cranelift_codegen/machinst/abi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
//! Implementation of a vanilla ABI, shared between several machines. The
//! implementation here assumes that arguments will be passed in registers
//! first, then additional args on the stack; that the stack grows downward,
//! contains a standard frame (return address and frame pointer), and the
//! compiler is otherwise free to allocate space below that with its choice of
//! layout; and that the machine has some notion of caller- and callee-save
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
//! mold and thus both of these backends use this shared implementation.
//!
//! See the documentation in specific machine backends for the "instantiation"
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
//! and return values, and any other special requirements.
//!
//! For now the implementation here assumes a 64-bit machine, but we intend to
//! make this 32/64-bit-generic shortly.
//!
//! # Vanilla ABI
//!
//! First, arguments and return values are passed in registers up to a certain
//! fixed count, after which they overflow onto the stack. Multiple return
//! values either fit in registers, or are returned in a separate return-value
//! area on the stack, given by a hidden extra parameter.
//!
//! Note that the exact stack layout is up to us. We settled on the
//! below design based on several requirements. In particular, we need
//! to be able to generate instructions (or instruction sequences) to
//! access arguments, stack slots, and spill slots before we know how
//! many spill slots or clobber-saves there will be, because of our
//! pass structure. We also prefer positive offsets to negative
//! offsets because of an asymmetry in some machines' addressing modes
//! (e.g., on AArch64, positive offsets have a larger possible range
//! without a long-form sequence to synthesize an arbitrary
//! offset). We also need clobber-save registers to be "near" the
//! frame pointer: Windows unwind information requires it to be within
//! 240 bytes of RBP. Finally, it is not allowed to access memory
//! below the current SP value.
//!
//! We assume that a prologue first pushes the frame pointer (and
//! return address above that, if the machine does not do that in
//! hardware). We set FP to point to this two-word frame record. We
//! store all other frame slots below this two-word frame record, as
//! well as enough space for arguments to the largest possible
//! function call. The stack pointer then remains at this position
//! for the duration of the function, allowing us to address all
//! frame storage at positive offsets from SP.
//!
//! Note that if we ever support dynamic stack-space allocation (for
//! `alloca`), we will need a way to reference spill slots and stack
//! slots relative to a dynamic SP, because we will no longer be able
//! to know a static offset from SP to the slots at any particular
//! program point. Probably the best solution at that point will be to
//! revert to using the frame pointer as the reference for all slots,
//! to allow generating spill/reload and stackslot accesses before we
//! know how large the clobber-saves will be.
//!
//! # Stack Layout
//!
//! The stack looks like:
//!
//! ```plain
//! (high address)
//! | ... |
//! | caller frames |
//! | ... |
//! +===========================+
//! | ... |
//! | stack args |
//! Canonical Frame Address --> | (accessed via FP) |
//! +---------------------------+
//! SP at function entry -----> | return address |
//! +---------------------------+
//! FP after prologue --------> | FP (pushed by prologue) |
//! +---------------------------+ -----
//! | ... | |
//! | clobbered callee-saves | |
//! unwind-frame base --------> | (pushed by prologue) | |
//! +---------------------------+ ----- |
//! | ... | | |
//! | spill slots | | |
//! | (accessed via SP) | fixed active
//! | ... | frame size
//! | stack slots | storage |
//! | (accessed via SP) | size |
//! | (alloc'd by prologue) | | |
//! +---------------------------+ ----- |
//! | [alignment as needed] | |
//! | ... | |
//! | args for largest call | |
//! SP -----------------------> | (alloc'd by prologue) | |
//! +===========================+ -----
//!
//! (low address)
//! ```
//!
//! # Multi-value Returns
//!
//! We support multi-value returns by using multiple return-value
//! registers. In some cases this is an extension of the base system
//! ABI. See each platform's `abi.rs` implementation for details.
use crate::entity::SecondaryMap;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, ArgumentPurpose, Signature};
use crate::isa::TargetIsa;
use crate::settings::ProbestackStrategy;
use crate::CodegenError;
use crate::{ir, isa};
use crate::{machinst::*, trace};
use regalloc2::{MachineEnv, PReg, PRegSet};
use rustc_hash::FxHashMap;
use smallvec::smallvec;
use std::collections::HashMap;
use std::marker::PhantomData;
use std::mem;
/// A small vector of instructions (with some reasonable size); appropriate for
/// a small fixed sequence implementing one operation.
pub type SmallInstVec<I> = SmallVec<[I; 4]>;
/// A type used by backends to track argument-binding info in the "args"
/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
#[derive(Clone, Debug)]
pub struct ArgPair {
/// The vreg that is defined by this args pseudoinst.
pub vreg: Writable<Reg>,
/// The preg that the arg arrives in; this constrains the vreg's
/// placement at the pseudoinst.
pub preg: Reg,
}
/// A type used by backends to track return register binding info in the "ret"
/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
#[derive(Clone, Debug)]
pub struct RetPair {
/// The vreg that is returned by this pseudionst.
pub vreg: Reg,
/// The preg that the arg is returned through; this constrains the vreg's
/// placement at the pseudoinst.
pub preg: Reg,
}
/// A location for (part of) an argument or return value. These "storage slots"
/// are specified for each register-sized part of an argument.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ABIArgSlot {
/// In a real register.
Reg {
/// Register that holds this arg.
reg: RealReg,
/// Value type of this arg.
ty: ir::Type,
/// Should this arg be zero- or sign-extended?
extension: ir::ArgumentExtension,
},
/// Arguments only: on stack, at given offset from SP at entry.
Stack {
/// Offset of this arg relative to the base of stack args.
offset: i64,
/// Value type of this arg.
ty: ir::Type,
/// Should this arg be zero- or sign-extended?
extension: ir::ArgumentExtension,
},
}
impl ABIArgSlot {
/// The type of the value that will be stored in this slot.
pub fn get_type(&self) -> ir::Type {
match self {
ABIArgSlot::Reg { ty, .. } => *ty,
ABIArgSlot::Stack { ty, .. } => *ty,
}
}
}
/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
/// super rare (and never happen with Wasm).
pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
/// Value to be passed with its parts in more than one location at the ABI
/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
/// number of "parts" should correspond to the number of registers used to store
/// this type according to the machine backend.
///
/// As an invariant, the `purpose` for every part must match. As a further
/// invariant, a `StructArg` part cannot appear with any other part.
#[derive(Clone, Debug)]
pub enum ABIArg {
/// Storage slots (registers or stack locations) for each part of the
/// argument value. The number of slots must equal the number of register
/// parts used to store a value of this type.
Slots {
/// Slots, one per register part.
slots: ABIArgSlotVec,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
/// Structure argument. We reserve stack space for it, but the CLIF-level
/// semantics are a little weird: the value passed to the call instruction,
/// and received in the corresponding block param, is a *pointer*. On the
/// caller side, we memcpy the data from the passed-in pointer to the stack
/// area; on the callee side, we compute a pointer to this stack area and
/// provide that as the argument's value.
StructArg {
/// Offset of this arg relative to base of stack args.
offset: i64,
/// Size of this arg on the stack.
size: u64,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
/// Implicit argument. Similar to a StructArg, except that we have the
/// target type, not a pointer type, at the CLIF-level. This argument is
/// still being passed via reference implicitly.
ImplicitPtrArg {
/// Register or stack slot holding a pointer to the buffer.
pointer: ABIArgSlot,
/// Offset of the argument buffer.
offset: i64,
/// Type of the implicit argument.
ty: Type,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
}
impl ABIArg {
/// Create an ABIArg from one register.
pub fn reg(
reg: RealReg,
ty: ir::Type,
extension: ir::ArgumentExtension,
purpose: ir::ArgumentPurpose,
) -> ABIArg {
ABIArg::Slots {
slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
purpose,
}
}
/// Create an ABIArg from one stack slot.
pub fn stack(
offset: i64,
ty: ir::Type,
extension: ir::ArgumentExtension,
purpose: ir::ArgumentPurpose,
) -> ABIArg {
ABIArg::Slots {
slots: smallvec![ABIArgSlot::Stack {
offset,
ty,
extension,
}],
purpose,
}
}
}
/// Are we computing information about arguments or return values? Much of the
/// handling is factored out into common routines; this enum allows us to
/// distinguish which case we're handling.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ArgsOrRets {
/// Arguments.
Args,
/// Return values.
Rets,
}
/// Abstract location for a machine-specific ABI impl to translate into the
/// appropriate addressing mode.
#[derive(Clone, Copy, Debug)]
pub enum StackAMode {
/// Offset into the current frame's argument area.
IncomingArg(i64, u32),
/// Offset within the stack slots in the current frame.
Slot(i64),
/// Offset into the callee frame's argument area.
