cranelift_codegen/machinst/abi.rs
1//! Implementation of a vanilla ABI, shared between several machines. The
2//! implementation here assumes that arguments will be passed in registers
3//! first, then additional args on the stack; that the stack grows downward,
4//! contains a standard frame (return address and frame pointer), and the
5//! compiler is otherwise free to allocate space below that with its choice of
6//! layout; and that the machine has some notion of caller- and callee-save
7//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
8//! mold and thus both of these backends use this shared implementation.
9//!
10//! See the documentation in specific machine backends for the "instantiation"
11//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
12//! and return values, and any other special requirements.
13//!
14//! For now the implementation here assumes a 64-bit machine, but we intend to
15//! make this 32/64-bit-generic shortly.
16//!
17//! # Vanilla ABI
18//!
19//! First, arguments and return values are passed in registers up to a certain
20//! fixed count, after which they overflow onto the stack. Multiple return
21//! values either fit in registers, or are returned in a separate return-value
22//! area on the stack, given by a hidden extra parameter.
23//!
24//! Note that the exact stack layout is up to us. We settled on the
25//! below design based on several requirements. In particular, we need
26//! to be able to generate instructions (or instruction sequences) to
27//! access arguments, stack slots, and spill slots before we know how
28//! many spill slots or clobber-saves there will be, because of our
29//! pass structure. We also prefer positive offsets to negative
30//! offsets because of an asymmetry in some machines' addressing modes
31//! (e.g., on AArch64, positive offsets have a larger possible range
32//! without a long-form sequence to synthesize an arbitrary
33//! offset). We also need clobber-save registers to be "near" the
34//! frame pointer: Windows unwind information requires it to be within
35//! 240 bytes of RBP. Finally, it is not allowed to access memory
36//! below the current SP value.
37//!
38//! We assume that a prologue first pushes the frame pointer (and
39//! return address above that, if the machine does not do that in
40//! hardware). We set FP to point to this two-word frame record. We
41//! store all other frame slots below this two-word frame record, as
42//! well as enough space for arguments to the largest possible
43//! function call. The stack pointer then remains at this position
44//! for the duration of the function, allowing us to address all
45//! frame storage at positive offsets from SP.
46//!
47//! Note that if we ever support dynamic stack-space allocation (for
48//! `alloca`), we will need a way to reference spill slots and stack
49//! slots relative to a dynamic SP, because we will no longer be able
50//! to know a static offset from SP to the slots at any particular
51//! program point. Probably the best solution at that point will be to
52//! revert to using the frame pointer as the reference for all slots,
53//! to allow generating spill/reload and stackslot accesses before we
54//! know how large the clobber-saves will be.
55//!
56//! # Stack Layout
57//!
58//! The stack looks like:
59//!
60//! ```plain
61//! (high address)
62//! | ... |
63//! | caller frames |
64//! | ... |
65//! +===========================+
66//! | ... |
67//! | stack args |
68//! Canonical Frame Address --> | (accessed via FP) |
69//! +---------------------------+
70//! SP at function entry -----> | return address |
71//! +---------------------------+
72//! FP after prologue --------> | FP (pushed by prologue) |
73//! +---------------------------+ -----
74//! | ... | |
75//! | clobbered callee-saves | |
76//! unwind-frame base --------> | (pushed by prologue) | |
77//! +---------------------------+ ----- |
78//! | ... | | |
79//! | spill slots | | |
80//! | (accessed via SP) | fixed active
81//! | ... | frame size
82//! | stack slots | storage |
83//! | (accessed via SP) | size |
84//! | (alloc'd by prologue) | | |
85//! +---------------------------+ ----- |
86//! | [alignment as needed] | |
87//! | ... | |
88//! | args for largest call | |
89//! SP -----------------------> | (alloc'd by prologue) | |
90//! +===========================+ -----
91//!
92//! (low address)
93//! ```
94//!
95//! # Multi-value Returns
96//!
97//! We support multi-value returns by using multiple return-value
98//! registers. In some cases this is an extension of the base system
99//! ABI. See each platform's `abi.rs` implementation for details.
100
101use crate::CodegenError;
102use crate::entity::SecondaryMap;
103use crate::ir::{ArgumentExtension, ArgumentPurpose, ExceptionTag, Signature};
104use crate::ir::{StackSlotKey, types::*};
105use crate::isa::TargetIsa;
106use crate::settings::ProbestackStrategy;
107use crate::{ir, isa};
108use crate::{machinst::*, trace};
109use alloc::boxed::Box;
110use regalloc2::{MachineEnv, PReg, PRegSet};
111use rustc_hash::FxHashMap;
112use smallvec::smallvec;
113use std::collections::HashMap;
114use std::marker::PhantomData;
115
116/// A small vector of instructions (with some reasonable size); appropriate for
117/// a small fixed sequence implementing one operation.
