cranelift_codegen/machinst/abi.rs
1//! Implementation of a vanilla ABI, shared between several machines. The
2//! implementation here assumes that arguments will be passed in registers
3//! first, then additional args on the stack; that the stack grows downward,
4//! contains a standard frame (return address and frame pointer), and the
5//! compiler is otherwise free to allocate space below that with its choice of
6//! layout; and that the machine has some notion of caller- and callee-save
7//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
8//! mold and thus both of these backends use this shared implementation.
9//!
10//! See the documentation in specific machine backends for the "instantiation"
11//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
12//! and return values, and any other special requirements.
13//!
14//! For now the implementation here assumes a 64-bit machine, but we intend to
15//! make this 32/64-bit-generic shortly.
16//!
17//! # Vanilla ABI
18//!
19//! First, arguments and return values are passed in registers up to a certain
20//! fixed count, after which they overflow onto the stack. Multiple return
21//! values either fit in registers, or are returned in a separate return-value
22//! area on the stack, given by a hidden extra parameter.
23//!
24//! Note that the exact stack layout is up to us. We settled on the
25//! below design based on several requirements. In particular, we need
26//! to be able to generate instructions (or instruction sequences) to
27//! access arguments, stack slots, and spill slots before we know how
28//! many spill slots or clobber-saves there will be, because of our
29//! pass structure. We also prefer positive offsets to negative
30//! offsets because of an asymmetry in some machines' addressing modes
31//! (e.g., on AArch64, positive offsets have a larger possible range
32//! without a long-form sequence to synthesize an arbitrary
33//! offset). We also need clobber-save registers to be "near" the
34//! frame pointer: Windows unwind information requires it to be within
35//! 240 bytes of RBP. Finally, it is not allowed to access memory
36//! below the current SP value.
37//!
38//! We assume that a prologue first pushes the frame pointer (and
39//! return address above that, if the machine does not do that in
40//! hardware). We set FP to point to this two-word frame record. We
41//! store all other frame slots below this two-word frame record, as
42//! well as enough space for arguments to the largest possible
43//! function call. The stack pointer then remains at this position
44//! for the duration of the function, allowing us to address all
45//! frame storage at positive offsets from SP.
46//!
47//! Note that if we ever support dynamic stack-space allocation (for
48//! `alloca`), we will need a way to reference spill slots and stack
49//! slots relative to a dynamic SP, because we will no longer be able
50//! to know a static offset from SP to the slots at any particular
51//! program point. Probably the best solution at that point will be to
52//! revert to using the frame pointer as the reference for all slots,
53//! to allow generating spill/reload and stackslot accesses before we
54//! know how large the clobber-saves will be.
55//!
56//! # Stack Layout
57//!
58//! The stack looks like:
59//!
60//! ```plain
61//! (high address)
62//! | ... |
63//! | caller frames |
64//! | ... |
65//! +===========================+
66//! | ... |
67//! | stack args |
68//! Canonical Frame Address --> | (accessed via FP) |
69//! +---------------------------+
70//! SP at function entry -----> | return address |
71//! +---------------------------+
72//! FP after prologue --------> | FP (pushed by prologue) |
73//! +---------------------------+ -----
74//! | ... | |
75//! | clobbered callee-saves | |
76//! unwind-frame base --------> | (pushed by prologue) | |
77//! +---------------------------+ ----- |
78//! | ... | | |
79//! | spill slots | | |
80//! | (accessed via SP) | fixed active
81//! | ... | frame size
82//! | stack slots | storage |
83//! | (accessed via SP) | size |
84//! | (alloc'd by prologue) | | |
85//! +---------------------------+ ----- |
86//! | [alignment as needed] | |
87//! | ... | |
88//! | args for largest call | |
89//! SP -----------------------> | (alloc'd by prologue) | |
90//! +===========================+ -----
91//!
92//! (low address)
93//! ```
94//!
95//! # Multi-value Returns
96//!
97//! We support multi-value returns by using multiple return-value
98//! registers. In some cases this is an extension of the base system
99//! ABI. See each platform's `abi.rs` implementation for details.
100
101use crate::entity::SecondaryMap;
102use crate::ir::types::*;
103use crate::ir::{ArgumentExtension, ArgumentPurpose, ExceptionTable, ExceptionTag, Signature};
104use crate::isa::TargetIsa;
105use crate::settings::ProbestackStrategy;
106use crate::CodegenError;
107use crate::{ir, isa};
108use crate::{machinst::*, trace};
109use alloc::boxed::Box;
110use cranelift_entity::packed_option::PackedOption;
111use regalloc2::{MachineEnv, PReg, PRegSet};
112use rustc_hash::FxHashMap;
113use smallvec::smallvec;
114use std::collections::HashMap;
115use std::marker::PhantomData;
116use std::mem;
117
118/// A small vector of instructions (with some reasonable size); appropriate for
119/// a small fixed sequence implementing one operation.
120pub type SmallInstVec<I> = SmallVec<[I; 4]>;
121
122/// A type used by backends to track argument-binding info in the "args"
123/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
124#[derive(Clone, Debug)]
125pub struct ArgPair {
126 /// The vreg that is defined by this args pseudoinst.
127 pub vreg: Writable<Reg>,
128 /// The preg that the arg arrives in; this constrains the vreg's
129 /// placement at the pseudoinst.
130 pub preg: Reg,
131}
132
133/// A type used by backends to track return register binding info in the "ret"
134/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
135#[derive(Clone, Debug)]
136pub struct RetPair {
137 /// The vreg that is returned by this pseudionst.
138 pub vreg: Reg,
139 /// The preg that the arg is returned through; this constrains the vreg's
140 /// placement at the pseudoinst.
141 pub preg: Reg,
142}
143
144/// A location for (part of) an argument or return value. These "storage slots"
145/// are specified for each register-sized part of an argument.
146#[derive(Clone, Copy, Debug, PartialEq, Eq)]
147pub enum ABIArgSlot {
148 /// In a real register.
149 Reg {
150 /// Register that holds this arg.
151 reg: RealReg,
152 /// Value type of this arg.
153 ty: ir::Type,
154 /// Should this arg be zero- or sign-extended?
155 extension: ir::ArgumentExtension,
156 },
157 /// Arguments only: on stack, at given offset from SP at entry.
158 Stack {
159 /// Offset of this arg relative to the base of stack args.
160 offset: i64,
161 /// Value type of this arg.
162 ty: ir::Type,
163 /// Should this arg be zero- or sign-extended?
164 extension: ir::ArgumentExtension,
165 },
166}
167
168impl ABIArgSlot {
169 /// The type of the value that will be stored in this slot.
170 pub fn get_type(&self) -> ir::Type {
171 match self {
172 ABIArgSlot::Reg { ty, .. } => *ty,
173 ABIArgSlot::Stack { ty, .. } => *ty,
174 }
175 }
176}
177
178/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
179/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
180/// super rare (and never happen with Wasm).
181pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
182
183/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
184/// Value to be passed with its parts in more than one location at the ABI
185/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
186/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
187/// number of "parts" should correspond to the number of registers used to store
188/// this type according to the machine backend.
189///
190/// As an invariant, the `purpose` for every part must match. As a further
191/// invariant, a `StructArg` part cannot appear with any other part.
192#[derive(Clone, Debug)]
193pub enum ABIArg {
194 /// Storage slots (registers or stack locations) for each part of the
195 /// argument value. The number of slots must equal the number of register
196 /// parts used to store a value of this type.
197 Slots {
198 /// Slots, one per register part.
199 slots: ABIArgSlotVec,
200 /// Purpose of this arg.
201 purpose: ir::ArgumentPurpose,
202 },
203 /// Structure argument. We reserve stack space for it, but the CLIF-level
204 /// semantics are a little weird: the value passed to the call instruction,
205 /// and received in the corresponding block param, is a *pointer*. On the
206 /// caller side, we memcpy the data from the passed-in pointer to the stack
207 /// area; on the callee side, we compute a pointer to this stack area and
208 /// provide that as the argument's value.
209 StructArg {
210 /// Offset of this arg relative to base of stack args.
211 offset: i64,
212 /// Size of this arg on the stack.
213 size: u64,
214 /// Purpose of this arg.
215 purpose: ir::ArgumentPurpose,
216 },
217 /// Implicit argument. Similar to a StructArg, except that we have the
218 /// target type, not a pointer type, at the CLIF-level. This argument is
219 /// still being passed via reference implicitly.
220 ImplicitPtrArg {
221 /// Register or stack slot holding a pointer to the buffer.
222 pointer: ABIArgSlot,
223 /// Offset of the argument buffer.
224 offset: i64,
225 /// Type of the implicit argument.
226 ty: Type,
227 /// Purpose of this arg.
228 purpose: ir::ArgumentPurpose,
229 },
230}
231
232impl ABIArg {
233 /// Create an ABIArg from one register.
234 pub fn reg(
235 reg: RealReg,
236 ty: ir::Type,
237 extension: ir::ArgumentExtension,
238 purpose: ir::ArgumentPurpose,
239 ) -> ABIArg {
240 ABIArg::Slots {
241 slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
242 purpose,
243 }
244 }
245
246 /// Create an ABIArg from one stack slot.
247 pub fn stack(
248 offset: i64,
249 ty: ir::Type,
250 extension: ir::ArgumentExtension,
251 purpose: ir::ArgumentPurpose,
252 ) -> ABIArg {
253 ABIArg::Slots {
254 slots: smallvec![ABIArgSlot::Stack {
255 offset,
256 ty,
257 extension,
258 }],
259 purpose,
260 }
261 }
262}
263
264/// Are we computing information about arguments or return values? Much of the
265/// handling is factored out into common routines; this enum allows us to
266/// distinguish which case we're handling.
267#[derive(Clone, Copy, Debug, PartialEq, Eq)]
268pub enum ArgsOrRets {
269 /// Arguments.
270 Args,
271 /// Return values.
272 Rets,
273}
274
275/// Abstract location for a machine-specific ABI impl to translate into the
276/// appropriate addressing mode.
277#[derive(Clone, Copy, Debug, PartialEq, Eq)]
278pub enum StackAMode {
279 /// Offset into the current frame's argument area.
280 IncomingArg(i64, u32),
281 /// Offset within the stack slots in the current frame.
282 Slot(i64),
283 /// Offset into the callee frame's argument area.
284 OutgoingArg(i64),
285}
286
287impl StackAMode {
288 fn offset_by(&self, offset: u32) -> Self {
289 match self {
290 StackAMode::IncomingArg(off, size) => {
291 StackAMode::IncomingArg(off.checked_add(i64::from(offset)).unwrap(), *size)
292 }
293 StackAMode::Slot(off) => StackAMode::Slot(off.checked_add(i64::from(offset)).unwrap()),
294 StackAMode::OutgoingArg(off) => {
295 StackAMode::OutgoingArg(off.checked_add(i64::from(offset)).unwrap())
296 }
297 }
298 }
299}
300
301/// Trait implemented by machine-specific backend to represent ISA flags.
302pub trait IsaFlags: Clone {
303 /// Get a flag indicating whether forward-edge CFI is enabled.
304 fn is_forward_edge_cfi_enabled(&self) -> bool {
305 false
306 }
307}
308
309/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
310/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
311/// `ABIArg`s in `SigSet` and exposes just the args for the current
312/// `compute_arg_locs` call.
