cranelift_codegen/machinst/
mod.rs

1//! This module exposes the machine-specific backend definition pieces.
2//!
3//! The MachInst infrastructure is the compiler backend, from CLIF
4//! (ir::Function) to machine code. The purpose of this infrastructure is, at a
5//! high level, to do instruction selection/lowering (to machine instructions),
6//! register allocation, and then perform all the fixups to branches, constant
7//! data references, etc., needed to actually generate machine code.
8//!
9//! The container for machine instructions, at various stages of construction,
10//! is the `VCode` struct. We refer to a sequence of machine instructions organized
11//! into basic blocks as "vcode". This is short for "virtual-register code".
12//!
13//! The compilation pipeline, from an `ir::Function` (already optimized as much as
14//! you like by machine-independent optimization passes) onward, is as follows.
15//!
16//! ```plain
17//!
18//!     ir::Function                (SSA IR, machine-independent opcodes)
19//!         |
20//!         |  [lower]
21//!         |
22//!     VCode<arch_backend::Inst>   (machine instructions:
23//!         |                        - mostly virtual registers.
24//!         |                        - cond branches in two-target form.
25//!         |                        - branch targets are block indices.
26//!         |                        - in-memory constants held by insns,
27//!         |                          with unknown offsets.
28//!         |                        - critical edges (actually all edges)
29//!         |                          are split.)
30//!         |
31//!         | [regalloc --> `regalloc2::Output`; VCode is unchanged]
32//!         |
33//!         | [binary emission via MachBuffer]
34//!         |
35//!     Vec<u8>                     (machine code:
36//!         |                        - two-dest branches resolved via
37//!         |                          streaming branch resolution/simplification.
38//!         |                        - regalloc `Allocation` results used directly
39//!         |                          by instruction emission code.
40//!         |                        - prologue and epilogue(s) built and emitted
41//!         |                          directly during emission.
42//!         |                        - SP-relative offsets resolved by tracking
43//!         |                          EmitState.)
44//!
45//! ```
46
47use crate::binemit::{Addend, CodeInfo, CodeOffset, Reloc};
48use crate::ir::{
49    self, DynamicStackSlot, RelSourceLoc, StackSlot, Type, function::FunctionParameters,
50};
51use crate::isa::FunctionAlignment;
52use crate::result::CodegenResult;
53use crate::settings;
54use crate::settings::Flags;
55use crate::value_label::ValueLabelsRanges;
56use alloc::vec::Vec;
57use core::fmt::Debug;
58use cranelift_control::ControlPlane;
59use cranelift_entity::PrimaryMap;
60use regalloc2::VReg;
61use smallvec::{SmallVec, smallvec};
62use std::string::String;
63
64#[cfg(feature = "enable-serde")]
65use serde_derive::{Deserialize, Serialize};
66
67#[macro_use]
68pub mod isle;
69
70pub mod lower;
71pub use lower::*;
72pub mod vcode;
73pub use vcode::*;
74pub mod compile;
75pub use compile::*;
76pub mod blockorder;
77pub use blockorder::*;
78pub mod abi;
79pub use abi::*;
80pub mod buffer;
81pub use buffer::*;
82pub mod helpers;
83pub use helpers::*;
84pub mod valueregs;
85pub use reg::*;
86pub use valueregs::*;
87pub mod pcc;
88pub mod reg;
89
90/// A machine instruction.
91pub trait MachInst: Clone + Debug {
92    /// The ABI machine spec for this `MachInst`.
93    type ABIMachineSpec: ABIMachineSpec<I = Self>;
94
95    /// Return the registers referenced by this machine instruction along with
96    /// the modes of reference (use, def, modify).
97    fn get_operands(&mut self, collector: &mut impl OperandVisitor);
98
99    /// If this is a simple move, return the (source, destination) tuple of registers.
100    fn is_move(&self) -> Option<(Writable<Reg>, Reg)>;
101
102    /// Is this a terminator (branch or ret)? If so, return its type
103    /// (ret/uncond/cond) and target if applicable.
104    fn is_term(&self) -> MachTerminator;
105
106    /// Is this an unconditional trap?
107    fn is_trap(&self) -> bool;
108
109    /// Is this an "args" pseudoinst?
