cranelift_codegen/machinst/mod.rs
1//! This module exposes the machine-specific backend definition pieces.
2//!
3//! The MachInst infrastructure is the compiler backend, from CLIF
4//! (ir::Function) to machine code. The purpose of this infrastructure is, at a
5//! high level, to do instruction selection/lowering (to machine instructions),
6//! register allocation, and then perform all the fixups to branches, constant
7//! data references, etc., needed to actually generate machine code.
8//!
9//! The container for machine instructions, at various stages of construction,
10//! is the `VCode` struct. We refer to a sequence of machine instructions organized
11//! into basic blocks as "vcode". This is short for "virtual-register code".
12//!
13//! The compilation pipeline, from an `ir::Function` (already optimized as much as
14//! you like by machine-independent optimization passes) onward, is as follows.
15//!
16//! ```plain
17//!
18//! ir::Function (SSA IR, machine-independent opcodes)
19//! |
20//! | [lower]
21//! |
22//! VCode<arch_backend::Inst> (machine instructions:
23//! | - mostly virtual registers.
24//! | - cond branches in two-target form.
25//! | - branch targets are block indices.
26//! | - in-memory constants held by insns,
27//! | with unknown offsets.
28//! | - critical edges (actually all edges)
29//! | are split.)
30//! |
31//! | [regalloc --> `regalloc2::Output`; VCode is unchanged]
32//! |
33//! | [binary emission via MachBuffer]
34//! |
35//! Vec<u8> (machine code:
36//! | - two-dest branches resolved via
37//! | streaming branch resolution/simplification.
38//! | - regalloc `Allocation` results used directly
39//! | by instruction emission code.
40//! | - prologue and epilogue(s) built and emitted
41//! | directly during emission.
42//! | - SP-relative offsets resolved by tracking
43//! | EmitState.)
44//!
45//! ```
46
47use crate::binemit::{Addend, CodeInfo, CodeOffset, Reloc};
48use crate::ir::{
49 self, function::FunctionParameters, DynamicStackSlot, RelSourceLoc, StackSlot, Type,
50};
51use crate::isa::FunctionAlignment;
52use crate::result::CodegenResult;
53use crate::settings;
54use crate::settings::Flags;
55use crate::value_label::ValueLabelsRanges;
56use alloc::vec::Vec;
57use core::fmt::Debug;
58use cranelift_control::ControlPlane;
59use cranelift_entity::PrimaryMap;
60use regalloc2::VReg;
61use smallvec::{smallvec, SmallVec};
62use std::string::String;
63
64#[cfg(feature = "enable-serde")]
65use serde_derive::{Deserialize, Serialize};
66
67#[macro_use]
68pub mod isle;
69
70pub mod lower;
71pub use lower::*;
72pub mod vcode;
73pub use vcode::*;
74pub mod compile;
75pub use compile::*;
76pub mod blockorder;
77pub use blockorder::*;
78pub mod abi;
79pub use abi::*;
80pub mod buffer;
81pub use buffer::*;
82pub mod helpers;
83pub use helpers::*;
84pub mod inst_common;
85#[allow(unused_imports)] // not used in all backends right now
86pub use inst_common::*;
87pub mod valueregs;
88pub use reg::*;
89pub use valueregs::*;
90pub mod pcc;
91pub mod reg;
92
93/// A machine instruction.
94pub trait MachInst: Clone + Debug {
95 /// The ABI machine spec for this `MachInst`.
96 type ABIMachineSpec: ABIMachineSpec<I = Self>;
97
98 /// Return the registers referenced by this machine instruction along with
99 /// the modes of reference (use, def, modify).
100 fn get_operands(&mut self, collector: &mut impl OperandVisitor);
101
102 /// If this is a simple move, return the (source, destination) tuple of registers.
103 fn is_move(&self) -> Option<(Writable<Reg>, Reg)>;
104
105 /// Is this a terminator (branch or ret)? If so, return its type
106 /// (ret/uncond/cond) and target if applicable.
107 fn is_term(&self) -> MachTerminator;
108
109 /// Is this an unconditional trap?
110 fn is_trap(&self) -> bool;
111
112 /// Is this an "args" pseudoinst?
113 fn is_args(&self) -> bool;
114
115 /// Should this instruction's clobber-list be included in the
116 /// clobber-set?
117 fn is_included_in_clobbers(&self) -> bool;
118
119 /// Does this instruction access memory?
120 fn is_mem_access(&self) -> bool;
121
122 /// Generate a move.
123 fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self;
124
125 /// Generate a dummy instruction that will keep a value alive but
126 /// has no other purpose.
