071        match self.func.dfg.value_def(v) {
1072            ValueDef::Result(def_inst, _) => {
1073                if def_inst != loc_inst {
1074                    errors.fatal((
1075                        loc_inst,
1076                        self.context(loc_inst),
1077                        format!("instruction result {v} is not defined by the instruction"),
1078                    ))
1079                } else {
1080                    Ok(())
1081                }
1082            }
1083            ValueDef::Param(_, _) => errors.fatal((
1084                loc_inst,
1085                self.context(loc_inst),
1086                format!("instruction result {v} is not defined by the instruction"),
1087            )),
1088            ValueDef::Union(_, _) => errors.fatal((
1089                loc_inst,
1090                self.context(loc_inst),
1091                format!("instruction result {v} is a union node"),
1092            )),
1093        }
1094    }
1095
1096    fn verify_bitcast(
1097        &self,
1098        inst: Inst,
1099        flags: MemFlags,
1100        arg: Value,
1101        errors: &mut VerifierErrors,
1102    ) -> VerifierStepResult {
1103        let typ = self.func.dfg.ctrl_typevar(inst);
1104        let value_type = self.func.dfg.value_type(arg);
1105
1106        if typ.bits() != value_type.bits() {
1107            errors.fatal((
1108                inst,
1109                format!(
1110                    "The bitcast argument {} has a type of {} bits, which doesn't match an expected type of {} bits",
1111                    arg,
1112                    value_type.bits(),
1113                    typ.bits()
1114                ),
1115            ))
1116        } else if flags != MemFlags::new()
1117            && flags != MemFlags::new().with_endianness(ir::Endianness::Little)
1118            && flags != MemFlags::new().with_endianness(ir::Endianness::Big)
1119        {
1120            errors.fatal((
1121                inst,
1122                "The bitcast instruction only accepts the `big` or `little` memory flags",
1123            ))
1124        } else if flags == MemFlags::new() && typ.lane_count() != value_type.lane_count() {
1125            errors.fatal((
1126                inst,
1127                "Byte order specifier required for bitcast instruction changing lane count",
1128            ))
1129        } else {
1130            Ok(())
1131        }
1132    }
1133
1134    fn verify_constant_size(
1135        &self,
1136        inst: Inst,
1137        opcode: Opcode,
1138        constant: Constant,
1139        errors: &mut VerifierErrors,
1140    ) -> VerifierStepResult {
1141        let type_size = match opcode {
1142            Opcode::F128const => types::F128.bytes(),
1143            Opcode::Vconst => self.func.dfg.ctrl_typevar(inst).bytes(),
1144            _ => unreachable!("unexpected opcode {opcode:?}"),
1145        } as usize;
1146        let constant_size = self.func.dfg.constants.get(constant).len();
1147        if type_size != constant_size {
1148            errors.fatal((
1149                inst,
1150                format!(
1151                    "The instruction expects {constant} to have a size of {type_size} bytes but it has {constant_size}"
1152                ),
1153            ))
1154        } else {
1155            Ok(())
1156        }
1157    }
1158
1159    fn verify_is_address(
1160        &self,
1161        loc_inst: Inst,
1162        v: Value,
1163        errors: &mut VerifierErrors,
1164    ) -> VerifierStepResult {
1165        if let Some(isa) = self.isa {
1166            let pointer_width = isa.triple().pointer_width()?;
1167            let value_type = self.func.dfg.value_type(v);
1168            let expected_width = pointer_width.bits() as u32;
1169            let value_width = value_type.bits();
1170            if expected_width != value_width {
1171                errors.nonfatal((
1172                    loc_inst,
1173                    self.context(loc_inst),
1174                    format!("invalid pointer width (got {value_width}, expected {expected_width}) encountered {v}"),
1175                ))
1176            } else {
1177                Ok(())
1178            }
1179        } else {
1180            Ok(())
1181        }
1182    }
1183
1184    fn domtree_integrity(
1185        &self,
1186        domtree: &DominatorTree,
1187        errors: &mut VerifierErrors,
1188    ) -> VerifierStepResult {
1189        // We consider two `DominatorTree`s to be equal if they return the same immediate
1190        // dominator for each block. Therefore the current domtree is valid if it matches the freshly
1191        // computed one.