110    fn is_args(&self) -> bool;
111
112    /// Classify the type of call instruction this is.
113    ///
114    /// This enables more granular function type analysis and optimization.
115    /// Returns `CallType::None` for non-call instructions, `CallType::Regular`
116    /// for normal calls that return to the caller, and `CallType::TailCall`
117    /// for tail calls that don't return to the caller.
118    fn call_type(&self) -> CallType;
119
120    /// Should this instruction's clobber-list be included in the
121    /// clobber-set?
122    fn is_included_in_clobbers(&self) -> bool;
123
124    /// Does this instruction access memory?
125    fn is_mem_access(&self) -> bool;
126
127    /// Generate a move.
128    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self;
129
130    /// Generate a dummy instruction that will keep a value alive but
131    /// has no other purpose.
132    fn gen_dummy_use(reg: Reg) -> Self;
133
134    /// Determine register class(es) to store the given Cranelift type, and the
135    /// Cranelift type actually stored in the underlying register(s).  May return
136    /// an error if the type isn't supported by this backend.
137    ///
138    /// If the type requires multiple registers, then the list of registers is
139    /// returned in little-endian order.
140    ///
141    /// Note that the type actually stored in the register(s) may differ in the
142    /// case that a value is split across registers: for example, on a 32-bit
143    /// target, an I64 may be stored in two registers, each of which holds an
144    /// I32. The actually-stored types are used only to inform the backend when
145    /// generating spills and reloads for individual registers.
146    fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])>;
147
148    /// Get an appropriate type that can fully hold a value in a given
149    /// register class. This may not be the only type that maps to
150    /// that class, but when used with `gen_move()` or the ABI trait's
151    /// load/spill constructors, it should produce instruction(s) that
152    /// move the entire register contents.
153    fn canonical_type_for_rc(rc: RegClass) -> Type;
154
155    /// Generate a jump to another target. Used during lowering of
156    /// control flow.
157    fn gen_jump(target: MachLabel) -> Self;
158
159    /// Generate a store of an immediate 64-bit integer to a register. Used by
160    /// the control plane to generate random instructions.
161    fn gen_imm_u64(_value: u64, _dst: Writable<Reg>) -> Option<Self> {
162        None
163    }
164
165    /// Generate a store of an immediate 64-bit integer to a register. Used by
166    /// the control plane to generate random instructions. The tmp register may
167    /// be used by architectures which don't support writing immediate values to
168    /// floating point registers directly.
169    fn gen_imm_f64(_value: f64, _tmp: Writable<Reg>, _dst: Writable<Reg>) -> SmallVec<[Self; 2]> {
170        SmallVec::new()
171    }
172
173    /// Generate a NOP. The `preferred_size` parameter allows the caller to
174    /// request a NOP of that size, or as close to it as possible. The machine
175    /// backend may return a NOP whose binary encoding is smaller than the
176    /// preferred size, but must not return a NOP that is larger. However,
177    /// the instruction must have a nonzero size if preferred_size is nonzero.
178    fn gen_nop(preferred_size: usize) -> Self;
179
180    /// The smallest possible NOP, as a unit that can be used to patch
181    /// out code.
182    fn gen_nop_unit() -> SmallVec<[u8; 8]>;
183
184    /// Align a basic block offset (from start of function).  By default, no
185    /// alignment occurs.
186    fn align_basic_block(offset: CodeOffset) -> CodeOffset {
187        offset
188    }
189
190    /// What is the worst-case instruction size emitted by this instruction type?
191    fn worst_case_size() -> CodeOffset;
192
193    /// What is the register class used for reference types (GC-observable pointers)? Can
194    /// be dependent on compilation flags.
195    fn ref_type_regclass(_flags: &Flags) -> RegClass;
196
197    /// Is this a safepoint?
198    fn is_safepoint(&self) -> bool;
199
200    /// Generate an instruction that must appear at the beginning of a basic
201    /// block, if any. Note that the return value must not be subject to
202    /// register allocation.
203    fn gen_block_start(
204        _is_indirect_branch_target: bool,
205        _is_forward_edge_cfi_enabled: bool,
206    ) -> Option<Self> {
207        None
208    }
209
210    /// Returns a description of the alignment required for functions for this
211    /// architecture.