OutgoingArg(i64),
}
/// Trait implemented by machine-specific backend to represent ISA flags.
pub trait IsaFlags: Clone {
/// Get a flag indicating whether forward-edge CFI is enabled.
fn is_forward_edge_cfi_enabled(&self) -> bool {
false
}
}
/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
/// `ABIArg`s in `SigSet` and exposes just the args for the current
/// `compute_arg_locs` call.
pub struct ArgsAccumulator<'a> {
sig_set_abi_args: &'a mut Vec<ABIArg>,
start: usize,
non_formal_flag: bool,
}
impl<'a> ArgsAccumulator<'a> {
fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
let start = sig_set_abi_args.len();
ArgsAccumulator {
sig_set_abi_args,
start,
non_formal_flag: false,
}
}
#[inline]
pub fn push(&mut self, arg: ABIArg) {
debug_assert!(!self.non_formal_flag);
self.sig_set_abi_args.push(arg)
}
#[inline]
pub fn push_non_formal(&mut self, arg: ABIArg) {
self.non_formal_flag = true;
self.sig_set_abi_args.push(arg)
}
#[inline]
pub fn args(&self) -> &[ABIArg] {
&self.sig_set_abi_args[self.start..]
}
#[inline]
pub fn args_mut(&mut self) -> &mut [ABIArg] {
&mut self.sig_set_abi_args[self.start..]
}
}
/// Trait implemented by machine-specific backend to provide information about
/// register assignments and to allow generating the specific instructions for
/// stack loads/saves, prologues/epilogues, etc.
pub trait ABIMachineSpec {
/// The instruction type.
type I: VCodeInst;
/// The ISA flags type.
type F: IsaFlags;
/// This is the limit for the size of argument and return-value areas on the
/// stack. We place a reasonable limit here to avoid integer overflow issues
/// with 32-bit arithmetic.
const STACK_ARG_RET_SIZE_LIMIT: u32;
/// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
fn word_bits() -> u32;
/// Returns the number of bytes in a word.
fn word_bytes() -> u32 {
return Self::word_bits() / 8;
}
/// Returns word-size integer type.
fn word_type() -> Type {
match Self::word_bits() {
32 => I32,
64 => I64,
_ => unreachable!(),
}
}
/// Returns word register class.
fn word_reg_class() -> RegClass {
RegClass::Int
}
/// Returns required stack alignment in bytes.
fn stack_align(call_conv: isa::CallConv) -> u32;
/// Process a list of parameters or return values and allocate them to registers
/// and stack slots.
///
/// The argument locations should be pushed onto the given `ArgsAccumulator`
/// in order. Any extra arguments added (such as return area pointers)
/// should come at the end of the list so that the first N lowered
/// parameters align with the N clif parameters.
///
/// Returns the stack-space used (rounded up to as alignment requires), and
/// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
/// that was added.
fn compute_arg_locs(
call_conv: isa::CallConv,
flags: &settings::Flags,
params: &[ir::AbiParam],
args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool,
args: ArgsAccumulator,
) -> CodegenResult<(u32, Option<usize>)>;
/// Generate a load from the stack.
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
/// Generate a store to the stack.
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
/// Generate a move.
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
/// Generate an integer-extend operation.
fn gen_extend(
to_reg: Writable<Reg>,
from_reg: Reg,
is_signed: bool,
from_bits: u8,
to_bits: u8,
) -> Self::I;
/// Generate an "args" pseudo-instruction to capture input args in
/// registers.
fn gen_args(args: Vec<ArgPair>) -> Self::I;
/// Generate a "rets" pseudo-instruction that moves vregs to return
/// registers.
fn gen_rets(rets: Vec<RetPair>) -> Self::I;
/// Generate an add-with-immediate. Note that even if this uses a scratch
/// register, it must satisfy two requirements:
///
/// - The add-imm sequence must only clobber caller-save registers that are
/// not used for arguments, because it will be placed in the prologue
/// before the clobbered callee-save registers are saved.
///
/// - The add-imm sequence must work correctly when `from_reg` and/or
/// `into_reg` are the register returned by `get_stacklimit_reg()`.
fn gen_add_imm(
call_conv: isa::CallConv,
into_reg: Writable<Reg>,
from_reg: Reg,
imm: u32,
) -> SmallInstVec<Self::I>;
/// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
/// the stack pointer is less than the given limit register (assuming the
/// stack grows downward).
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
/// Generate an instruction to compute an address of a stack slot (FP- or
/// SP-based offset).
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;
/// Get a fixed register to use to compute a stack limit. This is needed for
/// certain sequences generated after the register allocator has already
/// run. This must satisfy two requirements:
///
/// - It must be a caller-save register that is not used for arguments,
/// because it will be clobbered in the prologue before the clobbered
/// callee-save registers are saved.
///
/// - It must be safe to pass as an argument and/or destination to
/// `gen_add_imm()`. This is relevant when an addition with a large
/// immediate needs its own temporary; it cannot use the same fixed
/// temporary as this one.
fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;
/// Generate a load to the given [base+offset] address.
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
/// Generate a store from the given [base+offset] address.
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
/// Adjust the stack pointer up or down.
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
/// Compute a FrameLayout structure containing a sorted list of all clobbered
/// registers that are callee-saved according to the ABI, as well as the sizes
/// of all parts of the stack frame. The result is used to emit the prologue
/// and epilogue routines.
fn compute_frame_layout(
call_conv: isa::CallConv,
flags: &settings::Flags,
sig: &Signature,
regs: &[Writable<RealReg>],
is_leaf: bool,
incoming_args_size: u32,
tail_args_size: u32,
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> FrameLayout;
/// Generate the usual frame-setup sequence for this architecture: e.g.,
/// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
/// AArch64.
fn gen_prologue_frame_setup(
call_conv: isa::CallConv,
flags: &settings::Flags,
isa_flags: &Self::F,
frame_layout: &FrameLayout,
) -> SmallInstVec<Self::I>;
/// Generate the usual frame-restore sequence for this architecture.
fn gen_epilogue_frame_restore(
call_conv: isa::CallConv,
flags: &settings::Flags,
isa_flags: &Self::F,
frame_layout: &FrameLayout,
) -> SmallInstVec<Self::I>;
/// Generate a return instruction.
fn gen_return(
call_conv: isa::CallConv,
isa_flags: &Self::F,
frame_layout: &FrameLayout,
) -> SmallInstVec<Self::I>;
/// Generate a probestack call.
fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
/// Generate a inline stack probe.
fn gen_inline_probestack(
insts: &mut SmallInstVec<Self::I>,
call_conv: isa::CallConv,
frame_size: u32,
guard_size: u32,
);
/// Generate a clobber-save sequence. The implementation here should return
/// a sequence of instructions that "push" or otherwise save to the stack all
/// registers written/modified by the function body that are callee-saved.
/// The sequence of instructions should adjust the stack pointer downward,
/// and should align as necessary according to ABI requirements.
fn gen_clobber_save(
call_conv: isa::CallConv,
flags: &settings::Flags,
frame_layout: &FrameLayout,
) -> SmallVec<[Self::I; 16]>;
/// Generate a clobber-restore sequence. This sequence should perform the
/// opposite of the clobber-save sequence generated above, assuming that SP
/// going into the sequence is at the same point that it was left when the
/// clobber-save sequence finished.
fn gen_clobber_restore(
call_conv: isa::CallConv,
flags: &settings::Flags,
frame_layout: &FrameLayout,
) -> SmallVec<[Self::I; 16]>;
/// Generate a call instruction/sequence. This method is provided one
/// temporary register to use to synthesize the called address, if needed.
fn gen_call(dest: &CallDest, tmp: Writable<Reg>, info: CallInfo<()>) -> SmallVec<[Self::I; 2]>;
/// Generate a memcpy invocation. Used to set up struct
/// args. Takes `src`, `dst` as read-only inputs and passes a temporary
/// allocator.
fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
call_conv: isa::CallConv,
dst: Reg,
src: Reg,
size: usize,
alloc_tmp: F,
) -> SmallVec<[Self::I; 8]>;
/// Get the number of spillslots required for the given register-class.
fn get_number_of_spillslots_for_value(
rc: RegClass,
target_vector_bytes: u32,
isa_flags: &Self::F,
) -> u32;
/// Get the ABI-dependent MachineEnv for managing register allocation.
fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;
/// Get all caller-save registers, that is, registers that we expect
/// not to be saved across a call to a callee with the given ABI.
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet;
/// Get the needed extension mode, given the mode attached to the argument
/// in the signature and the calling convention. The input (the attribute in
/// the signature) specifies what extension type should be done *if* the ABI
/// requires extension to the full register; this method's return value
/// indicates whether the extension actually *will* be done.
fn get_ext_mode(
call_conv: isa::CallConv,
specified: ir::ArgumentExtension,
) -> ir::ArgumentExtension;
}
/// Out-of-line data for calls, to keep the size of `Inst` down.