127 fn gen_dummy_use(reg: Reg) -> Self;
128
129 /// Determine register class(es) to store the given Cranelift type, and the
130 /// Cranelift type actually stored in the underlying register(s). May return
131 /// an error if the type isn't supported by this backend.
132 ///
133 /// If the type requires multiple registers, then the list of registers is
134 /// returned in little-endian order.
135 ///
136 /// Note that the type actually stored in the register(s) may differ in the
137 /// case that a value is split across registers: for example, on a 32-bit
138 /// target, an I64 may be stored in two registers, each of which holds an
139 /// I32. The actually-stored types are used only to inform the backend when
140 /// generating spills and reloads for individual registers.
141 fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])>;
142
143 /// Get an appropriate type that can fully hold a value in a given
144 /// register class. This may not be the only type that maps to
145 /// that class, but when used with `gen_move()` or the ABI trait's
146 /// load/spill constructors, it should produce instruction(s) that
147 /// move the entire register contents.
148 fn canonical_type_for_rc(rc: RegClass) -> Type;
149
150 /// Generate a jump to another target. Used during lowering of
151 /// control flow.
152 fn gen_jump(target: MachLabel) -> Self;
153
154 /// Generate a store of an immediate 64-bit integer to a register. Used by
155 /// the control plane to generate random instructions.
156 fn gen_imm_u64(_value: u64, _dst: Writable<Reg>) -> Option<Self> {
157 None
158 }
159
160 /// Generate a store of an immediate 64-bit integer to a register. Used by
161 /// the control plane to generate random instructions. The tmp register may
162 /// be used by architectures which don't support writing immediate values to
163 /// floating point registers directly.
164 fn gen_imm_f64(_value: f64, _tmp: Writable<Reg>, _dst: Writable<Reg>) -> SmallVec<[Self; 2]> {
165 SmallVec::new()
166 }
167
168 /// Generate a NOP. The `preferred_size` parameter allows the caller to
169 /// request a NOP of that size, or as close to it as possible. The machine
170 /// backend may return a NOP whose binary encoding is smaller than the
171 /// preferred size, but must not return a NOP that is larger. However,
172 /// the instruction must have a nonzero size if preferred_size is nonzero.
173 fn gen_nop(preferred_size: usize) -> Self;
174
175 /// Align a basic block offset (from start of function). By default, no
176 /// alignment occurs.
177 fn align_basic_block(offset: CodeOffset) -> CodeOffset {
178 offset
179 }
180
181 /// What is the worst-case instruction size emitted by this instruction type?
182 fn worst_case_size() -> CodeOffset;
183
184 /// What is the register class used for reference types (GC-observable pointers)? Can
185 /// be dependent on compilation flags.
186 fn ref_type_regclass(_flags: &Flags) -> RegClass;
187
188 /// Is this a safepoint?
189 fn is_safepoint(&self) -> bool;
190
191 /// Generate an instruction that must appear at the beginning of a basic
192 /// block, if any. Note that the return value must not be subject to
193 /// register allocation.
194 fn gen_block_start(
195 _is_indirect_branch_target: bool,
196 _is_forward_edge_cfi_enabled: bool,
197 ) -> Option<Self> {
198 None
199 }
200
201 /// Returns a description of the alignment required for functions for this
202 /// architecture.
203 fn function_alignment() -> FunctionAlignment;
204
205 /// Is this a low-level, one-way branch, not meant for use in a
206 /// VCode body? These instructions are meant to be used only when
207 /// directly emitted, i.e. when `MachInst` is used as an assembler
208 /// library.
209 fn is_low_level_branch(&self) -> bool {
210 false
211 }
212
213 /// A label-use kind: a type that describes the types of label references that
214 /// can occur in an instruction.
215 type LabelUse: MachInstLabelUse;
216
217 /// Byte representation of a trap opcode which is inserted by `MachBuffer`
218 /// during its `defer_trap` method.
219 const TRAP_OPCODE: &'static [u8];
220}
221
222/// A descriptor of a label reference (use) in an instruction set.
223pub trait MachInstLabelUse: Clone + Copy + Debug + Eq {
224 /// Required alignment for any veneer. Usually the required instruction
225 /// alignment (e.g., 4 for a RISC with 32-bit instructions, or 1 for x86).
226 const ALIGN: CodeOffset;
227
228 /// What is the maximum PC-relative range (positive)? E.g., if `1024`, a
229 /// label-reference fixup at offset `x` is valid if the label resolves to `x
230 /// + 1024`.
