cranelift_codegen/machinst/
mod.rs

1//! This module exposes the machine-specific backend definition pieces.
2//!
3//! The MachInst infrastructure is the compiler backend, from CLIF
4//! (ir::Function) to machine code. The purpose of this infrastructure is, at a
5//! high level, to do instruction selection/lowering (to machine instructions),
6//! register allocation, and then perform all the fixups to branches, constant
7//! data references, etc., needed to actually generate machine code.
8//!
9//! The container for machine instructions, at various stages of construction,
10//! is the `VCode` struct. We refer to a sequence of machine instructions organized
11//! into basic blocks as "vcode". This is short for "virtual-register code".
12//!
13//! The compilation pipeline, from an `ir::Function` (already optimized as much as
14//! you like by machine-independent optimization passes) onward, is as follows.
15//!
16//! ```plain
17//!
18//!     ir::Function                (SSA IR, machine-independent opcodes)
19//!         |
20//!         |  [lower]
21//!         |
22//!     VCode<arch_backend::Inst>   (machine instructions:
23//!         |                        - mostly virtual registers.
24//!         |                        - cond branches in two-target form.
25//!         |                        - branch targets are block indices.
26//!         |                        - in-memory constants held by insns,
27//!         |                          with unknown offsets.
28//!         |                        - critical edges (actually all edges)
29//!         |                          are split.)
30//!         |
31//!         | [regalloc --> `regalloc2::Output`; VCode is unchanged]
32//!         |
33//!         | [binary emission via MachBuffer]
34//!         |
35//!     Vec<u8>                     (machine code:
36//!         |                        - two-dest branches resolved via
37//!         |                          streaming branch resolution/simplification.
38//!         |                        - regalloc `Allocation` results used directly
39//!         |                          by instruction emission code.
40//!         |                        - prologue and epilogue(s) built and emitted
41//!         |                          directly during emission.
42//!         |                        - SP-relative offsets resolved by tracking
43//!         |                          EmitState.)
44//!
45//! ```
46
47use crate::binemit::{Addend, CodeInfo, CodeOffset, Reloc};
48use crate::ir::{
49    self, DynamicStackSlot, RelSourceLoc, StackSlot, Type, function::FunctionParameters,
50};
51use crate::isa::FunctionAlignment;
52use crate::result::CodegenResult;
53use crate::settings;
54use crate::settings::Flags;
55use crate::value_label::ValueLabelsRanges;
56use alloc::vec::Vec;
57use core::fmt::Debug;
58use cranelift_control::ControlPlane;
59use cranelift_entity::PrimaryMap;
60use regalloc2::VReg;
61use smallvec::{SmallVec, smallvec};
62use std::string::String;
63
64#[cfg(feature = "enable-serde")]
65use serde_derive::{Deserialize, Serialize};
66
67#[macro_use]
68pub mod isle;
69
70pub mod lower;
71pub use lower::*;
72pub mod vcode;
73pub use vcode::*;
74pub mod compile;
75pub use compile::*;
76pub mod blockorder;
77pub use blockorder::*;
78pub mod abi;
79pub use abi::*;
80pub mod buffer;
81pub use buffer::*;
82pub mod helpers;
83pub use helpers::*;
84pub mod valueregs;
85pub use reg::*;
86pub use valueregs::*;
87pub mod pcc;
88pub mod reg;
89
90/// A machine instruction.
91pub trait MachInst: Clone + Debug {
92    /// The ABI machine spec for this `MachInst`.
93    type ABIMachineSpec: ABIMachineSpec<I = Self>;
94
95    /// Return the registers referenced by this machine instruction along with
96    /// the modes of reference (use, def, modify).
97    fn get_operands(&mut self, collector: &mut impl OperandVisitor);
98
99    /// If this is a simple move, return the (source, destination) tuple of registers.
100    fn is_move(&self) -> Option<(Writable<Reg>, Reg)>;
101
102    /// Is this a terminator (branch or ret)? If so, return its type
103    /// (ret/uncond/cond) and target if applicable.
104    fn is_term(&self) -> MachTerminator;
105
106    /// Is this an unconditional trap?
107    fn is_trap(&self) -> bool;
108
109    /// Is this an "args" pseudoinst?