118pub type SmallInstVec<I> = SmallVec<[I; 4]>;
119
120/// A type used by backends to track argument-binding info in the "args"
121/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
122#[derive(Clone, Debug)]
123pub struct ArgPair {
124 /// The vreg that is defined by this args pseudoinst.
125 pub vreg: Writable<Reg>,
126 /// The preg that the arg arrives in; this constrains the vreg's
127 /// placement at the pseudoinst.
128 pub preg: Reg,
129}
130
131/// A type used by backends to track return register binding info in the "ret"
132/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
133#[derive(Clone, Debug)]
134pub struct RetPair {
135 /// The vreg that is returned by this pseudionst.
136 pub vreg: Reg,
137 /// The preg that the arg is returned through; this constrains the vreg's
138 /// placement at the pseudoinst.
139 pub preg: Reg,
140}
141
142/// A location for (part of) an argument or return value. These "storage slots"
143/// are specified for each register-sized part of an argument.
144#[derive(Clone, Copy, Debug, PartialEq, Eq)]
145pub enum ABIArgSlot {
146 /// In a real register.
147 Reg {
148 /// Register that holds this arg.
149 reg: RealReg,
150 /// Value type of this arg.
151 ty: ir::Type,
152 /// Should this arg be zero- or sign-extended?
153 extension: ir::ArgumentExtension,
154 },
155 /// Arguments only: on stack, at given offset from SP at entry.
156 Stack {
157 /// Offset of this arg relative to the base of stack args.
158 offset: i64,
159 /// Value type of this arg.
160 ty: ir::Type,
161 /// Should this arg be zero- or sign-extended?
162 extension: ir::ArgumentExtension,
163 },
164}
165
166impl ABIArgSlot {
167 /// The type of the value that will be stored in this slot.
168 pub fn get_type(&self) -> ir::Type {
169 match self {
170 ABIArgSlot::Reg { ty, .. } => *ty,
171 ABIArgSlot::Stack { ty, .. } => *ty,
172 }
173 }
174}
175
176/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
177/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
178/// super rare (and never happen with Wasm).
179pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
180
181/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
182/// Value to be passed with its parts in more than one location at the ABI
183/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
184/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
185/// number of "parts" should correspond to the number of registers used to store
186/// this type according to the machine backend.
187///
188/// As an invariant, the `purpose` for every part must match. As a further
189/// invariant, a `StructArg` part cannot appear with any other part.
190#[derive(Clone, Debug)]
191pub enum ABIArg {
192 /// Storage slots (registers or stack locations) for each part of the
193 /// argument value. The number of slots must equal the number of register
194 /// parts used to store a value of this type.
195 Slots {
196 /// Slots, one per register part.
197 slots: ABIArgSlotVec,
198 /// Purpose of this arg.
199 purpose: ir::ArgumentPurpose,
200 },
201 /// Structure argument. We reserve stack space for it, but the CLIF-level
202 /// semantics are a little weird: the value passed to the call instruction,
203 /// and received in the corresponding block param, is a *pointer*. On the
204 /// caller side, we memcpy the data from the passed-in pointer to the stack
205 /// area; on the callee side, we compute a pointer to this stack area and
206 /// provide that as the argument's value.
207 StructArg {
208 /// Offset of this arg relative to base of stack args.
209 offset: i64,
210 /// Size of this arg on the stack.
211 size: u64,
212 /// Purpose of this arg.
213 purpose: ir::ArgumentPurpose,
214 },
215 /// Implicit argument. Similar to a StructArg, except that we have the
216 /// target type, not a pointer type, at the CLIF-level. This argument is
217 /// still being passed via reference implicitly.
218 ImplicitPtrArg {
219 /// Register or stack slot holding a pointer to the buffer.
220 pointer: ABIArgSlot,
221 /// Offset of the argument buffer.
222 offset: i64,
223 /// Type of the implicit argument.
224 ty: Type,
225 /// Purpose of this arg.
226 purpose: ir::ArgumentPurpose,
227 },
228}
229
230impl ABIArg {
231 /// Create an ABIArg from one register.
232 pub fn reg(
233 reg: RealReg,
234 ty: ir::Type,
235 extension: ir::ArgumentExtension,
236 purpose: ir::ArgumentPurpose,
237 ) -> ABIArg {
238 ABIArg::Slots {
239 slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
240 purpose,
241 }
242 }
243
244 /// Create an ABIArg from one stack slot.