1192        for block in self.func.layout.blocks() {
1193            let expected = self.expected_domtree.idom(block);
1194            let got = domtree.idom(block);
1195            if got != expected {
1196                return errors.fatal((
1197                    block,
1198                    format!("invalid domtree, expected idom({block}) = {expected:?}, got {got:?}"),
1199                ));
1200            }
1201        }
1202        // We also verify if the postorder defined by `DominatorTree` is sane
1203        if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
1204            return errors.fatal((
1205                AnyEntity::Function,
1206                "incorrect number of Blocks in postorder traversal",
1207            ));
1208        }
1209        for (index, (&test_block, &true_block)) in domtree
1210            .cfg_postorder()
1211            .iter()
1212            .zip(self.expected_domtree.cfg_postorder().iter())
1213            .enumerate()
1214        {
1215            if test_block != true_block {
1216                return errors.fatal((
1217                    test_block,
1218                    format!(
1219                        "invalid domtree, postorder block number {index} should be {true_block}, got {test_block}"
1220                    ),
1221                ));
1222            }
1223        }
1224        Ok(())
1225    }
1226
1227    fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1228        if let Some(block) = self.func.layout.entry_block() {
1229            let expected_types = &self.func.signature.params;
1230            let block_param_count = self.func.dfg.num_block_params(block);
1231
1232            if block_param_count != expected_types.len() {
1233                return errors.fatal((
1234                    block,
1235                    format!(
1236                        "entry block parameters ({}) must match function signature ({})",
1237                        block_param_count,
1238                        expected_types.len()
1239                    ),
1240                ));
1241            }
1242
1243            for (i, &arg) in self.func.dfg.block_params(block).iter().enumerate() {
1244                let arg_type = self.func.dfg.value_type(arg);
1245                if arg_type != expected_types[i].value_type {
1246                    errors.report((
1247                        block,
1248                        format!(
1249                            "entry block parameter {} expected to have type {}, got {}",
1250                            i, expected_types[i], arg_type
1251                        ),
1252                    ));
1253                }
1254            }
1255        }
1256
1257        errors.as_result()
1258    }
1259
1260    fn check_entry_not_cold(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1261        if let Some(entry_block) = self.func.layout.entry_block() {
1262            if self.func.layout.is_cold(entry_block) {
1263                return errors
1264                    .fatal((entry_block, format!("entry block cannot be marked as cold")));
1265            }
1266        }
1267        errors.as_result()
1268    }
1269
1270    fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1271        let inst_data = &self.func.dfg.insts[inst];
1272        let constraints = inst_data.opcode().constraints();
1273
1274        let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
1275            // For polymorphic opcodes, determine the controlling type variable first.
1276            let ctrl_type = self.func.dfg.ctrl_typevar(inst);
1277
1278            if !value_typeset.contains(ctrl_type) {
1279                errors.report((
1280                    inst,
1281                    self.context(inst),
1282                    format!(
1283                        "has an invalid controlling type {ctrl_type} (allowed set is {value_typeset:?})"
1284                    ),
1285                ));
1286            }
1287
1288            ctrl_type
1289        } else {
1290            // Non-polymorphic instructions don't check the controlling type variable, so `Option`
1291            // is unnecessary and we can just make it `INVALID`.
1292            types::INVALID
1293        };
1294
1295        // Typechecking instructions is never fatal
1296        let _ = self.typecheck_results(inst, ctrl_type, errors);
1297        let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
1298        let _ = self.typecheck_variable_args(inst, errors);
1299        let _ = self.typecheck_return(inst, errors);
1300        let _ = self.typecheck_special(inst, errors);
1301
1302        Ok(())
1303    }
1304
1305    fn typecheck_results(
1306        &self,
1307        inst: Inst,
1308        ctrl_type: Type,
1309        errors: &mut VerifierErrors,
1310    ) -> VerifierStepResult {
1311        let mut i = 0;
1312        for &result in self.func.dfg.inst_results(inst) {
1313            let result_type = self.func.dfg.value_type(result);
1314            let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
1315            if let Some(expected_type) = expected_type {
1316                if result_type != expected_type {
1317                    errors.report((
1318                        inst,
1319                        self.context(inst),
1320                        format!(
1321                            "expected result {i} ({result}) to have type {expected_type}, found {result_type}"
1322                        ),
1323                    ));
1324                }
1325            } else {
1326                return errors.nonfatal((
1327                    inst,
1328                    self.context(inst),
1329                    "has more result values than expected",
1330                ));
1331            }
1332            i += 1;
1333        }
1334
1335        // There aren't any more result types left.
1336        if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
1337            return errors.nonfatal((
1338                inst,
1339                self.context(inst),
1340                "has fewer result values than expected",
1341            ));
1342        }
1343        Ok(())
1344    }
1345
1346    fn typecheck_fixed_args(
1347        &self,
1348        inst: Inst,
1349        ctrl_type: Type,
1350        errors: &mut VerifierErrors,
1351    ) -> VerifierStepResult {
1352        let constraints = self.func.dfg.insts[inst].opcode().constraints();
1353
1354        for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
1355            let arg_type = self.func.dfg.value_type(arg);
1356            match constraints.value_argument_constraint(i, ctrl_type) {
1357                ResolvedConstraint::Bound(expected_type) => {
1358                    if arg_type != expected_type {
1359                        errors.report((
1360                            inst,
1361                            self.context(inst),
1362                            format!(
1363                                "arg {i} ({arg}) has type {arg_type}, expected {expected_type}"
1364                            ),
1365                        ));
1366                    }
1367                }
1368                ResolvedConstraint::Free(type_set) => {
1369                    if !type_set.contains(arg_type) {
1370                        errors.report((
1371                            inst,
1372                            self.context(inst),
1373                            format!(
1374                                "arg {i} ({arg}) with type {arg_type} failed to satisfy type set {type_set:?}"
1375                            ),
1376                        ));
1377                    }
1378                }
1379            }
1380        }
1381        Ok(())
1382    }
1383
1384    /// Typecheck both instructions that contain variable arguments like calls, and those that
1385    /// include references to basic blocks with their arguments.