110    fn is_args(&self) -> bool;
111
112    /// Classify the type of call instruction this is.
113    ///
114    /// This enables more granular function type analysis and optimization.
115    /// Returns `CallType::None` for non-call instructions, `CallType::Regular`
116    /// for normal calls that return to the caller, and `CallType::TailCall`
117    /// for tail calls that don't return to the caller.
118    fn call_type(&self) -> CallType;
119
120    /// Should this instruction's clobber-list be included in the
121    /// clobber-set?
122    fn is_included_in_clobbers(&self) -> bool;
123
124    /// Does this instruction access memory?
125    fn is_mem_access(&self) -> bool;
126
127    /// Generate a move.
128    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self;
129
130    /// Generate a dummy instruction that will keep a value alive but
131    /// has no other purpose.
132    fn gen_dummy_use(reg: Reg) -> Self;
133
134    /// Determine register class(es) to store the given Cranelift type, and the
135    /// Cranelift type actually stored in the underlying register(s).  May return
136    /// an error if the type isn't supported by this backend.
137    ///
138    /// If the type requires multiple registers, then the list of registers is
139    /// returned in little-endian order.
140    ///
141    /// Note that the type actually stored in the register(s) may differ in the
142    /// case that a value is split across registers: for example, on a 32-bit
143    /// target, an I64 may be stored in two registers, each of which holds an
144    /// I32. The actually-stored types are used only to inform the backend when
145    /// generating spills and reloads for individual registers.
146    fn rc_for_type(ty: Type) -> CodegenResult<(&'static [RegClass], &'static [Type])>;
147
148    /// Get an appropriate type that can fully hold a value in a given
149    /// register class. This may not be the only type that maps to
150    /// that class, but when used with `gen_move()` or the ABI trait's
151    /// load/spill constructors, it should produce instruction(s) that
152    /// move the entire register contents.
153    fn canonical_type_for_rc(rc: RegClass) -> Type;
154
155    /// Generate a jump to another target. Used during lowering of
156    /// control flow.
157    fn gen_jump(target: MachLabel) -> Self;
158
159    /// Generate a store of an immediate 64-bit integer to a register. Used by
160    /// the control plane to generate random instructions.
161    fn gen_imm_u64(_value: u64, _dst: Writable<Reg>) -> Option<Self> {
162        None
163    }
164
165    /// Generate a store of an immediate 64-bit integer to a register. Used by
166    /// the control plane to generate random instructions. The tmp register may
167    /// be used by architectures which don't support writing immediate values to
168    /// floating point registers directly.
169    fn gen_imm_f64(_value: f64, _tmp: Writable<Reg>, _dst: Writable<Reg>) -> SmallVec<[Self; 2]> {
170        SmallVec::new()
171    }
172
173    /// Generate a NOP. The `preferred_size` parameter allows the caller to
174    /// request a NOP of that size, or as close to it as possible. The machine
175    /// backend may return a NOP whose binary encoding is smaller than the
176    /// preferred size, but must not return a NOP that is larger. However,
177    /// the instruction must have a nonzero size if preferred_size is nonzero.
178    fn gen_nop(preferred_size: usize) -> Self;
179
180    /// Align a basic block offset (from start of function).  By default, no
181    /// alignment occurs.
182    fn align_basic_block(offset: CodeOffset) -> CodeOffset {
183        offset
184    }
185
186    /// What is the worst-case instruction size emitted by this instruction type?
187    fn worst_case_size() -> CodeOffset;
188
189    /// What is the register class used for reference types (GC-observable pointers)? Can
190    /// be dependent on compilation flags.
191    fn ref_type_regclass(_flags: &Flags) -> RegClass;
192
193    /// Is this a safepoint?
194    fn is_safepoint(&self) -> bool;
195
196    /// Generate an instruction that must appear at the beginning of a basic
197    /// block, if any. Note that the return value must not be subject to
198    /// register allocation.
199    fn gen_block_start(
200        _is_indirect_branch_target: bool,
201        _is_forward_edge_cfi_enabled: bool,
202    ) -> Option<Self> {
203        None
204    }
205
206    /// Returns a description of the alignment required for functions for this
207    /// architecture.