245 pub fn stack(
246 offset: i64,
247 ty: ir::Type,
248 extension: ir::ArgumentExtension,
249 purpose: ir::ArgumentPurpose,
250 ) -> ABIArg {
251 ABIArg::Slots {
252 slots: smallvec![ABIArgSlot::Stack {
253 offset,
254 ty,
255 extension,
256 }],
257 purpose,
258 }
259 }
260}
261
262/// Are we computing information about arguments or return values? Much of the
263/// handling is factored out into common routines; this enum allows us to
264/// distinguish which case we're handling.
265#[derive(Clone, Copy, Debug, PartialEq, Eq)]
266pub enum ArgsOrRets {
267 /// Arguments.
268 Args,
269 /// Return values.
270 Rets,
271}
272
273/// Abstract location for a machine-specific ABI impl to translate into the
274/// appropriate addressing mode.
275#[derive(Clone, Copy, Debug, PartialEq, Eq)]
276pub enum StackAMode {
277 /// Offset into the current frame's argument area.
278 IncomingArg(i64, u32),
279 /// Offset within the stack slots in the current frame.
280 Slot(i64),
281 /// Offset into the callee frame's argument area.
282 OutgoingArg(i64),
283}
284
285impl StackAMode {
286 fn offset_by(&self, offset: u32) -> Self {
287 match self {
288 StackAMode::IncomingArg(off, size) => {
289 StackAMode::IncomingArg(off.checked_add(i64::from(offset)).unwrap(), *size)
290 }
291 StackAMode::Slot(off) => StackAMode::Slot(off.checked_add(i64::from(offset)).unwrap()),
292 StackAMode::OutgoingArg(off) => {
293 StackAMode::OutgoingArg(off.checked_add(i64::from(offset)).unwrap())
294 }
295 }
296 }
297}
298
299/// Trait implemented by machine-specific backend to represent ISA flags.
300pub trait IsaFlags: Clone {
301 /// Get a flag indicating whether forward-edge CFI is enabled.
302 fn is_forward_edge_cfi_enabled(&self) -> bool {
303 false
304 }
305}
306
307/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
308/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
309/// `ABIArg`s in `SigSet` and exposes just the args for the current
310/// `compute_arg_locs` call.
311pub struct ArgsAccumulator<'a> {
312 sig_set_abi_args: &'a mut Vec<ABIArg>,
313 start: usize,
314 non_formal_flag: bool,
315}
316
317impl<'a> ArgsAccumulator<'a> {
318 fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
319 let start = sig_set_abi_args.len();
320 ArgsAccumulator {
321 sig_set_abi_args,
322 start,
323 non_formal_flag: false,
324 }
325 }
326
327 #[inline]
328 pub fn push(&mut self, arg: ABIArg) {
329 debug_assert!(!self.non_formal_flag);
330 self.sig_set_abi_args.push(arg)
331 }
332
333 #[inline]
334 pub fn push_non_formal(&mut self, arg: ABIArg) {
335 self.non_formal_flag = true;
336 self.sig_set_abi_args.push(arg)
337 }
338
339 #[inline]
340 pub fn args(&self) -> &[ABIArg] {
341 &self.sig_set_abi_args[self.start..]
342 }
343
344 #[inline]
345 pub fn args_mut(&mut self) -> &mut [ABIArg] {
346 &mut self.sig_set_abi_args[self.start..]
347 }
348}
349
350/// Trait implemented by machine-specific backend to provide information about
351/// register assignments and to allow generating the specific instructions for
352/// stack loads/saves, prologues/epilogues, etc.
353pub trait ABIMachineSpec {
354 /// The instruction type.
355 type I: VCodeInst;
356
357 /// The ISA flags type.
358 type F: IsaFlags;
359
360 /// This is the limit for the size of argument and return-value areas on the
361 /// stack. We place a reasonable limit here to avoid integer overflow issues
362 /// with 32-bit arithmetic.
363 const STACK_ARG_RET_SIZE_LIMIT: u32;
364
365 /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
366 fn word_bits() -> u32;
367
368 /// Returns the number of bytes in a word.
369 fn word_bytes() -> u32 {
370 return Self::word_bits() / 8;
371 }
372
373 /// Returns word-size integer type.
374 fn word_type() -> Type {
375 match Self::word_bits() {
376 32 => I32,
377 64 => I64,
378 _ => unreachable!(),
379 }
380 }
381
382 /// Returns word register class.
383 fn word_reg_class() -> RegClass {
384 RegClass::Int
385 }
386
387 /// Returns required stack alignment in bytes.
388 fn stack_align(call_conv: isa::CallConv) -> u32;
389
390 /// Process a list of parameters or return values and allocate them to registers
391 /// and stack slots.