212    fn function_alignment() -> FunctionAlignment;
213
214    /// Is this a low-level, one-way branch, not meant for use in a
215    /// VCode body? These instructions are meant to be used only when
216    /// directly emitted, i.e. when `MachInst` is used as an assembler
217    /// library.
218    fn is_low_level_branch(&self) -> bool {
219        false
220    }
221
222    /// A label-use kind: a type that describes the types of label references that
223    /// can occur in an instruction.
224    type LabelUse: MachInstLabelUse;
225
226    /// Byte representation of a trap opcode which is inserted by `MachBuffer`
227    /// during its `defer_trap` method.
228    const TRAP_OPCODE: &'static [u8];
229}
230
231/// A descriptor of a label reference (use) in an instruction set.
232pub trait MachInstLabelUse: Clone + Copy + Debug + Eq {
233    /// Required alignment for any veneer. Usually the required instruction
234    /// alignment (e.g., 4 for a RISC with 32-bit instructions, or 1 for x86).
235    const ALIGN: CodeOffset;
236
237    /// What is the maximum PC-relative range (positive)? E.g., if `1024`, a
238    /// label-reference fixup at offset `x` is valid if the label resolves to `x
239    /// + 1024`.
240    fn max_pos_range(self) -> CodeOffset;
241    /// What is the maximum PC-relative range (negative)? This is the absolute
242    /// value; i.e., if `1024`, then a label-reference fixup at offset `x` is
243    /// valid if the label resolves to `x - 1024`.
244    fn max_neg_range(self) -> CodeOffset;
245    /// What is the size of code-buffer slice this label-use needs to patch in
246    /// the label's value?
247    fn patch_size(self) -> CodeOffset;
248    /// Perform a code-patch, given the offset into the buffer of this label use
249    /// and the offset into the buffer of the label's definition.
250    /// It is guaranteed that, given `delta = offset - label_offset`, we will
251    /// have `offset >= -self.max_neg_range()` and `offset <=
252    /// self.max_pos_range()`.
253    fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset);
254    /// Can the label-use be patched to a veneer that supports a longer range?
255    /// Usually valid for jumps (a short-range jump can jump to a longer-range
256    /// jump), but not for e.g. constant pool references, because the constant
257    /// load would require different code (one more level of indirection).
258    fn supports_veneer(self) -> bool;
259    /// How many bytes are needed for a veneer?
260    fn veneer_size(self) -> CodeOffset;
261    /// What's the largest possible veneer that may be generated?
262    fn worst_case_veneer_size() -> CodeOffset;
263    /// Generate a veneer. The given code-buffer slice is `self.veneer_size()`
264    /// bytes long at offset `veneer_offset` in the buffer. The original
265    /// label-use will be patched to refer to this veneer's offset.  A new
266    /// (offset, LabelUse) is returned that allows the veneer to use the actual
267    /// label. For veneers to work properly, it is expected that the new veneer
268    /// has a larger range; on most platforms this probably means either a
269    /// "long-range jump" (e.g., on ARM, the 26-bit form), or if already at that
270    /// stage, a jump that supports a full 32-bit range, for example.
271    fn generate_veneer(self, buffer: &mut [u8], veneer_offset: CodeOffset) -> (CodeOffset, Self);
272
273    /// Returns the corresponding label-use for the relocation specified.
274    ///
275    /// This returns `None` if the relocation doesn't have a corresponding
276    /// representation for the target architecture.
277    fn from_reloc(reloc: Reloc, addend: Addend) -> Option<Self>;
278}
279
280/// Classification of call instruction types for granular analysis.
281#[derive(Clone, Copy, Debug, PartialEq, Eq)]
282pub enum CallType {
283    /// Not a call instruction.
284    None,
285    /// Regular call that returns to the caller.
286    Regular,
287    /// Tail call that doesn't return to the caller.
288    TailCall,
289}
290
291/// Function classification based on call patterns.