313pub struct ArgsAccumulator<'a> {
314 sig_set_abi_args: &'a mut Vec<ABIArg>,
315 start: usize,
316 non_formal_flag: bool,
317}
318
319impl<'a> ArgsAccumulator<'a> {
320 fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
321 let start = sig_set_abi_args.len();
322 ArgsAccumulator {
323 sig_set_abi_args,
324 start,
325 non_formal_flag: false,
326 }
327 }
328
329 #[inline]
330 pub fn push(&mut self, arg: ABIArg) {
331 debug_assert!(!self.non_formal_flag);
332 self.sig_set_abi_args.push(arg)
333 }
334
335 #[inline]
336 pub fn push_non_formal(&mut self, arg: ABIArg) {
337 self.non_formal_flag = true;
338 self.sig_set_abi_args.push(arg)
339 }
340
341 #[inline]
342 pub fn args(&self) -> &[ABIArg] {
343 &self.sig_set_abi_args[self.start..]
344 }
345
346 #[inline]
347 pub fn args_mut(&mut self) -> &mut [ABIArg] {
348 &mut self.sig_set_abi_args[self.start..]
349 }
350}
351
352/// Trait implemented by machine-specific backend to provide information about
353/// register assignments and to allow generating the specific instructions for
354/// stack loads/saves, prologues/epilogues, etc.
355pub trait ABIMachineSpec {
356 /// The instruction type.
357 type I: VCodeInst;
358
359 /// The ISA flags type.
360 type F: IsaFlags;
361
362 /// This is the limit for the size of argument and return-value areas on the
363 /// stack. We place a reasonable limit here to avoid integer overflow issues
364 /// with 32-bit arithmetic.
365 const STACK_ARG_RET_SIZE_LIMIT: u32;
366
367 /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
368 fn word_bits() -> u32;
369
370 /// Returns the number of bytes in a word.
371 fn word_bytes() -> u32 {
372 return Self::word_bits() / 8;
373 }
374
375 /// Returns word-size integer type.
376 fn word_type() -> Type {
377 match Self::word_bits() {
378 32 => I32,
379 64 => I64,
380 _ => unreachable!(),
381 }
382 }
383
384 /// Returns word register class.
385 fn word_reg_class() -> RegClass {
386 RegClass::Int
387 }
388
389 /// Returns required stack alignment in bytes.
390 fn stack_align(call_conv: isa::CallConv) -> u32;
391
392 /// Process a list of parameters or return values and allocate them to registers
393 /// and stack slots.
394 ///
395 /// The argument locations should be pushed onto the given `ArgsAccumulator`
396 /// in order. Any extra arguments added (such as return area pointers)
397 /// should come at the end of the list so that the first N lowered
398 /// parameters align with the N clif parameters.
399 ///
400 /// Returns the stack-space used (rounded up to as alignment requires), and
401 /// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
402 /// that was added.
403 fn compute_arg_locs(
404 call_conv: isa::CallConv,
405 flags: &settings::Flags,
406 params: &[ir::AbiParam],
407 args_or_rets: ArgsOrRets,
408 add_ret_area_ptr: bool,
409 args: ArgsAccumulator,
410 ) -> CodegenResult<(u32, Option<usize>)>;
411
412 /// Generate a load from the stack.
413 fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
414
415 /// Generate a store to the stack.
416 fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
417
418 /// Generate a move.
419 fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
420
421 /// Generate an integer-extend operation.
422 fn gen_extend(
423 to_reg: Writable<Reg>,
424 from_reg: Reg,
425 is_signed: bool,
426 from_bits: u8,
427 to_bits: u8,
428 ) -> Self::I;
429
430 /// Generate an "args" pseudo-instruction to capture input args in
431 /// registers.
432 fn gen_args(args: Vec<ArgPair>) -> Self::I;
433
434 /// Generate a "rets" pseudo-instruction that moves vregs to return
435 /// registers.
436 fn gen_rets(rets: Vec<RetPair>) -> Self::I;
437
438 /// Generate an add-with-immediate. Note that even if this uses a scratch
439 /// register, it must satisfy two requirements:
440 ///
441 /// - The add-imm sequence must only clobber caller-save registers that are
442 /// not used for arguments, because it will be placed in the prologue
443 /// before the clobbered callee-save registers are saved.
444 ///
445 /// - The add-imm sequence must work correctly when `from_reg` and/or
446 /// `into_reg` are the register returned by `get_stacklimit_reg()`.
447 fn gen_add_imm(
448 call_conv: isa::CallConv,
449 into_reg: Writable<Reg>,
450 from_reg: Reg,
451 imm: u32,
452 ) -> SmallInstVec<Self::I>;
453
454 /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
455 /// the stack pointer is less than the given limit register (assuming the
456 /// stack grows downward).
457 fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
458
459 /// Generate an instruction to compute an address of a stack slot (FP- or
460 /// SP-based offset).
461 fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;
462
463 /// Get a fixed register to use to compute a stack limit. This is needed for
464 /// certain sequences generated after the register allocator has already
465 /// run. This must satisfy two requirements:
466 ///
467 /// - It must be a caller-save register that is not used for arguments,
468 /// because it will be clobbered in the prologue before the clobbered
469 /// callee-save registers are saved.
470 ///
471 /// - It must be safe to pass as an argument and/or destination to
472 /// `gen_add_imm()`. This is relevant when an addition with a large
473 /// immediate needs its own temporary; it cannot use the same fixed
474 /// temporary as this one.
475 fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;
476
477 /// Generate a load to the given [base+offset] address.
478 fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
479
480 /// Generate a store from the given [base+offset] address.
481 fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
482
483 /// Adjust the stack pointer up or down.
484 fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
485
486 /// Compute a FrameLayout structure containing a sorted list of all clobbered
487 /// registers that are callee-saved according to the ABI, as well as the sizes
488 /// of all parts of the stack frame. The result is used to emit the prologue
489 /// and epilogue routines.
490 fn compute_frame_layout(
491 call_conv: isa::CallConv,
492 flags: &settings::Flags,
493 sig: &Signature,
494 regs: &[Writable<RealReg>],
495 is_leaf: bool,
496 incoming_args_size: u32,
497 tail_args_size: u32,
498 stackslots_size: u32,
499 fixed_frame_storage_size: u32,
500 outgoing_args_size: u32,
501 ) -> FrameLayout;
502
503 /// Generate the usual frame-setup sequence for this architecture: e.g.,
504 /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
505 /// AArch64.
506 fn gen_prologue_frame_setup(
507 call_conv: isa::CallConv,
508 flags: &settings::Flags,
509 isa_flags: &Self::F,
510 frame_layout: &FrameLayout,
511 ) -> SmallInstVec<Self::I>;
512
513 /// Generate the usual frame-restore sequence for this architecture.
514 fn gen_epilogue_frame_restore(
515 call_conv: isa::CallConv,
516 flags: &settings::Flags,
517 isa_flags: &Self::F,
518 frame_layout: &FrameLayout,
519 ) -> SmallInstVec<Self::I>;
520
521 /// Generate a return instruction.
522 fn gen_return(
523 call_conv: isa::CallConv,
524 isa_flags: &Self::F,
525 frame_layout: &FrameLayout,
526 ) -> SmallInstVec<Self::I>;
527
528 /// Generate a probestack call.
529 fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
530
531 /// Generate a inline stack probe.
532 fn gen_inline_probestack(
533 insts: &mut SmallInstVec<Self::I>,
534 call_conv: isa::CallConv,
535 frame_size: u32,
536 guard_size: u32,
537 );
538
539 /// Generate a clobber-save sequence. The implementation here should return
540 /// a sequence of instructions that "push" or otherwise save to the stack all
541 /// registers written/modified by the function body that are callee-saved.
542 /// The sequence of instructions should adjust the stack pointer downward,
543 /// and should align as necessary according to ABI requirements.
544 fn gen_clobber_save(
545 call_conv: isa::CallConv,
546 flags: &settings::Flags,
547 frame_layout: &FrameLayout,
548 ) -> SmallVec<[Self::I; 16]>;
549
550 /// Generate a clobber-restore sequence. This sequence should perform the
551 /// opposite of the clobber-save sequence generated above, assuming that SP
552 /// going into the sequence is at the same point that it was left when the
553 /// clobber-save sequence finished.
554 fn gen_clobber_restore(
555 call_conv: isa::CallConv,
556 flags: &settings::Flags,
557 frame_layout: &FrameLayout,
558 ) -> SmallVec<[Self::I; 16]>;
559
560 /// Generate a call instruction/sequence. This method is provided one
561 /// temporary register to use to synthesize the called address, if needed.
562 fn gen_call(dest: &CallDest, tmp: Writable<Reg>, info: CallInfo<()>) -> SmallVec<[Self::I; 2]>;
563
564 /// Generate a memcpy invocation. Used to set up struct
565 /// args. Takes `src`, `dst` as read-only inputs and passes a temporary
566 /// allocator.
567 fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
568 call_conv: isa::CallConv,
569 dst: Reg,
570 src: Reg,
571 size: usize,
572 alloc_tmp: F,
573 ) -> SmallVec<[Self::I; 8]>;
574
575 /// Get the number of spillslots required for the given register-class.
576 fn get_number_of_spillslots_for_value(
577 rc: RegClass,
578 target_vector_bytes: u32,
579 isa_flags: &Self::F,
580 ) -> u32;
581
582 /// Get the ABI-dependent MachineEnv for managing register allocation.
583 fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;
584
585 /// Get all caller-save registers, that is, registers that we expect
586 /// not to be saved across a call to a callee with the given ABI.
587 fn get_regs_clobbered_by_call(
588 call_conv_of_callee: isa::CallConv,
589 is_exception: bool,
590 ) -> PRegSet;
591
592 /// Get the needed extension mode, given the mode attached to the argument
593 /// in the signature and the calling convention. The input (the attribute in
594 /// the signature) specifies what extension type should be done *if* the ABI
595 /// requires extension to the full register; this method's return value
596 /// indicates whether the extension actually *will* be done.
597 fn get_ext_mode(
598 call_conv: isa::CallConv,
599 specified: ir::ArgumentExtension,
600 ) -> ir::ArgumentExtension;
601
602 /// Get a temporary register that is available to use after a call
603 /// completes and that does not interfere with register-carried
604 /// return values. This is used to move stack-carried return
605 /// values directly into spillslots if needed.
606 fn retval_temp_reg(call_conv_of_callee: isa::CallConv) -> Writable<Reg>;
607
608 /// Get the exception payload registers, if any, for a calling
609 /// convention.
610 fn exception_payload_regs(_call_conv: isa::CallConv) -> &'static [Reg] {
611 &[]
612 }
613}
614
615/// Out-of-line data for calls, to keep the size of `Inst` down.
616#[derive(Clone, Debug)]
617pub struct CallInfo<T> {
618 /// Receiver of this call
619 pub dest: T,
620 /// Register uses of this call.
621 pub uses: CallArgList,
622 /// Register defs of this call.
623 pub defs: CallRetList,
624 /// Registers clobbered by this call, as per its calling convention.
625 pub clobbers: PRegSet,
626 /// The calling convention of the callee.
627 pub callee_conv: isa::CallConv,
628 /// The calling convention of the caller.
629 pub caller_conv: isa::CallConv,
630 /// The number of bytes that the callee will pop from the stack for the
631 /// caller, if any. (Used for popping stack arguments with the `tail`
632 /// calling convention.)
633 pub callee_pop_size: u32,
634 /// Information for a try-call, if this is one. We combine
635 /// handling of calls and try-calls as much as possible to share
636 /// argument/return logic; they mostly differ in the metadata that
637 /// they emit, which this information feeds into.
638 pub try_call_info: Option<TryCallInfo>,
639}
640
641/// Out-of-line information present on `try_call` instructions only:
642/// information that is used to generate exception-handling tables and
643/// link up to destination blocks properly.
644#[derive(Clone, Debug)]
645pub struct TryCallInfo {
646 /// The target to jump to on a normal returhn.
647 pub continuation: MachLabel,
648 /// Exception tags to catch and corresponding destination labels.