392 ///
393 /// The argument locations should be pushed onto the given `ArgsAccumulator`
394 /// in order. Any extra arguments added (such as return area pointers)
395 /// should come at the end of the list so that the first N lowered
396 /// parameters align with the N clif parameters.
397 ///
398 /// Returns the stack-space used (rounded up to as alignment requires), and
399 /// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
400 /// that was added.
401 fn compute_arg_locs(
402 call_conv: isa::CallConv,
403 flags: &settings::Flags,
404 params: &[ir::AbiParam],
405 args_or_rets: ArgsOrRets,
406 add_ret_area_ptr: bool,
407 args: ArgsAccumulator,
408 ) -> CodegenResult<(u32, Option<usize>)>;
409
410 /// Generate a load from the stack.
411 fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
412
413 /// Generate a store to the stack.
414 fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
415
416 /// Generate a move.
417 fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
418
419 /// Generate an integer-extend operation.
420 fn gen_extend(
421 to_reg: Writable<Reg>,
422 from_reg: Reg,
423 is_signed: bool,
424 from_bits: u8,
425 to_bits: u8,
426 ) -> Self::I;
427
428 /// Generate an "args" pseudo-instruction to capture input args in
429 /// registers.
430 fn gen_args(args: Vec<ArgPair>) -> Self::I;
431
432 /// Generate a "rets" pseudo-instruction that moves vregs to return
433 /// registers.
434 fn gen_rets(rets: Vec<RetPair>) -> Self::I;
435
436 /// Generate an add-with-immediate. Note that even if this uses a scratch
437 /// register, it must satisfy two requirements:
438 ///
439 /// - The add-imm sequence must only clobber caller-save registers that are
440 /// not used for arguments, because it will be placed in the prologue
441 /// before the clobbered callee-save registers are saved.
442 ///
443 /// - The add-imm sequence must work correctly when `from_reg` and/or
444 /// `into_reg` are the register returned by `get_stacklimit_reg()`.
445 fn gen_add_imm(
446 call_conv: isa::CallConv,
447 into_reg: Writable<Reg>,
448 from_reg: Reg,
449 imm: u32,
450 ) -> SmallInstVec<Self::I>;
451
452 /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
453 /// the stack pointer is less than the given limit register (assuming the
454 /// stack grows downward).
455 fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
456
457 /// Generate an instruction to compute an address of a stack slot (FP- or
458 /// SP-based offset).
459 fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;
460
461 /// Get a fixed register to use to compute a stack limit. This is needed for
462 /// certain sequences generated after the register allocator has already
463 /// run. This must satisfy two requirements:
464 ///
465 /// - It must be a caller-save register that is not used for arguments,
466 /// because it will be clobbered in the prologue before the clobbered
467 /// callee-save registers are saved.
468 ///
469 /// - It must be safe to pass as an argument and/or destination to
470 /// `gen_add_imm()`. This is relevant when an addition with a large
471 /// immediate needs its own temporary; it cannot use the same fixed
472 /// temporary as this one.
473 fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;
474
475 /// Generate a load to the given [base+offset] address.
476 fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
477
478 /// Generate a store from the given [base+offset] address.
479 fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
480
481 /// Adjust the stack pointer up or down.
482 fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
483
484 /// Compute a FrameLayout structure containing a sorted list of all clobbered
485 /// registers that are callee-saved according to the ABI, as well as the sizes
486 /// of all parts of the stack frame. The result is used to emit the prologue
487 /// and epilogue routines.
488 fn compute_frame_layout(
489 call_conv: isa::CallConv,
490 flags: &settings::Flags,
491 sig: &Signature,
492 regs: &[Writable<RealReg>],
493 function_calls: FunctionCalls,
494 incoming_args_size: u32,
495 tail_args_size: u32,
496 stackslots_size: u32,
497 fixed_frame_storage_size: u32,
498 outgoing_args_size: u32,
499 ) -> FrameLayout;
500
501 /// Generate the usual frame-setup sequence for this architecture: e.g.,
502 /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
503 /// AArch64.
504 fn gen_prologue_frame_setup(
505 call_conv: isa::CallConv,
506 flags: &settings::Flags,
507 isa_flags: &Self::F,
508 frame_layout: &FrameLayout,
509 ) -> SmallInstVec<Self::I>;
510
511 /// Generate the usual frame-restore sequence for this architecture.
512 fn gen_epilogue_frame_restore(
513 call_conv: isa::CallConv,
514 flags: &settings::Flags,
515 isa_flags: &Self::F,
516 frame_layout: &FrameLayout,
517 ) -> SmallInstVec<Self::I>;
518
519 /// Generate a return instruction.