231 fn max_pos_range(self) -> CodeOffset;
232 /// What is the maximum PC-relative range (negative)? This is the absolute
233 /// value; i.e., if `1024`, then a label-reference fixup at offset `x` is
234 /// valid if the label resolves to `x - 1024`.
235 fn max_neg_range(self) -> CodeOffset;
236 /// What is the size of code-buffer slice this label-use needs to patch in
237 /// the label's value?
238 fn patch_size(self) -> CodeOffset;
239 /// Perform a code-patch, given the offset into the buffer of this label use
240 /// and the offset into the buffer of the label's definition.
241 /// It is guaranteed that, given `delta = offset - label_offset`, we will
242 /// have `offset >= -self.max_neg_range()` and `offset <=
243 /// self.max_pos_range()`.
244 fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset);
245 /// Can the label-use be patched to a veneer that supports a longer range?
246 /// Usually valid for jumps (a short-range jump can jump to a longer-range
247 /// jump), but not for e.g. constant pool references, because the constant
248 /// load would require different code (one more level of indirection).
249 fn supports_veneer(self) -> bool;
250 /// How many bytes are needed for a veneer?
251 fn veneer_size(self) -> CodeOffset;
252 /// What's the largest possible veneer that may be generated?
253 fn worst_case_veneer_size() -> CodeOffset;
254 /// Generate a veneer. The given code-buffer slice is `self.veneer_size()`
255 /// bytes long at offset `veneer_offset` in the buffer. The original
256 /// label-use will be patched to refer to this veneer's offset. A new
257 /// (offset, LabelUse) is returned that allows the veneer to use the actual
258 /// label. For veneers to work properly, it is expected that the new veneer
259 /// has a larger range; on most platforms this probably means either a
260 /// "long-range jump" (e.g., on ARM, the 26-bit form), or if already at that
261 /// stage, a jump that supports a full 32-bit range, for example.
262 fn generate_veneer(self, buffer: &mut [u8], veneer_offset: CodeOffset) -> (CodeOffset, Self);
263
264 /// Returns the corresponding label-use for the relocation specified.
265 ///
266 /// This returns `None` if the relocation doesn't have a corresponding
267 /// representation for the target architecture.
268 fn from_reloc(reloc: Reloc, addend: Addend) -> Option<Self>;
269}
270
271/// Describes a block terminator (not call) in the VCode.
272///
273/// Actual targets are not included: the single-source-of-truth for
274/// those is the VCode itself, which holds, for each block, successors
275/// and outgoing branch args per successor.
276#[derive(Clone, Debug, PartialEq, Eq)]
277pub enum MachTerminator {
278 /// Not a terminator.
279 None,
280 /// A return instruction.
281 Ret,
282 /// A tail call.
283 RetCall,
284 /// A branch.
285 Branch,
286}
287
288/// A trait describing the ability to encode a MachInst into binary machine code.
289pub trait MachInstEmit: MachInst {
290 /// Persistent state carried across `emit` invocations.
291 type State: MachInstEmitState<Self>;
292
293 /// Constant information used in `emit` invocations.
294 type Info;
295
296 /// Emit the instruction.
297 fn emit(&self, code: &mut MachBuffer<Self>, info: &Self::Info, state: &mut Self::State);
298
299 /// Pretty-print the instruction.
300 fn pretty_print_inst(&self, state: &mut Self::State) -> String;
301}
302
303/// A trait describing the emission state carried between MachInsts when
304/// emitting a function body.
305pub trait MachInstEmitState<I: VCodeInst>: Default + Clone + Debug {
306 /// Create a new emission state given the ABI object.
307 fn new(abi: &Callee<I::ABIMachineSpec>, ctrl_plane: ControlPlane) -> Self;
308
309 /// Update the emission state before emitting an instruction that is a
310 /// safepoint.
311 fn pre_safepoint(&mut self, user_stack_map: Option<ir::UserStackMap>);
312
313 /// The emission state holds ownership of a control plane, so it doesn't
314 /// have to be passed around explicitly too much. `ctrl_plane_mut` may
315 /// be used if temporary access to the control plane is needed by some
316 /// other function that doesn't have access to the emission state.
317 fn ctrl_plane_mut(&mut self) -> &mut ControlPlane;
318
319 /// Used to continue using a control plane after the emission state is
320 /// not needed anymore.
321 fn take_ctrl_plane(self) -> ControlPlane;
322
323 /// A hook that triggers when first emitting a new block.
324 /// It is guaranteed to be called before any instructions are emitted.
325 fn on_new_block(&mut self) {}
326
327 /// The [`FrameLayout`] for the function currently being compiled.