208    fn function_alignment() -> FunctionAlignment;
209
210    /// Is this a low-level, one-way branch, not meant for use in a
211    /// VCode body? These instructions are meant to be used only when
212    /// directly emitted, i.e. when `MachInst` is used as an assembler
213    /// library.
214    fn is_low_level_branch(&self) -> bool {
215        false
216    }
217
218    /// A label-use kind: a type that describes the types of label references that
219    /// can occur in an instruction.
220    type LabelUse: MachInstLabelUse;
221
222    /// Byte representation of a trap opcode which is inserted by `MachBuffer`
223    /// during its `defer_trap` method.
224    const TRAP_OPCODE: &'static [u8];
225}
226
227/// A descriptor of a label reference (use) in an instruction set.
228pub trait MachInstLabelUse: Clone + Copy + Debug + Eq {
229    /// Required alignment for any veneer. Usually the required instruction
230    /// alignment (e.g., 4 for a RISC with 32-bit instructions, or 1 for x86).
231    const ALIGN: CodeOffset;
232
233    /// What is the maximum PC-relative range (positive)? E.g., if `1024`, a
234    /// label-reference fixup at offset `x` is valid if the label resolves to `x
235    /// + 1024`.
236    fn max_pos_range(self) -> CodeOffset;
237    /// What is the maximum PC-relative range (negative)? This is the absolute
238    /// value; i.e., if `1024`, then a label-reference fixup at offset `x` is
239    /// valid if the label resolves to `x - 1024`.
240    fn max_neg_range(self) -> CodeOffset;
241    /// What is the size of code-buffer slice this label-use needs to patch in
242    /// the label's value?
243    fn patch_size(self) -> CodeOffset;
244    /// Perform a code-patch, given the offset into the buffer of this label use
245    /// and the offset into the buffer of the label's definition.
246    /// It is guaranteed that, given `delta = offset - label_offset`, we will
247    /// have `offset >= -self.max_neg_range()` and `offset <=
248    /// self.max_pos_range()`.
249    fn patch(self, buffer: &mut [u8], use_offset: CodeOffset, label_offset: CodeOffset);
250    /// Can the label-use be patched to a veneer that supports a longer range?
251    /// Usually valid for jumps (a short-range jump can jump to a longer-range
252    /// jump), but not for e.g. constant pool references, because the constant
253    /// load would require different code (one more level of indirection).
254    fn supports_veneer(self) -> bool;
255    /// How many bytes are needed for a veneer?
256    fn veneer_size(self) -> CodeOffset;
257    /// What's the largest possible veneer that may be generated?
258    fn worst_case_veneer_size() -> CodeOffset;
259    /// Generate a veneer. The given code-buffer slice is `self.veneer_size()`
260    /// bytes long at offset `veneer_offset` in the buffer. The original
261    /// label-use will be patched to refer to this veneer's offset.  A new
262    /// (offset, LabelUse) is returned that allows the veneer to use the actual
263    /// label. For veneers to work properly, it is expected that the new veneer
264    /// has a larger range; on most platforms this probably means either a
265    /// "long-range jump" (e.g., on ARM, the 26-bit form), or if already at that
266    /// stage, a jump that supports a full 32-bit range, for example.
267    fn generate_veneer(self, buffer: &mut [u8], veneer_offset: CodeOffset) -> (CodeOffset, Self);
268
269    /// Returns the corresponding label-use for the relocation specified.
270    ///
271    /// This returns `None` if the relocation doesn't have a corresponding
272    /// representation for the target architecture.
273    fn from_reloc(reloc: Reloc, addend: Addend) -> Option<Self>;
274}
275
276/// Classification of call instruction types for granular analysis.
277#[derive(Clone, Copy, Debug, PartialEq, Eq)]
278pub enum CallType {
279    /// Not a call instruction.
280    None,
281    /// Regular call that returns to the caller.
282    Regular,
283    /// Tail call that doesn't return to the caller.
284    TailCall,
285}
286
287/// Function classification based on call patterns.
288///
289/// This enum classifies functions based on their calling behavior to enable
290/// targeted optimizations. Functions are categorized as:
291/// - `None`: No calls at all (can use simplified calling conventions)
292/// - `TailOnly`: Only tail calls (may skip frame setup in some cases)
293/// - `Regular`: Has regular calls (requires full calling convention support)
294#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
295pub enum FunctionCalls {
296    /// Function makes no calls at all.