#[derive(Clone, Debug)]
pub struct CallInfo<T> {
/// Receiver of this call
pub dest: T,
/// Register uses of this call.
pub uses: CallArgList,
/// Register defs of this call.
pub defs: CallRetList,
/// Registers clobbered by this call, as per its calling convention.
pub clobbers: PRegSet,
/// The calling convention of the callee.
pub callee_conv: isa::CallConv,
/// The calling convention of the caller.
pub caller_conv: isa::CallConv,
/// The number of bytes that the callee will pop from the stack for the
/// caller, if any. (Used for popping stack arguments with the `tail`
/// calling convention.)
pub callee_pop_size: u32,
}
impl<T> CallInfo<T> {
/// Creates an empty set of info with no clobbers/uses/etc with the
/// specified ABI
pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
CallInfo {
dest,
uses: smallvec![],
defs: smallvec![],
clobbers: PRegSet::empty(),
caller_conv: call_conv,
callee_conv: call_conv,
callee_pop_size: 0,
}
}
/// Change the `T` payload on this info to `U`.
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> CallInfo<U> {
CallInfo {
dest: f(self.dest),
uses: self.uses,
defs: self.defs,
clobbers: self.clobbers,
caller_conv: self.caller_conv,
callee_conv: self.callee_conv,
callee_pop_size: self.callee_pop_size,
}
}
}
/// The id of an ABI signature within the `SigSet`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Sig(u32);
cranelift_entity::entity_impl!(Sig);
impl Sig {
fn prev(self) -> Option<Sig> {
self.0.checked_sub(1).map(Sig)
}
}
/// ABI information shared between body (callee) and caller.
#[derive(Clone, Debug)]
pub struct SigData {
/// Currently both return values and arguments are stored in a continuous space vector
/// in `SigSet::abi_args`.
///
/// ```plain
/// +----------------------------------------------+
/// | return values |
/// | ... |
/// rets_end --> +----------------------------------------------+
/// | arguments |
/// | ... |
/// args_end --> +----------------------------------------------+
///
/// ```
///
/// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
///
/// Argument location ending offset (regs or stack slots). Stack offsets are relative to
/// SP on entry to function.
///
/// This is a index into the `SigSet::abi_args`.
args_end: u32,
/// Return-value location ending offset. Stack offsets are relative to the return-area
/// pointer.
///
/// This is a index into the `SigSet::abi_args`.
rets_end: u32,
/// Space on stack used to store arguments. We're storing the size in u32 to
/// reduce the size of the struct.
sized_stack_arg_space: u32,
/// Space on stack used to store return values. We're storing the size in u32 to
/// reduce the size of the struct.
sized_stack_ret_space: u32,
/// Index in `args` of the stack-return-value-area argument.
stack_ret_arg: Option<u16>,
/// Calling convention used.
call_conv: isa::CallConv,
}
impl SigData {
/// Get total stack space required for arguments.
pub fn sized_stack_arg_space(&self) -> i64 {
self.sized_stack_arg_space.into()
}
/// Get total stack space required for return values.
pub fn sized_stack_ret_space(&self) -> i64 {
self.sized_stack_ret_space.into()
}
/// Get calling convention used.
pub fn call_conv(&self) -> isa::CallConv {
self.call_conv
}
/// The index of the stack-return-value-area argument, if any.
pub fn stack_ret_arg(&self) -> Option<u16> {
self.stack_ret_arg
}
}
/// A (mostly) deduplicated set of ABI signatures.
///
/// We say "mostly" because we do not dedupe between signatures interned via
/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
/// this final bit of deduplication would require filling out the
/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
/// hash map itself but params and returns vecs in each signature) that we want
/// to avoid.
///
/// In general, prefer using the `ir::SigRef`-taking methods to the
/// `ir::Signature`-taking methods when you can get away with it, as they don't
/// require cloning non-copy types that will trigger heap allocations.
///
/// This type can be indexed by `Sig` to access its associated `SigData`.
pub struct SigSet {
/// Interned `ir::Signature`s that we already have an ABI signature for.
ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
/// Interned `ir::SigRef`s that we already have an ABI signature for.
ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
/// A single, shared allocation for all `ABIArg`s used by all
/// `SigData`s. Each `SigData` references its args/rets via indices into
/// this allocation.
abi_args: Vec<ABIArg>,
/// The actual ABI signatures, keyed by `Sig`.
sigs: PrimaryMap<Sig, SigData>,
}
impl SigSet {
/// Construct a new `SigSet`, interning all of the signatures used by the
/// given function.
pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
where
M: ABIMachineSpec,
{
let arg_estimate = func.dfg.signatures.len() * 6;
let mut sigs = SigSet {
ir_signature_to_abi_sig: FxHashMap::default(),
ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
abi_args: Vec::with_capacity(arg_estimate),
sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
};
sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
for sig_ref in func.dfg.signatures.keys() {
sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
}
Ok(sigs)
}
/// Have we already interned an ABI signature for the given `ir::Signature`?
pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
self.ir_signature_to_abi_sig.contains_key(signature)
}
/// Construct and intern an ABI signature for the given `ir::Signature`.
pub fn make_abi_sig_from_ir_signature<M>(
&mut self,
signature: ir::Signature,
flags: &settings::Flags,
) -> CodegenResult<Sig>
where
M: ABIMachineSpec,
{
// Because the `HashMap` entry API requires taking ownership of the
// lookup key -- and we want to avoid unnecessary clones of
// `ir::Signature`s, even at the cost of duplicate lookups -- we can't
// have a single, get-or-create-style method for interning
// `ir::Signature`s into ABI signatures. So at least (debug) assert that
// we aren't creating duplicate ABI signatures for the same
// `ir::Signature`.
debug_assert!(!self.have_abi_sig_for_signature(&signature));
let sig_data = self.from_func_sig::<M>(&signature, flags)?;
let sig = self.sigs.push(sig_data);
self.ir_signature_to_abi_sig.insert(signature, sig);
Ok(sig)
}
fn make_abi_sig_from_ir_sig_ref<M>(
&mut self,
sig_ref: ir::SigRef,
dfg: &ir::DataFlowGraph,
flags: &settings::Flags,
) -> CodegenResult<Sig>
where
M: ABIMachineSpec,
{
if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
return Ok(sig);
}
let signature = &dfg.signatures[sig_ref];
let sig_data = self.from_func_sig::<M>(signature, flags)?;
let sig = self.sigs.push(sig_data);
self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
Ok(sig)
}
/// Get the already-interned ABI signature id for the given `ir::SigRef`.
pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
self.ir_sig_ref_to_abi_sig[sig_ref]
.expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
}
/// Get the already-interned ABI signature id for the given `ir::Signature`.
pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
self.ir_signature_to_abi_sig
.get(signature)
.copied()
.expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
}
pub fn from_func_sig<M: ABIMachineSpec>(
&mut self,
sig: &ir::Signature,
flags: &settings::Flags,
) -> CodegenResult<SigData> {
// Keep in sync with ensure_struct_return_ptr_is_returned
if sig.uses_special_return(ArgumentPurpose::StructReturn) {
panic!("Explicit StructReturn return value not allowed: {sig:?}")
}
let tmp;
let returns = if let Some(struct_ret_index) =
sig.special_param_index(ArgumentPurpose::StructReturn)
{
if !sig.returns.is_empty() {
panic!("No return values are allowed when using StructReturn: {sig:?}");
}
tmp = [sig.params[struct_ret_index]];
&tmp
} else {
sig.returns.as_slice()
};
// Compute args and retvals from signature. Handle retvals first,
// because we may need to add a return-area arg to the args.
// NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
// `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
// compute_arg_locs order.
let (sized_stack_ret_space, _) = M::compute_arg_locs(
sig.call_conv,
flags,
&returns,
ArgsOrRets::Rets,
/* extra ret-area ptr = */ false,
ArgsAccumulator::new(&mut self.abi_args),
)?;
if !flags.enable_multi_ret_implicit_sret() {
assert_eq!(sized_stack_ret_space, 0);
}
let rets_end = u32::try_from(self.abi_args.len()).unwrap();
// To avoid overflow issues, limit the return size to something reasonable.
if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
return Err(CodegenError::ImplLimitExceeded);
}
let need_stack_return_area = sized_stack_ret_space > 0;
if need_stack_return_area {
assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
}
let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
sig.call_conv,
flags,
&sig.params,
ArgsOrRets::Args,
need_stack_return_area,
ArgsAccumulator::new(&mut self.abi_args),
)?;
let args_end = u32::try_from(self.abi_args.len()).unwrap();
// To avoid overflow issues, limit the arg size to something reasonable.
if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
return Err(CodegenError::ImplLimitExceeded);
}
trace!(
"ABISig: sig {:?} => args end = {} rets end = {}
arg stack = {} ret stack = {} stack_ret_arg = {:?}",
sig,
args_end,
rets_end,
sized_stack_arg_space,
sized_stack_ret_space,
need_stack_return_area,
);
let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
Ok(SigData {
args_end,
rets_end,
sized_stack_arg_space,
sized_stack_ret_space,
stack_ret_arg,
call_conv: sig.call_conv,
})
}
/// Get this signature's ABI arguments.
pub fn args(&self, sig: Sig) -> &[ABIArg] {
let sig_data = &self.sigs[sig];
// Please see comments in `SigSet::from_func_sig` of how we store the offsets.
let start = usize::try_from(sig_data.rets_end).unwrap();
let end = usize::try_from(sig_data.args_end).unwrap();
&self.abi_args[start..end]
}
/// Get information specifying how to pass the implicit pointer
/// to the return-value area on the stack, if required.
pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
let sig_data = &self.sigs[sig];
if let Some(i) = sig_data.stack_ret_arg {
Some(self.args(sig)[usize::from(i)].clone())
} else {
None
}
}
/// Get information specifying how to pass one argument.
pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
self.args(sig)[idx].clone()
}
/// Get this signature's ABI returns.
pub fn rets(&self, sig: Sig) -> &[ABIArg] {
let sig_data = &self.sigs[sig];
// Please see comments in `SigSet::from_func_sig` of how we store the offsets.
let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
let end = usize::try_from(sig_data.rets_end).unwrap();
&self.abi_args[start..end]
}
/// Get information specifying how to pass one return value.
pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
self.rets(sig)[idx].clone()
}
/// Get the number of arguments expected.
pub fn num_args(&self, sig: Sig) -> usize {
let len = self.args(sig).len();
if self.sigs[sig].stack_ret_arg.is_some() {
len - 1
} else {
len
}
}
/// Get the number of return values expected.
pub fn num_rets(&self, sig: Sig) -> usize {
self.rets(sig).len()
}
}
// NB: we do _not_ implement `IndexMut` because these signatures are
// deduplicated and shared!
impl std::ops::Index<Sig> for SigSet {
type Output = SigData;
fn index(&self, sig: Sig) -> &Self::Output {
&self.sigs[sig]
}
}
/// Structure describing the layout of a function's stack frame.
#[derive(Clone, Debug, Default)]
pub struct FrameLayout {
/// N.B. The areas whose sizes are given in this structure fully
/// cover the current function's stack frame, from high to low
/// stack addresses in the sequence below. Each size contains
/// any alignment padding that may be required by the ABI.
/// Size of incoming arguments on the stack. This is not technically
/// part of this function's frame, but code in the function will still
/// need to access it. Depending on the ABI, we may need to set up a
/// frame pointer to do so; we also may need to pop this area from the
/// stack upon return.
pub incoming_args_size: u32,
/// The size of the incoming argument area, taking into account any
/// potential increase in size required for tail calls present in the
/// function. In the case that no tail calls are present, this value
/// will be the same as [`Self::incoming_args_size`].
pub tail_args_size: u32,
/// Size of the "setup area", typically holding the return address
/// and/or the saved frame pointer. This may be written either during
/// the call itself (e.g. a pushed return address) or by code emitted
/// from gen_prologue_frame_setup. In any case, after that code has
/// completed execution, the stack pointer is expected to point to the
/// bottom of this area. The same holds at the start of code emitted
/// by gen_epilogue_frame_restore.
pub setup_area_size: u32,
/// Size of the area used to save callee-saved clobbered registers.
/// This area is accessed by code emitted from gen_clobber_save and
/// gen_clobber_restore.
pub clobber_size: u32,
/// Storage allocated for the fixed part of the stack frame.
/// This contains stack slots and spill slots.
pub fixed_frame_storage_size: u32,
/// Stack size to be reserved for outgoing arguments, if used by
/// the current ABI, or 0 otherwise. After gen_clobber_save and
/// before gen_clobber_restore, the stack pointer points to the
/// bottom of this area.
pub outgoing_args_size: u32,
/// Sorted list of callee-saved registers that are clobbered
/// according to the ABI. These registers will be saved and
/// restored by gen_clobber_save and gen_clobber_restore.
pub clobbered_callee_saves: Vec<Writable<RealReg>>,
}
impl FrameLayout {
/// Split the clobbered callee-save registers into integer-class and
/// float-class groups.
///
/// This method does not currently support vector-class callee-save
/// registers because no current backend has them.
pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
let (ints, floats) = self.clobbered_callee_saves.split_at(
self.clobbered_callee_saves
.partition_point(|r| r.to_reg().class() == RegClass::Int),
);
debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
(ints, floats)
}
/// The size of FP to SP while the frame is active (not during prologue
/// setup or epilogue tear down).
pub fn active_size(&self) -> u32 {
self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
}
/// Get the offset from the SP to the sized stack slots area.
pub fn sp_to_sized_stack_slots(&self) -> u32 {
self.outgoing_args_size
}
}
/// ABI object for a function body.
pub struct Callee<M: ABIMachineSpec> {
/// CLIF-level signature, possibly normalized.
ir_sig: ir::Signature,
/// Signature: arg and retval regs.
sig: Sig,
/// Defined dynamic types.
dynamic_type_sizes: HashMap<Type, u32>,
/// Offsets to each dynamic stackslot.
dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
/// Offsets to each sized stackslot.
sized_stackslots: PrimaryMap<StackSlot, u32>,
/// Total stack size of all stackslots
stackslots_size: u32,
/// Stack size to be reserved for outgoing arguments.
outgoing_args_size: u32,
/// Initially the number of bytes originating in the callers frame where stack arguments will
/// live. After lowering this number may be larger than the size expected by the function being
/// compiled, as tail calls potentially require more space for stack arguments.
tail_args_size: u32,
/// Register-argument defs, to be provided to the `args`
/// pseudo-inst, and pregs to constrain them to.
reg_args: Vec<ArgPair>,
/// Finalized frame layout for this function.
frame_layout: Option<FrameLayout>,
/// The register holding the return-area pointer, if needed.
ret_area_ptr: Option<Reg>,
/// Calling convention this function expects.
call_conv: isa::CallConv,
/// The settings controlling this function's compilation.
flags: settings::Flags,
/// The ISA-specific flag values controlling this function's compilation.
isa_flags: M::F,
/// Whether or not this function is a "leaf", meaning it calls no other
/// functions
is_leaf: bool,
/// If this function has a stack limit specified, then `Reg` is where the
/// stack limit will be located after the instructions specified have been
/// executed.
///
/// Note that this is intended for insertion into the prologue, if
/// present. Also note that because the instructions here execute in the
/// prologue this happens after legalization/register allocation/etc so we
/// need to be extremely careful with each instruction. The instructions are
/// manually register-allocated and carefully only use caller-saved
/// registers and keep nothing live after this sequence of instructions.
stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
_mach: PhantomData<M>,
}
fn get_special_purpose_param_register(
f: &ir::Function,
sigs: &SigSet,
sig: Sig,
purpose: ir::ArgumentPurpose,
) -> Option<Reg> {
let idx = f.signature.special_param_index(purpose)?;
match &sigs.args(sig)[idx] {
&ABIArg::Slots { ref slots, .. } => match &slots[0] {
&ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
_ => None,
},
_ => None,
}
}
fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
Some(val.checked_add(mask)? & !mask)
}
impl<M: ABIMachineSpec> Callee<M> {
/// Create a new body ABI instance.
pub fn new(
f: &ir::Function,
isa: &dyn TargetIsa,
isa_flags: &M::F,
sigs: &SigSet,
) -> CodegenResult<Self> {
trace!("ABI: func signature {:?}", f.signature);
let flags = isa.flags().clone();
let sig = sigs.abi_sig_for_signature(&f.signature);
let call_conv = f.signature.call_conv;
// Only these calling conventions are supported.
debug_assert!(
call_conv == isa::CallConv::SystemV
|| call_conv == isa::CallConv::Tail
|| call_conv == isa::CallConv::Fast
|| call_conv == isa::CallConv::Cold
|| call_conv == isa::CallConv::WindowsFastcall
|| call_conv == isa::CallConv::AppleAarch64
|| call_conv == isa::CallConv::Winch,
"Unsupported calling convention: {call_conv:?}"
);
// Compute sized stackslot locations and total stackslot size.
let mut end_offset: u32 = 0;
let mut sized_stackslots = PrimaryMap::new();
for (stackslot, data) in f.sized_stack_slots.iter() {
// We start our computation possibly unaligned where the previous
// stackslot left off.
let unaligned_start_offset = end_offset;
// The start of the stackslot must be aligned.
