cranelift_codegen/machinst/
abi.rs

1//! Implementation of a vanilla ABI, shared between several machines. The
2//! implementation here assumes that arguments will be passed in registers
3//! first, then additional args on the stack; that the stack grows downward,
4//! contains a standard frame (return address and frame pointer), and the
5//! compiler is otherwise free to allocate space below that with its choice of
6//! layout; and that the machine has some notion of caller- and callee-save
7//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
8//! mold and thus both of these backends use this shared implementation.
9//!
10//! See the documentation in specific machine backends for the "instantiation"
11//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
12//! and return values, and any other special requirements.
13//!
14//! For now the implementation here assumes a 64-bit machine, but we intend to
15//! make this 32/64-bit-generic shortly.
16//!
17//! # Vanilla ABI
18//!
19//! First, arguments and return values are passed in registers up to a certain
20//! fixed count, after which they overflow onto the stack. Multiple return
21//! values either fit in registers, or are returned in a separate return-value
22//! area on the stack, given by a hidden extra parameter.
23//!
24//! Note that the exact stack layout is up to us. We settled on the
25//! below design based on several requirements. In particular, we need
26//! to be able to generate instructions (or instruction sequences) to
27//! access arguments, stack slots, and spill slots before we know how
28//! many spill slots or clobber-saves there will be, because of our
29//! pass structure. We also prefer positive offsets to negative
30//! offsets because of an asymmetry in some machines' addressing modes
31//! (e.g., on AArch64, positive offsets have a larger possible range
32//! without a long-form sequence to synthesize an arbitrary
33//! offset). We also need clobber-save registers to be "near" the
34//! frame pointer: Windows unwind information requires it to be within
35//! 240 bytes of RBP. Finally, it is not allowed to access memory
36//! below the current SP value.
37//!
38//! We assume that a prologue first pushes the frame pointer (and
39//! return address above that, if the machine does not do that in
40//! hardware). We set FP to point to this two-word frame record. We
41//! store all other frame slots below this two-word frame record, as
42//! well as enough space for arguments to the largest possible
43//! function call. The stack pointer then remains at this position
44//! for the duration of the function, allowing us to address all
45//! frame storage at positive offsets from SP.
46//!
47//! Note that if we ever support dynamic stack-space allocation (for
48//! `alloca`), we will need a way to reference spill slots and stack
49//! slots relative to a dynamic SP, because we will no longer be able
50//! to know a static offset from SP to the slots at any particular
51//! program point. Probably the best solution at that point will be to
52//! revert to using the frame pointer as the reference for all slots,
53//! to allow generating spill/reload and stackslot accesses before we
54//! know how large the clobber-saves will be.
55//!
56//! # Stack Layout
57//!
58//! The stack looks like:
59//!
60//! ```plain
61//!   (high address)
62//!                              |          ...              |
63//!                              | caller frames             |
64//!                              |          ...              |
65//!                              +===========================+
66//!                              |          ...              |
67//!                              | stack args                |
68//! Canonical Frame Address -->  | (accessed via FP)         |
69//!                              +---------------------------+
70//! SP at function entry ----->  | return address            |
71//!                              +---------------------------+
72//! FP after prologue -------->  | FP (pushed by prologue)   |
73//!                              +---------------------------+           -----
74//!                              |          ...              |             |
75//!                              | clobbered callee-saves    |             |
76//! unwind-frame base -------->  | (pushed by prologue)      |             |
77//!                              +---------------------------+   -----     |
78//!                              |          ...              |     |       |
79//!                              | spill slots               |     |       |
80//!                              | (accessed via SP)         |   fixed   active
81//!                              |          ...              |   frame    size
82//!                              | stack slots               |  storage    |
83//!                              | (accessed via SP)         |    size     |
84//!                              | (alloc'd by prologue)     |     |       |
85//!                              +---------------------------+   -----     |
86//!                              | [alignment as needed]     |             |
87//!                              |          ...              |             |
88//!                              | args for largest call     |             |
89//! SP ----------------------->  | (alloc'd by prologue)     |             |
90//!                              +===========================+           -----
91//!
92//!   (low address)
93//! ```
94//!
95//! # Multi-value Returns
96//!
97//! We support multi-value returns by using multiple return-value
98//! registers. In some cases this is an extension of the base system
99//! ABI. See each platform's `abi.rs` implementation for details.
100
101use crate::CodegenError;
102use crate::entity::SecondaryMap;
103use crate::ir::types::*;
104use crate::ir::{ArgumentExtension, ArgumentPurpose, ExceptionTag, Signature};
105use crate::isa::TargetIsa;
106use crate::settings::ProbestackStrategy;
107use crate::{ir, isa};
108use crate::{machinst::*, trace};
109use alloc::boxed::Box;
110use regalloc2::{MachineEnv, PReg, PRegSet};
111use rustc_hash::FxHashMap;
112use smallvec::smallvec;
113use std::collections::HashMap;
114use std::marker::PhantomData;
115
116/// A small vector of instructions (with some reasonable size); appropriate for
117/// a small fixed sequence implementing one operation.
118pub type SmallInstVec<I> = SmallVec<[I; 4]>;
119
120/// A type used by backends to track argument-binding info in the "args"
121/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
122#[derive(Clone, Debug)]
123pub struct ArgPair {
124    /// The vreg that is defined by this args pseudoinst.
125    pub vreg: Writable<Reg>,
126    /// The preg that the arg arrives in; this constrains the vreg's
127    /// placement at the pseudoinst.
128    pub preg: Reg,
129}
130
131/// A type used by backends to track return register binding info in the "ret"
132/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
133#[derive(Clone, Debug)]
134pub struct RetPair {
135    /// The vreg that is returned by this pseudionst.
136    pub vreg: Reg,
137    /// The preg that the arg is returned through; this constrains the vreg's
138    /// placement at the pseudoinst.
139    pub preg: Reg,
140}
141
142/// A location for (part of) an argument or return value. These "storage slots"
143/// are specified for each register-sized part of an argument.
144#[derive(Clone, Copy, Debug, PartialEq, Eq)]
145pub enum ABIArgSlot {
146    /// In a real register.
147    Reg {
148        /// Register that holds this arg.
149        reg: RealReg,
150        /// Value type of this arg.
151        ty: ir::Type,
152        /// Should this arg be zero- or sign-extended?
153        extension: ir::ArgumentExtension,
154    },
155    /// Arguments only: on stack, at given offset from SP at entry.
156    Stack {
157        /// Offset of this arg relative to the base of stack args.
158        offset: i64,
159        /// Value type of this arg.
160        ty: ir::Type,
161        /// Should this arg be zero- or sign-extended?
162        extension: ir::ArgumentExtension,
163    },
164}
165
166impl ABIArgSlot {
167    /// The type of the value that will be stored in this slot.
168    pub fn get_type(&self) -> ir::Type {
169        match self {
170            ABIArgSlot::Reg { ty, .. } => *ty,
171            ABIArgSlot::Stack { ty, .. } => *ty,
172        }
173    }
174}
175
176/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
177/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
178/// super rare (and never happen with Wasm).
179pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
180
181/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
182/// Value to be passed with its parts in more than one location at the ABI
183/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
184/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
185/// number of "parts" should correspond to the number of registers used to store
186/// this type according to the machine backend.
187///
188/// As an invariant, the `purpose` for every part must match. As a further
189/// invariant, a `StructArg` part cannot appear with any other part.
190#[derive(Clone, Debug)]
191pub enum ABIArg {
192    /// Storage slots (registers or stack locations) for each part of the
193    /// argument value. The number of slots must equal the number of register
194    /// parts used to store a value of this type.
195    Slots {
196        /// Slots, one per register part.
197        slots: ABIArgSlotVec,
198        /// Purpose of this arg.
199        purpose: ir::ArgumentPurpose,
200    },
201    /// Structure argument. We reserve stack space for it, but the CLIF-level
202    /// semantics are a little weird: the value passed to the call instruction,
203    /// and received in the corresponding block param, is a *pointer*. On the
204    /// caller side, we memcpy the data from the passed-in pointer to the stack
205    /// area; on the callee side, we compute a pointer to this stack area and
206    /// provide that as the argument's value.
207    StructArg {
208        /// Offset of this arg relative to base of stack args.
209        offset: i64,
210        /// Size of this arg on the stack.
211        size: u64,
212        /// Purpose of this arg.
213        purpose: ir::ArgumentPurpose,
214    },
215    /// Implicit argument. Similar to a StructArg, except that we have the
216    /// target type, not a pointer type, at the CLIF-level. This argument is
217    /// still being passed via reference implicitly.
218    ImplicitPtrArg {
219        /// Register or stack slot holding a pointer to the buffer.
220        pointer: ABIArgSlot,
221        /// Offset of the argument buffer.
222        offset: i64,
223        /// Type of the implicit argument.
224        ty: Type,
225        /// Purpose of this arg.
226        purpose: ir::ArgumentPurpose,
227    },
228}
229
230impl ABIArg {
231    /// Create an ABIArg from one register.
232    pub fn reg(
233        reg: RealReg,
234        ty: ir::Type,
235        extension: ir::ArgumentExtension,
236        purpose: ir::ArgumentPurpose,
237    ) -> ABIArg {
238        ABIArg::Slots {
239            slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
240            purpose,
241        }
242    }
243
244    /// Create an ABIArg from one stack slot.
245    pub fn stack(
246        offset: i64,
247        ty: ir::Type,
248        extension: ir::ArgumentExtension,
249        purpose: ir::ArgumentPurpose,
250    ) -> ABIArg {
251        ABIArg::Slots {
252            slots: smallvec![ABIArgSlot::Stack {
253                offset,
254                ty,
255                extension,
256            }],
257            purpose,
258        }
259    }
260}
261
262/// Are we computing information about arguments or return values? Much of the
263/// handling is factored out into common routines; this enum allows us to
264/// distinguish which case we're handling.
265#[derive(Clone, Copy, Debug, PartialEq, Eq)]
266pub enum ArgsOrRets {
267    /// Arguments.
268    Args,
269    /// Return values.
270    Rets,
271}
272
273/// Abstract location for a machine-specific ABI impl to translate into the
274/// appropriate addressing mode.
275#[derive(Clone, Copy, Debug, PartialEq, Eq)]
276pub enum StackAMode {
277    /// Offset into the current frame's argument area.
278    IncomingArg(i64, u32),
279    /// Offset within the stack slots in the current frame.
280    Slot(i64),
281    /// Offset into the callee frame's argument area.
282    OutgoingArg(i64),
283}
284
285impl StackAMode {
286    fn offset_by(&self, offset: u32) -> Self {
287        match self {
288            StackAMode::IncomingArg(off, size) => {
289                StackAMode::IncomingArg(off.checked_add(i64::from(offset)).unwrap(), *size)
290            }
291            StackAMode::Slot(off) => StackAMode::Slot(off.checked_add(i64::from(offset)).unwrap()),
292            StackAMode::OutgoingArg(off) => {
293                StackAMode::OutgoingArg(off.checked_add(i64::from(offset)).unwrap())
294            }
295        }
296    }
297}
298
299/// Trait implemented by machine-specific backend to represent ISA flags.
300pub trait IsaFlags: Clone {
301    /// Get a flag indicating whether forward-edge CFI is enabled.
302    fn is_forward_edge_cfi_enabled(&self) -> bool {
303        false
304    }
305}
306
307/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
308/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
309/// `ABIArg`s in `SigSet` and exposes just the args for the current
310/// `compute_arg_locs` call.