1386    fn typecheck_variable_args(
1387        &self,
1388        inst: Inst,
1389        errors: &mut VerifierErrors,
1390    ) -> VerifierStepResult {
1391        match &self.func.dfg.insts[inst] {
1392            ir::InstructionData::Jump { destination, .. } => {
1393                self.typecheck_block_call(inst, destination, BlockCallTargetType::Normal, errors)?;
1394            }
1395            ir::InstructionData::Brif {
1396                blocks: [block_then, block_else],
1397                ..
1398            } => {
1399                self.typecheck_block_call(inst, block_then, BlockCallTargetType::Normal, errors)?;
1400                self.typecheck_block_call(inst, block_else, BlockCallTargetType::Normal, errors)?;
1401            }
1402            ir::InstructionData::BranchTable { table, .. } => {
1403                for block in self.func.stencil.dfg.jump_tables[*table].all_branches() {
1404                    self.typecheck_block_call(inst, block, BlockCallTargetType::Normal, errors)?;
1405                }
1406            }
1407            ir::InstructionData::TryCall { exception, .. }
1408            | ir::InstructionData::TryCallIndirect { exception, .. } => {
1409                let exdata = &self.func.dfg.exception_tables[*exception];
1410                self.typecheck_block_call(
1411                    inst,
1412                    exdata.normal_return(),
1413                    BlockCallTargetType::ExNormalRet,
1414                    errors,
1415                )?;
1416                for item in exdata.items() {
1417                    match item {
1418                        ExceptionTableItem::Tag(_, block_call)
1419                        | ExceptionTableItem::Default(block_call) => {
1420                            self.typecheck_block_call(
1421                                inst,
1422                                &block_call,
1423                                BlockCallTargetType::Exception,
1424                                errors,
1425                            )?;
1426                        }
1427                        ExceptionTableItem::Context(_) => {}
1428                    }
1429                }
1430            }
1431            inst => debug_assert!(!inst.opcode().is_branch()),
1432        }
1433
1434        match self.func.dfg.insts[inst]
1435            .analyze_call(&self.func.dfg.value_lists, &self.func.dfg.exception_tables)
1436        {
1437            CallInfo::Direct(func_ref, args) => {
1438                let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1439                let arg_types = self.func.dfg.signatures[sig_ref]
1440                    .params
1441                    .iter()
1442                    .map(|a| a.value_type);
1443                self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1444            }
1445            CallInfo::DirectWithSig(func_ref, sig_ref, args) => {
1446                let expected_sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1447                let sigdata = &self.func.dfg.signatures;
1448                // Compare signatures by value, not by ID -- any
1449                // equivalent signature ID is acceptable.
1450                if sigdata[sig_ref] != sigdata[expected_sig_ref] {
1451                    errors.nonfatal((
1452                        inst,
1453                        self.context(inst),
1454                        format!(
1455                            "exception table signature {sig_ref} did not match function {func_ref}'s signature {expected_sig_ref}"
1456                        ),
1457                    ))?;
1458                }
1459                let arg_types = self.func.dfg.signatures[sig_ref]
1460                    .params
1461                    .iter()
1462                    .map(|a| a.value_type);
1463                self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1464            }
1465            CallInfo::Indirect(sig_ref, args) => {
1466                let arg_types = self.func.dfg.signatures[sig_ref]
1467                    .params
1468                    .iter()
1469                    .map(|a| a.value_type);
1470                self.typecheck_variable_args_iterator(inst, arg_types, args, errors)?;
1471            }
1472            CallInfo::NotACall => {}
1473        }
1474        Ok(())
1475    }
1476
1477    fn typecheck_block_call(
1478        &self,
1479        inst: Inst,
1480        block: &ir::BlockCall,
1481        target_type: BlockCallTargetType,
1482        errors: &mut VerifierErrors,
1483    ) -> VerifierStepResult {
1484        let pool = &self.func.dfg.value_lists;
1485        let block_params = self.func.dfg.block_params(block.block(pool));
1486        let args = block.args(pool);
1487        if args.len() != block_params.len() {
1488            return errors.nonfatal((
1489                inst,
1490                self.context(inst),
1491                format!(
1492                    "mismatched argument count for `{}`: got {}, expected {}",
1493                    self.func.dfg.display_inst(inst),
1494                    args.len(),
1495                    block_params.len(),
1496                ),
1497            ));
1498        }
1499        for (arg, param) in args.zip(block_params.iter()) {
1500            let Some(arg_ty) = self.block_call_arg_ty(arg, inst, target_type, errors)? else {
1501                continue;
1502            };
1503            let param_ty = self.func.dfg.value_type(*param);
1504            if arg_ty != param_ty {
1505                errors.nonfatal((
1506                    inst,
1507                    self.context(inst),
1508                    format!("arg {arg} has type {arg_ty}, expected {param_ty}"),
1509                ))?;
1510            }
1511        }
1512        Ok(())
1513    }
1514
1515    fn block_call_arg_ty(
1516        &self,
1517        arg: BlockArg,
1518        inst: Inst,
1519        target_type: BlockCallTargetType,
1520        errors: &mut VerifierErrors,
1521    ) -> Result<Option<Type>, ()> {
1522        match arg {
1523            BlockArg::Value(v) => Ok(Some(self.func.dfg.value_type(v))),
1524            BlockArg::TryCallRet(_) | BlockArg::TryCallExn(_) => {
1525                // Get the invoked signature.