//
// We always at least machine-word-align slots, but also
// satisfy the user's requested alignment.
debug_assert!(data.align_shift < 32);
let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
let mask = align - 1;
let start_offset = checked_round_up(unaligned_start_offset, mask)
.ok_or(CodegenError::ImplLimitExceeded)?;
// The end offset is the the start offset increased by the size
end_offset = start_offset
.checked_add(data.size)
.ok_or(CodegenError::ImplLimitExceeded)?;
debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
sized_stackslots.push(start_offset);
}
// Compute dynamic stackslot locations and total stackslot size.
let mut dynamic_stackslots = PrimaryMap::new();
for (stackslot, data) in f.dynamic_stack_slots.iter() {
debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
// This computation is similar to the stackslots above
let unaligned_start_offset = end_offset;
let mask = M::word_bytes() - 1;
let start_offset = checked_round_up(unaligned_start_offset, mask)
.ok_or(CodegenError::ImplLimitExceeded)?;
let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
})?;
end_offset = start_offset
.checked_add(isa.dynamic_vector_bytes(ty))
.ok_or(CodegenError::ImplLimitExceeded)?;
dynamic_stackslots.push(start_offset);
}
// The size of the stackslots needs to be word aligned
let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
.ok_or(CodegenError::ImplLimitExceeded)?;
let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
let ty = f
.get_concrete_dynamic_ty(dyn_ty)
.unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
let size = isa.dynamic_vector_bytes(ty);
dynamic_type_sizes.insert(ty, size);
}
// Figure out what instructions, if any, will be needed to check the
// stack limit. This can either be specified as a special-purpose
// argument or as a global value which often calculates the stack limit
// from the arguments.
let stack_limit = f
.stack_limit
.map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));
let tail_args_size = sigs[sig].sized_stack_arg_space;
Ok(Self {
ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
sig,
dynamic_stackslots,
dynamic_type_sizes,
sized_stackslots,
stackslots_size,
outgoing_args_size: 0,
tail_args_size,
reg_args: vec![],
frame_layout: None,
ret_area_ptr: None,
call_conv,
flags,
isa_flags: isa_flags.clone(),
is_leaf: f.is_leaf(),
stack_limit,
_mach: PhantomData,
})
}
/// Inserts instructions necessary for checking the stack limit into the
/// prologue.
///
/// This function will generate instructions necessary for perform a stack
/// check at the header of a function. The stack check is intended to trap
/// if the stack pointer goes below a particular threshold, preventing stack
/// overflow in wasm or other code. The `stack_limit` argument here is the
/// register which holds the threshold below which we're supposed to trap.
/// This function is known to allocate `stack_size` bytes and we'll push
/// instructions onto `insts`.
///
/// Note that the instructions generated here are special because this is
/// happening so late in the pipeline (e.g. after register allocation). This
/// means that we need to do manual register allocation here and also be
/// careful to not clobber any callee-saved or argument registers. For now
/// this routine makes do with the `spilltmp_reg` as one temporary
/// register, and a second register of `tmp2` which is caller-saved. This
/// should be fine for us since no spills should happen in this sequence of
/// instructions, so our register won't get accidentally clobbered.
///
/// No values can be live after the prologue, but in this case that's ok
/// because we just need to perform a stack check before progressing with
/// the rest of the function.
fn insert_stack_check(
&self,
stack_limit: Reg,
stack_size: u32,
insts: &mut SmallInstVec<M::I>,
) {
// With no explicit stack allocated we can just emit the simple check of
// the stack registers against the stack limit register, and trap if
// it's out of bounds.
if stack_size == 0 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
return;
}
// Note that the 32k stack size here is pretty special. See the
// documentation in x86/abi.rs for why this is here. The general idea is
// that we're protecting against overflow in the addition that happens
// below.
if stack_size >= 32 * 1024 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
}
// Add the `stack_size` to `stack_limit`, placing the result in
// `scratch`.
//
// Note though that `stack_limit`'s register may be the same as
// `scratch`. If our stack size doesn't fit into an immediate this
// means we need a second scratch register for loading the stack size
// into a register.
let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
insts.extend(M::gen_add_imm(self.call_conv, scratch, stack_limit, stack_size).into_iter());
insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
}
}
/// Generates the instructions necessary for the `gv` to be materialized into a
/// register.
///
/// This function will return a register that will contain the result of
/// evaluating `gv`. It will also return any instructions necessary to calculate
/// the value of the register.
///
/// Note that global values are typically lowered to instructions via the
/// standard legalization pass. Unfortunately though prologue generation happens
/// so late in the pipeline that we can't use these legalization passes to
/// generate the instructions for `gv`. As a result we duplicate some lowering
/// of `gv` here and support only some global values. This is similar to what
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
/// in the future too!
///
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
/// temporary register to store values in if necessary. Currently after we write
/// to this register there's guaranteed to be no spilled values between where
/// it's used, because we're not participating in register allocation anyway!
fn gen_stack_limit<M: ABIMachineSpec>(
f: &ir::Function,
sigs: &SigSet,
sig: Sig,
gv: ir::GlobalValue,
) -> (Reg, SmallInstVec<M::I>) {
let mut insts = smallvec![];
let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
return (reg, insts);
}
fn generate_gv<M: ABIMachineSpec>(
f: &ir::Function,
sigs: &SigSet,
sig: Sig,
gv: ir::GlobalValue,
insts: &mut SmallInstVec<M::I>,
) -> Reg {
match f.global_values[gv] {
// Return the direct register the vmcontext is in
ir::GlobalValueData::VMContext => {
get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
.expect("no vmcontext parameter found")
}
// Load our base value into a register, then load from that register
// in to a temporary register.
ir::GlobalValueData::Load {
base,
offset,
global_type: _,
flags: _,
} => {
let base = generate_gv::<M>(f, sigs, sig, base, insts);
let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
insts.push(M::gen_load_base_offset(
into_reg,
base,
offset.into(),
M::word_type(),
));
return into_reg.to_reg();
}
ref other => panic!("global value for stack limit not supported: {other}"),
}
}
/// Returns true if the signature needs to be legalized.
fn missing_struct_return(sig: &ir::Signature) -> bool {
sig.uses_special_param(ArgumentPurpose::StructReturn)
&& !sig.uses_special_return(ArgumentPurpose::StructReturn)
}
fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
// Keep in sync with Callee::new
let mut sig = sig.clone();
if sig.uses_special_return(ArgumentPurpose::StructReturn) {
panic!("Explicit StructReturn return value not allowed: {sig:?}")
}
if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
if !sig.returns.is_empty() {
panic!("No return values are allowed when using StructReturn: {sig:?}");
}
sig.returns.insert(0, sig.params[struct_ret_index]);
}
sig
}
/// ### Pre-Regalloc Functions
///
/// These methods of `Callee` may only be called before regalloc.
impl<M: ABIMachineSpec> Callee<M> {
/// Access the (possibly legalized) signature.
pub fn signature(&self) -> &ir::Signature {
debug_assert!(
!missing_struct_return(&self.ir_sig),
"`Callee::ir_sig` is always legalized"
);
&self.ir_sig
}
/// Initialize. This is called after the Callee is constructed because it
/// may allocate a temp vreg, which can only be allocated once the lowering
/// context exists.
pub fn init_retval_area(
&mut self,
sigs: &SigSet,
vregs: &mut VRegAllocator<M::I>,
) -> CodegenResult<()> {
if sigs[self.sig].stack_ret_arg.is_some() {
let ret_area_ptr = vregs.alloc(M::word_type())?;
self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
}
Ok(())
}
/// Get the return area pointer register, if any.
pub fn ret_area_ptr(&self) -> Option<Reg> {
self.ret_area_ptr
}
/// Accumulate outgoing arguments.