292///
293/// This enum classifies functions based on their calling behavior to enable
294/// targeted optimizations. Functions are categorized as:
295/// - `None`: No calls at all (can use simplified calling conventions)
296/// - `TailOnly`: Only tail calls (may skip frame setup in some cases)
297/// - `Regular`: Has regular calls (requires full calling convention support)
298#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
299pub enum FunctionCalls {
300    /// Function makes no calls at all.
301    #[default]
302    None,
303    /// Function only makes tail calls (no regular calls).
304    TailOnly,
305    /// Function makes at least one regular call (may also have tail calls).
306    Regular,
307}
308
309impl FunctionCalls {
310    /// Update the function classification based on a new call instruction.
311    ///
312    /// This method implements the merge logic for accumulating call patterns:
313    /// - Any regular call makes the function Regular
314    /// - Tail calls upgrade None to TailOnly
315    /// - Regular always stays Regular
316    pub fn update(&mut self, call_type: CallType) {
317        *self = match (*self, call_type) {
318            // No call instruction - state unchanged
319            (current, CallType::None) => current,
320            // Regular call always results in Regular classification
321            (_, CallType::Regular) => FunctionCalls::Regular,
322            // Tail call: None becomes TailOnly, others unchanged
323            (FunctionCalls::None, CallType::TailCall) => FunctionCalls::TailOnly,
324            (current, CallType::TailCall) => current,
325        };
326    }
327}
328
329/// Describes a block terminator (not call) in the VCode.
330///
331/// Actual targets are not included: the single-source-of-truth for
332/// those is the VCode itself, which holds, for each block, successors
333/// and outgoing branch args per successor.
334#[derive(Clone, Debug, PartialEq, Eq)]
335pub enum MachTerminator {
336    /// Not a terminator.
337    None,
338    /// A return instruction.
339    Ret,
340    /// A tail call.
341    RetCall,
342    /// A branch.
343    Branch,
344}
345
346/// A trait describing the ability to encode a MachInst into binary machine code.
347pub trait MachInstEmit: MachInst {
348    /// Persistent state carried across `emit` invocations.
349    type State: MachInstEmitState<Self>;
350
351    /// Constant information used in `emit` invocations.
352    type Info;
353
354    /// Emit the instruction.
355    fn emit(&self, code: &mut MachBuffer<Self>, info: &Self::Info, state: &mut Self::State);
356
357    /// Pretty-print the instruction.
358    fn pretty_print_inst(&self, state: &mut Self::State) -> String;
359}
360
361/// A trait describing the emission state carried between MachInsts when
362/// emitting a function body.
363pub trait MachInstEmitState<I: VCodeInst>: Default + Clone + Debug {
364    /// Create a new emission state given the ABI object.
365    fn new(abi: &Callee<I::ABIMachineSpec>, ctrl_plane: ControlPlane) -> Self;
366
367    /// Update the emission state before emitting an instruction that is a
368    /// safepoint.
369    fn pre_safepoint(&mut self, user_stack_map: Option<ir::UserStackMap>);
370
371    /// The emission state holds ownership of a control plane, so it doesn't
372    /// have to be passed around explicitly too much. `ctrl_plane_mut` may
373    /// be used if temporary access to the control plane is needed by some
374    /// other function that doesn't have access to the emission state.
375    fn ctrl_plane_mut(&mut self) -> &mut ControlPlane;
376
377    /// Used to continue using a control plane after the emission state is
378    /// not needed anymore.
379    fn take_ctrl_plane(self) -> ControlPlane;
380
381    /// A hook that triggers when first emitting a new block.
382    /// It is guaranteed to be called before any instructions are emitted.
383    fn on_new_block(&mut self) {}
384
385    /// The [`FrameLayout`] for the function currently being compiled.
386    fn frame_layout(&self) -> &FrameLayout;
387}
388
389/// The result of a `MachBackend::compile_function()` call. Contains machine
390/// code (as bytes) and a disassembly, if requested.
391#[derive(PartialEq, Debug, Clone)]
392#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
393pub struct CompiledCodeBase<T: CompilePhase> {
394    /// Machine code.
395    pub buffer: MachBufferFinalized<T>,
396    /// Disassembly, if requested.
397    pub vcode: Option<String>,
398    /// Debug info: value labels to registers/stackslots at code offsets.
399    pub value_labels_ranges: ValueLabelsRanges,
400    /// Basic-block layout info: block start offsets.