311pub struct ArgsAccumulator<'a> {
312    sig_set_abi_args: &'a mut Vec<ABIArg>,
313    start: usize,
314    non_formal_flag: bool,
315}
316
317impl<'a> ArgsAccumulator<'a> {
318    fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
319        let start = sig_set_abi_args.len();
320        ArgsAccumulator {
321            sig_set_abi_args,
322            start,
323            non_formal_flag: false,
324        }
325    }
326
327    #[inline]
328    pub fn push(&mut self, arg: ABIArg) {
329        debug_assert!(!self.non_formal_flag);
330        self.sig_set_abi_args.push(arg)
331    }
332
333    #[inline]
334    pub fn push_non_formal(&mut self, arg: ABIArg) {
335        self.non_formal_flag = true;
336        self.sig_set_abi_args.push(arg)
337    }
338
339    #[inline]
340    pub fn args(&self) -> &[ABIArg] {
341        &self.sig_set_abi_args[self.start..]
342    }
343
344    #[inline]
345    pub fn args_mut(&mut self) -> &mut [ABIArg] {
346        &mut self.sig_set_abi_args[self.start..]
347    }
348}
349
350/// Trait implemented by machine-specific backend to provide information about
351/// register assignments and to allow generating the specific instructions for
352/// stack loads/saves, prologues/epilogues, etc.
353pub trait ABIMachineSpec {
354    /// The instruction type.
355    type I: VCodeInst;
356
357    /// The ISA flags type.
358    type F: IsaFlags;
359
360    /// This is the limit for the size of argument and return-value areas on the
361    /// stack. We place a reasonable limit here to avoid integer overflow issues
362    /// with 32-bit arithmetic.
363    const STACK_ARG_RET_SIZE_LIMIT: u32;
364
365    /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
366    fn word_bits() -> u32;
367
368    /// Returns the number of bytes in a word.
369    fn word_bytes() -> u32 {
370        return Self::word_bits() / 8;
371    }
372
373    /// Returns word-size integer type.
374    fn word_type() -> Type {
375        match Self::word_bits() {
376            32 => I32,
377            64 => I64,
378            _ => unreachable!(),
379        }
380    }
381
382    /// Returns word register class.
383    fn word_reg_class() -> RegClass {
384        RegClass::Int
385    }
386
387    /// Returns required stack alignment in bytes.
388    fn stack_align(call_conv: isa::CallConv) -> u32;
389
390    /// Process a list of parameters or return values and allocate them to registers
391    /// and stack slots.
392    ///
393    /// The argument locations should be pushed onto the given `ArgsAccumulator`
394    /// in order. Any extra arguments added (such as return area pointers)
395    /// should come at the end of the list so that the first N lowered
396    /// parameters align with the N clif parameters.
397    ///
398    /// Returns the stack-space used (rounded up to as alignment requires), and
399    /// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
400    /// that was added.
401    fn compute_arg_locs(
402        call_conv: isa::CallConv,
403        flags: &settings::Flags,
404        params: &[ir::AbiParam],
405        args_or_rets: ArgsOrRets,
406        add_ret_area_ptr: bool,
407        args: ArgsAccumulator,
408    ) -> CodegenResult<(u32, Option<usize>)>;
409
410    /// Generate a load from the stack.
411    fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
412
413    /// Generate a store to the stack.
414    fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
415
416    /// Generate a move.
417    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
418
419    /// Generate an integer-extend operation.
420    fn gen_extend(
421        to_reg: Writable<Reg>,
422        from_reg: Reg,
423        is_signed: bool,
424        from_bits: u8,
425        to_bits: u8,
426    ) -> Self::I;
427
428    /// Generate an "args" pseudo-instruction to capture input args in
429    /// registers.
430    fn gen_args(args: Vec<ArgPair>) -> Self::I;
431
432    /// Generate a "rets" pseudo-instruction that moves vregs to return
433    /// registers.
434    fn gen_rets(rets: Vec<RetPair>) -> Self::I;
435
436    /// Generate an add-with-immediate. Note that even if this uses a scratch
437    /// register, it must satisfy two requirements:
438    ///
439    /// - The add-imm sequence must only clobber caller-save registers that are
440    ///   not used for arguments, because it will be placed in the prologue
441    ///   before the clobbered callee-save registers are saved.
442    ///
443    /// - The add-imm sequence must work correctly when `from_reg` and/or
444    ///   `into_reg` are the register returned by `get_stacklimit_reg()`.
445    fn gen_add_imm(
446        call_conv: isa::CallConv,
447        into_reg: Writable<Reg>,
448        from_reg: Reg,
449        imm: u32,
450    ) -> SmallInstVec<Self::I>;
451
452    /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
453    /// the stack pointer is less than the given limit register (assuming the
454    /// stack grows downward).
455    fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
456
457    /// Generate an instruction to compute an address of a stack slot (FP- or
458    /// SP-based offset).
459    fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;
460
461    /// Get a fixed register to use to compute a stack limit. This is needed for
462    /// certain sequences generated after the register allocator has already
463    /// run. This must satisfy two requirements:
464    ///
465    /// - It must be a caller-save register that is not used for arguments,
466    ///   because it will be clobbered in the prologue before the clobbered
467    ///   callee-save registers are saved.
468    ///
469    /// - It must be safe to pass as an argument and/or destination to
470    ///   `gen_add_imm()`. This is relevant when an addition with a large
471    ///   immediate needs its own temporary; it cannot use the same fixed
472    ///   temporary as this one.
473    fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;
474
475    /// Generate a load to the given [base+offset] address.
476    fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
477
478    /// Generate a store from the given [base+offset] address.
479    fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
480
481    /// Adjust the stack pointer up or down.
482    fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
483
484    /// Compute a FrameLayout structure containing a sorted list of all clobbered
485    /// registers that are callee-saved according to the ABI, as well as the sizes
486    /// of all parts of the stack frame.  The result is used to emit the prologue
487    /// and epilogue routines.
488    fn compute_frame_layout(
489        call_conv: isa::CallConv,
490        flags: &settings::Flags,
491        sig: &Signature,
492        regs: &[Writable<RealReg>],
493        function_calls: FunctionCalls,
494        incoming_args_size: u32,
495        tail_args_size: u32,
496        stackslots_size: u32,
497        fixed_frame_storage_size: u32,
498        outgoing_args_size: u32,
499    ) -> FrameLayout;
500
501    /// Generate the usual frame-setup sequence for this architecture: e.g.,
502    /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
503    /// AArch64.
504    fn gen_prologue_frame_setup(
505        call_conv: isa::CallConv,
506        flags: &settings::Flags,
507        isa_flags: &Self::F,
508        frame_layout: &FrameLayout,
509    ) -> SmallInstVec<Self::I>;
510
511    /// Generate the usual frame-restore sequence for this architecture.
512    fn gen_epilogue_frame_restore(
513        call_conv: isa::CallConv,
514        flags: &settings::Flags,
515        isa_flags: &Self::F,
516        frame_layout: &FrameLayout,
517    ) -> SmallInstVec<Self::I>;
518
519    /// Generate a return instruction.
520    fn gen_return(
521        call_conv: isa::CallConv,
522        isa_flags: &Self::F,
523        frame_layout: &FrameLayout,
524    ) -> SmallInstVec<Self::I>;
525
526    /// Generate a probestack call.
527    fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
528
529    /// Generate a inline stack probe.
530    fn gen_inline_probestack(
531        insts: &mut SmallInstVec<Self::I>,
532        call_conv: isa::CallConv,
533        frame_size: u32,
534        guard_size: u32,
535    );
536
537    /// Generate a clobber-save sequence. The implementation here should return
538    /// a sequence of instructions that "push" or otherwise save to the stack all
539    /// registers written/modified by the function body that are callee-saved.
540    /// The sequence of instructions should adjust the stack pointer downward,
541    /// and should align as necessary according to ABI requirements.
542    fn gen_clobber_save(
543        call_conv: isa::CallConv,
544        flags: &settings::Flags,
545        frame_layout: &FrameLayout,
546    ) -> SmallVec<[Self::I; 16]>;
547
548    /// Generate a clobber-restore sequence. This sequence should perform the
549    /// opposite of the clobber-save sequence generated above, assuming that SP
550    /// going into the sequence is at the same point that it was left when the
551    /// clobber-save sequence finished.
552    fn gen_clobber_restore(
553        call_conv: isa::CallConv,
554        flags: &settings::Flags,
555        frame_layout: &FrameLayout,
556    ) -> SmallVec<[Self::I; 16]>;
557
558    /// Generate a memcpy invocation. Used to set up struct
559    /// args. Takes `src`, `dst` as read-only inputs and passes a temporary
560    /// allocator.
561    fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
562        call_conv: isa::CallConv,
563        dst: Reg,
564        src: Reg,
565        size: usize,
566        alloc_tmp: F,
567    ) -> SmallVec<[Self::I; 8]>;
568
569    /// Get the number of spillslots required for the given register-class.
570    fn get_number_of_spillslots_for_value(
571        rc: RegClass,
572        target_vector_bytes: u32,
573        isa_flags: &Self::F,
574    ) -> u32;
575
576    /// Get the ABI-dependent MachineEnv for managing register allocation.
577    fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;
578
579    /// Get all caller-save registers, that is, registers that we expect
580    /// not to be saved across a call to a callee with the given ABI.
581    fn get_regs_clobbered_by_call(
582        call_conv_of_callee: isa::CallConv,
583        is_exception: bool,
584    ) -> PRegSet;
585
586    /// Get the needed extension mode, given the mode attached to the argument
587    /// in the signature and the calling convention. The input (the attribute in
588    /// the signature) specifies what extension type should be done *if* the ABI
589    /// requires extension to the full register; this method's return value
590    /// indicates whether the extension actually *will* be done.
591    fn get_ext_mode(
592        call_conv: isa::CallConv,
593        specified: ir::ArgumentExtension,
594    ) -> ir::ArgumentExtension;
595
596    /// Get a temporary register that is available to use after a call
597    /// completes and that does not interfere with register-carried
598    /// return values. This is used to move stack-carried return
599    /// values directly into spillslots if needed.
600    fn retval_temp_reg(call_conv_of_callee: isa::CallConv) -> Writable<Reg>;
601
602    /// Get the exception payload registers, if any, for a calling
603    /// convention.
604    ///
605    /// Note that the argument here is the calling convention of the *callee*.
606    /// This might differ from the caller but the exceptional payloads that are
607    /// available are defined by the callee, not the caller.
608    fn exception_payload_regs(callee_conv: isa::CallConv) -> &'static [Reg] {
609        let _ = callee_conv;
610        &[]
611    }
612}
613
614/// Out-of-line data for calls, to keep the size of `Inst` down.
615#[derive(Clone, Debug)]
616pub struct CallInfo<T> {
617    /// Receiver of this call
618    pub dest: T,
619    /// Register uses of this call.
620    pub uses: CallArgList,
621    /// Register defs of this call.
622    pub defs: CallRetList,
623    /// Registers clobbered by this call, as per its calling convention.
624    pub clobbers: PRegSet,
625    /// The calling convention of the callee.
626    pub callee_conv: isa::CallConv,
627    /// The calling convention of the caller.
628    pub caller_conv: isa::CallConv,
629    /// The number of bytes that the callee will pop from the stack for the
630    /// caller, if any. (Used for popping stack arguments with the `tail`
631    /// calling convention.)
632    pub callee_pop_size: u32,
633    /// Information for a try-call, if this is one. We combine
634    /// handling of calls and try-calls as much as possible to share
635    /// argument/return logic; they mostly differ in the metadata that
636    /// they emit, which this information feeds into.