649 pub exception_dests: Box<[(PackedOption<ExceptionTag>, MachLabel)]>,
650}
651
652impl<T> CallInfo<T> {
653 /// Creates an empty set of info with no clobbers/uses/etc with the
654 /// specified ABI
655 pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
656 CallInfo {
657 dest,
658 uses: smallvec![],
659 defs: smallvec![],
660 clobbers: PRegSet::empty(),
661 caller_conv: call_conv,
662 callee_conv: call_conv,
663 callee_pop_size: 0,
664 try_call_info: None,
665 }
666 }
667
668 /// Change the `T` payload on this info to `U`.
669 pub fn map<U>(self, f: impl FnOnce(T) -> U) -> CallInfo<U> {
670 CallInfo {
671 dest: f(self.dest),
672 uses: self.uses,
673 defs: self.defs,
674 clobbers: self.clobbers,
675 caller_conv: self.caller_conv,
676 callee_conv: self.callee_conv,
677 callee_pop_size: self.callee_pop_size,
678 try_call_info: self.try_call_info,
679 }
680 }
681}
682
683/// The id of an ABI signature within the `SigSet`.
684#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
685pub struct Sig(u32);
686cranelift_entity::entity_impl!(Sig);
687
688impl Sig {
689 fn prev(self) -> Option<Sig> {
690 self.0.checked_sub(1).map(Sig)
691 }
692}
693
694/// ABI information shared between body (callee) and caller.
695#[derive(Clone, Debug)]
696pub struct SigData {
697 /// Currently both return values and arguments are stored in a continuous space vector
698 /// in `SigSet::abi_args`.
699 ///
700 /// ```plain
701 /// +----------------------------------------------+
702 /// | return values |
703 /// | ... |
704 /// rets_end --> +----------------------------------------------+
705 /// | arguments |
706 /// | ... |
707 /// args_end --> +----------------------------------------------+
708 ///
709 /// ```
710 ///
711 /// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
712 ///
713 /// Argument location ending offset (regs or stack slots). Stack offsets are relative to
714 /// SP on entry to function.
715 ///
716 /// This is a index into the `SigSet::abi_args`.
717 args_end: u32,
718
719 /// Return-value location ending offset. Stack offsets are relative to the return-area
720 /// pointer.
721 ///
722 /// This is a index into the `SigSet::abi_args`.
723 rets_end: u32,
724
725 /// Space on stack used to store arguments. We're storing the size in u32 to
726 /// reduce the size of the struct.
727 sized_stack_arg_space: u32,
728
729 /// Space on stack used to store return values. We're storing the size in u32 to
730 /// reduce the size of the struct.
731 sized_stack_ret_space: u32,
732
733 /// Index in `args` of the stack-return-value-area argument.
734 stack_ret_arg: Option<u16>,
735
736 /// Calling convention used.
737 call_conv: isa::CallConv,
738}
739
740impl SigData {
741 /// Get total stack space required for arguments.
742 pub fn sized_stack_arg_space(&self) -> i64 {
743 self.sized_stack_arg_space.into()
744 }
745
746 /// Get total stack space required for return values.
747 pub fn sized_stack_ret_space(&self) -> i64 {
748 self.sized_stack_ret_space.into()
749 }
750
751 /// Get calling convention used.
752 pub fn call_conv(&self) -> isa::CallConv {
753 self.call_conv
754 }
755
756 /// The index of the stack-return-value-area argument, if any.
757 pub fn stack_ret_arg(&self) -> Option<u16> {
758 self.stack_ret_arg
759 }
760}
761
762/// A (mostly) deduplicated set of ABI signatures.
763///
764/// We say "mostly" because we do not dedupe between signatures interned via
765/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
766/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
767/// this final bit of deduplication would require filling out the
768/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
769/// hash map itself but params and returns vecs in each signature) that we want
770/// to avoid.
771///
772/// In general, prefer using the `ir::SigRef`-taking methods to the
773/// `ir::Signature`-taking methods when you can get away with it, as they don't
774/// require cloning non-copy types that will trigger heap allocations.
775///
776/// This type can be indexed by `Sig` to access its associated `SigData`.
777pub struct SigSet {
778 /// Interned `ir::Signature`s that we already have an ABI signature for.
779 ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
780
781 /// Interned `ir::SigRef`s that we already have an ABI signature for.
782 ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
783
784 /// A single, shared allocation for all `ABIArg`s used by all
785 /// `SigData`s. Each `SigData` references its args/rets via indices into
786 /// this allocation.
787 abi_args: Vec<ABIArg>,
788
789 /// The actual ABI signatures, keyed by `Sig`.
790 sigs: PrimaryMap<Sig, SigData>,
791}
792
793impl SigSet {
794 /// Construct a new `SigSet`, interning all of the signatures used by the
795 /// given function.
796 pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
797 where
798 M: ABIMachineSpec,
799 {
800 let arg_estimate = func.dfg.signatures.len() * 6;
801
802 let mut sigs = SigSet {
803 ir_signature_to_abi_sig: FxHashMap::default(),
804 ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
805 abi_args: Vec::with_capacity(arg_estimate),
806 sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
807 };
808
809 sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
810 for sig_ref in func.dfg.signatures.keys() {
811 sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
812 }
813
814 Ok(sigs)
815 }
816
817 /// Have we already interned an ABI signature for the given `ir::Signature`?
818 pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
819 self.ir_signature_to_abi_sig.contains_key(signature)
820 }
821
822 /// Construct and intern an ABI signature for the given `ir::Signature`.
823 pub fn make_abi_sig_from_ir_signature<M>(
824 &mut self,
825 signature: ir::Signature,
826 flags: &settings::Flags,
827 ) -> CodegenResult<Sig>
828 where
829 M: ABIMachineSpec,
830 {
831 // Because the `HashMap` entry API requires taking ownership of the
832 // lookup key -- and we want to avoid unnecessary clones of
833 // `ir::Signature`s, even at the cost of duplicate lookups -- we can't
834 // have a single, get-or-create-style method for interning
835 // `ir::Signature`s into ABI signatures. So at least (debug) assert that
836 // we aren't creating duplicate ABI signatures for the same
837 // `ir::Signature`.
838 debug_assert!(!self.have_abi_sig_for_signature(&signature));
839
840 let sig_data = self.from_func_sig::<M>(&signature, flags)?;
841 let sig = self.sigs.push(sig_data);
842 self.ir_signature_to_abi_sig.insert(signature, sig);
843 Ok(sig)
844 }
845
846 fn make_abi_sig_from_ir_sig_ref<M>(
847 &mut self,
848 sig_ref: ir::SigRef,
849 dfg: &ir::DataFlowGraph,
850 flags: &settings::Flags,
851 ) -> CodegenResult<Sig>
852 where
853 M: ABIMachineSpec,
854 {
855 if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
856 return Ok(sig);
857 }
858 let signature = &dfg.signatures[sig_ref];
859 let sig_data = self.from_func_sig::<M>(signature, flags)?;
860 let sig = self.sigs.push(sig_data);
861 self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
862 Ok(sig)
863 }
864
865 /// Get the already-interned ABI signature id for the given `ir::SigRef`.
866 pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
867 self.ir_sig_ref_to_abi_sig[sig_ref]
868 .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
869 }
870
871 /// Get the already-interned ABI signature id for the given `ir::Signature`.
872 pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
873 self.ir_signature_to_abi_sig
874 .get(signature)
875 .copied()
876 .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
877 }
878
879 pub fn from_func_sig<M: ABIMachineSpec>(
880 &mut self,
881 sig: &ir::Signature,
882 flags: &settings::Flags,
883 ) -> CodegenResult<SigData> {
884 // Keep in sync with ensure_struct_return_ptr_is_returned
885 if sig.uses_special_return(ArgumentPurpose::StructReturn) {
886 panic!("Explicit StructReturn return value not allowed: {sig:?}")
887 }
888 let tmp;
889 let returns = if let Some(struct_ret_index) =
890 sig.special_param_index(ArgumentPurpose::StructReturn)
891 {
892 if !sig.returns.is_empty() {
893 panic!("No return values are allowed when using StructReturn: {sig:?}");
894 }
895 tmp = [sig.params[struct_ret_index]];
896 &tmp
897 } else {
898 sig.returns.as_slice()
899 };
900
901 // Compute args and retvals from signature. Handle retvals first,
902 // because we may need to add a return-area arg to the args.
903
904 // NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
905 // `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
906 // compute_arg_locs order.
907 let (sized_stack_ret_space, _) = M::compute_arg_locs(
908 sig.call_conv,
909 flags,
910 &returns,
911 ArgsOrRets::Rets,
912 /* extra ret-area ptr = */ false,
913 ArgsAccumulator::new(&mut self.abi_args),
914 )?;
915 if !flags.enable_multi_ret_implicit_sret() {
916 assert_eq!(sized_stack_ret_space, 0);
917 }
918 let rets_end = u32::try_from(self.abi_args.len()).unwrap();
919
920 // To avoid overflow issues, limit the return size to something reasonable.
921 if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
922 return Err(CodegenError::ImplLimitExceeded);
923 }
924
925 let need_stack_return_area = sized_stack_ret_space > 0;
926 if need_stack_return_area {
927 assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
928 }
929
930 let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
931 sig.call_conv,
932 flags,
933 &sig.params,
934 ArgsOrRets::Args,
935 need_stack_return_area,
936 ArgsAccumulator::new(&mut self.abi_args),
937 )?;
938 let args_end = u32::try_from(self.abi_args.len()).unwrap();
939
940 // To avoid overflow issues, limit the arg size to something reasonable.
941 if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
942 return Err(CodegenError::ImplLimitExceeded);
943 }
944
945 trace!(
946 "ABISig: sig {:?} => args end = {} rets end = {}
947 arg stack = {} ret stack = {} stack_ret_arg = {:?}",
948 sig,
949 args_end,
950 rets_end,
951 sized_stack_arg_space,
952 sized_stack_ret_space,
953 need_stack_return_area,
954 );
955
956 let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
957 Ok(SigData {
958 args_end,
959 rets_end,
960 sized_stack_arg_space,
961 sized_stack_ret_space,
962 stack_ret_arg,
963 call_conv: sig.call_conv,
964 })
965 }
966
967 /// Get this signature's ABI arguments.
968 pub fn args(&self, sig: Sig) -> &[ABIArg] {
969 let sig_data = &self.sigs[sig];
970 // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
971 let start = usize::try_from(sig_data.rets_end).unwrap();
972 let end = usize::try_from(sig_data.args_end).unwrap();
973 &self.abi_args[start..end]
974 }
975
976 /// Get information specifying how to pass the implicit pointer
977 /// to the return-value area on the stack, if required.
978 pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
979 let sig_data = &self.sigs[sig];
980 if let Some(i) = sig_data.stack_ret_arg {
981 Some(self.args(sig)[usize::from(i)].clone())
982 } else {
983 None
984 }
985 }
986
987 /// Get information specifying how to pass one argument.
988 pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
989 self.args(sig)[idx].clone()
990 }
991
992 /// Get this signature's ABI returns.
993 pub fn rets(&self, sig: Sig) -> &[ABIArg] {
994 let sig_data = &self.sigs[sig];
995 // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
996 let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
997 let end = usize::try_from(sig_data.rets_end).unwrap();
998 &self.abi_args[start..end]
999 }
1000
1001 /// Get information specifying how to pass one return value.
1002 pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
1003 self.rets(sig)[idx].clone()
1004 }
1005
1006 /// Get the number of arguments expected.
1007 pub fn num_args(&self, sig: Sig) -> usize {
1008 let len = self.args(sig).len();
1009 if self.sigs[sig].stack_ret_arg.is_some() {
1010 len - 1
1011 } else {
1012 len
1013 }
1014 }
1015
1016 /// Get the number of return values expected.