328 fn frame_layout(&self) -> &FrameLayout;
329}
330
331/// The result of a `MachBackend::compile_function()` call. Contains machine
332/// code (as bytes) and a disassembly, if requested.
333#[derive(PartialEq, Debug, Clone)]
334#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
335pub struct CompiledCodeBase<T: CompilePhase> {
336 /// Machine code.
337 pub buffer: MachBufferFinalized<T>,
338 /// Size of stack frame, in bytes.
339 pub frame_size: u32,
340 /// Disassembly, if requested.
341 pub vcode: Option<String>,
342 /// Debug info: value labels to registers/stackslots at code offsets.
343 pub value_labels_ranges: ValueLabelsRanges,
344 /// Debug info: stackslots to stack pointer offsets.
345 pub sized_stackslot_offsets: PrimaryMap<StackSlot, u32>,
346 /// Debug info: stackslots to stack pointer offsets.
347 pub dynamic_stackslot_offsets: PrimaryMap<DynamicStackSlot, u32>,
348 /// Basic-block layout info: block start offsets.
349 ///
350 /// This info is generated only if the `machine_code_cfg_info`
351 /// flag is set.
352 pub bb_starts: Vec<CodeOffset>,
353 /// Basic-block layout info: block edges. Each edge is `(from,
354 /// to)`, where `from` and `to` are basic-block start offsets of
355 /// the respective blocks.
356 ///
357 /// This info is generated only if the `machine_code_cfg_info`
358 /// flag is set.
359 pub bb_edges: Vec<(CodeOffset, CodeOffset)>,
360}
361
362impl CompiledCodeStencil {
363 /// Apply function parameters to finalize a stencil into its final form.
364 pub fn apply_params(self, params: &FunctionParameters) -> CompiledCode {
365 CompiledCode {
366 buffer: self.buffer.apply_base_srcloc(params.base_srcloc()),
367 frame_size: self.frame_size,
368 vcode: self.vcode,
369 value_labels_ranges: self.value_labels_ranges,
370 sized_stackslot_offsets: self.sized_stackslot_offsets,
371 dynamic_stackslot_offsets: self.dynamic_stackslot_offsets,
372 bb_starts: self.bb_starts,
373 bb_edges: self.bb_edges,
374 }
375 }
376}
377
378impl<T: CompilePhase> CompiledCodeBase<T> {
379 /// Get a `CodeInfo` describing section sizes from this compilation result.
380 pub fn code_info(&self) -> CodeInfo {
381 CodeInfo {
382 total_size: self.buffer.total_size(),
383 }
384 }
385
386 /// Returns a reference to the machine code generated for this function compilation.
387 pub fn code_buffer(&self) -> &[u8] {
388 self.buffer.data()
389 }
390
391 /// Get the disassembly of the buffer, using the given capstone context.
392 #[cfg(feature = "disas")]
393 pub fn disassemble(
394 &self,
395 params: Option<&crate::ir::function::FunctionParameters>,
396 cs: &capstone::Capstone,
397 ) -> Result<String, anyhow::Error> {
398 use std::fmt::Write;
399
400 let mut buf = String::new();
401
402 let relocs = self.buffer.relocs();
403 let traps = self.buffer.traps();
404
405 // Normalize the block starts to include an initial block of offset 0.
406 let mut block_starts = Vec::new();
407 if self.bb_starts.first().copied() != Some(0) {
408 block_starts.push(0);
409 }
410 block_starts.extend_from_slice(&self.bb_starts);
411 block_starts.push(self.buffer.data().len() as u32);
412
413 // Iterate over block regions, to ensure that we always produce block labels
414 for (n, (&start, &end)) in block_starts
415 .iter()
416 .zip(block_starts.iter().skip(1))
417 .enumerate()
418 {
419 writeln!(buf, "block{n}: ; offset 0x{start:x}")?;
420
421 let buffer = &self.buffer.data()[start as usize..end as usize];
422 let insns = cs.disasm_all(buffer, start as u64).map_err(map_caperr)?;
423 for i in insns.iter() {
424 write!(buf, " ")?;
425
426 let op_str = i.op_str().unwrap_or("");
427 if let Some(s) = i.mnemonic() {
428 write!(buf, "{s}")?;
429 if !op_str.is_empty() {
430 write!(buf, " ")?;
431 }
432 }
433
434 write!(buf, "{op_str}")?;
435
436 let end = i.address() + i.bytes().len() as u64;
437 let contains = |off| i.address() <= off && off < end;
438
439 for reloc in relocs.iter().filter(|reloc| contains(reloc.offset as u64)) {
440 write!(
441 buf,
442 " ; reloc_external {} {} {}",
443 reloc.kind,
444 reloc.target.display(params),
445 reloc.addend,
446 )?;
447 }
448
449 if let Some(trap) = traps.iter().find(|trap| contains(trap.offset as u64)) {
450 write!(buf, " ; trap: {}", trap.code)?;
451 }
452
453 writeln!(buf)?;
454 }
455 }
456
457 return Ok(buf);
458
459 fn map_caperr(err: capstone::Error) -> anyhow::Error {
460 anyhow::format_err!("{}", err)
461 }
462 }
463}
464
465/// Result of compiling a `FunctionStencil`, before applying `FunctionParameters` onto it.