637    pub try_call_info: Option<TryCallInfo>,
638}
639
640/// Out-of-line information present on `try_call` instructions only:
641/// information that is used to generate exception-handling tables and
642/// link up to destination blocks properly.
643#[derive(Clone, Debug)]
644pub struct TryCallInfo {
645    /// The target to jump to on a normal returhn.
646    pub continuation: MachLabel,
647    /// Exception tags to catch and corresponding destination labels.
648    pub exception_handlers: Box<[TryCallHandler]>,
649}
650
651/// Information about an individual handler at a try-call site.
652#[derive(Clone, Debug)]
653pub enum TryCallHandler {
654    /// If the tag matches (given the current context), recover at the
655    /// label.
656    Tag(ExceptionTag, MachLabel),
657    /// Recover at the label unconditionally.
658    Default(MachLabel),
659    /// Set the dynamic context for interpreting tags at this point in
660    /// the handler list.
661    Context(Reg),
662}
663
664impl<T> CallInfo<T> {
665    /// Creates an empty set of info with no clobbers/uses/etc with the
666    /// specified ABI
667    pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
668        CallInfo {
669            dest,
670            uses: smallvec![],
671            defs: smallvec![],
672            clobbers: PRegSet::empty(),
673            caller_conv: call_conv,
674            callee_conv: call_conv,
675            callee_pop_size: 0,
676            try_call_info: None,
677        }
678    }
679}
680
681/// The id of an ABI signature within the `SigSet`.
682#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
683pub struct Sig(u32);
684cranelift_entity::entity_impl!(Sig);
685
686impl Sig {
687    fn prev(self) -> Option<Sig> {
688        self.0.checked_sub(1).map(Sig)
689    }
690}
691
692/// ABI information shared between body (callee) and caller.
693#[derive(Clone, Debug)]
694pub struct SigData {
695    /// Currently both return values and arguments are stored in a continuous space vector
696    /// in `SigSet::abi_args`.
697    ///
698    /// ```plain
699    ///                  +----------------------------------------------+
700    ///                  | return values                                |
701    ///                  | ...                                          |
702    ///   rets_end   --> +----------------------------------------------+
703    ///                  | arguments                                    |
704    ///                  | ...                                          |
705    ///   args_end   --> +----------------------------------------------+
706    ///
707    /// ```
708    ///
709    /// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
710    ///
711    /// Argument location ending offset (regs or stack slots). Stack offsets are relative to
712    /// SP on entry to function.
713    ///
714    /// This is a index into the `SigSet::abi_args`.
715    args_end: u32,
716
717    /// Return-value location ending offset. Stack offsets are relative to the return-area
718    /// pointer.
719    ///
720    /// This is a index into the `SigSet::abi_args`.
721    rets_end: u32,
722
723    /// Space on stack used to store arguments. We're storing the size in u32 to
724    /// reduce the size of the struct.
725    sized_stack_arg_space: u32,
726
727    /// Space on stack used to store return values. We're storing the size in u32 to
728    /// reduce the size of the struct.
729    sized_stack_ret_space: u32,
730
731    /// Index in `args` of the stack-return-value-area argument.
732    stack_ret_arg: Option<u16>,
733
734    /// Calling convention used.
735    call_conv: isa::CallConv,
736}
737
738impl SigData {
739    /// Get total stack space required for arguments.
740    pub fn sized_stack_arg_space(&self) -> u32 {
741        self.sized_stack_arg_space
742    }
743
744    /// Get total stack space required for return values.
745    pub fn sized_stack_ret_space(&self) -> u32 {
746        self.sized_stack_ret_space
747    }
748
749    /// Get calling convention used.
750    pub fn call_conv(&self) -> isa::CallConv {
751        self.call_conv
752    }
753
754    /// The index of the stack-return-value-area argument, if any.
755    pub fn stack_ret_arg(&self) -> Option<u16> {
756        self.stack_ret_arg
757    }
758}
759
760/// A (mostly) deduplicated set of ABI signatures.
761///
762/// We say "mostly" because we do not dedupe between signatures interned via
763/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
764/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
765/// this final bit of deduplication would require filling out the
766/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
767/// hash map itself but params and returns vecs in each signature) that we want
768/// to avoid.
769///
770/// In general, prefer using the `ir::SigRef`-taking methods to the
771/// `ir::Signature`-taking methods when you can get away with it, as they don't
772/// require cloning non-copy types that will trigger heap allocations.
773///
774/// This type can be indexed by `Sig` to access its associated `SigData`.
775pub struct SigSet {
776    /// Interned `ir::Signature`s that we already have an ABI signature for.
777    ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
778
779    /// Interned `ir::SigRef`s that we already have an ABI signature for.
780    ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
781
782    /// A single, shared allocation for all `ABIArg`s used by all
783    /// `SigData`s. Each `SigData` references its args/rets via indices into
784    /// this allocation.
785    abi_args: Vec<ABIArg>,
786
787    /// The actual ABI signatures, keyed by `Sig`.
788    sigs: PrimaryMap<Sig, SigData>,
789}
790
791impl SigSet {
792    /// Construct a new `SigSet`, interning all of the signatures used by the
793    /// given function.
794    pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
795    where
796        M: ABIMachineSpec,
797    {
798        let arg_estimate = func.dfg.signatures.len() * 6;
799
800        let mut sigs = SigSet {
801            ir_signature_to_abi_sig: FxHashMap::default(),
802            ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
803            abi_args: Vec::with_capacity(arg_estimate),
804            sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
805        };
806
807        sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
808        for sig_ref in func.dfg.signatures.keys() {
809            sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
810        }
811
812        Ok(sigs)
813    }
814
815    /// Have we already interned an ABI signature for the given `ir::Signature`?
816    pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
817        self.ir_signature_to_abi_sig.contains_key(signature)
818    }
819
820    /// Construct and intern an ABI signature for the given `ir::Signature`.
821    pub fn make_abi_sig_from_ir_signature<M>(
822        &mut self,
823        signature: ir::Signature,
824        flags: &settings::Flags,
825    ) -> CodegenResult<Sig>
826    where
827        M: ABIMachineSpec,
828    {
829        // Because the `HashMap` entry API requires taking ownership of the
830        // lookup key -- and we want to avoid unnecessary clones of
831        // `ir::Signature`s, even at the cost of duplicate lookups -- we can't
832        // have a single, get-or-create-style method for interning
833        // `ir::Signature`s into ABI signatures. So at least (debug) assert that
834        // we aren't creating duplicate ABI signatures for the same
835        // `ir::Signature`.
836        debug_assert!(!self.have_abi_sig_for_signature(&signature));
837
838        let sig_data = self.from_func_sig::<M>(&signature, flags)?;
839        let sig = self.sigs.push(sig_data);
840        self.ir_signature_to_abi_sig.insert(signature, sig);
841        Ok(sig)
842    }
843
844    fn make_abi_sig_from_ir_sig_ref<M>(
845        &mut self,
846        sig_ref: ir::SigRef,
847        dfg: &ir::DataFlowGraph,
848        flags: &settings::Flags,
849    ) -> CodegenResult<Sig>
850    where
851        M: ABIMachineSpec,
852    {
853        if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
854            return Ok(sig);
855        }
856        let signature = &dfg.signatures[sig_ref];
857        let sig_data = self.from_func_sig::<M>(signature, flags)?;
858        let sig = self.sigs.push(sig_data);
859        self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
860        Ok(sig)
861    }
862
863    /// Get the already-interned ABI signature id for the given `ir::SigRef`.
864    pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
865        self.ir_sig_ref_to_abi_sig[sig_ref]
866            .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
867    }
868
869    /// Get the already-interned ABI signature id for the given `ir::Signature`.
870    pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
871        self.ir_signature_to_abi_sig
872            .get(signature)
873            .copied()
874            .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
875    }
876
877    pub fn from_func_sig<M: ABIMachineSpec>(
878        &mut self,
879        sig: &ir::Signature,
880        flags: &settings::Flags,
881    ) -> CodegenResult<SigData> {
882        // Keep in sync with ensure_struct_return_ptr_is_returned
883        if sig.uses_special_return(ArgumentPurpose::StructReturn) {
884            panic!("Explicit StructReturn return value not allowed: {sig:?}")
885        }
886        let tmp;
887        let returns = if let Some(struct_ret_index) =
888            sig.special_param_index(ArgumentPurpose::StructReturn)
889        {
890            if !sig.returns.is_empty() {
891                panic!("No return values are allowed when using StructReturn: {sig:?}");
892            }
893            tmp = [sig.params[struct_ret_index]];
894            &tmp
895        } else {
896            sig.returns.as_slice()
897        };
898
899        // Compute args and retvals from signature. Handle retvals first,
900        // because we may need to add a return-area arg to the args.
901
902        // NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
903        // `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
904        // compute_arg_locs order.
905        let (sized_stack_ret_space, _) = M::compute_arg_locs(
906            sig.call_conv,
907            flags,
908            &returns,
909            ArgsOrRets::Rets,
910            /* extra ret-area ptr = */ false,
911            ArgsAccumulator::new(&mut self.abi_args),
912        )?;
913        if !flags.enable_multi_ret_implicit_sret() {
914            assert_eq!(sized_stack_ret_space, 0);
915        }
916        let rets_end = u32::try_from(self.abi_args.len()).unwrap();
917
918        // To avoid overflow issues, limit the return size to something reasonable.
919        if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
920            return Err(CodegenError::ImplLimitExceeded);
921        }
922
923        let need_stack_return_area = sized_stack_ret_space > 0;
924        if need_stack_return_area {
925            assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
926        }
927
928        let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
929            sig.call_conv,
930            flags,
931            &sig.params,
932            ArgsOrRets::Args,
933            need_stack_return_area,
934            ArgsAccumulator::new(&mut self.abi_args),
935        )?;
936        let args_end = u32::try_from(self.abi_args.len()).unwrap();
937
938        // To avoid overflow issues, limit the arg size to something reasonable.
939        if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
940            return Err(CodegenError::ImplLimitExceeded);
941        }
942
943        trace!(
944            "ABISig: sig {:?} => args end = {} rets end = {}
945             arg stack = {} ret stack = {} stack_ret_arg = {:?}",
946            sig,
947            args_end,
948            rets_end,
949            sized_stack_arg_space,
950            sized_stack_ret_space,
951            need_stack_return_area,
952        );
953
954        let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
955        Ok(SigData {
956            args_end,
957            rets_end,
958            sized_stack_arg_space,
959            sized_stack_ret_space,
960            stack_ret_arg,
961            call_conv: sig.call_conv,
962        })
963    }
964
965    /// Get this signature's ABI arguments.
966    pub fn args(&self, sig: Sig) -> &[ABIArg] {
967        let sig_data = &self.sigs[sig];
968        // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
969        let start = usize::try_from(sig_data.rets_end).unwrap();
970        let end = usize::try_from(sig_data.args_end).unwrap();
971        &self.abi_args[start..end]
972    }
973
974    /// Get information specifying how to pass the implicit pointer
975    /// to the return-value area on the stack, if required.
976    pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
977        let sig_data = &self.sigs[sig];
978        if let Some(i) = sig_data.stack_ret_arg {
979            Some(self.args(sig)[usize::from(i)].clone())
980        } else {
981            None
982        }
983    }
984
985    /// Get information specifying how to pass one argument.
986    pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
987        self.args(sig)[idx].clone()
988    }
989
990    /// Get this signature's ABI returns.
991    pub fn rets(&self, sig: Sig) -> &[ABIArg] {
992        let sig_data = &self.sigs[sig];
993        // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
994        let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
995        let end = usize::try_from(sig_data.rets_end).unwrap();
996        &self.abi_args[start..end]
997    }
998
999    /// Get information specifying how to pass one return value.