1526                let et = match self.func.dfg.insts[inst].exception_table() {
1527                    Some(et) => et,
1528                    None => {
1529                        errors.fatal((
1530                            inst,
1531                            self.context(inst),
1532                            format!(
1533                                "`retN` block argument in block-call not on `try_call` instruction"
1534                            ),
1535                        ))?;
1536                        unreachable!()
1537                    }
1538                };
1539                let exdata = &self.func.dfg.exception_tables[et];
1540                let sig = &self.func.dfg.signatures[exdata.signature()];
1541
1542                match (arg, target_type) {
1543                    (BlockArg::TryCallRet(i), BlockCallTargetType::ExNormalRet)
1544                        if (i as usize) < sig.returns.len() =>
1545                    {
1546                        Ok(Some(sig.returns[i as usize].value_type))
1547                    }
1548                    (BlockArg::TryCallRet(_), BlockCallTargetType::ExNormalRet) => {
1549                        errors.fatal((
1550                            inst,
1551                            self.context(inst),
1552                            format!("out-of-bounds `retN` block argument"),
1553                        ))?;
1554                        unreachable!()
1555                    }
1556                    (BlockArg::TryCallRet(_), _) => {
1557                        errors.fatal((
1558                            inst,
1559                            self.context(inst),
1560                            format!("`retN` block argument used outside normal-return target of `try_call`"),
1561                        ))?;
1562                        unreachable!()
1563                    }
1564                    (BlockArg::TryCallExn(i), BlockCallTargetType::Exception) => {
1565                        if let Some(isa) = self.isa {
1566                            match sig
1567                                .call_conv
1568                                .exception_payload_types(isa.pointer_type())
1569                                .get(i as usize)
1570                            {
1571                                Some(ty) => Ok(Some(*ty)),
1572                                None => {
1573                                    errors.fatal((
1574                                        inst,
1575                                        self.context(inst),
1576                                        format!("out-of-bounds `exnN` block argument"),
1577                                    ))?;
1578                                    unreachable!()
1579                                }
1580                            }
1581                        } else {
1582                            Ok(None)
1583                        }
1584                    }
1585                    (BlockArg::TryCallExn(_), _) => {
1586                        errors.fatal((
1587                            inst,
1588                            self.context(inst),
1589                            format!("`exnN` block argument used outside normal-return target of `try_call`"),
1590                        ))?;
1591                        unreachable!()
1592                    }
1593                    _ => unreachable!(),
1594                }
1595            }
1596        }
1597    }
1598
1599    fn typecheck_variable_args_iterator(
1600        &self,
1601        inst: Inst,
1602        iter: impl ExactSizeIterator<Item = Type>,
1603        variable_args: &[Value],
1604        errors: &mut VerifierErrors,
1605    ) -> VerifierStepResult {
1606        let mut i = 0;
1607
1608        for expected_type in iter {
1609            if i >= variable_args.len() {
1610                // Result count mismatch handled below, we want the full argument count first though
1611                i += 1;
1612                continue;
1613            }
1614            let arg = variable_args[i];
1615            let arg_type = self.func.dfg.value_type(arg);
1616            if expected_type != arg_type {
1617                errors.report((
1618                    inst,
1619                    self.context(inst),
1620                    format!(
1621                        "arg {} ({}) has type {}, expected {}",
1622                        i, variable_args[i], arg_type, expected_type
1623                    ),
1624                ));
1625            }
1626            i += 1;
1627        }
1628        if i != variable_args.len() {
1629            return errors.nonfatal((
1630                inst,
1631                self.context(inst),
1632                format!(
1633                    "mismatched argument count for `{}`: got {}, expected {}",
1634                    self.func.dfg.display_inst(inst),
1635                    variable_args.len(),
1636                    i,
1637                ),
1638            ));
1639        }
1640        Ok(())
1641    }
1642
1643    fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1644        match self.func.dfg.insts[inst] {
1645            ir::InstructionData::MultiAry {
1646                opcode: Opcode::Return,
1647                args,
1648            } => {
1649                let types = args
1650                    .as_slice(&self.func.dfg.value_lists)
1651                    .iter()
1652                    .map(|v| self.func.dfg.value_type(*v));
1653                self.typecheck_return_types(
1654                    inst,
1655                    types,
1656                    errors,
1657                    "arguments of return must match function signature",
1658                )?;
1659            }
1660            ir::InstructionData::Call {
1661                opcode: Opcode::ReturnCall,
1662                func_ref,
1663                ..