466///
467/// Only used internally, in a transient manner, for the incremental compilation cache.
468pub type CompiledCodeStencil = CompiledCodeBase<Stencil>;
469
470/// `CompiledCode` in its final form (i.e. after `FunctionParameters` have been applied), ready for
471/// consumption.
472pub type CompiledCode = CompiledCodeBase<Final>;
473
474impl CompiledCode {
475 /// If available, return information about the code layout in the
476 /// final machine code: the offsets (in bytes) of each basic-block
477 /// start, and all basic-block edges.
478 pub fn get_code_bb_layout(&self) -> (Vec<usize>, Vec<(usize, usize)>) {
479 (
480 self.bb_starts.iter().map(|&off| off as usize).collect(),
481 self.bb_edges
482 .iter()
483 .map(|&(from, to)| (from as usize, to as usize))
484 .collect(),
485 )
486 }
487
488 /// Creates unwind information for the function.
489 ///
490 /// Returns `None` if the function has no unwind information.
491 #[cfg(feature = "unwind")]
492 pub fn create_unwind_info(
493 &self,
494 isa: &dyn crate::isa::TargetIsa,
495 ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
496 use crate::isa::unwind::UnwindInfoKind;
497 let unwind_info_kind = match isa.triple().operating_system {
498 target_lexicon::OperatingSystem::Windows => UnwindInfoKind::Windows,
499 _ => UnwindInfoKind::SystemV,
500 };
501 self.create_unwind_info_of_kind(isa, unwind_info_kind)
502 }
503
504 /// Creates unwind information for the function using the supplied
505 /// "kind". Supports cross-OS (but not cross-arch) generation.
506 ///
507 /// Returns `None` if the function has no unwind information.
508 #[cfg(feature = "unwind")]
509 pub fn create_unwind_info_of_kind(
510 &self,
511 isa: &dyn crate::isa::TargetIsa,
512 unwind_info_kind: crate::isa::unwind::UnwindInfoKind,
513 ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
514 isa.emit_unwind_info(self, unwind_info_kind)
515 }
516}
517
518/// An object that can be used to create the text section of an executable.
519///
520/// This primarily handles resolving relative relocations at
521/// text-section-assembly time rather than at load/link time. This
522/// architecture-specific logic is sort of like a linker, but only for one
523/// object file at a time.
524pub trait TextSectionBuilder {
525 /// Appends `data` to the text section with the `align` specified.
526 ///
527 /// If `labeled` is `true` then this also binds the appended data to the
528 /// `n`th label for how many times this has been called with `labeled:
529 /// true`. The label target can be passed as the `target` argument to
530 /// `resolve_reloc`.
531 ///
532 /// This function returns the offset at which the data was placed in the
533 /// text section.
534 fn append(
535 &mut self,
536 labeled: bool,
537 data: &[u8],
538 align: u32,
539 ctrl_plane: &mut ControlPlane,
540 ) -> u64;
541
542 /// Attempts to resolve a relocation for this function.
543 ///
544 /// The `offset` is the offset of the relocation, within the text section.
545 /// The `reloc` is the kind of relocation.
546 /// The `addend` is the value to add to the relocation.
547 /// The `target` is the labeled function that is the target of this
548 /// relocation.
549 ///
550 /// Labeled functions are created with the `append` function above by
551 /// setting the `labeled` parameter to `true`.
552 ///
553 /// If this builder does not know how to handle `reloc` then this function
554 /// will return `false`. Otherwise this function will return `true` and this
555 /// relocation will be resolved in the final bytes returned by `finish`.
556 fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool;
557
558 /// A debug-only option which is used to for
559 fn force_veneers(&mut self);
560
561 /// Write the `data` provided at `offset`, for example when resolving a
562 /// relocation.
563 fn write(&mut self, offset: u64, data: &[u8]);
564
565 /// Completes this text section, filling out any final details, and returns
566 /// the bytes of the text section.
567 fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8>;
568}