297    #[default]
298    None,
299    /// Function only makes tail calls (no regular calls).
300    TailOnly,
301    /// Function makes at least one regular call (may also have tail calls).
302    Regular,
303}
304
305impl FunctionCalls {
306    /// Update the function classification based on a new call instruction.
307    ///
308    /// This method implements the merge logic for accumulating call patterns:
309    /// - Any regular call makes the function Regular
310    /// - Tail calls upgrade None to TailOnly
311    /// - Regular always stays Regular
312    pub fn update(&mut self, call_type: CallType) {
313        *self = match (*self, call_type) {
314            // No call instruction - state unchanged
315            (current, CallType::None) => current,
316            // Regular call always results in Regular classification
317            (_, CallType::Regular) => FunctionCalls::Regular,
318            // Tail call: None becomes TailOnly, others unchanged
319            (FunctionCalls::None, CallType::TailCall) => FunctionCalls::TailOnly,
320            (current, CallType::TailCall) => current,
321        };
322    }
323}
324
325/// Describes a block terminator (not call) in the VCode.
326///
327/// Actual targets are not included: the single-source-of-truth for
328/// those is the VCode itself, which holds, for each block, successors
329/// and outgoing branch args per successor.
330#[derive(Clone, Debug, PartialEq, Eq)]
331pub enum MachTerminator {
332    /// Not a terminator.
333    None,
334    /// A return instruction.
335    Ret,
336    /// A tail call.
337    RetCall,
338    /// A branch.
339    Branch,
340}
341
342/// A trait describing the ability to encode a MachInst into binary machine code.
343pub trait MachInstEmit: MachInst {
344    /// Persistent state carried across `emit` invocations.
345    type State: MachInstEmitState<Self>;
346
347    /// Constant information used in `emit` invocations.
348    type Info;
349
350    /// Emit the instruction.
351    fn emit(&self, code: &mut MachBuffer<Self>, info: &Self::Info, state: &mut Self::State);
352
353    /// Pretty-print the instruction.
354    fn pretty_print_inst(&self, state: &mut Self::State) -> String;
355}
356
357/// A trait describing the emission state carried between MachInsts when
358/// emitting a function body.
359pub trait MachInstEmitState<I: VCodeInst>: Default + Clone + Debug {
360    /// Create a new emission state given the ABI object.
361    fn new(abi: &Callee<I::ABIMachineSpec>, ctrl_plane: ControlPlane) -> Self;
362
363    /// Update the emission state before emitting an instruction that is a
364    /// safepoint.
365    fn pre_safepoint(&mut self, user_stack_map: Option<ir::UserStackMap>);
366
367    /// The emission state holds ownership of a control plane, so it doesn't
368    /// have to be passed around explicitly too much. `ctrl_plane_mut` may
369    /// be used if temporary access to the control plane is needed by some
370    /// other function that doesn't have access to the emission state.
371    fn ctrl_plane_mut(&mut self) -> &mut ControlPlane;
372
373    /// Used to continue using a control plane after the emission state is
374    /// not needed anymore.
375    fn take_ctrl_plane(self) -> ControlPlane;
376
377    /// A hook that triggers when first emitting a new block.
378    /// It is guaranteed to be called before any instructions are emitted.
379    fn on_new_block(&mut self) {}
380
381    /// The [`FrameLayout`] for the function currently being compiled.
382    fn frame_layout(&self) -> &FrameLayout;
383}
384
385/// The result of a `MachBackend::compile_function()` call. Contains machine
386/// code (as bytes) and a disassembly, if requested.
387#[derive(PartialEq, Debug, Clone)]
388#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
389pub struct CompiledCodeBase<T: CompilePhase> {
390    /// Machine code.
391    pub buffer: MachBufferFinalized<T>,
392    /// Size of stack frame, in bytes.
393    pub frame_size: u32,
394    /// Disassembly, if requested.
395    pub vcode: Option<String>,
396    /// Debug info: value labels to registers/stackslots at code offsets.
397    pub value_labels_ranges: ValueLabelsRanges,
398    /// Debug info: stackslots to stack pointer offsets.