1017 pub fn num_rets(&self, sig: Sig) -> usize {
1018 self.rets(sig).len()
1019 }
1020}
1021
1022// NB: we do _not_ implement `IndexMut` because these signatures are
1023// deduplicated and shared!
1024impl std::ops::Index<Sig> for SigSet {
1025 type Output = SigData;
1026
1027 fn index(&self, sig: Sig) -> &Self::Output {
1028 &self.sigs[sig]
1029 }
1030}
1031
1032/// Structure describing the layout of a function's stack frame.
1033#[derive(Clone, Debug, Default)]
1034pub struct FrameLayout {
1035 /// N.B. The areas whose sizes are given in this structure fully
1036 /// cover the current function's stack frame, from high to low
1037 /// stack addresses in the sequence below. Each size contains
1038 /// any alignment padding that may be required by the ABI.
1039
1040 /// Size of incoming arguments on the stack. This is not technically
1041 /// part of this function's frame, but code in the function will still
1042 /// need to access it. Depending on the ABI, we may need to set up a
1043 /// frame pointer to do so; we also may need to pop this area from the
1044 /// stack upon return.
1045 pub incoming_args_size: u32,
1046
1047 /// The size of the incoming argument area, taking into account any
1048 /// potential increase in size required for tail calls present in the
1049 /// function. In the case that no tail calls are present, this value
1050 /// will be the same as [`Self::incoming_args_size`].
1051 pub tail_args_size: u32,
1052
1053 /// Size of the "setup area", typically holding the return address
1054 /// and/or the saved frame pointer. This may be written either during
1055 /// the call itself (e.g. a pushed return address) or by code emitted
1056 /// from gen_prologue_frame_setup. In any case, after that code has
1057 /// completed execution, the stack pointer is expected to point to the
1058 /// bottom of this area. The same holds at the start of code emitted
1059 /// by gen_epilogue_frame_restore.
1060 pub setup_area_size: u32,
1061
1062 /// Size of the area used to save callee-saved clobbered registers.
1063 /// This area is accessed by code emitted from gen_clobber_save and
1064 /// gen_clobber_restore.
1065 pub clobber_size: u32,
1066
1067 /// Storage allocated for the fixed part of the stack frame.
1068 /// This contains stack slots and spill slots.
1069 pub fixed_frame_storage_size: u32,
1070
1071 /// The size of all stackslots.
1072 pub stackslots_size: u32,
1073
1074 /// Stack size to be reserved for outgoing arguments, if used by
1075 /// the current ABI, or 0 otherwise. After gen_clobber_save and
1076 /// before gen_clobber_restore, the stack pointer points to the
1077 /// bottom of this area.
1078 pub outgoing_args_size: u32,
1079
1080 /// Sorted list of callee-saved registers that are clobbered
1081 /// according to the ABI. These registers will be saved and
1082 /// restored by gen_clobber_save and gen_clobber_restore.
1083 pub clobbered_callee_saves: Vec<Writable<RealReg>>,
1084}
1085
1086impl FrameLayout {
1087 /// Split the clobbered callee-save registers into integer-class and
1088 /// float-class groups.
1089 ///
1090 /// This method does not currently support vector-class callee-save
1091 /// registers because no current backend has them.
1092 pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
1093 let (ints, floats) = self.clobbered_callee_saves.split_at(
1094 self.clobbered_callee_saves
1095 .partition_point(|r| r.to_reg().class() == RegClass::Int),
1096 );
1097 debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
1098 (ints, floats)
1099 }
1100
1101 /// The size of FP to SP while the frame is active (not during prologue
1102 /// setup or epilogue tear down).
1103 pub fn active_size(&self) -> u32 {
1104 self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1105 }
1106
1107 /// Get the offset from the SP to the sized stack slots area.
1108 pub fn sp_to_sized_stack_slots(&self) -> u32 {
1109 self.outgoing_args_size
1110 }
1111}
1112
1113/// ABI object for a function body.
1114pub struct Callee<M: ABIMachineSpec> {
1115 /// CLIF-level signature, possibly normalized.
1116 ir_sig: ir::Signature,
1117 /// Signature: arg and retval regs.
1118 sig: Sig,
1119 /// Defined dynamic types.
1120 dynamic_type_sizes: HashMap<Type, u32>,
1121 /// Offsets to each dynamic stackslot.
1122 dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
1123 /// Offsets to each sized stackslot.
1124 sized_stackslots: PrimaryMap<StackSlot, u32>,
1125 /// Total stack size of all stackslots
1126 stackslots_size: u32,
1127 /// Stack size to be reserved for outgoing arguments.
1128 outgoing_args_size: u32,
1129 /// Initially the number of bytes originating in the callers frame where stack arguments will
1130 /// live. After lowering this number may be larger than the size expected by the function being
1131 /// compiled, as tail calls potentially require more space for stack arguments.
1132 tail_args_size: u32,
1133 /// Register-argument defs, to be provided to the `args`
1134 /// pseudo-inst, and pregs to constrain them to.
1135 reg_args: Vec<ArgPair>,
1136 /// Finalized frame layout for this function.
1137 frame_layout: Option<FrameLayout>,
1138 /// The register holding the return-area pointer, if needed.
1139 ret_area_ptr: Option<Reg>,
1140 /// Calling convention this function expects.
1141 call_conv: isa::CallConv,
1142 /// The settings controlling this function's compilation.
1143 flags: settings::Flags,
1144 /// The ISA-specific flag values controlling this function's compilation.
1145 isa_flags: M::F,
1146 /// Whether or not this function is a "leaf", meaning it calls no other
1147 /// functions
1148 is_leaf: bool,
1149 /// If this function has a stack limit specified, then `Reg` is where the
1150 /// stack limit will be located after the instructions specified have been
1151 /// executed.
1152 ///
1153 /// Note that this is intended for insertion into the prologue, if
1154 /// present. Also note that because the instructions here execute in the
1155 /// prologue this happens after legalization/register allocation/etc so we
1156 /// need to be extremely careful with each instruction. The instructions are
1157 /// manually register-allocated and carefully only use caller-saved
1158 /// registers and keep nothing live after this sequence of instructions.
1159 stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
1160
1161 _mach: PhantomData<M>,
1162}
1163
1164fn get_special_purpose_param_register(
1165 f: &ir::Function,
1166 sigs: &SigSet,
1167 sig: Sig,
1168 purpose: ir::ArgumentPurpose,
1169) -> Option<Reg> {
1170 let idx = f.signature.special_param_index(purpose)?;
1171 match &sigs.args(sig)[idx] {
1172 &ABIArg::Slots { ref slots, .. } => match &slots[0] {
1173 &ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
1174 _ => None,
1175 },
1176 _ => None,
1177 }
1178}
1179
1180fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
1181 Some(val.checked_add(mask)? & !mask)
1182}
1183
1184impl<M: ABIMachineSpec> Callee<M> {
1185 /// Create a new body ABI instance.
1186 pub fn new(
1187 f: &ir::Function,
1188 isa: &dyn TargetIsa,
1189 isa_flags: &M::F,
1190 sigs: &SigSet,
1191 ) -> CodegenResult<Self> {
1192 trace!("ABI: func signature {:?}", f.signature);
1193
1194 let flags = isa.flags().clone();
1195 let sig = sigs.abi_sig_for_signature(&f.signature);
1196
1197 let call_conv = f.signature.call_conv;
1198 // Only these calling conventions are supported.
1199 debug_assert!(
1200 call_conv == isa::CallConv::SystemV
1201 || call_conv == isa::CallConv::Tail
1202 || call_conv == isa::CallConv::Fast
1203 || call_conv == isa::CallConv::Cold
1204 || call_conv == isa::CallConv::WindowsFastcall
1205 || call_conv == isa::CallConv::AppleAarch64
1206 || call_conv == isa::CallConv::Winch,
1207 "Unsupported calling convention: {call_conv:?}"
1208 );
1209
1210 // Compute sized stackslot locations and total stackslot size.
1211 let mut end_offset: u32 = 0;
1212 let mut sized_stackslots = PrimaryMap::new();
1213
1214 for (stackslot, data) in f.sized_stack_slots.iter() {
1215 // We start our computation possibly unaligned where the previous
1216 // stackslot left off.
1217 let unaligned_start_offset = end_offset;
1218
1219 // The start of the stackslot must be aligned.
1220 //
1221 // We always at least machine-word-align slots, but also
1222 // satisfy the user's requested alignment.
1223 debug_assert!(data.align_shift < 32);
1224 let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
1225 let mask = align - 1;
1226 let start_offset = checked_round_up(unaligned_start_offset, mask)
1227 .ok_or(CodegenError::ImplLimitExceeded)?;
1228
1229 // The end offset is the start offset increased by the size
1230 end_offset = start_offset
1231 .checked_add(data.size)
1232 .ok_or(CodegenError::ImplLimitExceeded)?;
1233
1234 debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
1235 sized_stackslots.push(start_offset);
1236 }
1237
1238 // Compute dynamic stackslot locations and total stackslot size.
1239 let mut dynamic_stackslots = PrimaryMap::new();
1240 for (stackslot, data) in f.dynamic_stack_slots.iter() {
1241 debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
1242
1243 // This computation is similar to the stackslots above
1244 let unaligned_start_offset = end_offset;
1245
1246 let mask = M::word_bytes() - 1;
1247 let start_offset = checked_round_up(unaligned_start_offset, mask)
1248 .ok_or(CodegenError::ImplLimitExceeded)?;
1249
1250 let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
1251 CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
1252 })?;
1253
1254 end_offset = start_offset
1255 .checked_add(isa.dynamic_vector_bytes(ty))
1256 .ok_or(CodegenError::ImplLimitExceeded)?;
1257
1258 dynamic_stackslots.push(start_offset);
1259 }
1260
1261 // The size of the stackslots needs to be word aligned
1262 let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
1263 .ok_or(CodegenError::ImplLimitExceeded)?;
1264
1265 let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
1266 for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
1267 let ty = f
1268 .get_concrete_dynamic_ty(dyn_ty)
1269 .unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
1270 let size = isa.dynamic_vector_bytes(ty);
1271 dynamic_type_sizes.insert(ty, size);
1272 }
1273
1274 // Figure out what instructions, if any, will be needed to check the
1275 // stack limit. This can either be specified as a special-purpose
1276 // argument or as a global value which often calculates the stack limit
1277 // from the arguments.
1278 let stack_limit = f
1279 .stack_limit
1280 .map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));
1281
1282 let tail_args_size = sigs[sig].sized_stack_arg_space;
1283
1284 Ok(Self {
1285 ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
1286 sig,
1287 dynamic_stackslots,
1288 dynamic_type_sizes,
1289 sized_stackslots,
1290 stackslots_size,
1291 outgoing_args_size: 0,
1292 tail_args_size,
1293 reg_args: vec![],
1294 frame_layout: None,
1295 ret_area_ptr: None,
1296 call_conv,
1297 flags,
1298 isa_flags: isa_flags.clone(),
1299 is_leaf: f.is_leaf(),
1300 stack_limit,
1301 _mach: PhantomData,
1302 })
1303 }
1304
1305 /// Inserts instructions necessary for checking the stack limit into the
1306 /// prologue.
1307 ///
1308 /// This function will generate instructions necessary for perform a stack
1309 /// check at the header of a function. The stack check is intended to trap
1310 /// if the stack pointer goes below a particular threshold, preventing stack
1311 /// overflow in wasm or other code. The `stack_limit` argument here is the
1312 /// register which holds the threshold below which we're supposed to trap.
1313 /// This function is known to allocate `stack_size` bytes and we'll push
1314 /// instructions onto `insts`.