520 fn gen_return(
521 call_conv: isa::CallConv,
522 isa_flags: &Self::F,
523 frame_layout: &FrameLayout,
524 ) -> SmallInstVec<Self::I>;
525
526 /// Generate a probestack call.
527 fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
528
529 /// Generate a inline stack probe.
530 fn gen_inline_probestack(
531 insts: &mut SmallInstVec<Self::I>,
532 call_conv: isa::CallConv,
533 frame_size: u32,
534 guard_size: u32,
535 );
536
537 /// Generate a clobber-save sequence. The implementation here should return
538 /// a sequence of instructions that "push" or otherwise save to the stack all
539 /// registers written/modified by the function body that are callee-saved.
540 /// The sequence of instructions should adjust the stack pointer downward,
541 /// and should align as necessary according to ABI requirements.
542 fn gen_clobber_save(
543 call_conv: isa::CallConv,
544 flags: &settings::Flags,
545 frame_layout: &FrameLayout,
546 ) -> SmallVec<[Self::I; 16]>;
547
548 /// Generate a clobber-restore sequence. This sequence should perform the
549 /// opposite of the clobber-save sequence generated above, assuming that SP
550 /// going into the sequence is at the same point that it was left when the
551 /// clobber-save sequence finished.
552 fn gen_clobber_restore(
553 call_conv: isa::CallConv,
554 flags: &settings::Flags,
555 frame_layout: &FrameLayout,
556 ) -> SmallVec<[Self::I; 16]>;
557
558 /// Generate a memcpy invocation. Used to set up struct
559 /// args. Takes `src`, `dst` as read-only inputs and passes a temporary
560 /// allocator.
561 fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
562 call_conv: isa::CallConv,
563 dst: Reg,
564 src: Reg,
565 size: usize,
566 alloc_tmp: F,
567 ) -> SmallVec<[Self::I; 8]>;
568
569 /// Get the number of spillslots required for the given register-class.
570 fn get_number_of_spillslots_for_value(
571 rc: RegClass,
572 target_vector_bytes: u32,
573 isa_flags: &Self::F,
574 ) -> u32;
575
576 /// Get the ABI-dependent MachineEnv for managing register allocation.
577 fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;
578
579 /// Get all caller-save registers, that is, registers that we expect
580 /// not to be saved across a call to a callee with the given ABI.
581 fn get_regs_clobbered_by_call(
582 call_conv_of_callee: isa::CallConv,
583 is_exception: bool,
584 ) -> PRegSet;
585
586 /// Get the needed extension mode, given the mode attached to the argument
587 /// in the signature and the calling convention. The input (the attribute in
588 /// the signature) specifies what extension type should be done *if* the ABI
589 /// requires extension to the full register; this method's return value
590 /// indicates whether the extension actually *will* be done.
591 fn get_ext_mode(
592 call_conv: isa::CallConv,
593 specified: ir::ArgumentExtension,
594 ) -> ir::ArgumentExtension;
595
596 /// Get a temporary register that is available to use after a call
597 /// completes and that does not interfere with register-carried
598 /// return values. This is used to move stack-carried return
599 /// values directly into spillslots if needed.
600 fn retval_temp_reg(call_conv_of_callee: isa::CallConv) -> Writable<Reg>;
601
602 /// Get the exception payload registers, if any, for a calling
603 /// convention.
604 ///
605 /// Note that the argument here is the calling convention of the *callee*.
606 /// This might differ from the caller but the exceptional payloads that are
607 /// available are defined by the callee, not the caller.
608 fn exception_payload_regs(callee_conv: isa::CallConv) -> &'static [Reg] {
609 let _ = callee_conv;
610 &[]
611 }
612}
613
614/// Out-of-line data for calls, to keep the size of `Inst` down.
615#[derive(Clone, Debug)]
616pub struct CallInfo<T> {
617 /// Receiver of this call
618 pub dest: T,
619 /// Register uses of this call.
620 pub uses: CallArgList,
621 /// Register defs of this call.
622 pub defs: CallRetList,
623 /// Registers clobbered by this call, as per its calling convention.
624 pub clobbers: PRegSet,
625 /// The calling convention of the callee.
626 pub callee_conv: isa::CallConv,
627 /// The calling convention of the caller.
628 pub caller_conv: isa::CallConv,
629 /// The number of bytes that the callee will pop from the stack for the
630 /// caller, if any. (Used for popping stack arguments with the `tail`
631 /// calling convention.)