1000    pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
1001        self.rets(sig)[idx].clone()
1002    }
1003
1004    /// Get the number of arguments expected.
1005    pub fn num_args(&self, sig: Sig) -> usize {
1006        let len = self.args(sig).len();
1007        if self.sigs[sig].stack_ret_arg.is_some() {
1008            len - 1
1009        } else {
1010            len
1011        }
1012    }
1013
1014    /// Get the number of return values expected.
1015    pub fn num_rets(&self, sig: Sig) -> usize {
1016        self.rets(sig).len()
1017    }
1018}
1019
1020// NB: we do _not_ implement `IndexMut` because these signatures are
1021// deduplicated and shared!
1022impl std::ops::Index<Sig> for SigSet {
1023    type Output = SigData;
1024
1025    fn index(&self, sig: Sig) -> &Self::Output {
1026        &self.sigs[sig]
1027    }
1028}
1029
1030/// Structure describing the layout of a function's stack frame.
1031#[derive(Clone, Debug, Default)]
1032pub struct FrameLayout {
1033    /// Word size in bytes, so this struct can be
1034    /// monomorphic/independent of `ABIMachineSpec`.
1035    pub word_bytes: u32,
1036
1037    /// N.B. The areas whose sizes are given in this structure fully
1038    /// cover the current function's stack frame, from high to low
1039    /// stack addresses in the sequence below.  Each size contains
1040    /// any alignment padding that may be required by the ABI.
1041
1042    /// Size of incoming arguments on the stack.  This is not technically
1043    /// part of this function's frame, but code in the function will still
1044    /// need to access it.  Depending on the ABI, we may need to set up a
1045    /// frame pointer to do so; we also may need to pop this area from the
1046    /// stack upon return.
1047    pub incoming_args_size: u32,
1048
1049    /// The size of the incoming argument area, taking into account any
1050    /// potential increase in size required for tail calls present in the
1051    /// function. In the case that no tail calls are present, this value
1052    /// will be the same as [`Self::incoming_args_size`].
1053    pub tail_args_size: u32,
1054
1055    /// Size of the "setup area", typically holding the return address
1056    /// and/or the saved frame pointer.  This may be written either during
1057    /// the call itself (e.g. a pushed return address) or by code emitted
1058    /// from gen_prologue_frame_setup.  In any case, after that code has
1059    /// completed execution, the stack pointer is expected to point to the
1060    /// bottom of this area.  The same holds at the start of code emitted
1061    /// by gen_epilogue_frame_restore.
1062    pub setup_area_size: u32,
1063
1064    /// Size of the area used to save callee-saved clobbered registers.
1065    /// This area is accessed by code emitted from gen_clobber_save and
1066    /// gen_clobber_restore.
1067    pub clobber_size: u32,
1068
1069    /// Storage allocated for the fixed part of the stack frame.
1070    /// This contains stack slots and spill slots.
1071    pub fixed_frame_storage_size: u32,
1072
1073    /// The size of all stackslots.
1074    pub stackslots_size: u32,
1075
1076    /// Stack size to be reserved for outgoing arguments, if used by
1077    /// the current ABI, or 0 otherwise.  After gen_clobber_save and
1078    /// before gen_clobber_restore, the stack pointer points to the
1079    /// bottom of this area.
1080    pub outgoing_args_size: u32,
1081
1082    /// Sorted list of callee-saved registers that are clobbered
1083    /// according to the ABI.  These registers will be saved and
1084    /// restored by gen_clobber_save and gen_clobber_restore.
1085    pub clobbered_callee_saves: Vec<Writable<RealReg>>,
1086
1087    /// The function's call pattern classification.
1088    pub function_calls: FunctionCalls,
1089}
1090
1091impl FrameLayout {
1092    /// Split the clobbered callee-save registers into integer-class and
1093    /// float-class groups.
1094    ///
1095    /// This method does not currently support vector-class callee-save
1096    /// registers because no current backend has them.
1097    pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
1098        let (ints, floats) = self.clobbered_callee_saves.split_at(
1099            self.clobbered_callee_saves
1100                .partition_point(|r| r.to_reg().class() == RegClass::Int),
1101        );
1102        debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
1103        (ints, floats)
1104    }
1105
1106    /// The size of FP to SP while the frame is active (not during prologue
1107    /// setup or epilogue tear down).
1108    pub fn active_size(&self) -> u32 {
1109        self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1110    }
1111
1112    /// Get the offset from the SP to the sized stack slots area.
1113    pub fn sp_to_sized_stack_slots(&self) -> u32 {
1114        self.outgoing_args_size
1115    }
1116
1117    /// Get the offset of a spill slot from SP.
1118    pub fn spillslot_offset(&self, spillslot: SpillSlot) -> i64 {
1119        // Offset from beginning of spillslot area.
1120        let islot = spillslot.index() as i64;
1121        let spill_off = islot * self.word_bytes as i64;
1122        let sp_off = self.stackslots_size as i64 + spill_off;
1123
1124        sp_off
1125    }
1126
1127    /// Get the offset from SP up to FP.
1128    pub fn sp_to_fp(&self) -> u32 {
1129        self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1130    }
1131}
1132
1133/// ABI object for a function body.
1134pub struct Callee<M: ABIMachineSpec> {
1135    /// CLIF-level signature, possibly normalized.
1136    ir_sig: ir::Signature,
1137    /// Signature: arg and retval regs.
1138    sig: Sig,
1139    /// Defined dynamic types.
1140    dynamic_type_sizes: HashMap<Type, u32>,
1141    /// Offsets to each dynamic stackslot.
1142    dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
1143    /// Offsets to each sized stackslot.
1144    sized_stackslots: PrimaryMap<StackSlot, u32>,
1145    /// Total stack size of all stackslots
1146    stackslots_size: u32,
1147    /// Stack size to be reserved for outgoing arguments.
1148    outgoing_args_size: u32,
1149    /// Initially the number of bytes originating in the callers frame where stack arguments will
1150    /// live. After lowering this number may be larger than the size expected by the function being
1151    /// compiled, as tail calls potentially require more space for stack arguments.
1152    tail_args_size: u32,
1153    /// Register-argument defs, to be provided to the `args`
1154    /// pseudo-inst, and pregs to constrain them to.
1155    reg_args: Vec<ArgPair>,
1156    /// Finalized frame layout for this function.
1157    frame_layout: Option<FrameLayout>,
1158    /// The register holding the return-area pointer, if needed.
1159    ret_area_ptr: Option<Reg>,
1160    /// Calling convention this function expects.
1161    call_conv: isa::CallConv,
1162    /// The settings controlling this function's compilation.
1163    flags: settings::Flags,
1164    /// The ISA-specific flag values controlling this function's compilation.
1165    isa_flags: M::F,
1166    /// If this function has a stack limit specified, then `Reg` is where the
1167    /// stack limit will be located after the instructions specified have been
1168    /// executed.
1169    ///
1170    /// Note that this is intended for insertion into the prologue, if
1171    /// present. Also note that because the instructions here execute in the
1172    /// prologue this happens after legalization/register allocation/etc so we
1173    /// need to be extremely careful with each instruction. The instructions are
1174    /// manually register-allocated and carefully only use caller-saved
1175    /// registers and keep nothing live after this sequence of instructions.
1176    stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
1177
1178    _mach: PhantomData<M>,
1179}
1180
1181fn get_special_purpose_param_register(
1182    f: &ir::Function,
1183    sigs: &SigSet,
1184    sig: Sig,
1185    purpose: ir::ArgumentPurpose,
1186) -> Option<Reg> {
1187    let idx = f.signature.special_param_index(purpose)?;
1188    match &sigs.args(sig)[idx] {
1189        &ABIArg::Slots { ref slots, .. } => match &slots[0] {
1190            &ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
1191            _ => None,
1192        },
1193        _ => None,
1194    }
1195}
1196
1197fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
1198    Some(val.checked_add(mask)? & !mask)
1199}
1200
1201impl<M: ABIMachineSpec> Callee<M> {
1202    /// Create a new body ABI instance.
1203    pub fn new(
1204        f: &ir::Function,
1205        isa: &dyn TargetIsa,
1206        isa_flags: &M::F,
1207        sigs: &SigSet,
1208    ) -> CodegenResult<Self> {
1209        trace!("ABI: func signature {:?}", f.signature);
1210
1211        let flags = isa.flags().clone();
1212        let sig = sigs.abi_sig_for_signature(&f.signature);
1213
1214        let call_conv = f.signature.call_conv;
1215        // Only these calling conventions are supported.
1216        debug_assert!(
1217            call_conv == isa::CallConv::SystemV
1218                || call_conv == isa::CallConv::Tail
1219                || call_conv == isa::CallConv::Fast
1220                || call_conv == isa::CallConv::Cold
1221                || call_conv == isa::CallConv::WindowsFastcall
1222                || call_conv == isa::CallConv::AppleAarch64
1223                || call_conv == isa::CallConv::Winch,
1224            "Unsupported calling convention: {call_conv:?}"
1225        );
1226
1227        // Compute sized stackslot locations and total stackslot size.
1228        let mut end_offset: u32 = 0;
1229        let mut sized_stackslots = PrimaryMap::new();
1230
1231        for (stackslot, data) in f.sized_stack_slots.iter() {
1232            // We start our computation possibly unaligned where the previous
1233            // stackslot left off.
1234            let unaligned_start_offset = end_offset;
1235
1236            // The start of the stackslot must be aligned.
1237            //
1238            // We always at least machine-word-align slots, but also
1239            // satisfy the user's requested alignment.
1240            debug_assert!(data.align_shift < 32);
1241            let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
1242            let mask = align - 1;
1243            let start_offset = checked_round_up(unaligned_start_offset, mask)
1244                .ok_or(CodegenError::ImplLimitExceeded)?;
1245
1246            // The end offset is the start offset increased by the size
1247            end_offset = start_offset
1248                .checked_add(data.size)
1249                .ok_or(CodegenError::ImplLimitExceeded)?;
1250
1251            debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
1252            sized_stackslots.push(start_offset);
1253        }
1254
1255        // Compute dynamic stackslot locations and total stackslot size.
1256        let mut dynamic_stackslots = PrimaryMap::new();
1257        for (stackslot, data) in f.dynamic_stack_slots.iter() {
1258            debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
1259
1260            // This computation is similar to the stackslots above
1261            let unaligned_start_offset = end_offset;
1262
1263            let mask = M::word_bytes() - 1;
1264            let start_offset = checked_round_up(unaligned_start_offset, mask)
1265                .ok_or(CodegenError::ImplLimitExceeded)?;
1266
1267            let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
1268                CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
1269            })?;
1270
1271            end_offset = start_offset
1272                .checked_add(isa.dynamic_vector_bytes(ty))
1273                .ok_or(CodegenError::ImplLimitExceeded)?;
1274
1275            dynamic_stackslots.push(start_offset);
1276        }
1277
1278        // The size of the stackslots needs to be word aligned
1279        let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
1280            .ok_or(CodegenError::ImplLimitExceeded)?;
1281
1282        let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
1283        for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
1284            let ty = f
1285                .get_concrete_dynamic_ty(dyn_ty)
1286                .unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
1287            let size = isa.dynamic_vector_bytes(ty);
1288            dynamic_type_sizes.insert(ty, size);
1289        }
1290
1291        // Figure out what instructions, if any, will be needed to check the
1292        // stack limit. This can either be specified as a special-purpose
1293        // argument or as a global value which often calculates the stack limit
1294        // from the arguments.