///
/// This ensures that at least `size` bytes are allocated in the prologue to
/// be available for use in function calls to hold arguments and/or return
/// values. If this function is called multiple times, the maximum of all
/// `size` values will be available.
pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
if size > self.outgoing_args_size {
self.outgoing_args_size = size;
}
}
/// Accumulate the incoming argument area size requirements for a tail call,
/// as it could be larger than the incoming arguments of the function
/// currently being compiled.
pub fn accumulate_tail_args_size(&mut self, size: u32) {
if size > self.tail_args_size {
self.tail_args_size = size;
}
}
pub fn is_forward_edge_cfi_enabled(&self) -> bool {
self.isa_flags.is_forward_edge_cfi_enabled()
}
/// Get the calling convention implemented by this ABI object.
pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv {
sigs[self.sig].call_conv
}
/// Get the ABI-dependent MachineEnv for managing register allocation.
pub fn machine_env(&self, sigs: &SigSet) -> &MachineEnv {
M::get_machine_env(&self.flags, self.call_conv(sigs))
}
/// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
&self.sized_stackslots
}
/// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
&self.dynamic_stackslots
}
/// Generate an instruction which copies an argument to a destination
/// register.
pub fn gen_copy_arg_to_regs(
&mut self,
sigs: &SigSet,
idx: usize,
into_regs: ValueRegs<Writable<Reg>>,
vregs: &mut VRegAllocator<M::I>,
) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
// Add a preg -> def pair to the eventual `args`
// instruction. Extension mode doesn't matter
// (we're copying out, not in; we ignore high bits
// by convention).
let arg = ArgPair {
vreg: *into_reg,
preg: reg.into(),
};
self.reg_args.push(arg);
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
// However, we have to respect the extension mode for stack
// slots, or else we grab the wrong bytes on big-endian.
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
let ty =
if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
M::word_type()
} else {
ty
};
insts.push(M::gen_load_stack(
StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
*into_reg,
ty,
));
}
}
};
match &sigs.args(self.sig)[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(into_regs.len(), slots.len());
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
copy_arg_slot_to_reg(&slot, &into_reg);
}
}
&ABIArg::StructArg { offset, .. } => {
let into_reg = into_regs.only_reg().unwrap();
// Buffer address is implicitly defined by the ABI.
insts.push(M::gen_get_stack_addr(
StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
into_reg,
));
}
&ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
let into_reg = into_regs.only_reg().unwrap();
// We need to dereference the pointer.
let base = match &pointer {
&ABIArgSlot::Reg { reg, ty, .. } => {
let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
self.reg_args.push(ArgPair {
vreg: Writable::from_reg(tmp),
preg: reg.into(),
});
tmp
}
&ABIArgSlot::Stack { offset, ty, .. } => {
let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
.only_reg()
.unwrap();
insts.push(M::gen_load_stack(
StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
addr_reg,
ty,
));
addr_reg.to_reg()
}
};
insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
}
}
insts
}
/// Generate an instruction which copies a source register to a return value slot.
pub fn gen_copy_regs_to_retval(
&self,
sigs: &SigSet,
idx: usize,
from_regs: ValueRegs<Reg>,
vregs: &mut VRegAllocator<M::I>,
) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
let mut reg_pairs = smallvec![];
let mut ret = smallvec![];
let word_bits = M::word_bits() as u8;
match &sigs.rets(self.sig)[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(from_regs.len(), slots.len());
for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
match slot {
&ABIArgSlot::Reg {
reg, ty, extension, ..
} => {
let from_bits = ty_bits(ty) as u8;
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
let vreg = match (ext, from_bits) {
(ir::ArgumentExtension::Uext, n)
| (ir::ArgumentExtension::Sext, n)
if n < word_bits =>
{
let signed = ext == ir::ArgumentExtension::Sext;
let dst =
writable_value_regs(vregs.alloc_with_deferred_error(ty))
.only_reg()
.unwrap();
ret.push(M::gen_extend(
dst, from_reg, signed, from_bits,
/* to_bits = */ word_bits,
));
dst.to_reg()
}
_ => {
// No move needed, regalloc2 will emit it using the constraint
// added by the RetPair.
from_reg
}
};
reg_pairs.push(RetPair {
vreg,
preg: Reg::from(reg),
});
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
let mut ty = ty;
let from_bits = ty_bits(ty) as u8;
// A machine ABI implementation should ensure that stack frames
// have "reasonable" size. All current ABIs for machinst
// backends (aarch64 and x64) enforce a 128MB limit.
let off = i32::try_from(offset).expect(
"Argument stack offset greater than 2GB; should hit impl limit first",
);
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
// Trash the from_reg; it should be its last use.
match (ext, from_bits) {
(ir::ArgumentExtension::Uext, n)
| (ir::ArgumentExtension::Sext, n)
if n < word_bits =>
{
assert_eq!(M::word_reg_class(), from_reg.class());
let signed = ext == ir::ArgumentExtension::Sext;
let dst =
writable_value_regs(vregs.alloc_with_deferred_error(ty))
.only_reg()
.unwrap();
ret.push(M::gen_extend(
dst, from_reg, signed, from_bits,
/* to_bits = */ word_bits,
));
// Store the extended version.
ty = M::word_type();
}
_ => {}
};
ret.push(M::gen_store_base_offset(
self.ret_area_ptr.unwrap(),
off,
from_reg,
ty,
));
}
}
}
}
ABIArg::StructArg { .. } => {
panic!("StructArg in return position is unsupported");
}
ABIArg::ImplicitPtrArg { .. } => {
panic!("ImplicitPtrArg in return position is unsupported");
}
}
(reg_pairs, ret)
}
/// Generate any setup instruction needed to save values to the
/// return-value area. This is usually used when were are multiple return
/// values or an otherwise large return value that must be passed on the
/// stack; typically the ABI specifies an extra hidden argument that is a
/// pointer to that memory.
pub fn gen_retval_area_setup(
&mut self,
sigs: &SigSet,
vregs: &mut VRegAllocator<M::I>,
) -> Option<M::I> {
if let Some(i) = sigs[self.sig].stack_ret_arg {
let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
let insts =
self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
insts.into_iter().next().map(|inst| {
trace!(
"gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
inst,
ret_area_ptr.to_reg()
);
inst
})
} else {
trace!("gen_retval_area_setup: not needed");
None
}
}
/// Generate a return instruction.
pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
M::gen_rets(rets)
}
/// Produce an instruction that computes a sized stackslot address.
pub fn sized_stackslot_addr(
&self,
slot: StackSlot,
offset: u32,
into_reg: Writable<Reg>,
) -> M::I {
// Offset from beginning of stackslot area.
let stack_off = self.sized_stackslots[slot] as i64;
let sp_off: i64 = stack_off + (offset as i64);
M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
}
/// Produce an instruction that computes a dynamic stackslot address.
pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
let stack_off = self.dynamic_stackslots[slot] as i64;
M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
}
/// Get an `args` pseudo-inst, if any, that should appear at the
/// very top of the function body prior to regalloc.
pub fn take_args(&mut self) -> Option<M::I> {
if self.reg_args.len() > 0 {
// Very first instruction is an `args` pseudo-inst that
// establishes live-ranges for in-register arguments and
// constrains them at the start of the function to the
// locations defined by the ABI.
Some(M::gen_args(std::mem::take(&mut self.reg_args)))
} else {
None
}
}
}
/// ### Post-Regalloc Functions
///
/// These methods of `Callee` may only be called after
/// regalloc.
impl<M: ABIMachineSpec> Callee<M> {
/// Compute the final frame layout, post-regalloc.
///
/// This must be called before gen_prologue or gen_epilogue.
pub fn compute_frame_layout(
&mut self,
sigs: &SigSet,
spillslots: usize,
clobbered: Vec<Writable<RealReg>>,
) {
let bytes = M::word_bytes();
let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
let mask = M::stack_align(self.call_conv) - 1;
let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
self.frame_layout = Some(M::compute_frame_layout(
self.call_conv,
&self.flags,
self.signature(),
&clobbered,
self.is_leaf,
self.stack_args_size(sigs),
self.tail_args_size,
total_stacksize,
self.outgoing_args_size,
));
}
/// Generate a prologue, post-regalloc.
///
/// This should include any stack frame or other setup necessary to use the
/// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
let frame_layout = self.frame_layout();
let mut insts = smallvec![];
// Set up frame.
insts.extend(M::gen_prologue_frame_setup(
self.call_conv,
&self.flags,
&self.isa_flags,
&frame_layout,
));
// The stack limit check needs to cover all the stack adjustments we
// might make, up to the next stack limit check in any function we
// call. Since this happens after frame setup, the current function's
// setup area needs to be accounted for in the caller's stack limit
// check, but we need to account for any setup area that our callees
// might need. Note that s390x may also use the outgoing args area for
// backtrace support even in leaf functions, so that should be accounted
// for unconditionally.
let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
+ frame_layout.clobber_size
+ frame_layout.fixed_frame_storage_size
+ frame_layout.outgoing_args_size
+ if self.is_leaf {
0
} else {
frame_layout.setup_area_size
};
// Leaf functions with zero stack don't need a stack check if one's
// specified, otherwise always insert the stack check.
if total_stacksize > 0 || !self.is_leaf {
if let Some((reg, stack_limit_load)) = &self.stack_limit {
insts.extend(stack_limit_load.clone());
self.insert_stack_check(*reg, total_stacksize, &mut insts);
}
if self.flags.enable_probestack() {
let guard_size = 1 << self.flags.probestack_size_log2();
match self.flags.probestack_strategy() {
ProbestackStrategy::Inline => M::gen_inline_probestack(
&mut insts,
self.call_conv,
total_stacksize,
guard_size,
),
ProbestackStrategy::Outline => {
if total_stacksize >= guard_size {
M::gen_probestack(&mut insts, total_stacksize);
}
}
}
}
}
// Save clobbered registers.
insts.extend(M::gen_clobber_save(
self.call_conv,
&self.flags,
&frame_layout,
));
insts
}
/// Generate an epilogue, post-regalloc.