632 pub callee_pop_size: u32,
633 /// Information for a try-call, if this is one. We combine
634 /// handling of calls and try-calls as much as possible to share
635 /// argument/return logic; they mostly differ in the metadata that
636 /// they emit, which this information feeds into.
637 pub try_call_info: Option<TryCallInfo>,
638 /// Whether this call is patchable.
639 pub patchable: bool,
640}
641
642/// Out-of-line information present on `try_call` instructions only:
643/// information that is used to generate exception-handling tables and
644/// link up to destination blocks properly.
645#[derive(Clone, Debug)]
646pub struct TryCallInfo {
647 /// The target to jump to on a normal returhn.
648 pub continuation: MachLabel,
649 /// Exception tags to catch and corresponding destination labels.
650 pub exception_handlers: Box<[TryCallHandler]>,
651}
652
653/// Information about an individual handler at a try-call site.
654#[derive(Clone, Debug)]
655pub enum TryCallHandler {
656 /// If the tag matches (given the current context), recover at the
657 /// label.
658 Tag(ExceptionTag, MachLabel),
659 /// Recover at the label unconditionally.
660 Default(MachLabel),
661 /// Set the dynamic context for interpreting tags at this point in
662 /// the handler list.
663 Context(Reg),
664}
665
666impl<T> CallInfo<T> {
667 /// Creates an empty set of info with no clobbers/uses/etc with the
668 /// specified ABI
669 pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
670 CallInfo {
671 dest,
672 uses: smallvec![],
673 defs: smallvec![],
674 clobbers: PRegSet::empty(),
675 caller_conv: call_conv,
676 callee_conv: call_conv,
677 callee_pop_size: 0,
678 try_call_info: None,
679 patchable: false,
680 }
681 }
682}
683
684/// The id of an ABI signature within the `SigSet`.
685#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
686pub struct Sig(u32);
687cranelift_entity::entity_impl!(Sig);
688
689impl Sig {
690 fn prev(self) -> Option<Sig> {
691 self.0.checked_sub(1).map(Sig)
692 }
693}
694
695/// ABI information shared between body (callee) and caller.
696#[derive(Clone, Debug)]
697pub struct SigData {
698 /// Currently both return values and arguments are stored in a continuous space vector
699 /// in `SigSet::abi_args`.
700 ///
701 /// ```plain
702 /// +----------------------------------------------+
703 /// | return values |
704 /// | ... |
705 /// rets_end --> +----------------------------------------------+
706 /// | arguments |
707 /// | ... |
708 /// args_end --> +----------------------------------------------+
709 ///
710 /// ```
711 ///
712 /// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
713 ///
714 /// Argument location ending offset (regs or stack slots). Stack offsets are relative to
715 /// SP on entry to function.
716 ///
717 /// This is a index into the `SigSet::abi_args`.
718 args_end: u32,
719
720 /// Return-value location ending offset. Stack offsets are relative to the return-area
721 /// pointer.
722 ///
723 /// This is a index into the `SigSet::abi_args`.
724 rets_end: u32,
725
726 /// Space on stack used to store arguments. We're storing the size in u32 to
727 /// reduce the size of the struct.
728 sized_stack_arg_space: u32,
729
730 /// Space on stack used to store return values. We're storing the size in u32 to
731 /// reduce the size of the struct.
732 sized_stack_ret_space: u32,
733
734 /// Index in `args` of the stack-return-value-area argument.
735 stack_ret_arg: Option<u16>,
736
737 /// Calling convention used.
738 call_conv: isa::CallConv,
739}
740
741impl SigData {
742 /// Get total stack space required for arguments.
743 pub fn sized_stack_arg_space(&self) -> u32 {
744 self.sized_stack_arg_space
745 }
746
747 /// Get total stack space required for return values.
748 pub fn sized_stack_ret_space(&self) -> u32 {
749 self.sized_stack_ret_space
750 }
751
752 /// Get calling convention used.
753 pub fn call_conv(&self) -> isa::CallConv {
754 self.call_conv
755 }
756
757 /// The index of the stack-return-value-area argument, if any.
758 pub fn stack_ret_arg(&self) -> Option<u16> {
759 self.stack_ret_arg
760 }
761}
762
763/// A (mostly) deduplicated set of ABI signatures.
764///
765/// We say "mostly" because we do not dedupe between signatures interned via
766/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
767/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
768/// this final bit of deduplication would require filling out the
769/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
770/// hash map itself but params and returns vecs in each signature) that we want
771/// to avoid.
772///
773/// In general, prefer using the `ir::SigRef`-taking methods to the
774/// `ir::Signature`-taking methods when you can get away with it, as they don't
775/// require cloning non-copy types that will trigger heap allocations.