1664            } => {
1665                let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1666                self.typecheck_tail_call(inst, sig_ref, errors)?;
1667            }
1668            ir::InstructionData::CallIndirect {
1669                opcode: Opcode::ReturnCallIndirect,
1670                sig_ref,
1671                ..
1672            } => {
1673                self.typecheck_tail_call(inst, sig_ref, errors)?;
1674            }
1675            inst => debug_assert!(!inst.opcode().is_return()),
1676        }
1677        Ok(())
1678    }
1679
1680    fn typecheck_tail_call(
1681        &self,
1682        inst: Inst,
1683        sig_ref: SigRef,
1684        errors: &mut VerifierErrors,
1685    ) -> VerifierStepResult {
1686        let signature = &self.func.dfg.signatures[sig_ref];
1687        let cc = signature.call_conv;
1688        if !cc.supports_tail_calls() {
1689            errors.report((
1690                inst,
1691                self.context(inst),
1692                format!("calling convention `{cc}` does not support tail calls"),
1693            ));
1694        }
1695        if cc != self.func.signature.call_conv {
1696            errors.report((
1697                inst,
1698                self.context(inst),
1699                "callee's calling convention must match caller",
1700            ));
1701        }
1702        let types = signature.returns.iter().map(|param| param.value_type);
1703        self.typecheck_return_types(inst, types, errors, "results of callee must match caller")?;
1704        Ok(())
1705    }
1706
1707    fn typecheck_return_types(
1708        &self,
1709        inst: Inst,
1710        actual_types: impl ExactSizeIterator<Item = Type>,
1711        errors: &mut VerifierErrors,
1712        message: &str,
1713    ) -> VerifierStepResult {
1714        let expected_types = &self.func.signature.returns;
1715        if actual_types.len() != expected_types.len() {
1716            return errors.nonfatal((inst, self.context(inst), message));
1717        }
1718        for (i, (actual_type, &expected_type)) in actual_types.zip(expected_types).enumerate() {
1719            if actual_type != expected_type.value_type {
1720                errors.report((
1721                    inst,
1722                    self.context(inst),
1723                    format!(
1724                        "result {i} has type {actual_type}, must match function signature of \
1725                         {expected_type}"
1726                    ),
1727                ));
1728            }
1729        }
1730        Ok(())
1731    }
1732
1733    // Check special-purpose type constraints that can't be expressed in the normal opcode
1734    // constraints.
1735    fn typecheck_special(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1736        match self.func.dfg.insts[inst] {
1737            ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
1738                if let Some(isa) = self.isa {
1739                    let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
1740                    let global_type = self.func.global_values[global_value].global_type(isa);
1741                    if inst_type != global_type {
1742                        return errors.nonfatal((
1743                            inst, self.context(inst),
1744                            format!(
1745                                "global_value instruction with type {inst_type} references global value with type {global_type}"
1746                            )),
1747                        );
1748                    }
1749                }
1750            }
1751            _ => {}
1752        }
1753        Ok(())
1754    }
1755
1756    fn cfg_integrity(
1757        &self,
1758        cfg: &ControlFlowGraph,
1759        errors: &mut VerifierErrors,
1760    ) -> VerifierStepResult {
1761        let mut expected_succs = BTreeSet::<Block>::new();
1762        let mut got_succs = BTreeSet::<Block>::new();
1763        let mut expected_preds = BTreeSet::<Inst>::new();
1764        let mut got_preds = BTreeSet::<Inst>::new();
1765
1766        for block in self.func.layout.blocks() {
1767            expected_succs.extend(self.expected_cfg.succ_iter(block));
1768            got_succs.extend(cfg.succ_iter(block));
1769
1770            let missing_succs: Vec<Block> =
1771                expected_succs.difference(&got_succs).cloned().collect();
1772            if !missing_succs.is_empty() {
1773                errors.report((
1774                    block,
1775                    format!("cfg lacked the following successor(s) {missing_succs:?}"),
1776                ));
1777                continue;
1778            }
1779
1780            let excess_succs: Vec<Block> = got_succs.difference(&expected_succs).cloned().collect();
1781            if !excess_succs.is_empty() {
1782                errors.report((
1783                    block,
1784                    format!("cfg had unexpected successor(s) {excess_succs:?}"),
1785                ));
1786                continue;
1787            }
1788
1789            expected_preds.extend(
1790                self.expected_cfg
1791                    .pred_iter(block)
1792                    .map(|BlockPredecessor { inst, .. }| inst),
1793            );
1794            got_preds.extend(
1795                cfg.pred_iter(block)
1796                    .map(|BlockPredecessor { inst, .. }| inst),
1797            );
1798
1799            let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
1800            if !missing_preds.is_empty() {
1801                errors.report((
1802                    block,
1803                    format!("cfg lacked the following predecessor(s) {missing_preds:?}"),
1804                ));
1805                continue;
1806            }
1807
1808            let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
1809            if !excess_preds.is_empty() {
1810                errors.report((
1811                    block,
1812                    format!("cfg had unexpected predecessor(s) {excess_preds:?}"),
1813                ));
1814                continue;
1815            }
1816
1817            expected_succs.clear();
1818            got_succs.clear();
1819            expected_preds.clear();
1820            got_preds.clear();
1821        }
1822        errors.as_result()
1823    }
1824
1825    fn immediate_constraints(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1826        let inst_data = &self.func.dfg.insts[inst];
1827
1828        match *inst_data {
1829            ir::InstructionData::Store { flags, .. } => {
1830                if flags.readonly() {
1831                    errors.fatal((
1832                        inst,
1833                        self.context(inst),
1834                        "A store instruction cannot have the `readonly` MemFlag",
1835                    ))
1836                } else {
1837                    Ok(())
1838                }
1839            }
1840            ir::InstructionData::BinaryImm8 {
1841                opcode: ir::instructions::Opcode::Extractlane,
1842                imm: lane,
1843                arg,
1844                ..