399    pub sized_stackslot_offsets: PrimaryMap<StackSlot, u32>,
400    /// Debug info: stackslots to stack pointer offsets.
401    pub dynamic_stackslot_offsets: PrimaryMap<DynamicStackSlot, u32>,
402    /// Basic-block layout info: block start offsets.
403    ///
404    /// This info is generated only if the `machine_code_cfg_info`
405    /// flag is set.
406    pub bb_starts: Vec<CodeOffset>,
407    /// Basic-block layout info: block edges. Each edge is `(from,
408    /// to)`, where `from` and `to` are basic-block start offsets of
409    /// the respective blocks.
410    ///
411    /// This info is generated only if the `machine_code_cfg_info`
412    /// flag is set.
413    pub bb_edges: Vec<(CodeOffset, CodeOffset)>,
414}
415
416impl CompiledCodeStencil {
417    /// Apply function parameters to finalize a stencil into its final form.
418    pub fn apply_params(self, params: &FunctionParameters) -> CompiledCode {
419        CompiledCode {
420            buffer: self.buffer.apply_base_srcloc(params.base_srcloc()),
421            frame_size: self.frame_size,
422            vcode: self.vcode,
423            value_labels_ranges: self.value_labels_ranges,
424            sized_stackslot_offsets: self.sized_stackslot_offsets,
425            dynamic_stackslot_offsets: self.dynamic_stackslot_offsets,
426            bb_starts: self.bb_starts,
427            bb_edges: self.bb_edges,
428        }
429    }
430}
431
432impl<T: CompilePhase> CompiledCodeBase<T> {
433    /// Get a `CodeInfo` describing section sizes from this compilation result.
434    pub fn code_info(&self) -> CodeInfo {
435        CodeInfo {
436            total_size: self.buffer.total_size(),
437        }
438    }
439
440    /// Returns a reference to the machine code generated for this function compilation.
441    pub fn code_buffer(&self) -> &[u8] {
442        self.buffer.data()
443    }
444
445    /// Get the disassembly of the buffer, using the given capstone context.
446    #[cfg(feature = "disas")]
447    pub fn disassemble(
448        &self,
449        params: Option<&crate::ir::function::FunctionParameters>,
450        cs: &capstone::Capstone,
451    ) -> Result<String, anyhow::Error> {
452        use std::fmt::Write;
453
454        let mut buf = String::new();
455
456        let relocs = self.buffer.relocs();
457        let traps = self.buffer.traps();
458
459        // Normalize the block starts to include an initial block of offset 0.
460        let mut block_starts = Vec::new();
461        if self.bb_starts.first().copied() != Some(0) {
462            block_starts.push(0);
463        }
464        block_starts.extend_from_slice(&self.bb_starts);
465        block_starts.push(self.buffer.data().len() as u32);
466
467        // Iterate over block regions, to ensure that we always produce block labels
468        for (n, (&start, &end)) in block_starts
469            .iter()
470            .zip(block_starts.iter().skip(1))
471            .enumerate()
472        {
473            writeln!(buf, "block{n}: ; offset 0x{start:x}")?;
474
475            let buffer = &self.buffer.data()[start as usize..end as usize];
476            let insns = cs.disasm_all(buffer, start as u64).map_err(map_caperr)?;
477            for i in insns.iter() {
478                write!(buf, "  ")?;
479
480                let op_str = i.op_str().unwrap_or("");
481                if let Some(s) = i.mnemonic() {
482                    write!(buf, "{s}")?;
483                    if !op_str.is_empty() {
484                        write!(buf, " ")?;
485                    }
486                }
487
488                write!(buf, "{op_str}")?;
489
490                let end = i.address() + i.bytes().len() as u64;
491                let contains = |off| i.address() <= off && off < end;
492
493                for reloc in relocs.iter().filter(|reloc| contains(reloc.offset as u64)) {
494                    write!(
495                        buf,
496                        " ; reloc_external {} {} {}",
497                        reloc.kind,
498                        reloc.target.display(params),
499                        reloc.addend,
500                    )?;
501                }
502
503                if let Some(trap) = traps.iter().find(|trap| contains(trap.offset as u64)) {
504                    write!(buf, " ; trap: {}", trap.code)?;
505                }
506
507                writeln!(buf)?;
508            }
509        }
510
511        return Ok(buf);
512
513        fn map_caperr(err: capstone::Error) -> anyhow::Error {
514            anyhow::format_err!("{}", err)
515        }
516    }
517}
518
519/// Result of compiling a `FunctionStencil`, before applying `FunctionParameters` onto it.