1315 ///
1316 /// Note that the instructions generated here are special because this is
1317 /// happening so late in the pipeline (e.g. after register allocation). This
1318 /// means that we need to do manual register allocation here and also be
1319 /// careful to not clobber any callee-saved or argument registers. For now
1320 /// this routine makes do with the `spilltmp_reg` as one temporary
1321 /// register, and a second register of `tmp2` which is caller-saved. This
1322 /// should be fine for us since no spills should happen in this sequence of
1323 /// instructions, so our register won't get accidentally clobbered.
1324 ///
1325 /// No values can be live after the prologue, but in this case that's ok
1326 /// because we just need to perform a stack check before progressing with
1327 /// the rest of the function.
1328 fn insert_stack_check(
1329 &self,
1330 stack_limit: Reg,
1331 stack_size: u32,
1332 insts: &mut SmallInstVec<M::I>,
1333 ) {
1334 // With no explicit stack allocated we can just emit the simple check of
1335 // the stack registers against the stack limit register, and trap if
1336 // it's out of bounds.
1337 if stack_size == 0 {
1338 insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1339 return;
1340 }
1341
1342 // Note that the 32k stack size here is pretty special. See the
1343 // documentation in x86/abi.rs for why this is here. The general idea is
1344 // that we're protecting against overflow in the addition that happens
1345 // below.
1346 if stack_size >= 32 * 1024 {
1347 insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1348 }
1349
1350 // Add the `stack_size` to `stack_limit`, placing the result in
1351 // `scratch`.
1352 //
1353 // Note though that `stack_limit`'s register may be the same as
1354 // `scratch`. If our stack size doesn't fit into an immediate this
1355 // means we need a second scratch register for loading the stack size
1356 // into a register.
1357 let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
1358 insts.extend(M::gen_add_imm(self.call_conv, scratch, stack_limit, stack_size).into_iter());
1359 insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
1360 }
1361}
1362
1363/// Generates the instructions necessary for the `gv` to be materialized into a
1364/// register.
1365///
1366/// This function will return a register that will contain the result of
1367/// evaluating `gv`. It will also return any instructions necessary to calculate
1368/// the value of the register.
1369///
1370/// Note that global values are typically lowered to instructions via the
1371/// standard legalization pass. Unfortunately though prologue generation happens
1372/// so late in the pipeline that we can't use these legalization passes to
1373/// generate the instructions for `gv`. As a result we duplicate some lowering
1374/// of `gv` here and support only some global values. This is similar to what
1375/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
1376/// in the future too!
1377///
1378/// Also note that this function will make use of `writable_spilltmp_reg()` as a
1379/// temporary register to store values in if necessary. Currently after we write
1380/// to this register there's guaranteed to be no spilled values between where
1381/// it's used, because we're not participating in register allocation anyway!
1382fn gen_stack_limit<M: ABIMachineSpec>(
1383 f: &ir::Function,
1384 sigs: &SigSet,
1385 sig: Sig,
1386 gv: ir::GlobalValue,
1387) -> (Reg, SmallInstVec<M::I>) {
1388 let mut insts = smallvec![];
1389 let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
1390 return (reg, insts);
1391}
1392
1393fn generate_gv<M: ABIMachineSpec>(
1394 f: &ir::Function,
1395 sigs: &SigSet,
1396 sig: Sig,
1397 gv: ir::GlobalValue,
1398 insts: &mut SmallInstVec<M::I>,
1399) -> Reg {
1400 match f.global_values[gv] {
1401 // Return the direct register the vmcontext is in
1402 ir::GlobalValueData::VMContext => {
1403 get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
1404 .expect("no vmcontext parameter found")
1405 }
1406 // Load our base value into a register, then load from that register
1407 // in to a temporary register.
1408 ir::GlobalValueData::Load {
1409 base,
1410 offset,
1411 global_type: _,
1412 flags: _,
1413 } => {
1414 let base = generate_gv::<M>(f, sigs, sig, base, insts);
1415 let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
1416 insts.push(M::gen_load_base_offset(
1417 into_reg,
1418 base,
1419 offset.into(),
1420 M::word_type(),
1421 ));
1422 return into_reg.to_reg();
1423 }
1424 ref other => panic!("global value for stack limit not supported: {other}"),
1425 }
1426}
1427
1428/// Returns true if the signature needs to be legalized.
1429fn missing_struct_return(sig: &ir::Signature) -> bool {
1430 sig.uses_special_param(ArgumentPurpose::StructReturn)
1431 && !sig.uses_special_return(ArgumentPurpose::StructReturn)
1432}
1433
1434fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
1435 // Keep in sync with Callee::new
1436 let mut sig = sig.clone();
1437 if sig.uses_special_return(ArgumentPurpose::StructReturn) {
1438 panic!("Explicit StructReturn return value not allowed: {sig:?}")
1439 }
1440 if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
1441 if !sig.returns.is_empty() {
1442 panic!("No return values are allowed when using StructReturn: {sig:?}");
1443 }
1444 sig.returns.insert(0, sig.params[struct_ret_index]);
1445 }
1446 sig
1447}
1448
1449/// ### Pre-Regalloc Functions
1450///
1451/// These methods of `Callee` may only be called before regalloc.
1452impl<M: ABIMachineSpec> Callee<M> {
1453 /// Access the (possibly legalized) signature.
1454 pub fn signature(&self) -> &ir::Signature {
1455 debug_assert!(
1456 !missing_struct_return(&self.ir_sig),
1457 "`Callee::ir_sig` is always legalized"
1458 );
1459 &self.ir_sig
1460 }
1461
1462 /// Initialize. This is called after the Callee is constructed because it
1463 /// may allocate a temp vreg, which can only be allocated once the lowering
1464 /// context exists.
1465 pub fn init_retval_area(
1466 &mut self,
1467 sigs: &SigSet,
1468 vregs: &mut VRegAllocator<M::I>,
1469 ) -> CodegenResult<()> {
1470 if sigs[self.sig].stack_ret_arg.is_some() {
1471 let ret_area_ptr = vregs.alloc(M::word_type())?;
1472 self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
1473 }
1474 Ok(())
1475 }
1476
1477 /// Get the return area pointer register, if any.
1478 pub fn ret_area_ptr(&self) -> Option<Reg> {
1479 self.ret_area_ptr
1480 }
1481
1482 /// Accumulate outgoing arguments.
1483 ///
1484 /// This ensures that at least `size` bytes are allocated in the prologue to
1485 /// be available for use in function calls to hold arguments and/or return
1486 /// values. If this function is called multiple times, the maximum of all
1487 /// `size` values will be available.
1488 pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
1489 if size > self.outgoing_args_size {
1490 self.outgoing_args_size = size;
1491 }
1492 }
1493
1494 /// Accumulate the incoming argument area size requirements for a tail call,
1495 /// as it could be larger than the incoming arguments of the function
1496 /// currently being compiled.
1497 pub fn accumulate_tail_args_size(&mut self, size: u32) {
1498 if size > self.tail_args_size {
1499 self.tail_args_size = size;
1500 }
1501 }
1502
1503 pub fn is_forward_edge_cfi_enabled(&self) -> bool {
1504 self.isa_flags.is_forward_edge_cfi_enabled()
1505 }
1506
1507 /// Get the calling convention implemented by this ABI object.
1508 pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv {
1509 sigs[self.sig].call_conv
1510 }
1511
1512 /// Get the ABI-dependent MachineEnv for managing register allocation.
1513 pub fn machine_env(&self, sigs: &SigSet) -> &MachineEnv {
1514 M::get_machine_env(&self.flags, self.call_conv(sigs))
1515 }
1516
1517 /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
1518 pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
1519 &self.sized_stackslots
1520 }
1521
1522 /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
1523 pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
1524 &self.dynamic_stackslots
1525 }
1526
1527 /// Generate an instruction which copies an argument to a destination
1528 /// register.
1529 pub fn gen_copy_arg_to_regs(
1530 &mut self,
1531 sigs: &SigSet,
1532 idx: usize,
1533 into_regs: ValueRegs<Writable<Reg>>,
1534 vregs: &mut VRegAllocator<M::I>,
1535 ) -> SmallInstVec<M::I> {
1536 let mut insts = smallvec![];
1537 let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
1538 match slot {
1539 &ABIArgSlot::Reg { reg, .. } => {
1540 // Add a preg -> def pair to the eventual `args`
1541 // instruction. Extension mode doesn't matter
1542 // (we're copying out, not in; we ignore high bits
1543 // by convention).
1544 let arg = ArgPair {
1545 vreg: *into_reg,
1546 preg: reg.into(),
1547 };
1548 self.reg_args.push(arg);
1549 }
1550 &ABIArgSlot::Stack {
1551 offset,
1552 ty,
1553 extension,
1554 ..
1555 } => {
1556 // However, we have to respect the extension mode for stack
1557 // slots, or else we grab the wrong bytes on big-endian.
1558 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1559 let ty =
1560 if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
1561 M::word_type()
1562 } else {
1563 ty
1564 };
1565 insts.push(M::gen_load_stack(
1566 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1567 *into_reg,
1568 ty,
1569 ));
1570 }
1571 }
1572 };
1573
1574 match &sigs.args(self.sig)[idx] {
1575 &ABIArg::Slots { ref slots, .. } => {
1576 assert_eq!(into_regs.len(), slots.len());
1577 for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
1578 copy_arg_slot_to_reg(&slot, &into_reg);
1579 }
1580 }
1581 &ABIArg::StructArg { offset, .. } => {
1582 let into_reg = into_regs.only_reg().unwrap();
1583 // Buffer address is implicitly defined by the ABI.
1584 insts.push(M::gen_get_stack_addr(
1585 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1586 into_reg,
1587 ));
1588 }
1589 &ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
1590 let into_reg = into_regs.only_reg().unwrap();
1591 // We need to dereference the pointer.
1592 let base = match &pointer {
1593 &ABIArgSlot::Reg { reg, ty, .. } => {
1594 let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
1595 self.reg_args.push(ArgPair {
1596 vreg: Writable::from_reg(tmp),
1597 preg: reg.into(),
1598 });
1599 tmp
1600 }
1601 &ABIArgSlot::Stack { offset, ty, .. } => {
1602 let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
1603 .only_reg()
1604 .unwrap();
1605 insts.push(M::gen_load_stack(
1606 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1607 addr_reg,
1608 ty,
1609 ));
1610 addr_reg.to_reg()
1611 }
1612 };
1613 insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
1614 }
1615 }
1616 insts
1617 }
1618
1619 /// Generate an instruction which copies a source register to a return value slot.
1620 pub fn gen_copy_regs_to_retval(
1621 &self,
1622 sigs: &SigSet,
1623 idx: usize,
1624 from_regs: ValueRegs<Reg>,
1625 vregs: &mut VRegAllocator<M::I>,
1626 ) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
1627 let mut reg_pairs = smallvec![];
1628 let mut ret = smallvec![];
1629 let word_bits = M::word_bits() as u8;
1630 match &sigs.rets(self.sig)[idx] {
1631 &ABIArg::Slots { ref slots, .. } => {
1632 assert_eq!(from_regs.len(), slots.len());
1633 for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1634 match slot {
1635 &ABIArgSlot::Reg {
1636 reg, ty, extension, ..
1637 } => {
1638 let from_bits = ty_bits(ty) as u8;
1639 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1640 let vreg = match (ext, from_bits) {
1641 (ir::ArgumentExtension::Uext, n)
1642 | (ir::ArgumentExtension::Sext, n)
1643 if n < word_bits =>
1644 {
1645 let signed = ext == ir::ArgumentExtension::Sext;
1646 let dst =
1647 writable_value_regs(vregs.alloc_with_deferred_error(ty))
1648 .only_reg()
1649 .unwrap();
1650 ret.push(M::gen_extend(
1651 dst, from_reg, signed, from_bits,
1652 /* to_bits = */ word_bits,
1653 ));
1654 dst.to_reg()
1655 }
1656 _ => {
1657 // No move needed, regalloc2 will emit it using the constraint
1658 // added by the RetPair.