///
/// Note that this must generate the actual return instruction (rather than
/// emitting this in the lowering logic), because the epilogue code comes
/// before the return and the two are likely closely related.
pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
let frame_layout = self.frame_layout();
let mut insts = smallvec![];
// Restore clobbered registers.
insts.extend(M::gen_clobber_restore(
self.call_conv,
&self.flags,
&frame_layout,
));
// Tear down frame.
insts.extend(M::gen_epilogue_frame_restore(
self.call_conv,
&self.flags,
&self.isa_flags,
&frame_layout,
));
// And return.
insts.extend(M::gen_return(
self.call_conv,
&self.isa_flags,
&frame_layout,
));
trace!("Epilogue: {:?}", insts);
insts
}
/// Return a reference to the computed frame layout information. This
/// function will panic if it's called before [`Self::compute_frame_layout`].
pub fn frame_layout(&self) -> &FrameLayout {
self.frame_layout
.as_ref()
.expect("frame layout not computed before prologue generation")
}
/// Returns the full frame size for the given function, after prologue
/// emission has run. This comprises the spill slots and stack-storage
/// slots as well as storage for clobbered callee-save registers, but
/// not arguments arguments pushed at callsites within this function,
/// or other ephemeral pushes.
pub fn frame_size(&self) -> u32 {
let frame_layout = self.frame_layout();
frame_layout.clobber_size + frame_layout.fixed_frame_storage_size
}
/// Returns offset from the slot base in the current frame to the caller's SP.
pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
let frame_layout = self.frame_layout();
frame_layout.clobber_size
+ frame_layout.fixed_frame_storage_size
+ frame_layout.setup_area_size
}
/// Returns the size of arguments expected on the stack.
pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
sigs[self.sig].sized_stack_arg_space
}
/// Get the spill-slot size.
pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
let max = if self.dynamic_type_sizes.len() == 0 {
16
} else {
*self
.dynamic_type_sizes
.iter()
.max_by(|x, y| x.1.cmp(&y.1))
.map(|(_k, v)| v)
.unwrap()
};
M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
}
/// Get the spill slot offset relative to the fixed allocation area start.
pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
// Offset from beginning of spillslot area.
let islot = slot.index() as i64;
let spill_off = islot * M::word_bytes() as i64;
let sp_off = self.stackslots_size as i64 + spill_off;
sp_off
}
/// Generate a spill.
pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
let ty = M::I::canonical_type_for_rc(from_reg.class());
debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
let sp_off = self.get_spillslot_offset(to_slot);
trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");
let from = StackAMode::Slot(sp_off);
<M>::gen_store_stack(from, Reg::from(from_reg), ty)
}
/// Generate a reload (fill).
pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
let sp_off = self.get_spillslot_offset(from_slot);
trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");
let from = StackAMode::Slot(sp_off);
<M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
}
}
/// An input argument to a call instruction: the vreg that is used,
/// and the preg it is constrained to (per the ABI).
#[derive(Clone, Debug)]
pub struct CallArgPair {
/// The virtual register to use for the argument.
pub vreg: Reg,
/// The real register into which the arg goes.
pub preg: Reg,
}
/// An output return value from a call instruction: the vreg that is
/// defined, and the preg it is constrained to (per the ABI).
#[derive(Clone, Debug)]
pub struct CallRetPair {
/// The virtual register to define from this return value.
pub vreg: Writable<Reg>,
/// The real register from which the return value is read.
pub preg: Reg,
}
pub type CallArgList = SmallVec<[CallArgPair; 8]>;
pub type CallRetList = SmallVec<[CallRetPair; 8]>;
pub enum IsTailCall {
Yes,
No,
}
/// ABI object for a callsite.
pub struct CallSite<M: ABIMachineSpec> {
/// The called function's signature.
sig: Sig,
/// All register uses for the callsite, i.e., function args, with
/// VReg and the physical register it is constrained to.
uses: CallArgList,
/// All defs for the callsite, i.e., return values.
defs: CallRetList,
/// Call destination.
dest: CallDest,
is_tail_call: IsTailCall,
/// Caller's calling convention.
caller_conv: isa::CallConv,
/// The settings controlling this compilation.
flags: settings::Flags,
_mach: PhantomData<M>,
}
/// Destination for a call.
#[derive(Debug, Clone)]
pub enum CallDest {
/// Call to an ExtName (named function symbol).
ExtName(ir::ExternalName, RelocDistance),
/// Indirect call to a function pointer in a register.
Reg(Reg),
}
impl<M: ABIMachineSpec> CallSite<M> {
/// Create a callsite ABI object for a call directly to the specified function.
pub fn from_func(
sigs: &SigSet,
sig_ref: ir::SigRef,
extname: &ir::ExternalName,
is_tail_call: IsTailCall,
dist: RelocDistance,
caller_conv: isa::CallConv,
flags: settings::Flags,
) -> CallSite<M> {
let sig = sigs.abi_sig_for_sig_ref(sig_ref);
CallSite {
sig,
uses: smallvec![],
defs: smallvec![],
dest: CallDest::ExtName(extname.clone(), dist),
is_tail_call,
caller_conv,
flags,
_mach: PhantomData,
}
}
/// Create a callsite ABI object for a call directly to the specified
/// libcall.
pub fn from_libcall(
sigs: &SigSet,
sig: &ir::Signature,
extname: &ir::ExternalName,
dist: RelocDistance,
caller_conv: isa::CallConv,
flags: settings::Flags,
) -> CallSite<M> {
let sig = sigs.abi_sig_for_signature(sig);
CallSite {
sig,
uses: smallvec![],
defs: smallvec![],
dest: CallDest::ExtName(extname.clone(), dist),
is_tail_call: IsTailCall::No,
caller_conv,
flags,
_mach: PhantomData,
}
}
/// Create a callsite ABI object for a call to a function pointer with the
/// given signature.
pub fn from_ptr(
sigs: &SigSet,
sig_ref: ir::SigRef,
ptr: Reg,
is_tail_call: IsTailCall,
caller_conv: isa::CallConv,
flags: settings::Flags,
) -> CallSite<M> {
let sig = sigs.abi_sig_for_sig_ref(sig_ref);
CallSite {
sig,
uses: smallvec![],
defs: smallvec![],
dest: CallDest::Reg(ptr),
is_tail_call,
caller_conv,
flags,
_mach: PhantomData,
}
}
pub(crate) fn dest(&self) -> &CallDest {
&self.dest
}
pub(crate) fn take_uses(self) -> CallArgList {
self.uses
}
pub(crate) fn sig<'a>(&self, sigs: &'a SigSet) -> &'a SigData {
&sigs[self.sig]
}
pub(crate) fn is_tail_call(&self) -> bool {
matches!(self.is_tail_call, IsTailCall::Yes)
}
}
impl<M: ABIMachineSpec> CallSite<M> {
/// Get the number of arguments expected.
pub fn num_args(&self, sigs: &SigSet) -> usize {
sigs.num_args(self.sig)
}
/// Get the number of return values expected.
pub fn num_rets(&self, sigs: &SigSet) -> usize {
sigs.num_rets(self.sig)
}
/// Emit a copy of a large argument into its associated stack buffer, if
/// any. We must be careful to perform all these copies (as necessary)
/// before setting up the argument registers, since we may have to invoke
/// memcpy(), which could clobber any registers already set up. The
/// back-end should call this routine for all arguments before calling
/// `gen_arg` for all arguments.
pub fn emit_copy_regs_to_buffer(
&self,
ctx: &mut Lower<M::I>,
idx: usize,
from_regs: ValueRegs<Reg>,
) {
match &ctx.sigs().args(self.sig)[idx] {
&ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
&ABIArg::StructArg { offset, size, .. } => {
let src_ptr = from_regs.only_reg().unwrap();
let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
ctx.emit(M::gen_get_stack_addr(
StackAMode::OutgoingArg(offset),
dst_ptr,
));
// Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
// N.B.: because we process StructArg params *first*, this is
// safe w.r.t. clobbers: we have not yet filled in any other
// arg regs.
let memcpy_call_conv =
isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv);
for insn in M::gen_memcpy(
memcpy_call_conv,
dst_ptr.to_reg(),
src_ptr,
size as usize,
|ty| ctx.alloc_tmp(ty).only_reg().unwrap(),
)
.into_iter()
{
ctx.emit(insn);
}
}
}
}
/// Add a constraint for an argument value from a source register.