1845            }
1846            | ir::InstructionData::TernaryImm8 {
1847                opcode: ir::instructions::Opcode::Insertlane,
1848                imm: lane,
1849                args: [arg, _],
1850                ..
1851            } => {
1852                // We must be specific about the opcodes above because other instructions are using
1853                // the same formats.
1854                let ty = self.func.dfg.value_type(arg);
1855                if lane as u32 >= ty.lane_count() {
1856                    errors.fatal((
1857                        inst,
1858                        self.context(inst),
1859                        format!("The lane {lane} does not index into the type {ty}",),
1860                    ))
1861                } else {
1862                    Ok(())
1863                }
1864            }
1865            ir::InstructionData::Shuffle {
1866                opcode: ir::instructions::Opcode::Shuffle,
1867                imm,
1868                ..
1869            } => {
1870                let imm = self.func.dfg.immediates.get(imm).unwrap().as_slice();
1871                if imm.len() != 16 {
1872                    errors.fatal((
1873                        inst,
1874                        self.context(inst),
1875                        format!("the shuffle immediate wasn't 16-bytes long"),
1876                    ))
1877                } else if let Some(i) = imm.iter().find(|i| **i >= 32) {
1878                    errors.fatal((
1879                        inst,
1880                        self.context(inst),
1881                        format!("shuffle immediate index {i} is larger than the maximum 31"),
1882                    ))
1883                } else {
1884                    Ok(())
1885                }
1886            }
1887            _ => Ok(()),
1888        }
1889    }
1890
1891    fn iconst_bounds(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult {
1892        use crate::ir::instructions::InstructionData::UnaryImm;
1893
1894        let inst_data = &self.func.dfg.insts[inst];
1895        if let UnaryImm {
1896            opcode: Opcode::Iconst,
1897            imm,
1898        } = inst_data
1899        {
1900            let ctrl_typevar = self.func.dfg.ctrl_typevar(inst);
1901            let bounds_mask = match ctrl_typevar {
1902                types::I8 => u8::MAX.into(),
1903                types::I16 => u16::MAX.into(),
1904                types::I32 => u32::MAX.into(),
1905                types::I64 => u64::MAX,
1906                _ => unreachable!(),
1907            };
1908
1909            let value = imm.bits() as u64;
1910            if value & bounds_mask != value {
1911                errors.fatal((
1912                    inst,
1913                    self.context(inst),
1914                    "constant immediate is out of bounds",
1915                ))
1916            } else {
1917                Ok(())
1918            }
1919        } else {
1920            Ok(())
1921        }
1922    }
1923
1924    fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
1925        let params = self
1926            .func
1927            .signature
1928            .params
1929            .iter()
1930            .enumerate()
1931            .map(|p| (true, p));
1932        let returns = self
1933            .func
1934            .signature
1935            .returns
1936            .iter()
1937            .enumerate()
1938            .map(|p| (false, p));
1939
1940        for (is_argument, (i, param)) in params.chain(returns) {
1941            let is_return = !is_argument;
1942            let item = if is_argument {
1943                "Parameter"
1944            } else {
1945                "Return value"
1946            };
1947
1948            if param.value_type == types::INVALID {
1949                errors.report((
1950                    AnyEntity::Function,
1951                    format!("{item} at position {i} has an invalid type"),
1952                ));
1953            }
1954
1955            if let ArgumentPurpose::StructArgument(_) = param.purpose {
1956                if is_return {
1957                    errors.report((
1958                        AnyEntity::Function,
1959                        format!("{item} at position {i} can't be an struct argument"),
1960                    ))
1961                }
1962            }
1963
1964            let ty_allows_extension = param.value_type.is_int();
1965            let has_extension = param.extension != ArgumentExtension::None;
1966            if !ty_allows_extension && has_extension {
1967                errors.report((
1968                    AnyEntity::Function,
1969                    format!(
1970                        "{} at position {} has invalid extension {:?}",
1971                        item, i, param.extension
1972                    ),
1973                ));
1974            }
1975        }
1976
1977        if errors.has_error() { Err(()) } else { Ok(()) }
1978    }
1979
1980    fn verify_try_call_handler_index(
1981        &self,
1982        inst: Inst,
1983        block: Block,
1984        index_imm: i64,
1985        errors: &mut VerifierErrors,
1986    ) -> VerifierStepResult {
1987        if index_imm < 0 {
1988            return errors.fatal((
1989                inst,
1990                format!("exception handler index {index_imm} cannot be negative"),
1991            ));
1992        }
1993        let Ok(index) = usize::try_from(index_imm) else {
1994            return errors.fatal((
1995                inst,
1996                format!("exception handler index {index_imm} is out-of-range"),
1997            ));
1998        };
1999        let Some(terminator) = self.func.layout.last_inst(block) else {
2000            return errors.fatal((
2001                inst,
2002                format!("referenced block {block} does not have a terminator"),
2003            ));
2004        };
2005        let Some(et) = self.func.dfg.insts[terminator].exception_table() else {
2006            return errors.fatal((
2007                inst,
2008                format!("referenced block {block} does not end in a try_call"),
2009            ));
2010        };
2011
2012        let etd = &self.func.dfg.exception_tables[et];
2013        // The exception table's out-edges consist of all exceptional
2014        // edges first, followed by the normal return last. For N
2015        // out-edges, there are N-1 exception handlers that can be
2016        // selected.