1295        let stack_limit = f
1296            .stack_limit
1297            .map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));
1298
1299        let tail_args_size = sigs[sig].sized_stack_arg_space;
1300
1301        Ok(Self {
1302            ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
1303            sig,
1304            dynamic_stackslots,
1305            dynamic_type_sizes,
1306            sized_stackslots,
1307            stackslots_size,
1308            outgoing_args_size: 0,
1309            tail_args_size,
1310            reg_args: vec![],
1311            frame_layout: None,
1312            ret_area_ptr: None,
1313            call_conv,
1314            flags,
1315            isa_flags: isa_flags.clone(),
1316            stack_limit,
1317            _mach: PhantomData,
1318        })
1319    }
1320
1321    /// Inserts instructions necessary for checking the stack limit into the
1322    /// prologue.
1323    ///
1324    /// This function will generate instructions necessary for perform a stack
1325    /// check at the header of a function. The stack check is intended to trap
1326    /// if the stack pointer goes below a particular threshold, preventing stack
1327    /// overflow in wasm or other code. The `stack_limit` argument here is the
1328    /// register which holds the threshold below which we're supposed to trap.
1329    /// This function is known to allocate `stack_size` bytes and we'll push
1330    /// instructions onto `insts`.
1331    ///
1332    /// Note that the instructions generated here are special because this is
1333    /// happening so late in the pipeline (e.g. after register allocation). This
1334    /// means that we need to do manual register allocation here and also be
1335    /// careful to not clobber any callee-saved or argument registers. For now
1336    /// this routine makes do with the `spilltmp_reg` as one temporary
1337    /// register, and a second register of `tmp2` which is caller-saved. This
1338    /// should be fine for us since no spills should happen in this sequence of
1339    /// instructions, so our register won't get accidentally clobbered.
1340    ///
1341    /// No values can be live after the prologue, but in this case that's ok
1342    /// because we just need to perform a stack check before progressing with
1343    /// the rest of the function.
1344    fn insert_stack_check(
1345        &self,
1346        stack_limit: Reg,
1347        stack_size: u32,
1348        insts: &mut SmallInstVec<M::I>,
1349    ) {
1350        // With no explicit stack allocated we can just emit the simple check of
1351        // the stack registers against the stack limit register, and trap if
1352        // it's out of bounds.
1353        if stack_size == 0 {
1354            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1355            return;
1356        }
1357
1358        // Note that the 32k stack size here is pretty special. See the
1359        // documentation in x86/abi.rs for why this is here. The general idea is
1360        // that we're protecting against overflow in the addition that happens
1361        // below.
1362        if stack_size >= 32 * 1024 {
1363            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1364        }
1365
1366        // Add the `stack_size` to `stack_limit`, placing the result in
1367        // `scratch`.
1368        //
1369        // Note though that `stack_limit`'s register may be the same as
1370        // `scratch`. If our stack size doesn't fit into an immediate this
1371        // means we need a second scratch register for loading the stack size
1372        // into a register.
1373        let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
1374        insts.extend(M::gen_add_imm(
1375            self.call_conv,
1376            scratch,
1377            stack_limit,
1378            stack_size,
1379        ));
1380        insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
1381    }
1382}
1383
1384/// Generates the instructions necessary for the `gv` to be materialized into a
1385/// register.
1386///
1387/// This function will return a register that will contain the result of
1388/// evaluating `gv`. It will also return any instructions necessary to calculate
1389/// the value of the register.
1390///
1391/// Note that global values are typically lowered to instructions via the
1392/// standard legalization pass. Unfortunately though prologue generation happens
1393/// so late in the pipeline that we can't use these legalization passes to
1394/// generate the instructions for `gv`. As a result we duplicate some lowering
1395/// of `gv` here and support only some global values. This is similar to what
1396/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
1397/// in the future too!
1398///
1399/// Also note that this function will make use of `writable_spilltmp_reg()` as a
1400/// temporary register to store values in if necessary. Currently after we write
1401/// to this register there's guaranteed to be no spilled values between where
1402/// it's used, because we're not participating in register allocation anyway!
1403fn gen_stack_limit<M: ABIMachineSpec>(
1404    f: &ir::Function,
1405    sigs: &SigSet,
1406    sig: Sig,
1407    gv: ir::GlobalValue,
1408) -> (Reg, SmallInstVec<M::I>) {
1409    let mut insts = smallvec![];
1410    let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
1411    return (reg, insts);
1412}
1413
1414fn generate_gv<M: ABIMachineSpec>(
1415    f: &ir::Function,
1416    sigs: &SigSet,
1417    sig: Sig,
1418    gv: ir::GlobalValue,
1419    insts: &mut SmallInstVec<M::I>,
1420) -> Reg {
1421    match f.global_values[gv] {
1422        // Return the direct register the vmcontext is in
1423        ir::GlobalValueData::VMContext => {
1424            get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
1425                .expect("no vmcontext parameter found")
1426        }
1427        // Load our base value into a register, then load from that register
1428        // in to a temporary register.
1429        ir::GlobalValueData::Load {
1430            base,
1431            offset,
1432            global_type: _,
1433            flags: _,
1434        } => {
1435            let base = generate_gv::<M>(f, sigs, sig, base, insts);
1436            let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
1437            insts.push(M::gen_load_base_offset(
1438                into_reg,
1439                base,
1440                offset.into(),
1441                M::word_type(),
1442            ));
1443            return into_reg.to_reg();
1444        }
1445        ref other => panic!("global value for stack limit not supported: {other}"),
1446    }
1447}
1448
1449/// Returns true if the signature needs to be legalized.
1450fn missing_struct_return(sig: &ir::Signature) -> bool {
1451    sig.uses_special_param(ArgumentPurpose::StructReturn)
1452        && !sig.uses_special_return(ArgumentPurpose::StructReturn)
1453}
1454
1455fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
1456    // Keep in sync with Callee::new
1457    let mut sig = sig.clone();
1458    if sig.uses_special_return(ArgumentPurpose::StructReturn) {
1459        panic!("Explicit StructReturn return value not allowed: {sig:?}")
1460    }
1461    if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
1462        if !sig.returns.is_empty() {
1463            panic!("No return values are allowed when using StructReturn: {sig:?}");
1464        }
1465        sig.returns.insert(0, sig.params[struct_ret_index]);
1466    }
1467    sig
1468}
1469
1470/// ### Pre-Regalloc Functions
1471///
1472/// These methods of `Callee` may only be called before regalloc.
1473impl<M: ABIMachineSpec> Callee<M> {
1474    /// Access the (possibly legalized) signature.
1475    pub fn signature(&self) -> &ir::Signature {
1476        debug_assert!(
1477            !missing_struct_return(&self.ir_sig),
1478            "`Callee::ir_sig` is always legalized"
1479        );
1480        &self.ir_sig
1481    }
1482
1483    /// Initialize. This is called after the Callee is constructed because it
1484    /// may allocate a temp vreg, which can only be allocated once the lowering
1485    /// context exists.
1486    pub fn init_retval_area(
1487        &mut self,
1488        sigs: &SigSet,
1489        vregs: &mut VRegAllocator<M::I>,
1490    ) -> CodegenResult<()> {
1491        if sigs[self.sig].stack_ret_arg.is_some() {
1492            let ret_area_ptr = vregs.alloc(M::word_type())?;
1493            self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
1494        }
1495        Ok(())
1496    }
1497
1498    /// Get the return area pointer register, if any.
1499    pub fn ret_area_ptr(&self) -> Option<Reg> {
1500        self.ret_area_ptr
1501    }
1502
1503    /// Accumulate outgoing arguments.
1504    ///
1505    /// This ensures that at least `size` bytes are allocated in the prologue to
1506    /// be available for use in function calls to hold arguments and/or return
1507    /// values. If this function is called multiple times, the maximum of all
1508    /// `size` values will be available.
1509    pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
1510        if size > self.outgoing_args_size {
1511            self.outgoing_args_size = size;
1512        }
1513    }
1514
1515    /// Accumulate the incoming argument area size requirements for a tail call,
1516    /// as it could be larger than the incoming arguments of the function
1517    /// currently being compiled.
1518    pub fn accumulate_tail_args_size(&mut self, size: u32) {
1519        if size > self.tail_args_size {
1520            self.tail_args_size = size;
1521        }
1522    }
1523
1524    pub fn is_forward_edge_cfi_enabled(&self) -> bool {
1525        self.isa_flags.is_forward_edge_cfi_enabled()
1526    }
1527
1528    /// Get the calling convention implemented by this ABI object.
1529    pub fn call_conv(&self) -> isa::CallConv {
1530        self.call_conv
1531    }
1532
1533    /// Get the ABI-dependent MachineEnv for managing register allocation.
1534    pub fn machine_env(&self) -> &MachineEnv {
1535        M::get_machine_env(&self.flags, self.call_conv)
1536    }
1537
1538    /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
1539    pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
1540        &self.sized_stackslots
1541    }
1542
1543    /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
1544    pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
1545        &self.dynamic_stackslots
1546    }
1547
1548    /// Generate an instruction which copies an argument to a destination
1549    /// register.
1550    pub fn gen_copy_arg_to_regs(
1551        &mut self,
1552        sigs: &SigSet,
1553        idx: usize,
1554        into_regs: ValueRegs<Writable<Reg>>,
1555        vregs: &mut VRegAllocator<M::I>,
1556    ) -> SmallInstVec<M::I> {
1557        let mut insts = smallvec![];
1558        let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
1559            match slot {
1560                &ABIArgSlot::Reg { reg, .. } => {
1561                    // Add a preg -> def pair to the eventual `args`
1562                    // instruction.  Extension mode doesn't matter
1563                    // (we're copying out, not in; we ignore high bits
1564                    // by convention).
1565                    let arg = ArgPair {
1566                        vreg: *into_reg,
1567                        preg: reg.into(),
1568                    };
1569                    self.reg_args.push(arg);
1570                }
1571                &ABIArgSlot::Stack {
1572                    offset,
1573                    ty,
1574                    extension,
1575                    ..
1576                } => {
1577                    // However, we have to respect the extension mode for stack
1578                    // slots, or else we grab the wrong bytes on big-endian.
1579                    let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1580                    let ty =
1581                        if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
1582                            M::word_type()
1583                        } else {
1584                            ty
1585                        };
1586                    insts.push(M::gen_load_stack(
1587                        StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1588                        *into_reg,
1589                        ty,
1590                    ));
1591                }
1592            }
1593        };
1594
1595        match &sigs.args(self.sig)[idx] {
1596            &ABIArg::Slots { ref slots, .. } => {
1597                assert_eq!(into_regs.len(), slots.len());
1598                for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
1599                    copy_arg_slot_to_reg(&slot, &into_reg);
1600                }
1601            }
1602            &ABIArg::StructArg { offset, .. } => {
1603                let into_reg = into_regs.only_reg().unwrap();
1604                // Buffer address is implicitly defined by the ABI.
1605                insts.push(M::gen_get_stack_addr(
1606                    StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1607                    into_reg,
1608                ));
1609            }
1610            &ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
1611                let into_reg = into_regs.only_reg().unwrap();
1612                // We need to dereference the pointer.
1613                let base = match &pointer {
1614                    &ABIArgSlot::Reg { reg, ty, .. } => {
1615                        let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
1616                        self.reg_args.push(ArgPair {
1617                            vreg: Writable::from_reg(tmp),
1618                            preg: reg.into(),
1619                        });
1620                        tmp
1621                    }
1622                    &ABIArgSlot::Stack { offset, ty, .. } => {
1623                        let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
1624                            .only_reg()
1625                            .unwrap();
1626                        insts.push(M::gen_load_stack(
1627                            StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1628                            addr_reg,
1629                            ty,
1630                        ));
1631                        addr_reg.to_reg()
1632                    }
1633                };
1634                insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
1635            }
1636        }
1637        insts
1638    }
1639
1640    /// Generate an instruction which copies a source register to a return value slot.