520///
521/// Only used internally, in a transient manner, for the incremental compilation cache.
522pub type CompiledCodeStencil = CompiledCodeBase<Stencil>;
523
524/// `CompiledCode` in its final form (i.e. after `FunctionParameters` have been applied), ready for
525/// consumption.
526pub type CompiledCode = CompiledCodeBase<Final>;
527
528impl CompiledCode {
529    /// If available, return information about the code layout in the
530    /// final machine code: the offsets (in bytes) of each basic-block
531    /// start, and all basic-block edges.
532    pub fn get_code_bb_layout(&self) -> (Vec<usize>, Vec<(usize, usize)>) {
533        (
534            self.bb_starts.iter().map(|&off| off as usize).collect(),
535            self.bb_edges
536                .iter()
537                .map(|&(from, to)| (from as usize, to as usize))
538                .collect(),
539        )
540    }
541
542    /// Creates unwind information for the function.
543    ///
544    /// Returns `None` if the function has no unwind information.
545    #[cfg(feature = "unwind")]
546    pub fn create_unwind_info(
547        &self,
548        isa: &dyn crate::isa::TargetIsa,
549    ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
550        use crate::isa::unwind::UnwindInfoKind;
551        let unwind_info_kind = match isa.triple().operating_system {
552            target_lexicon::OperatingSystem::Windows => UnwindInfoKind::Windows,
553            _ => UnwindInfoKind::SystemV,
554        };
555        self.create_unwind_info_of_kind(isa, unwind_info_kind)
556    }
557
558    /// Creates unwind information for the function using the supplied
559    /// "kind". Supports cross-OS (but not cross-arch) generation.
560    ///
561    /// Returns `None` if the function has no unwind information.
562    #[cfg(feature = "unwind")]
563    pub fn create_unwind_info_of_kind(
564        &self,
565        isa: &dyn crate::isa::TargetIsa,
566        unwind_info_kind: crate::isa::unwind::UnwindInfoKind,
567    ) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
568        isa.emit_unwind_info(self, unwind_info_kind)
569    }
570}
571
572/// An object that can be used to create the text section of an executable.
573///
574/// This primarily handles resolving relative relocations at
575/// text-section-assembly time rather than at load/link time. This
576/// architecture-specific logic is sort of like a linker, but only for one
577/// object file at a time.
578pub trait TextSectionBuilder {
579    /// Appends `data` to the text section with the `align` specified.
580    ///
581    /// If `labeled` is `true` then this also binds the appended data to the
582    /// `n`th label for how many times this has been called with `labeled:
583    /// true`. The label target can be passed as the `target` argument to
584    /// `resolve_reloc`.
585    ///
586    /// This function returns the offset at which the data was placed in the
587    /// text section.
588    fn append(
589        &mut self,
590        labeled: bool,
591        data: &[u8],
592        align: u32,
593        ctrl_plane: &mut ControlPlane,
594    ) -> u64;
595
596    /// Attempts to resolve a relocation for this function.
597    ///
598    /// The `offset` is the offset of the relocation, within the text section.
599    /// The `reloc` is the kind of relocation.
600    /// The `addend` is the value to add to the relocation.
601    /// The `target` is the labeled function that is the target of this
602    /// relocation.
603    ///
604    /// Labeled functions are created with the `append` function above by
605    /// setting the `labeled` parameter to `true`.
606    ///
607    /// If this builder does not know how to handle `reloc` then this function
608    /// will return `false`. Otherwise this function will return `true` and this
609    /// relocation will be resolved in the final bytes returned by `finish`.
610    fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool;
611
612    /// A debug-only option which is used to for
613    fn force_veneers(&mut self);
614
615    /// Write the `data` provided at `offset`, for example when resolving a
616    /// relocation.
617    fn write(&mut self, offset: u64, data: &[u8]);
618
619    /// Completes this text section, filling out any final details, and returns
620    /// the bytes of the text section.
621    fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8>;
622}