401    ///
402    /// This info is generated only if the `machine_code_cfg_info`
403    /// flag is set.
404    pub bb_starts: Vec<CodeOffset>,
405    /// Basic-block layout info: block edges. Each edge is `(from,
406    /// to)`, where `from` and `to` are basic-block start offsets of
407    /// the respective blocks.
408    ///
409    /// This info is generated only if the `machine_code_cfg_info`
410    /// flag is set.
411    pub bb_edges: Vec<(CodeOffset, CodeOffset)>,
412}
413
414impl CompiledCodeStencil {
415    /// Apply function parameters to finalize a stencil into its final form.
416    pub fn apply_params(self, params: &FunctionParameters) -> CompiledCode {
417        CompiledCode {
418            buffer: self.buffer.apply_base_srcloc(params.base_srcloc()),
419            vcode: self.vcode,
420            value_labels_ranges: self.value_labels_ranges,
421            bb_starts: self.bb_starts,
422            bb_edges: self.bb_edges,
423        }
424    }
425}
426
427impl<T: CompilePhase> CompiledCodeBase<T> {
428    /// Get a `CodeInfo` describing section sizes from this compilation result.
429    pub fn code_info(&self) -> CodeInfo {
430        CodeInfo {
431            total_size: self.buffer.total_size(),
432        }
433    }
434
435    /// Returns a reference to the machine code generated for this function compilation.
436    pub fn code_buffer(&self) -> &[u8] {
437        self.buffer.data()
438    }
439
440    /// Get the disassembly of the buffer, using the given capstone context.
441    #[cfg(feature = "disas")]
442    pub fn disassemble(
443        &self,
444        params: Option<&crate::ir::function::FunctionParameters>,
445        cs: &capstone::Capstone,
446    ) -> Result<String, anyhow::Error> {
447        use std::fmt::Write;
448
449        let mut buf = String::new();
450
451        let relocs = self.buffer.relocs();
452        let traps = self.buffer.traps();
453        let mut patchables = self.buffer.patchable_call_sites().peekable();
454
455        // Normalize the block starts to include an initial block of offset 0.
456        let mut block_starts = Vec::new();
457        if self.bb_starts.first().copied() != Some(0) {
458            block_starts.push(0);
459        }
460        block_starts.extend_from_slice(&self.bb_starts);
461        block_starts.push(self.buffer.data().len() as u32);
462
463        // Iterate over block regions, to ensure that we always produce block labels
464        for (n, (&start, &end)) in block_starts
465            .iter()
466            .zip(block_starts.iter().skip(1))
467            .enumerate()
468        {
469            writeln!(buf, "block{n}: ; offset 0x{start:x}")?;
470
471            let buffer = &self.buffer.data()[start as usize..end as usize];
472            let insns = cs.disasm_all(buffer, start as u64).map_err(map_caperr)?;
473            for i in insns.iter() {
474                write!(buf, "  ")?;
475
476                let op_str = i.op_str().unwrap_or("");
477                if let Some(s) = i.mnemonic() {
478                    write!(buf, "{s}")?;
479                    if !op_str.is_empty() {
480                        write!(buf, " ")?;
481                    }
482                }
483
484                write!(buf, "{op_str}")?;
485
486                let end = i.address() + i.bytes().len() as u64;
487                let contains = |off| i.address() <= off && off < end;
488
489                for reloc in relocs.iter().filter(|reloc| contains(reloc.offset as u64)) {
490                    write!(
491                        buf,
492                        " ; reloc_external {} {} {}",
493                        reloc.kind,
494                        reloc.target.display(params),
495                        reloc.addend,
496                    )?;
497                }
498
499                if let Some(trap) = traps.iter().find(|trap| contains(trap.offset as u64)) {
500                    write!(buf, " ; trap: {}", trap.code)?;
501                }
502
503                if let Some(patchable) = patchables.peek()
504                    && patchable.ret_addr == end as u32
505                {
506                    write!(
507                        buf,
508                        " ; patchable call: NOP out last {} bytes",
509                        patchable.len
510                    )?;
511                    patchables.next();
512                }
513
514                writeln!(buf)?;
515            }
516        }
517
518        return Ok(buf);
519
520        fn map_caperr(err: capstone::Error) -> anyhow::Error {
521            anyhow::format_err!("{err}")
522        }
523    }
524}
525
526/// Result of compiling a `FunctionStencil`, before applying `FunctionParameters` onto it.