2017        let num_exceptional_edges = etd.all_branches().len() - 1;
2018        if index >= num_exceptional_edges {
2019            return errors.fatal((
2020                inst,
2021                format!("exception handler index {index_imm} is out-of-range"),
2022            ));
2023        }
2024
2025        Ok(())
2026    }
2027
2028    pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult {
2029        self.verify_global_values(errors)?;
2030        self.verify_memory_types(errors)?;
2031        self.typecheck_entry_block_params(errors)?;
2032        self.check_entry_not_cold(errors)?;
2033        self.typecheck_function_signature(errors)?;
2034
2035        for block in self.func.layout.blocks() {
2036            if self.func.layout.first_inst(block).is_none() {
2037                return errors.fatal((block, format!("{block} cannot be empty")));
2038            }
2039            for inst in self.func.layout.block_insts(block) {
2040                crate::trace!("verifying {inst:?}: {}", self.func.dfg.display_inst(inst));
2041                self.block_integrity(block, inst, errors)?;
2042                self.instruction_integrity(inst, errors)?;
2043                self.typecheck(inst, errors)?;
2044                self.immediate_constraints(inst, errors)?;
2045                self.iconst_bounds(inst, errors)?;
2046            }
2047
2048            self.encodable_as_bb(block, errors)?;
2049        }
2050
2051        if !errors.is_empty() {
2052            log::warn!(
2053                "Found verifier errors in function:\n{}",
2054                pretty_verifier_error(self.func, None, errors.clone())
2055            );
2056        }
2057
2058        Ok(())
2059    }
2060}
2061
2062#[cfg(test)]
2063mod tests {
2064    use super::{Verifier, VerifierError, VerifierErrors};
2065    use crate::ir::instructions::{InstructionData, Opcode};
2066    use crate::ir::{AbiParam, Function, Type, types};
2067    use crate::settings;
2068
2069    macro_rules! assert_err_with_msg {
2070        ($e:expr, $msg:expr) => {
2071            match $e.0.get(0) {
2072                None => panic!("Expected an error"),
2073                Some(&VerifierError { ref message, .. }) => {
2074                    if !message.contains($msg) {
2075                        #[cfg(feature = "std")]
2076                        panic!("'{}' did not contain the substring '{}'", message, $msg);
2077                        #[cfg(not(feature = "std"))]
2078                        panic!("error message did not contain the expected substring");
2079                    }
2080                }
2081            }
2082        };
2083    }
2084
2085    #[test]
2086    fn empty() {
2087        let func = Function::new();
2088        let flags = &settings::Flags::new(settings::builder());
2089        let verifier = Verifier::new(&func, flags.into());
2090        let mut errors = VerifierErrors::default();
2091
2092        assert_eq!(verifier.run(&mut errors), Ok(()));
2093        assert!(errors.0.is_empty());
2094    }
2095
2096    #[test]
2097    fn bad_instruction_format() {
2098        let mut func = Function::new();
2099        let block0 = func.dfg.make_block();
2100        func.layout.append_block(block0);
2101        let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
2102            opcode: Opcode::F32const,
2103            imm: 0.into(),
2104        });
2105        func.layout.append_inst(nullary_with_bad_opcode, block0);
2106        let destination = func.dfg.block_call(block0, &[]);
2107        func.stencil.layout.append_inst(
2108            func.stencil.dfg.make_inst(InstructionData::Jump {
2109                opcode: Opcode::Jump,
2110                destination,
2111            }),
2112            block0,
2113        );
2114        let flags = &settings::Flags::new(settings::builder());
2115        let verifier = Verifier::new(&func, flags.into());
2116        let mut errors = VerifierErrors::default();
2117
2118        let _ = verifier.run(&mut errors);
2119
2120        assert_err_with_msg!(errors, "instruction format");
2121    }
2122
2123    fn test_iconst_bounds(immediate: i64, ctrl_typevar: Type) -> VerifierErrors {
2124        let mut func = Function::new();
2125        let block0 = func.dfg.make_block();
2126        func.layout.append_block(block0);
2127
2128        let test_inst = func.dfg.make_inst(InstructionData::UnaryImm {
2129            opcode: Opcode::Iconst,
2130            imm: immediate.into(),
2131        });
2132