1641    pub fn gen_copy_regs_to_retval(
1642        &self,
1643        sigs: &SigSet,
1644        idx: usize,
1645        from_regs: ValueRegs<Reg>,
1646        vregs: &mut VRegAllocator<M::I>,
1647    ) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
1648        let mut reg_pairs = smallvec![];
1649        let mut ret = smallvec![];
1650        let word_bits = M::word_bits() as u8;
1651        match &sigs.rets(self.sig)[idx] {
1652            &ABIArg::Slots { ref slots, .. } => {
1653                assert_eq!(from_regs.len(), slots.len());
1654                for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1655                    match slot {
1656                        &ABIArgSlot::Reg {
1657                            reg, ty, extension, ..
1658                        } => {
1659                            let from_bits = ty_bits(ty) as u8;
1660                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1661                            let vreg = match (ext, from_bits) {
1662                                (ir::ArgumentExtension::Uext, n)
1663                                | (ir::ArgumentExtension::Sext, n)
1664                                    if n < word_bits =>
1665                                {
1666                                    let signed = ext == ir::ArgumentExtension::Sext;
1667                                    let dst =
1668                                        writable_value_regs(vregs.alloc_with_deferred_error(ty))
1669                                            .only_reg()
1670                                            .unwrap();
1671                                    ret.push(M::gen_extend(
1672                                        dst, from_reg, signed, from_bits,
1673                                        /* to_bits = */ word_bits,
1674                                    ));
1675                                    dst.to_reg()
1676                                }
1677                                _ => {
1678                                    // No move needed, regalloc2 will emit it using the constraint
1679                                    // added by the RetPair.
1680                                    from_reg
1681                                }
1682                            };
1683                            reg_pairs.push(RetPair {
1684                                vreg,
1685                                preg: Reg::from(reg),
1686                            });
1687                        }
1688                        &ABIArgSlot::Stack {
1689                            offset,
1690                            ty,
1691                            extension,
1692                            ..
1693                        } => {
1694                            let mut ty = ty;
1695                            let from_bits = ty_bits(ty) as u8;
1696                            // A machine ABI implementation should ensure that stack frames
1697                            // have "reasonable" size. All current ABIs for machinst
1698                            // backends (aarch64 and x64) enforce a 128MB limit.
1699                            let off = i32::try_from(offset).expect(
1700                                "Argument stack offset greater than 2GB; should hit impl limit first",
1701                                );
1702                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1703                            // Trash the from_reg; it should be its last use.
1704                            match (ext, from_bits) {
1705                                (ir::ArgumentExtension::Uext, n)
1706                                | (ir::ArgumentExtension::Sext, n)
1707                                    if n < word_bits =>
1708                                {
1709                                    assert_eq!(M::word_reg_class(), from_reg.class());
1710                                    let signed = ext == ir::ArgumentExtension::Sext;
1711                                    let dst =
1712                                        writable_value_regs(vregs.alloc_with_deferred_error(ty))
1713                                            .only_reg()
1714                                            .unwrap();
1715                                    ret.push(M::gen_extend(
1716                                        dst, from_reg, signed, from_bits,
1717                                        /* to_bits = */ word_bits,
1718                                    ));
1719                                    // Store the extended version.
1720                                    ty = M::word_type();
1721                                }
1722                                _ => {}
1723                            };
1724                            ret.push(M::gen_store_base_offset(
1725                                self.ret_area_ptr.unwrap(),
1726                                off,
1727                                from_reg,
1728                                ty,
1729                            ));
1730                        }
1731                    }
1732                }
1733            }
1734            ABIArg::StructArg { .. } => {
1735                panic!("StructArg in return position is unsupported");
1736            }
1737            ABIArg::ImplicitPtrArg { .. } => {
1738                panic!("ImplicitPtrArg in return position is unsupported");
1739            }
1740        }
1741        (reg_pairs, ret)
1742    }
1743
1744    /// Generate any setup instruction needed to save values to the
1745    /// return-value area. This is usually used when were are multiple return
1746    /// values or an otherwise large return value that must be passed on the
1747    /// stack; typically the ABI specifies an extra hidden argument that is a
1748    /// pointer to that memory.
1749    pub fn gen_retval_area_setup(
1750        &mut self,
1751        sigs: &SigSet,
1752        vregs: &mut VRegAllocator<M::I>,
1753    ) -> Option<M::I> {
1754        if let Some(i) = sigs[self.sig].stack_ret_arg {
1755            let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
1756            let insts =
1757                self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
1758            insts.into_iter().next().map(|inst| {
1759                trace!(
1760                    "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
1761                    inst,
1762                    ret_area_ptr.to_reg()
1763                );
1764                inst
1765            })
1766        } else {
1767            trace!("gen_retval_area_setup: not needed");
1768            None
1769        }
1770    }
1771
1772    /// Generate a return instruction.
1773    pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
1774        M::gen_rets(rets)
1775    }
1776
1777    /// Set up arguments values `args` for a call with signature `sig`.
1778    /// This will return a series of instructions to be emitted to set
1779    /// up all arguments, as well as a `CallArgList` list representing
1780    /// the arguments passed in registers.  The latter need to be added
1781    /// as constraints to the actual call instruction.
1782    pub fn gen_call_args(
1783        &self,
1784        sigs: &SigSet,
1785        sig: Sig,
1786        args: &[ValueRegs<Reg>],
1787        is_tail_call: bool,
1788        flags: &settings::Flags,
1789        vregs: &mut VRegAllocator<M::I>,
1790    ) -> (CallArgList, SmallInstVec<M::I>) {
1791        let mut uses: CallArgList = smallvec![];
1792        let mut insts = smallvec![];
1793
1794        assert_eq!(args.len(), sigs.num_args(sig));
1795
1796        let call_conv = sigs[sig].call_conv;
1797        let stack_arg_space = sigs[sig].sized_stack_arg_space;
1798        let stack_arg = |offset| {
1799            if is_tail_call {
1800                StackAMode::IncomingArg(offset, stack_arg_space)
1801            } else {
1802                StackAMode::OutgoingArg(offset)
1803            }
1804        };
1805
1806        let word_ty = M::word_type();
1807        let word_rc = M::word_reg_class();
1808        let word_bits = M::word_bits() as usize;
1809
1810        if is_tail_call {
1811            debug_assert_eq!(
1812                self.call_conv,
1813                isa::CallConv::Tail,
1814                "Can only do `return_call`s from within a `tail` calling convention function"
1815            );
1816        }
1817
1818        // Helper to process a single argument slot (register or stack slot).
1819        // This will either add the register to the `uses` list or write the
1820        // value to the stack slot in the outgoing argument area (or for tail
1821        // calls, the incoming argument area).
1822        let mut process_arg_slot = |insts: &mut SmallInstVec<M::I>, slot, vreg, ty| {
1823            match &slot {
1824                &ABIArgSlot::Reg { reg, .. } => {
1825                    uses.push(CallArgPair {
1826                        vreg,
1827                        preg: reg.into(),
1828                    });
1829                }
1830                &ABIArgSlot::Stack { offset, .. } => {
1831                    insts.push(M::gen_store_stack(stack_arg(offset), vreg, ty));
1832                }
1833            };
1834        };
1835
1836        // First pass: Handle `StructArg` arguments.  These need to be copied
1837        // into their associated stack buffers.  This should happen before any
1838        // of the other arguments are processed, as the `memcpy` call might
1839        // clobber registers used by other arguments.
1840        for (idx, from_regs) in args.iter().enumerate() {
1841            match &sigs.args(sig)[idx] {
1842                &ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
1843                &ABIArg::StructArg { offset, size, .. } => {
1844                    let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1845                    insts.push(M::gen_get_stack_addr(
1846                        stack_arg(offset),
1847                        Writable::from_reg(tmp),
1848                    ));
1849                    insts.extend(M::gen_memcpy(
1850                        isa::CallConv::for_libcall(flags, call_conv),
1851                        tmp,
1852                        from_regs.only_reg().unwrap(),
1853                        size as usize,
1854                        |ty| {
1855                            Writable::from_reg(
1856                                vregs.alloc_with_deferred_error(ty).only_reg().unwrap(),
1857                            )
1858                        },
1859                    ));
1860                }
1861            }
1862        }
1863
1864        // Second pass: Handle everything except `StructArg` arguments.
1865        for (idx, from_regs) in args.iter().enumerate() {
1866            match sigs.args(sig)[idx] {
1867                ABIArg::Slots { ref slots, .. } => {
1868                    assert_eq!(from_regs.len(), slots.len());
1869                    for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1870                        // Load argument slot value from `from_reg`, and perform any zero-
1871                        // or sign-extension that is required by the ABI.
1872                        let (ty, extension) = match *slot {
1873                            ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1874                            ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
1875                        };
1876                        let ext = M::get_ext_mode(call_conv, extension);
1877                        let (vreg, ty) = if ext != ir::ArgumentExtension::None
1878                            && ty_bits(ty) < word_bits
1879                        {
1880                            assert_eq!(word_rc, from_reg.class());
1881                            let signed = match ext {
1882                                ir::ArgumentExtension::Uext => false,
1883                                ir::ArgumentExtension::Sext => true,
1884                                _ => unreachable!(),
1885                            };
1886                            let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1887                            insts.push(M::gen_extend(
1888                                Writable::from_reg(tmp),
1889                                *from_reg,
1890                                signed,
1891                                ty_bits(ty) as u8,
1892                                word_bits as u8,
1893                            ));
1894                            (tmp, word_ty)
1895                        } else {
1896                            (*from_reg, ty)
1897                        };
1898                        process_arg_slot(&mut insts, *slot, vreg, ty);
1899                    }
1900                }
1901                ABIArg::ImplicitPtrArg {
1902                    offset,
1903                    pointer,
1904                    ty,
1905                    ..
1906                } => {
1907                    let vreg = from_regs.only_reg().unwrap();
1908                    let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1909                    insts.push(M::gen_get_stack_addr(
1910                        stack_arg(offset),
1911                        Writable::from_reg(tmp),
1912                    ));
1913                    insts.push(M::gen_store_base_offset(tmp, 0, vreg, ty));
1914                    process_arg_slot(&mut insts, pointer, tmp, word_ty);
1915                }
1916                ABIArg::StructArg { .. } => {}
1917            }
1918        }
1919
1920        // Finally, set the stack-return pointer to the return argument area.
1921        // For tail calls, this means forwarding the incoming stack-return pointer.
1922        if let Some(ret_arg) = sigs.get_ret_arg(sig) {
1923            let ret_area = if is_tail_call {
1924                self.ret_area_ptr.expect(
1925                    "if the tail callee has a return pointer, then the tail caller must as well",
1926                )
1927            } else {
1928                let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1929                let amode = StackAMode::OutgoingArg(stack_arg_space.into());
1930                insts.push(M::gen_get_stack_addr(amode, Writable::from_reg(tmp)));
1931                tmp
1932            };
1933            match ret_arg {
1934                // The return pointer must occupy a single slot.
1935                ABIArg::Slots { slots, .. } => {
1936                    assert_eq!(slots.len(), 1);
1937                    process_arg_slot(&mut insts, slots[0], ret_area, word_ty);
1938                }
1939                _ => unreachable!(),
1940            }
1941        }
1942
1943        (uses, insts)
1944    }
1945
1946    /// Set up return values `outputs` for a call with signature `sig`.