1659 from_reg
1660 }
1661 };
1662 reg_pairs.push(RetPair {
1663 vreg,
1664 preg: Reg::from(reg),
1665 });
1666 }
1667 &ABIArgSlot::Stack {
1668 offset,
1669 ty,
1670 extension,
1671 ..
1672 } => {
1673 let mut ty = ty;
1674 let from_bits = ty_bits(ty) as u8;
1675 // A machine ABI implementation should ensure that stack frames
1676 // have "reasonable" size. All current ABIs for machinst
1677 // backends (aarch64 and x64) enforce a 128MB limit.
1678 let off = i32::try_from(offset).expect(
1679 "Argument stack offset greater than 2GB; should hit impl limit first",
1680 );
1681 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1682 // Trash the from_reg; it should be its last use.
1683 match (ext, from_bits) {
1684 (ir::ArgumentExtension::Uext, n)
1685 | (ir::ArgumentExtension::Sext, n)
1686 if n < word_bits =>
1687 {
1688 assert_eq!(M::word_reg_class(), from_reg.class());
1689 let signed = ext == ir::ArgumentExtension::Sext;
1690 let dst =
1691 writable_value_regs(vregs.alloc_with_deferred_error(ty))
1692 .only_reg()
1693 .unwrap();
1694 ret.push(M::gen_extend(
1695 dst, from_reg, signed, from_bits,
1696 /* to_bits = */ word_bits,
1697 ));
1698 // Store the extended version.
1699 ty = M::word_type();
1700 }
1701 _ => {}
1702 };
1703 ret.push(M::gen_store_base_offset(
1704 self.ret_area_ptr.unwrap(),
1705 off,
1706 from_reg,
1707 ty,
1708 ));
1709 }
1710 }
1711 }
1712 }
1713 ABIArg::StructArg { .. } => {
1714 panic!("StructArg in return position is unsupported");
1715 }
1716 ABIArg::ImplicitPtrArg { .. } => {
1717 panic!("ImplicitPtrArg in return position is unsupported");
1718 }
1719 }
1720 (reg_pairs, ret)
1721 }
1722
1723 /// Generate any setup instruction needed to save values to the
1724 /// return-value area. This is usually used when were are multiple return
1725 /// values or an otherwise large return value that must be passed on the
1726 /// stack; typically the ABI specifies an extra hidden argument that is a
1727 /// pointer to that memory.
1728 pub fn gen_retval_area_setup(
1729 &mut self,
1730 sigs: &SigSet,
1731 vregs: &mut VRegAllocator<M::I>,
1732 ) -> Option<M::I> {
1733 if let Some(i) = sigs[self.sig].stack_ret_arg {
1734 let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
1735 let insts =
1736 self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
1737 insts.into_iter().next().map(|inst| {
1738 trace!(
1739 "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
1740 inst,
1741 ret_area_ptr.to_reg()
1742 );
1743 inst
1744 })
1745 } else {
1746 trace!("gen_retval_area_setup: not needed");
1747 None
1748 }
1749 }
1750
1751 /// Generate a return instruction.
1752 pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
1753 M::gen_rets(rets)
1754 }
1755
1756 /// Produce an instruction that computes a sized stackslot address.
1757 pub fn sized_stackslot_addr(
1758 &self,
1759 slot: StackSlot,
1760 offset: u32,
1761 into_reg: Writable<Reg>,
1762 ) -> M::I {
1763 // Offset from beginning of stackslot area.
1764 let stack_off = self.sized_stackslots[slot] as i64;
1765 let sp_off: i64 = stack_off + (offset as i64);
1766 M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
1767 }
1768
1769 /// Produce an instruction that computes a dynamic stackslot address.
1770 pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
1771 let stack_off = self.dynamic_stackslots[slot] as i64;
1772 M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
1773 }
1774
1775 /// Get an `args` pseudo-inst, if any, that should appear at the
1776 /// very top of the function body prior to regalloc.
1777 pub fn take_args(&mut self) -> Option<M::I> {
1778 if self.reg_args.len() > 0 {
1779 // Very first instruction is an `args` pseudo-inst that
1780 // establishes live-ranges for in-register arguments and
1781 // constrains them at the start of the function to the
1782 // locations defined by the ABI.
1783 Some(M::gen_args(std::mem::take(&mut self.reg_args)))
1784 } else {
1785 None
1786 }
1787 }
1788}
1789
1790/// ### Post-Regalloc Functions
1791///
1792/// These methods of `Callee` may only be called after
1793/// regalloc.
1794impl<M: ABIMachineSpec> Callee<M> {
1795 /// Compute the final frame layout, post-regalloc.
1796 ///
1797 /// This must be called before gen_prologue or gen_epilogue.
1798 pub fn compute_frame_layout(
1799 &mut self,
1800 sigs: &SigSet,
1801 spillslots: usize,
1802 clobbered: Vec<Writable<RealReg>>,
1803 ) {
1804 let bytes = M::word_bytes();
1805 let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
1806 let mask = M::stack_align(self.call_conv) - 1;
1807 let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
1808 self.frame_layout = Some(M::compute_frame_layout(
1809 self.call_conv,
1810 &self.flags,
1811 self.signature(),
1812 &clobbered,
1813 self.is_leaf,
1814 self.stack_args_size(sigs),
1815 self.tail_args_size,
1816 self.stackslots_size,
1817 total_stacksize,
1818 self.outgoing_args_size,
1819 ));
1820 }
1821
1822 /// Generate a prologue, post-regalloc.
1823 ///
1824 /// This should include any stack frame or other setup necessary to use the
1825 /// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
1826 pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
1827 let frame_layout = self.frame_layout();
1828 let mut insts = smallvec![];
1829
1830 // Set up frame.
1831 insts.extend(M::gen_prologue_frame_setup(
1832 self.call_conv,
1833 &self.flags,
1834 &self.isa_flags,
1835 &frame_layout,
1836 ));
1837
1838 // The stack limit check needs to cover all the stack adjustments we
1839 // might make, up to the next stack limit check in any function we
1840 // call. Since this happens after frame setup, the current function's
1841 // setup area needs to be accounted for in the caller's stack limit
1842 // check, but we need to account for any setup area that our callees
1843 // might need. Note that s390x may also use the outgoing args area for
1844 // backtrace support even in leaf functions, so that should be accounted
1845 // for unconditionally.
1846 let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
1847 + frame_layout.clobber_size
1848 + frame_layout.fixed_frame_storage_size
1849 + frame_layout.outgoing_args_size
1850 + if self.is_leaf {
1851 0
1852 } else {
1853 frame_layout.setup_area_size
1854 };
1855
1856 // Leaf functions with zero stack don't need a stack check if one's
1857 // specified, otherwise always insert the stack check.
1858 if total_stacksize > 0 || !self.is_leaf {
1859 if let Some((reg, stack_limit_load)) = &self.stack_limit {
1860 insts.extend(stack_limit_load.clone());
1861 self.insert_stack_check(*reg, total_stacksize, &mut insts);
1862 }
1863
1864 if self.flags.enable_probestack() {
1865 let guard_size = 1 << self.flags.probestack_size_log2();
1866 match self.flags.probestack_strategy() {
1867 ProbestackStrategy::Inline => M::gen_inline_probestack(
1868 &mut insts,
1869 self.call_conv,
1870 total_stacksize,
1871 guard_size,
1872 ),
1873 ProbestackStrategy::Outline => {
1874 if total_stacksize >= guard_size {
1875 M::gen_probestack(&mut insts, total_stacksize);
1876 }
1877 }
1878 }
1879 }
1880 }
1881
1882 // Save clobbered registers.
1883 insts.extend(M::gen_clobber_save(
1884 self.call_conv,
1885 &self.flags,
1886 &frame_layout,
1887 ));
1888
1889 insts
1890 }
1891
1892 /// Generate an epilogue, post-regalloc.
1893 ///
1894 /// Note that this must generate the actual return instruction (rather than
1895 /// emitting this in the lowering logic), because the epilogue code comes
1896 /// before the return and the two are likely closely related.
1897 pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
1898 let frame_layout = self.frame_layout();
1899 let mut insts = smallvec![];
1900
1901 // Restore clobbered registers.
1902 insts.extend(M::gen_clobber_restore(
1903 self.call_conv,
1904 &self.flags,
1905 &frame_layout,
1906 ));
1907
1908 // Tear down frame.
1909 insts.extend(M::gen_epilogue_frame_restore(
1910 self.call_conv,
1911 &self.flags,
1912 &self.isa_flags,
1913 &frame_layout,
1914 ));
1915
1916 // And return.
1917 insts.extend(M::gen_return(
1918 self.call_conv,
1919 &self.isa_flags,
1920 &frame_layout,
1921 ));
1922
1923 trace!("Epilogue: {:?}", insts);
1924 insts
1925 }
1926
1927 /// Return a reference to the computed frame layout information. This
1928 /// function will panic if it's called before [`Self::compute_frame_layout`].
1929 pub fn frame_layout(&self) -> &FrameLayout {
1930 self.frame_layout
1931 .as_ref()
1932 .expect("frame layout not computed before prologue generation")
1933 }
1934
1935 /// Returns the full frame size for the given function, after prologue
1936 /// emission has run. This comprises the spill slots and stack-storage
1937 /// slots as well as storage for clobbered callee-save registers, but
1938 /// not arguments arguments pushed at callsites within this function,
1939 /// or other ephemeral pushes.
1940 pub fn frame_size(&self) -> u32 {
1941 let frame_layout = self.frame_layout();
1942 frame_layout.clobber_size + frame_layout.fixed_frame_storage_size
1943 }
1944
1945 /// Returns offset from the slot base in the current frame to the caller's SP.
1946 pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
1947 let frame_layout = self.frame_layout();
1948 frame_layout.clobber_size
1949 + frame_layout.fixed_frame_storage_size
1950 + frame_layout.setup_area_size
1951 }
1952
1953 /// Returns the size of arguments expected on the stack.
1954 pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
1955 sigs[self.sig].sized_stack_arg_space
1956 }
1957
1958 /// Get the spill-slot size.
1959 pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
1960 let max = if self.dynamic_type_sizes.len() == 0 {
1961 16
1962 } else {
1963 *self
1964 .dynamic_type_sizes
1965 .iter()
1966 .max_by(|x, y| x.1.cmp(&y.1))
1967 .map(|(_k, v)| v)
1968 .unwrap()
1969 };
1970 M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
1971 }
1972
1973 /// Get the spill slot offset relative to the fixed allocation area start.
1974 pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
1975 // Offset from beginning of spillslot area.
1976 let islot = slot.index() as i64;
1977 let spill_off = islot * M::word_bytes() as i64;
1978 let sp_off = self.stackslots_size as i64 + spill_off;
1979
1980 sp_off
1981 }
1982
1983 /// Generate a spill.
1984 pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
1985 let ty = M::I::canonical_type_for_rc(from_reg.class());
1986 debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
1987
1988 let sp_off = self.get_spillslot_offset(to_slot);
1989 trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");
1990
1991 let from = StackAMode::Slot(sp_off);
1992 <M>::gen_store_stack(from, Reg::from(from_reg), ty)
1993 }
1994
1995 /// Generate a reload (fill).
1996 pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
1997 let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
1998 debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
1999
2000 let sp_off = self.get_spillslot_offset(from_slot);
2001 trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");
2002
2003 let from = StackAMode::Slot(sp_off);
2004 <M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
2005 }
2006}
2007
2008/// An input argument to a call instruction: the vreg that is used,
2009/// and the preg it is constrained to (per the ABI).
2010#[derive(Clone, Debug)]
2011pub struct CallArgPair {
2012 /// The virtual register to use for the argument.