776///
777/// This type can be indexed by `Sig` to access its associated `SigData`.
778pub struct SigSet {
779 /// Interned `ir::Signature`s that we already have an ABI signature for.
780 ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
781
782 /// Interned `ir::SigRef`s that we already have an ABI signature for.
783 ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
784
785 /// A single, shared allocation for all `ABIArg`s used by all
786 /// `SigData`s. Each `SigData` references its args/rets via indices into
787 /// this allocation.
788 abi_args: Vec<ABIArg>,
789
790 /// The actual ABI signatures, keyed by `Sig`.
791 sigs: PrimaryMap<Sig, SigData>,
792}
793
794impl SigSet {
795 /// Construct a new `SigSet`, interning all of the signatures used by the
796 /// given function.
797 pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
798 where
799 M: ABIMachineSpec,
800 {
801 let arg_estimate = func.dfg.signatures.len() * 6;
802
803 let mut sigs = SigSet {
804 ir_signature_to_abi_sig: FxHashMap::default(),
805 ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
806 abi_args: Vec::with_capacity(arg_estimate),
807 sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
808 };
809
810 sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
811 for sig_ref in func.dfg.signatures.keys() {
812 sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
813 }
814
815 Ok(sigs)
816 }
817
818 /// Have we already interned an ABI signature for the given `ir::Signature`?
819 pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
820 self.ir_signature_to_abi_sig.contains_key(signature)
821 }
822
823 /// Construct and intern an ABI signature for the given `ir::Signature`.
824 pub fn make_abi_sig_from_ir_signature<M>(
825 &mut self,
826 signature: ir::Signature,
827 flags: &settings::Flags,
828 ) -> CodegenResult<Sig>
829 where
830 M: ABIMachineSpec,
831 {
832 // Because the `HashMap` entry API requires taking ownership of the
833 // lookup key -- and we want to avoid unnecessary clones of
834 // `ir::Signature`s, even at the cost of duplicate lookups -- we can't
835 // have a single, get-or-create-style method for interning
836 // `ir::Signature`s into ABI signatures. So at least (debug) assert that
837 // we aren't creating duplicate ABI signatures for the same
838 // `ir::Signature`.
839 debug_assert!(!self.have_abi_sig_for_signature(&signature));
840
841 let sig_data = self.from_func_sig::<M>(&signature, flags)?;
842 let sig = self.sigs.push(sig_data);
843 self.ir_signature_to_abi_sig.insert(signature, sig);
844 Ok(sig)
845 }
846
847 fn make_abi_sig_from_ir_sig_ref<M>(
848 &mut self,
849 sig_ref: ir::SigRef,
850 dfg: &ir::DataFlowGraph,
851 flags: &settings::Flags,
852 ) -> CodegenResult<Sig>
853 where
854 M: ABIMachineSpec,
855 {
856 if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
857 return Ok(sig);
858 }
859 let signature = &dfg.signatures[sig_ref];
860 let sig_data = self.from_func_sig::<M>(signature, flags)?;
861 let sig = self.sigs.push(sig_data);
862 self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
863 Ok(sig)
864 }
865
866 /// Get the already-interned ABI signature id for the given `ir::SigRef`.
867 pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
868 self.ir_sig_ref_to_abi_sig[sig_ref]
869 .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
870 }
871
872 /// Get the already-interned ABI signature id for the given `ir::Signature`.
873 pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
874 self.ir_signature_to_abi_sig
875 .get(signature)
876 .copied()
877 .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
878 }
879
880 pub fn from_func_sig<M: ABIMachineSpec>(
881 &mut self,
882 sig: &ir::Signature,
883 flags: &settings::Flags,
884 ) -> CodegenResult<SigData> {
885 // Keep in sync with ensure_struct_return_ptr_is_returned
886 if sig.uses_special_return(ArgumentPurpose::StructReturn) {
887 panic!("Explicit StructReturn return value not allowed: {sig:?}")
888 }
889 let tmp;
890 let returns = if let Some(struct_ret_index) =
891 sig.special_param_index(ArgumentPurpose::StructReturn)
892 {
893 if !sig.returns.is_empty() {
894 panic!("No return values are allowed when using StructReturn: {sig:?}");
895 }
896 tmp = [sig.params[struct_ret_index]];
897 &tmp
898 } else {
899 sig.returns.as_slice()
900 };
901
902 // Compute args and retvals from signature. Handle retvals first,
903 // because we may need to add a return-area arg to the args.
904
905 // NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
906 // `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
907 // compute_arg_locs order.