1947    /// This does not emit (or return) any instructions, but returns a
1948    /// `CallRetList` representing the return value constraints.  This
1949    /// needs to be added to the actual call instruction.
1950    ///
1951    /// If `try_call_payloads` is non-zero, it is expected to hold
1952    /// exception payload registers for try_call instructions.  These
1953    /// will be added as needed to the `CallRetList` as well.
1954    pub fn gen_call_rets(
1955        &self,
1956        sigs: &SigSet,
1957        sig: Sig,
1958        outputs: &[ValueRegs<Reg>],
1959        try_call_payloads: Option<&[Writable<Reg>]>,
1960        vregs: &mut VRegAllocator<M::I>,
1961    ) -> CallRetList {
1962        let callee_conv = sigs[sig].call_conv;
1963        let stack_arg_space = sigs[sig].sized_stack_arg_space;
1964
1965        let word_ty = M::word_type();
1966        let word_bits = M::word_bits() as usize;
1967
1968        let mut defs: CallRetList = smallvec![];
1969        let mut outputs = outputs.into_iter();
1970        let num_rets = sigs.num_rets(sig);
1971        for idx in 0..num_rets {
1972            let ret = sigs.rets(sig)[idx].clone();
1973            match ret {
1974                ABIArg::Slots {
1975                    ref slots, purpose, ..
1976                } => {
1977                    // We do not use the returned copy of the return buffer pointer,
1978                    // so skip any StructReturn returns that may be present.
1979                    if purpose == ArgumentPurpose::StructReturn {
1980                        continue;
1981                    }
1982                    let retval_regs = outputs.next().unwrap();
1983                    assert_eq!(retval_regs.len(), slots.len());
1984                    for (slot, retval_reg) in slots.iter().zip(retval_regs.regs().iter()) {
1985                        // We do not perform any extension because we're copying out, not in,
1986                        // and we ignore high bits in our own registers by convention.  However,
1987                        // we still need to use the proper extended type to access stack slots
1988                        // (this is critical on big-endian systems).
1989                        let (ty, extension) = match *slot {
1990                            ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1991                            ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
1992                        };
1993                        let ext = M::get_ext_mode(callee_conv, extension);
1994                        let ty = if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
1995                            word_ty
1996                        } else {
1997                            ty
1998                        };
1999
2000                        match slot {
2001                            &ABIArgSlot::Reg { reg, .. } => {
2002                                defs.push(CallRetPair {
2003                                    vreg: Writable::from_reg(*retval_reg),
2004                                    location: RetLocation::Reg(reg.into(), ty),
2005                                });
2006                            }
2007                            &ABIArgSlot::Stack { offset, .. } => {
2008                                let amode =
2009                                    StackAMode::OutgoingArg(offset + i64::from(stack_arg_space));
2010                                defs.push(CallRetPair {
2011                                    vreg: Writable::from_reg(*retval_reg),
2012                                    location: RetLocation::Stack(amode, ty),
2013                                });
2014                            }
2015                        }
2016                    }
2017                }
2018                ABIArg::StructArg { .. } => {
2019                    panic!("StructArg not supported in return position");
2020                }
2021                ABIArg::ImplicitPtrArg { .. } => {
2022                    panic!("ImplicitPtrArg not supported in return position");
2023                }
2024            }
2025        }
2026        assert!(outputs.next().is_none());
2027
2028        if let Some(try_call_payloads) = try_call_payloads {
2029            // Let `M` say where the payload values are going to end up and then
2030            // double-check it's the same size as the calling convention's
2031            // reported number of exception types.
2032            let pregs = M::exception_payload_regs(callee_conv);
2033            assert_eq!(
2034                callee_conv.exception_payload_types(M::word_type()).len(),
2035                pregs.len()
2036            );
2037
2038            // We need to update `defs` to contain the exception
2039            // payload regs as well. We have two sources of info that
2040            // we join:
2041            //
2042            // - The machine-specific ABI implementation `M`, which
2043            //   tells us the particular registers that payload values
2044            //   must be in
2045            // - The passed-in lowering context, which gives us the
2046            //   vregs we must define.
2047            //
2048            // Note that payload values may need to end up in the same
2049            // physical registers as ordinary return values; this is
2050            // not a conflict, because we either get one or the
2051            // other. For regalloc's purposes, we define both starting
2052            // here at the callsite, but we can share one def in the
2053            // `defs` list and alias one vreg to another. Thus we
2054            // handle the two cases below for each payload register:
2055            // overlaps a return value (and we alias to it) or not
2056            // (and we add a def).
2057            for (i, &preg) in pregs.iter().enumerate() {
2058                let vreg = try_call_payloads[i];
2059                if let Some(existing) = defs.iter().find(|def| match def.location {
2060                    RetLocation::Reg(r, _) => r == preg,
2061                    _ => false,
2062                }) {
2063                    vregs.set_vreg_alias(vreg.to_reg(), existing.vreg.to_reg());
2064                } else {
2065                    defs.push(CallRetPair {
2066                        vreg,
2067                        location: RetLocation::Reg(preg, word_ty),
2068                    });
2069                }
2070            }
2071        }
2072
2073        defs
2074    }
2075
2076    /// Populate a `CallInfo` for a call with signature `sig`.
2077    ///
2078    /// `dest` is the target-specific call destination value
2079    /// `uses` is the `CallArgList` describing argument constraints
2080    /// `defs` is the `CallRetList` describing return constraints
2081    /// `try_call_info` describes exception targets for try_call instructions
2082    ///
2083    /// The clobber list is computed here from the above data.
2084    pub fn gen_call_info<T>(
2085        &self,
2086        sigs: &SigSet,
2087        sig: Sig,
2088        dest: T,
2089        uses: CallArgList,
2090        defs: CallRetList,
2091        try_call_info: Option<TryCallInfo>,
2092    ) -> CallInfo<T> {
2093        let caller_conv = self.call_conv;
2094        let callee_conv = sigs[sig].call_conv;
2095        let stack_arg_space = sigs[sig].sized_stack_arg_space;
2096
2097        let clobbers = {
2098            // Get clobbers: all caller-saves. These may include return value
2099            // regs, which we will remove from the clobber set below.
2100            let mut clobbers =
2101                <M>::get_regs_clobbered_by_call(callee_conv, try_call_info.is_some());
2102
2103            // Remove retval regs from clobbers.
2104            for def in &defs {
2105                if let RetLocation::Reg(preg, _) = def.location {
2106                    clobbers.remove(PReg::from(preg.to_real_reg().unwrap()));
2107                }
2108            }
2109
2110            clobbers
2111        };
2112
2113        // Any adjustment to SP to account for required outgoing arguments/stack return values must
2114        // be done inside of the call pseudo-op, to ensure that SP is always in a consistent
2115        // state for all other instructions. For example, if a tail-call abi function is called
2116        // here, the reclamation of the outgoing argument area must be done inside of the call
2117        // pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
2118        // function. (Except the prologue and epilogue, but those are fairly special parts of the
2119        // function that establish the SP invariants that are relied on elsewhere and are generated
2120        // after the register allocator has run and thus cannot have register allocator-inserted
2121        // references to SP offsets.)
2122
2123        let callee_pop_size = if callee_conv == isa::CallConv::Tail {
2124            // The tail calling convention has callees pop stack arguments.
2125            stack_arg_space
2126        } else {
2127            0
2128        };
2129
2130        CallInfo {
2131            dest,
2132            uses,
2133            defs,
2134            clobbers,
2135            callee_conv,
2136            caller_conv,
2137            callee_pop_size,
2138            try_call_info,
2139        }
2140    }
2141
2142    /// Produce an instruction that computes a sized stackslot address.
2143    pub fn sized_stackslot_addr(
2144        &self,
2145        slot: StackSlot,
2146        offset: u32,
2147        into_reg: Writable<Reg>,
2148    ) -> M::I {
2149        // Offset from beginning of stackslot area.
2150        let stack_off = self.sized_stackslots[slot] as i64;
2151        let sp_off: i64 = stack_off + (offset as i64);
2152        M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
2153    }
2154
2155    /// Produce an instruction that computes a dynamic stackslot address.
2156    pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
2157        let stack_off = self.dynamic_stackslots[slot] as i64;
2158        M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
2159    }
2160
2161    /// Get an `args` pseudo-inst, if any, that should appear at the
2162    /// very top of the function body prior to regalloc.
2163    pub fn take_args(&mut self) -> Option<M::I> {
2164        if self.reg_args.len() > 0 {
2165            // Very first instruction is an `args` pseudo-inst that
2166            // establishes live-ranges for in-register arguments and
2167            // constrains them at the start of the function to the
2168            // locations defined by the ABI.
2169            Some(M::gen_args(std::mem::take(&mut self.reg_args)))
2170        } else {
2171            None
2172        }
2173    }
2174}
2175
2176/// ### Post-Regalloc Functions
2177///
2178/// These methods of `Callee` may only be called after
2179/// regalloc.
2180impl<M: ABIMachineSpec> Callee<M> {
2181    /// Compute the final frame layout, post-regalloc.
2182    ///
2183    /// This must be called before gen_prologue or gen_epilogue.
2184    pub fn compute_frame_layout(
2185        &mut self,
2186        sigs: &SigSet,
2187        spillslots: usize,
2188        clobbered: Vec<Writable<RealReg>>,
2189        function_calls: FunctionCalls,
2190    ) {
2191        let bytes = M::word_bytes();
2192        let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
2193        let mask = M::stack_align(self.call_conv) - 1;
2194        let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
2195        self.frame_layout = Some(M::compute_frame_layout(
2196            self.call_conv,
2197            &self.flags,
2198            self.signature(),
2199            &clobbered,
2200            function_calls,
2201            self.stack_args_size(sigs),
2202            self.tail_args_size,
2203            self.stackslots_size,
2204            total_stacksize,
2205            self.outgoing_args_size,
2206        ));
2207    }
2208
2209    /// Generate a prologue, post-regalloc.
2210    ///
2211    /// This should include any stack frame or other setup necessary to use the
2212    /// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
2213    pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
2214        let frame_layout = self.frame_layout();
2215        let mut insts = smallvec![];
2216
2217        // Set up frame.
2218        insts.extend(M::gen_prologue_frame_setup(
2219            self.call_conv,
2220            &self.flags,
2221            &self.isa_flags,
2222            &frame_layout,
2223        ));
2224
2225        // The stack limit check needs to cover all the stack adjustments we
2226        // might make, up to the next stack limit check in any function we
2227        // call. Since this happens after frame setup, the current function's
2228        // setup area needs to be accounted for in the caller's stack limit
2229        // check, but we need to account for any setup area that our callees
2230        // might need. Note that s390x may also use the outgoing args area for
2231        // backtrace support even in leaf functions, so that should be accounted
2232        // for unconditionally.
2233        let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
2234            + frame_layout.clobber_size
2235            + frame_layout.fixed_frame_storage_size
2236            + frame_layout.outgoing_args_size
2237            + if frame_layout.function_calls == FunctionCalls::None {
2238                0
2239            } else {
2240                frame_layout.setup_area_size
2241            };
2242
2243        // Leaf functions with zero stack don't need a stack check if one's
2244        // specified, otherwise always insert the stack check.