2013 pub vreg: Reg,
2014 /// The real register into which the arg goes.
2015 pub preg: Reg,
2016}
2017
2018/// An output return value from a call instruction: the vreg that is
2019/// defined, and the preg or stack location it is constrained to (per
2020/// the ABI).
2021#[derive(Clone, Debug)]
2022pub struct CallRetPair {
2023 /// The virtual register to define from this return value.
2024 pub vreg: Writable<Reg>,
2025 /// The real register from which the return value is read.
2026 pub location: RetLocation,
2027}
2028
2029/// A location to load a return-value from after a call completes.
2030#[derive(Clone, Debug, PartialEq, Eq)]
2031pub enum RetLocation {
2032 /// A physical register.
2033 Reg(Reg, Type),
2034 /// A stack location, identified by a `StackAMode`.
2035 Stack(StackAMode, Type),
2036}
2037
2038pub type CallArgList = SmallVec<[CallArgPair; 8]>;
2039pub type CallRetList = SmallVec<[CallRetPair; 8]>;
2040
2041pub enum IsTailCall {
2042 Yes,
2043 No,
2044}
2045
2046/// ABI object for a callsite.
2047pub struct CallSite<M: ABIMachineSpec> {
2048 /// The called function's signature.
2049 sig: Sig,
2050 /// All register uses for the callsite, i.e., function args, with
2051 /// VReg and the physical register it is constrained to.
2052 uses: CallArgList,
2053 /// All defs for the callsite, i.e., return values.
2054 defs: CallRetList,
2055 /// Call destination.
2056 dest: CallDest,
2057 is_tail_call: IsTailCall,
2058 /// Caller's calling convention.
2059 caller_conv: isa::CallConv,
2060 /// The settings controlling this compilation.
2061 flags: settings::Flags,
2062
2063 _mach: PhantomData<M>,
2064}
2065
2066/// Destination for a call.
2067#[derive(Debug, Clone)]
2068pub enum CallDest {
2069 /// Call to an ExtName (named function symbol).
2070 ExtName(ir::ExternalName, RelocDistance),
2071 /// Indirect call to a function pointer in a register.
2072 Reg(Reg),
2073}
2074
2075impl<M: ABIMachineSpec> CallSite<M> {
2076 /// Create a callsite ABI object for a call directly to the specified function.
2077 pub fn from_func(
2078 sigs: &SigSet,
2079 sig_ref: ir::SigRef,
2080 extname: &ir::ExternalName,
2081 is_tail_call: IsTailCall,
2082 dist: RelocDistance,
2083 caller_conv: isa::CallConv,
2084 flags: settings::Flags,
2085 ) -> CallSite<M> {
2086 let sig = sigs.abi_sig_for_sig_ref(sig_ref);
2087 CallSite {
2088 sig,
2089 uses: smallvec![],
2090 defs: smallvec![],
2091 dest: CallDest::ExtName(extname.clone(), dist),
2092 is_tail_call,
2093 caller_conv,
2094 flags,
2095 _mach: PhantomData,
2096 }
2097 }
2098
2099 /// Create a callsite ABI object for a call directly to the specified
2100 /// libcall.
2101 pub fn from_libcall(
2102 sigs: &SigSet,
2103 sig: &ir::Signature,
2104 extname: &ir::ExternalName,
2105 dist: RelocDistance,
2106 caller_conv: isa::CallConv,
2107 flags: settings::Flags,
2108 ) -> CallSite<M> {
2109 let sig = sigs.abi_sig_for_signature(sig);
2110 CallSite {
2111 sig,
2112 uses: smallvec![],
2113 defs: smallvec![],
2114 dest: CallDest::ExtName(extname.clone(), dist),
2115 is_tail_call: IsTailCall::No,
2116 caller_conv,
2117 flags,
2118 _mach: PhantomData,
2119 }
2120 }
2121
2122 /// Create a callsite ABI object for a call to a function pointer with the
2123 /// given signature.
2124 pub fn from_ptr(
2125 sigs: &SigSet,
2126 sig_ref: ir::SigRef,
2127 ptr: Reg,
2128 is_tail_call: IsTailCall,
2129 caller_conv: isa::CallConv,
2130 flags: settings::Flags,
2131 ) -> CallSite<M> {
2132 let sig = sigs.abi_sig_for_sig_ref(sig_ref);
2133 CallSite {
2134 sig,
2135 uses: smallvec![],
2136 defs: smallvec![],
2137 dest: CallDest::Reg(ptr),
2138 is_tail_call,
2139 caller_conv,
2140 flags,
2141 _mach: PhantomData,
2142 }
2143 }
2144
2145 pub(crate) fn dest(&self) -> &CallDest {
2146 &self.dest
2147 }
2148
2149 pub(crate) fn take_uses(self) -> CallArgList {
2150 self.uses
2151 }
2152
2153 pub(crate) fn sig<'a>(&self, sigs: &'a SigSet) -> &'a SigData {
2154 &sigs[self.sig]
2155 }
2156
2157 pub(crate) fn is_tail_call(&self) -> bool {
2158 matches!(self.is_tail_call, IsTailCall::Yes)
2159 }
2160}
2161
2162impl<M: ABIMachineSpec> CallSite<M> {
2163 /// Get the number of arguments expected.
2164 pub fn num_args(&self, sigs: &SigSet) -> usize {
2165 sigs.num_args(self.sig)
2166 }
2167
2168 /// Get the number of return values expected.
2169 pub fn num_rets(&self, sigs: &SigSet) -> usize {
2170 sigs.num_rets(self.sig)
2171 }
2172
2173 /// Emit a copy of a large argument into its associated stack buffer, if
2174 /// any. We must be careful to perform all these copies (as necessary)
2175 /// before setting up the argument registers, since we may have to invoke
2176 /// memcpy(), which could clobber any registers already set up. The
2177 /// back-end should call this routine for all arguments before calling
2178 /// `gen_arg` for all arguments.
2179 pub fn emit_copy_regs_to_buffer(
2180 &self,
2181 ctx: &mut Lower<M::I>,
2182 idx: usize,
2183 from_regs: ValueRegs<Reg>,
2184 ) {
2185 match &ctx.sigs().args(self.sig)[idx] {
2186 &ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
2187 &ABIArg::StructArg { offset, size, .. } => {
2188 let src_ptr = from_regs.only_reg().unwrap();
2189 let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2190 ctx.emit(M::gen_get_stack_addr(
2191 StackAMode::OutgoingArg(offset),
2192 dst_ptr,
2193 ));
2194 // Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
2195 // N.B.: because we process StructArg params *first*, this is
2196 // safe w.r.t. clobbers: we have not yet filled in any other
2197 // arg regs.
2198 let memcpy_call_conv =
2199 isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv);
2200 for insn in M::gen_memcpy(
2201 memcpy_call_conv,
2202 dst_ptr.to_reg(),
2203 src_ptr,
2204 size as usize,
2205 |ty| ctx.alloc_tmp(ty).only_reg().unwrap(),
2206 )
2207 .into_iter()
2208 {
2209 ctx.emit(insn);
2210 }
2211 }
2212 }
2213 }
2214
2215 /// Add a constraint for an argument value from a source register.
2216 /// For large arguments with associated stack buffer, this may
2217 /// load the address of the buffer into the argument register, if
2218 /// required by the ABI.
2219 pub fn gen_arg(&mut self, ctx: &mut Lower<M::I>, idx: usize, from_regs: ValueRegs<Reg>) {
2220 let stack_arg_space = ctx.sigs()[self.sig].sized_stack_arg_space;
2221 let stack_arg = if self.is_tail_call() {
2222 StackAMode::IncomingArg
2223 } else {
2224 |offset, _| StackAMode::OutgoingArg(offset)
2225 };
2226 let word_rc = M::word_reg_class();
2227 let word_bits = M::word_bits() as usize;
2228
2229 match ctx.sigs().args(self.sig)[idx].clone() {
2230 ABIArg::Slots { ref slots, .. } => {
2231 assert_eq!(from_regs.len(), slots.len());
2232 for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
2233 match slot {
2234 &ABIArgSlot::Reg {
2235 reg, ty, extension, ..
2236 } => {
2237 let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
2238 let vreg =
2239 if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
2240 assert_eq!(word_rc, reg.class());
2241 let signed = match ext {
2242 ir::ArgumentExtension::Uext => false,
2243 ir::ArgumentExtension::Sext => true,
2244 _ => unreachable!(),
2245 };
2246 let extend_result =
2247 ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2248 ctx.emit(M::gen_extend(
2249 extend_result,
2250 *from_reg,
2251 signed,
2252 ty_bits(ty) as u8,
2253 word_bits as u8,
2254 ));
2255 extend_result.to_reg()
2256 } else {
2257 *from_reg
2258 };
2259
2260 let preg = reg.into();
2261 self.uses.push(CallArgPair { vreg, preg });
2262 }
2263 &ABIArgSlot::Stack {
2264 offset,
2265 ty,
2266 extension,
2267 ..
2268 } => {
2269 let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
2270 let (data, ty) =
2271 if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
2272 assert_eq!(word_rc, from_reg.class());
2273 let signed = match ext {
2274 ir::ArgumentExtension::Uext => false,
2275 ir::ArgumentExtension::Sext => true,
2276 _ => unreachable!(),
2277 };
2278 let extend_result =
2279 ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2280 ctx.emit(M::gen_extend(
2281 extend_result,
2282 *from_reg,
2283 signed,
2284 ty_bits(ty) as u8,
2285 word_bits as u8,
2286 ));
2287 // Store the extended version.
2288 (extend_result.to_reg(), M::word_type())
2289 } else {
2290 (*from_reg, ty)
2291 };
2292 ctx.emit(M::gen_store_stack(
2293 stack_arg(offset, stack_arg_space),
2294 data,
2295 ty,
2296 ));
2297 }
2298 }
2299 }
2300 }
2301 ABIArg::StructArg { .. } => {
2302 // Only supported via ISLE.
2303 }
2304 ABIArg::ImplicitPtrArg {
2305 offset,
2306 pointer,
2307 ty,
2308 purpose: _,
2309 } => {
2310 assert_eq!(from_regs.len(), 1);
2311 let vreg = from_regs.regs()[0];
2312 let amode = StackAMode::OutgoingArg(offset);
2313 let tmp = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2314 ctx.emit(M::gen_get_stack_addr(amode, tmp));
2315 let tmp = tmp.to_reg();
2316 ctx.emit(M::gen_store_base_offset(tmp, 0, vreg, ty));
2317 match pointer {
2318 ABIArgSlot::Reg { reg, .. } => self.uses.push(CallArgPair {
2319 vreg: tmp,
2320 preg: reg.into(),
2321 }),
2322 ABIArgSlot::Stack { offset, .. } => ctx.emit(M::gen_store_stack(
2323 stack_arg(offset, stack_arg_space),
2324 tmp,
2325 M::word_type(),
2326 )),
2327 }
2328 }
2329 }
2330 }
2331
2332 /// Call `gen_arg` for each non-hidden argument and emit all instructions
2333 /// generated.
2334 pub fn emit_args(&mut self, ctx: &mut Lower<M::I>, (inputs, off): isle::ValueSlice) {
2335 let num_args = self.num_args(ctx.sigs());
2336 assert_eq!(inputs.len(&ctx.dfg().value_lists) - off, num_args);
2337
2338 let mut arg_value_regs: SmallVec<[_; 16]> = smallvec![];
2339 for i in 0..num_args {
2340 let input = inputs.get(off + i, &ctx.dfg().value_lists).unwrap();
2341 arg_value_regs.push(ctx.put_value_in_regs(input));
2342 }
2343 for (i, arg_regs) in arg_value_regs.iter().enumerate() {
2344 self.emit_copy_regs_to_buffer(ctx, i, *arg_regs);
2345 }
2346 for (i, value_regs) in arg_value_regs.iter().enumerate() {
2347 self.gen_arg(ctx, i, *value_regs);
2348 }
2349 }
2350
2351 /// Emit the code to forward a stack-return pointer argument through a tail
2352 /// call.