2133        let end_inst = func.dfg.make_inst(InstructionData::MultiAry {
2134            opcode: Opcode::Return,
2135            args: Default::default(),
2136        });
2137
2138        func.dfg.make_inst_results(test_inst, ctrl_typevar);
2139        func.layout.append_inst(test_inst, block0);
2140        func.layout.append_inst(end_inst, block0);
2141
2142        let flags = &settings::Flags::new(settings::builder());
2143        let verifier = Verifier::new(&func, flags.into());
2144        let mut errors = VerifierErrors::default();
2145
2146        let _ = verifier.run(&mut errors);
2147        errors
2148    }
2149
2150    fn test_iconst_bounds_err(immediate: i64, ctrl_typevar: Type) {
2151        assert_err_with_msg!(
2152            test_iconst_bounds(immediate, ctrl_typevar),
2153            "constant immediate is out of bounds"
2154        );
2155    }
2156
2157    fn test_iconst_bounds_ok(immediate: i64, ctrl_typevar: Type) {
2158        assert!(test_iconst_bounds(immediate, ctrl_typevar).is_empty());
2159    }
2160
2161    #[test]
2162    fn negative_iconst_8() {
2163        test_iconst_bounds_err(-10, types::I8);
2164    }
2165
2166    #[test]
2167    fn negative_iconst_32() {
2168        test_iconst_bounds_err(-1, types::I32);
2169    }
2170
2171    #[test]
2172    fn large_iconst_8() {
2173        test_iconst_bounds_err(1 + u8::MAX as i64, types::I8);
2174    }
2175
2176    #[test]
2177    fn large_iconst_16() {
2178        test_iconst_bounds_err(10 + u16::MAX as i64, types::I16);
2179    }
2180
2181    #[test]
2182    fn valid_iconst_8() {
2183        test_iconst_bounds_ok(10, types::I8);
2184    }
2185
2186    #[test]
2187    fn valid_iconst_32() {
2188        test_iconst_bounds_ok(u32::MAX as i64, types::I32);
2189    }
2190
2191    #[test]
2192    fn test_function_invalid_param() {
2193        let mut func = Function::new();
2194        func.signature.params.push(AbiParam::new(types::INVALID));
2195
2196        let mut errors = VerifierErrors::default();
2197        let flags = &settings::Flags::new(settings::builder());
2198        let verifier = Verifier::new(&func, flags.into());
2199
2200        let _ = verifier.typecheck_function_signature(&mut errors);
2201        assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
2202    }
2203
2204    #[test]
2205    fn test_function_invalid_return_value() {
2206        let mut func = Function::new();
2207        func.signature.returns.push(AbiParam::new(types::INVALID));
2208
2209        let mut errors = VerifierErrors::default();
2210        let flags = &settings::Flags::new(settings::builder());
2211        let verifier = Verifier::new(&func, flags.into());
2212
2213        let _ = verifier.typecheck_function_signature(&mut errors);
2214        assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
2215    }
2216
2217    #[test]
2218    fn test_printing_contextual_errors() {
2219        // Build function.
2220        let mut func = Function::new();
2221        let block0 = func.dfg.make_block();
2222        func.layout.append_block(block0);
2223
2224        // Build instruction "f64const 0.0" (missing one required result)
2225        let inst = func.dfg.make_inst(InstructionData::UnaryIeee64 {
2226            opcode: Opcode::F64const,
2227            imm: 0.0.into(),
2228        });
2229        func.layout.append_inst(inst, block0);
2230
2231        // Setup verifier.
2232        let mut errors = VerifierErrors::default();
2233        let flags = &settings::Flags::new(settings::builder());
2234        let verifier = Verifier::new(&func, flags.into());
2235
2236        // Now the error message, when printed, should contain the instruction sequence causing the
2237        // error (i.e. f64const 0.0) and not only its entity value (i.e. inst0)
2238        let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
2239        assert_eq!(
2240            format!("{}", errors.0[0]),
2241            "inst0 (f64const 0.0): has fewer result values than expected"
2242        )
2243    }
2244
2245    #[test]
2246    fn test_empty_block() {
2247        let mut func = Function::new();
2248        let block0 = func.dfg.make_block();
2249        func.layout.append_block(block0);
2250
2251        let flags = &settings::Flags::new(settings::builder());
2252        let verifier = Verifier::new(&func, flags.into());
2253        let mut errors = VerifierErrors::default();
2254        let _ = verifier.run(&mut errors);
2255
2256        assert_err_with_msg!(errors, "block0 cannot be empty");
2257    }
2258}