527///
528/// Only used internally, in a transient manner, for the incremental compilation cache.
529pub type CompiledCodeStencil = CompiledCodeBase<Stencil>;
530
531/// `CompiledCode` in its final form (i.e. after `FunctionParameters` have been applied), ready for
532/// consumption.
533pub type CompiledCode = CompiledCodeBase<Final>;
534
535impl CompiledCode {
536    /// If available, return information about the code layout in the
537    /// final machine code: the offsets (in bytes) of each basic-block
538    /// start, and all basic-block edges.
539    pub fn get_code_bb_layout(&self) -> (Vec<usize>, Vec<(usize, usize)>) {
540        (
541            self.bb_starts.iter().map(|&off| off as usize).collect(),
542            self.bb_edges
543                .iter()
544                .map(|&(from, to)| (from as usize, to as usize))
545                .collect(),
546        )
547    }
548
549    /// Creates unwind information for the function.
550    ///
551    /// Returns `None` if the function has no unwind information.
552    #[cfg(feature = "unwind")]
553    pub fn create_unwind_info(
554        &self,
555        isa: &dyn crate::isa::TargetIsa,
556    ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
557        use crate::isa::unwind::UnwindInfoKind;
558        let unwind_info_kind = match isa.triple().operating_system {
559            target_lexicon::OperatingSystem::Windows => UnwindInfoKind::Windows,
560            _ => UnwindInfoKind::SystemV,
561        };
562        self.create_unwind_info_of_kind(isa, unwind_info_kind)
563    }
564
565    /// Creates unwind information for the function using the supplied
566    /// "kind". Supports cross-OS (but not cross-arch) generation.
567    ///
568    /// Returns `None` if the function has no unwind information.
569    #[cfg(feature = "unwind")]
570    pub fn create_unwind_info_of_kind(
571        &self,
572        isa: &dyn crate::isa::TargetIsa,
573        unwind_info_kind: crate::isa::unwind::UnwindInfoKind,
574    ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
575        isa.emit_unwind_info(self, unwind_info_kind)
576    }
577}
578
579/// An object that can be used to create the text section of an executable.
580///
581/// This primarily handles resolving relative relocations at
582/// text-section-assembly time rather than at load/link time. This
583/// architecture-specific logic is sort of like a linker, but only for one
584/// object file at a time.
585pub trait TextSectionBuilder {
586    /// Appends `data` to the text section with the `align` specified.
587    ///
588    /// If `labeled` is `true` then this also binds the appended data to the
589    /// `n`th label for how many times this has been called with `labeled:
590    /// true`. The label target can be passed as the `target` argument to
591    /// `resolve_reloc`.
592    ///
593    /// This function returns the offset at which the data was placed in the
594    /// text section.
595    fn append(
596        &mut self,
597        labeled: bool,
598        data: &[u8],
599        align: u32,
600        ctrl_plane: &mut ControlPlane,
601    ) -> u64;
602
603    /// Attempts to resolve a relocation for this function.
604    ///
605    /// The `offset` is the offset of the relocation, within the text section.
606    /// The `reloc` is the kind of relocation.
607    /// The `addend` is the value to add to the relocation.
608    /// The `target` is the labeled function that is the target of this
609    /// relocation.
610    ///
611    /// Labeled functions are created with the `append` function above by
612    /// setting the `labeled` parameter to `true`.
613    ///
614    /// If this builder does not know how to handle `reloc` then this function
615    /// will return `false`. Otherwise this function will return `true` and this
616    /// relocation will be resolved in the final bytes returned by `finish`.
617    fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool;
618
619    /// A debug-only option which is used to for
620    fn force_veneers(&mut self);
621
622    /// Write the `data` provided at `offset`, for example when resolving a
623    /// relocation.
624    fn write(&mut self, offset: u64, data: &[u8]);
625
626    /// Completes this text section, filling out any final details, and returns
627    /// the bytes of the text section.
628    fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8>;
629}