2353 pub fn emit_stack_ret_arg_for_tail_call(&mut self, ctx: &mut Lower<M::I>) {
2354 if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg() {
2355 let ret_area_ptr = ctx.abi().ret_area_ptr.expect(
2356 "if the tail callee has a return pointer, then the tail caller \
2357 must as well",
2358 );
2359 self.gen_arg(ctx, i.into(), ValueRegs::one(ret_area_ptr));
2360 }
2361 }
2362
2363 /// Define a return value after the call returns.
2364 pub fn gen_retval(&mut self, ctx: &mut Lower<M::I>, idx: usize) -> ValueRegs<Reg> {
2365 let mut into_regs: SmallVec<[Reg; 2]> = smallvec![];
2366 let ret = ctx.sigs().rets(self.sig)[idx].clone();
2367 match ret {
2368 ABIArg::Slots { ref slots, .. } => {
2369 for slot in slots {
2370 match slot {
2371 // Extension mode doesn't matter because we're copying out, not in,
2372 // and we ignore high bits in our own registers by convention.
2373 &ABIArgSlot::Reg { reg, ty, .. } => {
2374 let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
2375 self.defs.push(CallRetPair {
2376 vreg: into_reg,
2377 location: RetLocation::Reg(reg.into(), ty),
2378 });
2379 into_regs.push(into_reg.to_reg());
2380 }
2381 &ABIArgSlot::Stack { offset, ty, .. } => {
2382 let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
2383 let sig_data = &ctx.sigs()[self.sig];
2384 // The outgoing argument area must always be restored after a call,
2385 // ensuring that the return values will be in a consistent place after
2386 // any call.
2387 let ret_area_base = sig_data.sized_stack_arg_space();
2388 let amode = StackAMode::OutgoingArg(offset + ret_area_base);
2389 self.defs.push(CallRetPair {
2390 vreg: into_reg,
2391 location: RetLocation::Stack(amode, ty),
2392 });
2393 into_regs.push(into_reg.to_reg());
2394 }
2395 }
2396 }
2397 }
2398 ABIArg::StructArg { .. } => {
2399 panic!("StructArg not supported in return position");
2400 }
2401 ABIArg::ImplicitPtrArg { .. } => {
2402 panic!("ImplicitPtrArg not supported in return position");
2403 }
2404 }
2405
2406 let value_regs = match *into_regs {
2407 [a] => ValueRegs::one(a),
2408 [a, b] => ValueRegs::two(a, b),
2409 _ => panic!("Expected to see one or two slots only from {ret:?}"),
2410 };
2411 value_regs
2412 }
2413
2414 /// Emit the call itself.
2415 ///
2416 /// The returned instruction should have proper use- and def-sets according
2417 /// to the argument registers, return-value registers, and clobbered
2418 /// registers for this function signature in this ABI.
2419 ///
2420 /// (Arg registers are uses, and retval registers are defs. Clobbered
2421 /// registers are also logically defs, but should never be read; their
2422 /// values are "defined" (to the regalloc) but "undefined" in every other
2423 /// sense.)
2424 ///
2425 /// This function should only be called once, as it is allowed to re-use
2426 /// parts of the `CallSite` object in emitting instructions.
2427 pub fn emit_call(
2428 &mut self,
2429 ctx: &mut Lower<M::I>,
2430 try_call_info: Option<(ExceptionTable, &[MachLabel])>,
2431 ) {
2432 let word_type = M::word_type();
2433 if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg {
2434 let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
2435 let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space();
2436 ctx.emit(M::gen_get_stack_addr(
2437 StackAMode::OutgoingArg(ret_area_base),
2438 rd,
2439 ));
2440 self.gen_arg(ctx, i.into(), ValueRegs::one(rd.to_reg()));
2441 }
2442
2443 let uses = mem::take(&mut self.uses);
2444 let mut defs = mem::take(&mut self.defs);
2445
2446 let sig = &ctx.sigs()[self.sig];
2447 let callee_pop_size = if sig.call_conv() == isa::CallConv::Tail {
2448 // The tail calling convention has callees pop stack arguments.
2449 sig.sized_stack_arg_space
2450 } else {
2451 0
2452 };
2453
2454 let call_conv = sig.call_conv;
2455 let ret_space = sig.sized_stack_ret_space;
2456 let arg_space = sig.sized_stack_arg_space;
2457
2458 ctx.abi_mut()
2459 .accumulate_outgoing_args_size(ret_space + arg_space);
2460
2461 let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
2462
2463 let try_call_info = try_call_info.map(|(et, labels)| {
2464 let exception_dests = ctx.dfg().exception_tables[et]
2465 .catches()
2466 .map(|(tag, _)| tag.into())
2467 .zip(labels.iter().cloned())
2468 .collect::<Vec<_>>()
2469 .into_boxed_slice();
2470
2471 // We need to update `defs` to contain the exception
2472 // payload regs as well. We have two sources of info that
2473 // we join:
2474 //
2475 // - The machine-specific ABI implementation `M`, which
2476 // tells us the particular registers that payload values
2477 // must be in
2478 // - The passed-in lowering context, which gives us the
2479 // vregs we must define.
2480 //
2481 // Note that payload values may need to end up in the same
2482 // physical registers as ordinary return values; this is
2483 // not a conflict, because we either get one or the
2484 // other. For regalloc's purposes, we define both starting
2485 // here at the callsite, but we can share one def in the
2486 // `defs` list and alias one vreg to another. Thus we
2487 // handle the two cases below for each payload register:
2488 // overlaps a return value (and we alias to it) or not
2489 // (and we add a def).
2490 let pregs = M::exception_payload_regs(call_conv);
2491 for (i, &preg) in pregs.iter().enumerate() {
2492 let vreg = ctx.try_call_exception_defs(ctx.cur_inst())[i];
2493 if let Some(existing) = defs.iter().find(|def| match def.location {
2494 RetLocation::Reg(r, _) => r == preg,
2495 _ => false,
2496 }) {
2497 ctx.vregs_mut()
2498 .set_vreg_alias(vreg.to_reg(), existing.vreg.to_reg());
2499 } else {
2500 defs.push(CallRetPair {
2501 vreg,
2502 location: RetLocation::Reg(preg, M::word_type()),
2503 });
2504 }
2505 }
2506
2507 TryCallInfo {
2508 continuation: *labels.last().unwrap(),
2509 exception_dests,
2510 }
2511 });
2512
2513 let clobbers = {
2514 // Get clobbers: all caller-saves. These may include return value
2515 // regs, which we will remove from the clobber set below.
2516 let mut clobbers = <M>::get_regs_clobbered_by_call(
2517 ctx.sigs()[self.sig].call_conv,
2518 try_call_info.is_some(),
2519 );
2520
2521 // Remove retval regs from clobbers.
2522 for def in &defs {
2523 if let RetLocation::Reg(preg, _) = def.location {
2524 clobbers.remove(PReg::from(preg.to_real_reg().unwrap()));
2525 }
2526 }
2527
2528 clobbers
2529 };
2530
2531 // Any adjustment to SP to account for required outgoing arguments/stack return values must
2532 // be done inside of the call pseudo-op, to ensure that SP is always in a consistent
2533 // state for all other instructions. For example, if a tail-call abi function is called
2534 // here, the reclamation of the outgoing argument area must be done inside of the call
2535 // pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
2536 // function. (Except the prologue and epilogue, but those are fairly special parts of the
2537 // function that establish the SP invariants that are relied on elsewhere and are generated
2538 // after the register allocator has run and thus cannot have register allocator-inserted
2539 // references to SP offsets.)
2540 for inst in M::gen_call(
2541 &self.dest,
2542 tmp,
2543 CallInfo {
2544 dest: (),
2545 uses,
2546 defs,
2547 clobbers,
2548 callee_conv: call_conv,
2549 caller_conv: self.caller_conv,
2550 callee_pop_size,
2551 try_call_info,
2552 },
2553 )
2554 .into_iter()
2555 {
2556 ctx.emit(inst);
2557 }
2558 }
2559}
2560
2561impl<T> CallInfo<T> {
2562 /// Emit loads for any stack-carried return values using the call
2563 /// info and allocations.
2564 pub fn emit_retval_loads<
2565 M: ABIMachineSpec,
2566 EmitFn: FnMut(M::I),
2567 IslandFn: Fn(u32) -> Option<M::I>,
2568 >(
2569 &self,
2570 stackslots_size: u32,
2571 mut emit: EmitFn,
2572 emit_island: IslandFn,
2573 ) {
2574 // Count stack-ret locations and emit an island to account for
2575 // this space usage.
2576 let mut space_needed = 0;
2577 for CallRetPair { location, .. } in &self.defs {
2578 if let RetLocation::Stack(..) = location {
2579 // Assume up to ten instructions, semi-arbitrarily:
2580 // load from stack, store to spillslot, codegen of
2581 // large offsets on RISC ISAs.
2582 space_needed += 10 * M::I::worst_case_size();
2583 }
2584 }
2585 if space_needed > 0 {
2586 if let Some(island_inst) = emit_island(space_needed) {
2587 emit(island_inst);
2588 }
2589 }
2590
2591 let temp = M::retval_temp_reg(self.callee_conv);
2592 // The temporary must be noted as clobbered.
2593 debug_assert!(M::get_regs_clobbered_by_call(
2594 self.callee_conv,
2595 self.try_call_info.is_some()
2596 )
2597 .contains(PReg::from(temp.to_reg().to_real_reg().unwrap())));
2598
2599 for CallRetPair { vreg, location } in &self.defs {
2600 match location {
2601 RetLocation::Reg(preg, ..) => {
2602 // The temporary must not also be an actual return
2603 // value register.
2604 debug_assert!(*preg != temp.to_reg());
2605 }
2606 RetLocation::Stack(amode, ty) => {
2607 if let Some(spillslot) = vreg.to_reg().to_spillslot() {
2608 // `temp` is an integer register of machine word
2609 // width, but `ty` may be floating-point/vector,
2610 // which (i) may not be loadable directly into an
2611 // int reg, and (ii) may be wider than a machine
2612 // word. For simplicity, and because there are not
2613 // always easy choices for volatile float/vec regs
2614 // (see e.g. x86-64, where fastcall clobbers only
2615 // xmm0-xmm5, but tail uses xmm0-xmm7 for
2616 // returns), we use the integer temp register in
2617 // steps.
2618 let parts = (ty.bytes() + M::word_bytes() - 1) / M::word_bytes();
2619 for part in 0..parts {
2620 emit(M::gen_load_stack(
2621 amode.offset_by(part * M::word_bytes()),
2622 temp,
2623 M::word_type(),
2624 ));
2625 emit(M::gen_store_stack(
2626 StackAMode::Slot(
2627 i64::from(stackslots_size)
2628 + i64::from(M::word_bytes())
2629 * ((spillslot.index() as i64) + (part as i64)),
2630 ),
2631 temp.to_reg(),
2632 M::word_type(),
2633 ));
2634 }
2635 } else {
2636 assert_ne!(*vreg, temp);
2637 emit(M::gen_load_stack(*amode, *vreg, *ty));
2638 }
2639 }
2640 }
2641 }
2642 }
2643}
2644
2645#[cfg(test)]
2646mod tests {
2647 use super::SigData;
2648
2649 #[test]
2650 fn sig_data_size() {
2651 // The size of `SigData` is performance sensitive, so make sure
2652 // we don't regress it unintentionally.
2653 assert_eq!(std::mem::size_of::<SigData>(), 24);
2654 }
2655}