/// For large arguments with associated stack buffer, this may
/// load the address of the buffer into the argument register, if
/// required by the ABI.
pub fn gen_arg(&mut self, ctx: &mut Lower<M::I>, idx: usize, from_regs: ValueRegs<Reg>) {
let stack_arg_space = ctx.sigs()[self.sig].sized_stack_arg_space;
let stack_arg = if self.is_tail_call() {
StackAMode::IncomingArg
} else {
|offset, _| StackAMode::OutgoingArg(offset)
};
let word_rc = M::word_reg_class();
let word_bits = M::word_bits() as usize;
match ctx.sigs().args(self.sig)[idx].clone() {
ABIArg::Slots { ref slots, .. } => {
assert_eq!(from_regs.len(), slots.len());
for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
match slot {
&ABIArgSlot::Reg {
reg, ty, extension, ..
} => {
let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
let vreg =
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
assert_eq!(word_rc, reg.class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
let extend_result =
ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
ctx.emit(M::gen_extend(
extend_result,
*from_reg,
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
extend_result.to_reg()
} else {
*from_reg
};
let preg = reg.into();
self.uses.push(CallArgPair { vreg, preg });
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
let (data, ty) =
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
assert_eq!(word_rc, from_reg.class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
let extend_result =
ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
ctx.emit(M::gen_extend(
extend_result,
*from_reg,
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
// Store the extended version.
(extend_result.to_reg(), M::word_type())
} else {
(*from_reg, ty)
};
ctx.emit(M::gen_store_stack(
stack_arg(offset, stack_arg_space),
data,
ty,
));
}
}
}
}
ABIArg::StructArg { .. } => {
// Only supported via ISLE.
}
ABIArg::ImplicitPtrArg {
offset,
pointer,
ty,
purpose: _,
} => {
assert_eq!(from_regs.len(), 1);
let vreg = from_regs.regs()[0];
let amode = StackAMode::OutgoingArg(offset);
let tmp = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
ctx.emit(M::gen_get_stack_addr(amode, tmp));
let tmp = tmp.to_reg();
ctx.emit(M::gen_store_base_offset(tmp, 0, vreg, ty));
match pointer {
ABIArgSlot::Reg { reg, .. } => self.uses.push(CallArgPair {
vreg: tmp,
preg: reg.into(),
}),
ABIArgSlot::Stack { offset, .. } => ctx.emit(M::gen_store_stack(
stack_arg(offset, stack_arg_space),
tmp,
M::word_type(),
)),
}
}
}
}
/// Call `gen_arg` for each non-hidden argument and emit all instructions
/// generated.
pub fn emit_args(&mut self, ctx: &mut Lower<M::I>, (inputs, off): isle::ValueSlice) {
let num_args = self.num_args(ctx.sigs());
assert_eq!(inputs.len(&ctx.dfg().value_lists) - off, num_args);
let mut arg_value_regs: SmallVec<[_; 16]> = smallvec![];
for i in 0..num_args {
let input = inputs.get(off + i, &ctx.dfg().value_lists).unwrap();
arg_value_regs.push(ctx.put_value_in_regs(input));
}
for (i, arg_regs) in arg_value_regs.iter().enumerate() {
self.emit_copy_regs_to_buffer(ctx, i, *arg_regs);
}
for (i, value_regs) in arg_value_regs.iter().enumerate() {
self.gen_arg(ctx, i, *value_regs);
}
}
/// Emit the code to forward a stack-return pointer argument through a tail
/// call.
pub fn emit_stack_ret_arg_for_tail_call(&mut self, ctx: &mut Lower<M::I>) {
if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg() {
let ret_area_ptr = ctx.abi().ret_area_ptr.expect(
"if the tail callee has a return pointer, then the tail caller \
must as well",
);
self.gen_arg(ctx, i.into(), ValueRegs::one(ret_area_ptr));
}
}
/// Define a return value after the call returns.
pub fn gen_retval(
&mut self,
ctx: &mut Lower<M::I>,
idx: usize,
) -> (SmallInstVec<M::I>, ValueRegs<Reg>) {
let mut insts = smallvec![];
let mut into_regs: SmallVec<[Reg; 2]> = smallvec![];
let ret = ctx.sigs().rets(self.sig)[idx].clone();
match ret {
ABIArg::Slots { ref slots, .. } => {
for slot in slots {
match slot {
// Extension mode doesn't matter because we're copying out, not in,
// and we ignore high bits in our own registers by convention.
&ABIArgSlot::Reg { reg, ty, .. } => {
let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
self.defs.push(CallRetPair {
vreg: into_reg,
preg: reg.into(),
});
into_regs.push(into_reg.to_reg());
}
&ABIArgSlot::Stack { offset, ty, .. } => {
let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
let sig_data = &ctx.sigs()[self.sig];
// The outgoing argument area must always be restored after a call,
// ensuring that the return values will be in a consistent place after
// any call.
let ret_area_base = sig_data.sized_stack_arg_space();
insts.push(M::gen_load_stack(
StackAMode::OutgoingArg(offset + ret_area_base),
into_reg,
ty,
));
into_regs.push(into_reg.to_reg());
}
}
}
}
ABIArg::StructArg { .. } => {
panic!("StructArg not supported in return position");
}
ABIArg::ImplicitPtrArg { .. } => {
panic!("ImplicitPtrArg not supported in return position");
}
}
let value_regs = match *into_regs {
[a] => ValueRegs::one(a),
[a, b] => ValueRegs::two(a, b),
_ => panic!("Expected to see one or two slots only from {ret:?}"),
};
(insts, value_regs)
}
/// Emit the call itself.
///
/// The returned instruction should have proper use- and def-sets according
/// to the argument registers, return-value registers, and clobbered
/// registers for this function signature in this ABI.
///
/// (Arg registers are uses, and retval registers are defs. Clobbered
/// registers are also logically defs, but should never be read; their
/// values are "defined" (to the regalloc) but "undefined" in every other
/// sense.)
///
/// This function should only be called once, as it is allowed to re-use
/// parts of the `CallSite` object in emitting instructions.
pub fn emit_call(&mut self, ctx: &mut Lower<M::I>) {
let word_type = M::word_type();
if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg {
let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space();
ctx.emit(M::gen_get_stack_addr(
StackAMode::OutgoingArg(ret_area_base),
rd,
));
self.gen_arg(ctx, i.into(), ValueRegs::one(rd.to_reg()));
}
let uses = mem::take(&mut self.uses);
let defs = mem::take(&mut self.defs);
let clobbers = {
// Get clobbers: all caller-saves. These may include return value
// regs, which we will remove from the clobber set below.
let mut clobbers = <M>::get_regs_clobbered_by_call(ctx.sigs()[self.sig].call_conv);
// Remove retval regs from clobbers.
for def in &defs {
clobbers.remove(PReg::from(def.preg.to_real_reg().unwrap()));
}
clobbers
};
let sig = &ctx.sigs()[self.sig];
let callee_pop_size = if sig.call_conv() == isa::CallConv::Tail {
// The tail calling convention has callees pop stack arguments.
sig.sized_stack_arg_space
} else {
0
};
let call_conv = sig.call_conv;
let ret_space = sig.sized_stack_ret_space;
let arg_space = sig.sized_stack_arg_space;
ctx.abi_mut()
.accumulate_outgoing_args_size(ret_space + arg_space);
let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
// Any adjustment to SP to account for required outgoing arguments/stack return values must
// be done inside of the call pseudo-op, to ensure that SP is always in a consistent
// state for all other instructions. For example, if a tail-call abi function is called
// here, the reclamation of the outgoing argument area must be done inside of the call
// pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
// function. (Except the prologue and epilogue, but those are fairly special parts of the
// function that establish the SP invariants that are relied on elsewhere and are generated
// after the register allocator has run and thus cannot have register allocator-inserted
// references to SP offsets.)
for inst in M::gen_call(
&self.dest,
tmp,
CallInfo {
dest: (),
uses,
defs,
clobbers,
callee_conv: call_conv,
caller_conv: self.caller_conv,
callee_pop_size,
},
)
.into_iter()
{
ctx.emit(inst);
}
}
}
#[cfg(test)]
mod tests {
use super::SigData;
#[test]
fn sig_data_size() {
// The size of `SigData` is performance sensitive, so make sure
// we don't regress it unintentionally.
assert_eq!(std::mem::size_of::<SigData>(), 24);
}
}