2245        if total_stacksize > 0 || frame_layout.function_calls != FunctionCalls::None {
2246            if let Some((reg, stack_limit_load)) = &self.stack_limit {
2247                insts.extend(stack_limit_load.clone());
2248                self.insert_stack_check(*reg, total_stacksize, &mut insts);
2249            }
2250
2251            if self.flags.enable_probestack() {
2252                let guard_size = 1 << self.flags.probestack_size_log2();
2253                match self.flags.probestack_strategy() {
2254                    ProbestackStrategy::Inline => M::gen_inline_probestack(
2255                        &mut insts,
2256                        self.call_conv,
2257                        total_stacksize,
2258                        guard_size,
2259                    ),
2260                    ProbestackStrategy::Outline => {
2261                        if total_stacksize >= guard_size {
2262                            M::gen_probestack(&mut insts, total_stacksize);
2263                        }
2264                    }
2265                }
2266            }
2267        }
2268
2269        // Save clobbered registers.
2270        insts.extend(M::gen_clobber_save(
2271            self.call_conv,
2272            &self.flags,
2273            &frame_layout,
2274        ));
2275
2276        insts
2277    }
2278
2279    /// Generate an epilogue, post-regalloc.
2280    ///
2281    /// Note that this must generate the actual return instruction (rather than
2282    /// emitting this in the lowering logic), because the epilogue code comes
2283    /// before the return and the two are likely closely related.
2284    pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
2285        let frame_layout = self.frame_layout();
2286        let mut insts = smallvec![];
2287
2288        // Restore clobbered registers.
2289        insts.extend(M::gen_clobber_restore(
2290            self.call_conv,
2291            &self.flags,
2292            &frame_layout,
2293        ));
2294
2295        // Tear down frame.
2296        insts.extend(M::gen_epilogue_frame_restore(
2297            self.call_conv,
2298            &self.flags,
2299            &self.isa_flags,
2300            &frame_layout,
2301        ));
2302
2303        // And return.
2304        insts.extend(M::gen_return(
2305            self.call_conv,
2306            &self.isa_flags,
2307            &frame_layout,
2308        ));
2309
2310        trace!("Epilogue: {:?}", insts);
2311        insts
2312    }
2313
2314    /// Return a reference to the computed frame layout information. This
2315    /// function will panic if it's called before [`Self::compute_frame_layout`].
2316    pub fn frame_layout(&self) -> &FrameLayout {
2317        self.frame_layout
2318            .as_ref()
2319            .expect("frame layout not computed before prologue generation")
2320    }
2321
2322    /// Returns the full frame size for the given function, after prologue
2323    /// emission has run. This comprises the spill slots and stack-storage
2324    /// slots as well as storage for clobbered callee-save registers, but
2325    /// not arguments arguments pushed at callsites within this function,
2326    /// or other ephemeral pushes.
2327    pub fn frame_size(&self) -> u32 {
2328        let frame_layout = self.frame_layout();
2329        frame_layout.clobber_size + frame_layout.fixed_frame_storage_size
2330    }
2331
2332    /// Returns offset from the slot base in the current frame to the caller's SP.
2333    pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
2334        let frame_layout = self.frame_layout();
2335        frame_layout.clobber_size
2336            + frame_layout.fixed_frame_storage_size
2337            + frame_layout.setup_area_size
2338    }
2339
2340    /// Returns the size of arguments expected on the stack.
2341    pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
2342        sigs[self.sig].sized_stack_arg_space
2343    }
2344
2345    /// Get the spill-slot size.
2346    pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
2347        let max = if self.dynamic_type_sizes.len() == 0 {
2348            16
2349        } else {
2350            *self
2351                .dynamic_type_sizes
2352                .iter()
2353                .max_by(|x, y| x.1.cmp(&y.1))
2354                .map(|(_k, v)| v)
2355                .unwrap()
2356        };
2357        M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
2358    }
2359
2360    /// Get the spill slot offset relative to the fixed allocation area start.
2361    pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
2362        self.frame_layout().spillslot_offset(slot)
2363    }
2364
2365    /// Generate a spill.
2366    pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
2367        let ty = M::I::canonical_type_for_rc(from_reg.class());
2368        debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2369
2370        let sp_off = self.get_spillslot_offset(to_slot);
2371        trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");
2372
2373        let from = StackAMode::Slot(sp_off);
2374        <M>::gen_store_stack(from, Reg::from(from_reg), ty)
2375    }
2376
2377    /// Generate a reload (fill).
2378    pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
2379        let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
2380        debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2381
2382        let sp_off = self.get_spillslot_offset(from_slot);
2383        trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");
2384
2385        let from = StackAMode::Slot(sp_off);
2386        <M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
2387    }
2388}
2389
2390/// An input argument to a call instruction: the vreg that is used,
2391/// and the preg it is constrained to (per the ABI).
2392#[derive(Clone, Debug)]
2393pub struct CallArgPair {
2394    /// The virtual register to use for the argument.
2395    pub vreg: Reg,
2396    /// The real register into which the arg goes.
2397    pub preg: Reg,
2398}
2399
2400/// An output return value from a call instruction: the vreg that is
2401/// defined, and the preg or stack location it is constrained to (per
2402/// the ABI).
2403#[derive(Clone, Debug)]
2404pub struct CallRetPair {
2405    /// The virtual register to define from this return value.
2406    pub vreg: Writable<Reg>,
2407    /// The real register from which the return value is read.
2408    pub location: RetLocation,
2409}
2410
2411/// A location to load a return-value from after a call completes.
2412#[derive(Clone, Debug, PartialEq, Eq)]
2413pub enum RetLocation {
2414    /// A physical register.
2415    Reg(Reg, Type),
2416    /// A stack location, identified by a `StackAMode`.
2417    Stack(StackAMode, Type),
2418}
2419
2420pub type CallArgList = SmallVec<[CallArgPair; 8]>;
2421pub type CallRetList = SmallVec<[CallRetPair; 8]>;
2422
2423impl<T> CallInfo<T> {
2424    /// Emit loads for any stack-carried return values using the call
2425    /// info and allocations.
2426    pub fn emit_retval_loads<
2427        M: ABIMachineSpec,
2428        EmitFn: FnMut(M::I),
2429        IslandFn: Fn(u32) -> Option<M::I>,
2430    >(
2431        &self,
2432        stackslots_size: u32,
2433        mut emit: EmitFn,
2434        emit_island: IslandFn,
2435    ) {
2436        // Count stack-ret locations and emit an island to account for
2437        // this space usage.
2438        let mut space_needed = 0;
2439        for CallRetPair { location, .. } in &self.defs {
2440            if let RetLocation::Stack(..) = location {
2441                // Assume up to ten instructions, semi-arbitrarily:
2442                // load from stack, store to spillslot, codegen of
2443                // large offsets on RISC ISAs.
2444                space_needed += 10 * M::I::worst_case_size();
2445            }
2446        }
2447        if space_needed > 0 {
2448            if let Some(island_inst) = emit_island(space_needed) {
2449                emit(island_inst);
2450            }
2451        }
2452
2453        let temp = M::retval_temp_reg(self.callee_conv);
2454        // The temporary must be noted as clobbered.
2455        debug_assert!(
2456            M::get_regs_clobbered_by_call(self.callee_conv, self.try_call_info.is_some())
2457                .contains(PReg::from(temp.to_reg().to_real_reg().unwrap()))
2458        );
2459
2460        for CallRetPair { vreg, location } in &self.defs {
2461            match location {
2462                RetLocation::Reg(preg, ..) => {
2463                    // The temporary must not also be an actual return
2464                    // value register.
2465                    debug_assert!(*preg != temp.to_reg());
2466                }
2467                RetLocation::Stack(amode, ty) => {
2468                    if let Some(spillslot) = vreg.to_reg().to_spillslot() {
2469                        // `temp` is an integer register of machine word
2470                        // width, but `ty` may be floating-point/vector,
2471                        // which (i) may not be loadable directly into an
2472                        // int reg, and (ii) may be wider than a machine
2473                        // word. For simplicity, and because there are not
2474                        // always easy choices for volatile float/vec regs
2475                        // (see e.g. x86-64, where fastcall clobbers only
2476                        // xmm0-xmm5, but tail uses xmm0-xmm7 for
2477                        // returns), we use the integer temp register in
2478                        // steps.
2479                        let parts = (ty.bytes() + M::word_bytes() - 1) / M::word_bytes();
2480                        let one_part_load_ty =
2481                            Type::int_with_byte_size(M::word_bytes().min(ty.bytes()) as u16)
2482                                .unwrap();
2483                        for part in 0..parts {
2484                            emit(M::gen_load_stack(
2485                                amode.offset_by(part * M::word_bytes()),
2486                                temp,
2487                                one_part_load_ty,
2488                            ));
2489                            emit(M::gen_store_stack(
2490                                StackAMode::Slot(
2491                                    i64::from(stackslots_size)
2492                                        + i64::from(M::word_bytes())
2493                                            * ((spillslot.index() as i64) + (part as i64)),
2494                                ),
2495                                temp.to_reg(),
2496                                M::word_type(),
2497                            ));
2498                        }
2499                    } else {
2500                        assert_ne!(*vreg, temp);
2501                        emit(M::gen_load_stack(*amode, *vreg, *ty));
2502                    }
2503                }
2504            }
2505        }
2506    }
2507}
2508
2509impl TryCallInfo {
2510    pub(crate) fn exception_handlers(
2511        &self,
2512        layout: &FrameLayout,
2513    ) -> impl Iterator<Item = MachExceptionHandler> {
2514        self.exception_handlers.iter().map(|handler| match handler {
2515            TryCallHandler::Tag(tag, label) => MachExceptionHandler::Tag(*tag, *label),
2516            TryCallHandler::Default(label) => MachExceptionHandler::Default(*label),
2517            TryCallHandler::Context(reg) => {
2518                let loc = if let Some(spillslot) = reg.to_spillslot() {
2519                    // The spillslot offset is relative to the "fixed
2520                    // storage area", which comes after outgoing args.
2521                    let offset = layout.spillslot_offset(spillslot) + i64::from(layout.outgoing_args_size);
2522                    ExceptionContextLoc::SPOffset(u32::try_from(offset).expect("SP offset cannot be negative or larger than 4GiB"))
2523                } else if let Some(realreg) = reg.to_real_reg() {
2524                    ExceptionContextLoc::GPR(realreg.hw_enc())
2525                } else {
2526                    panic!("Virtual register present in try-call handler clause after register allocation");
2527                };
2528                MachExceptionHandler::Context(loc)
2529            }
2530        })
2531    }
2532
2533    pub(crate) fn pretty_print_dests(&self) -> String {
2534        self.exception_handlers
2535            .iter()
2536            .map(|handler| match handler {
2537                TryCallHandler::Tag(tag, label) => format!("{tag:?}: {label:?}"),
2538                TryCallHandler::Default(label) => format!("default: {label:?}"),
2539                TryCallHandler::Context(loc) => format!("context {loc:?}"),
2540            })
2541            .collect::<Vec<_>>()
2542            .join(", ")
2543    }
2544
2545    pub(crate) fn collect_operands(&mut self, collector: &mut impl OperandVisitor) {
2546        for handler in &mut self.exception_handlers {
2547            match handler {
2548                TryCallHandler::Context(ctx) => {
2549                    collector.any_late_use(ctx);
2550                }
2551                TryCallHandler::Tag(_, _) | TryCallHandler::Default(_) => {}
2552            }
2553        }
2554    }
2555}
2556
2557#[cfg(test)]
2558mod tests {
2559    use super::SigData;
2560
2561    #[test]
2562    fn sig_data_size() {
2563        // The size of `SigData` is performance sensitive, so make sure
2564        // we don't regress it unintentionally.
2565        assert_eq!(std::mem::size_of::<SigData>(), 24);
2566    }
2567}