908 let (sized_stack_ret_space, _) = M::compute_arg_locs(
909 sig.call_conv,
910 flags,
911 &returns,
912 ArgsOrRets::Rets,
913 /* extra ret-area ptr = */ false,
914 ArgsAccumulator::new(&mut self.abi_args),
915 )?;
916 if !flags.enable_multi_ret_implicit_sret() {
917 assert_eq!(sized_stack_ret_space, 0);
918 }
919 let rets_end = u32::try_from(self.abi_args.len()).unwrap();
920
921 // To avoid overflow issues, limit the return size to something reasonable.
922 if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
923 return Err(CodegenError::ImplLimitExceeded);
924 }
925
926 let need_stack_return_area = sized_stack_ret_space > 0;
927 if need_stack_return_area {
928 assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
929 }
930
931 let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
932 sig.call_conv,
933 flags,
934 &sig.params,
935 ArgsOrRets::Args,
936 need_stack_return_area,
937 ArgsAccumulator::new(&mut self.abi_args),
938 )?;
939 let args_end = u32::try_from(self.abi_args.len()).unwrap();
940
941 // To avoid overflow issues, limit the arg size to something reasonable.
942 if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
943 return Err(CodegenError::ImplLimitExceeded);
944 }
945
946 trace!(
947 "ABISig: sig {:?} => args end = {} rets end = {}
948 arg stack = {} ret stack = {} stack_ret_arg = {:?}",
949 sig,
950 args_end,
951 rets_end,
952 sized_stack_arg_space,
953 sized_stack_ret_space,
954 need_stack_return_area,
955 );
956
957 let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
958 Ok(SigData {
959 args_end,
960 rets_end,
961 sized_stack_arg_space,
962 sized_stack_ret_space,
963 stack_ret_arg,
964 call_conv: sig.call_conv,
965 })
966 }
967
968 /// Get this signature's ABI arguments.
969 pub fn args(&self, sig: Sig) -> &[ABIArg] {
970 let sig_data = &self.sigs[sig];
971 // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
972 let start = usize::try_from(sig_data.rets_end).unwrap();
973 let end = usize::try_from(sig_data.args_end).unwrap();
974 &self.abi_args[start..end]
975 }
976
977 /// Get information specifying how to pass the implicit pointer
978 /// to the return-value area on the stack, if required.
979 pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
980 let sig_data = &self.sigs[sig];
981 if let Some(i) = sig_data.stack_ret_arg {
982 Some(self.args(sig)[usize::from(i)].clone())
983 } else {
984 None
985 }
986 }
987
988 /// Get information specifying how to pass one argument.
989 pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
990 self.args(sig)[idx].clone()
991 }
992
993 /// Get this signature's ABI returns.
994 pub fn rets(&self, sig: Sig) -> &[ABIArg] {
995 let sig_data = &self.sigs[sig];
996 // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
997 let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
998 let end = usize::try_from(sig_data.rets_end).unwrap();
999 &self.abi_args[start..end]
1000 }
1001
1002 /// Get information specifying how to pass one return value.
1003 pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
1004 self.rets(sig)[idx].clone()
1005 }
1006
1007 /// Get the number of arguments expected.
1008 pub fn num_args(&self, sig: Sig) -> usize {
1009 let len = self.args(sig).len();
1010 if self.sigs[sig].stack_ret_arg.is_some() {
1011 len - 1
1012 } else {
1013 len
1014 }
1015 }
1016
1017 /// Get the number of return values expected.
1018 pub fn num_rets(&self, sig: Sig) -> usize {
1019 self.rets(sig).len()
1020 }
1021}
1022
1023// NB: we do _not_ implement `IndexMut` because these signatures are
1024// deduplicated and shared!
1025impl std::ops::Index<Sig> for SigSet {
1026 type Output = SigData;
1027
1028 fn index(&self, sig: Sig) -> &Self::Output {
1029 &self.sigs[sig]
1030 }
1031}
1032
1033/// Structure describing the layout of a function's stack frame.
1034#[derive(Clone, Debug, Default)]
1035pub struct FrameLayout {
1036 /// Word size in bytes, so this struct can be
1037 /// monomorphic/independent of `ABIMachineSpec`.
1038 pub word_bytes: u32,
1039
1040 /// N.B. The areas whose sizes are given in this structure fully
1041 /// cover the current function's stack frame, from high to low
1042 /// stack addresses in the sequence below. Each size contains
1043 /// any alignment padding that may be required by the ABI.
1044
1045 /// Size of incoming arguments on the stack. This is not technically
1046 /// part of this function's frame, but code in the function will still
1047 /// need to access it. Depending on the ABI, we may need to set up a
1048 /// frame pointer to do so; we also may need to pop this area from the
1049 /// stack upon return.
1050 pub incoming_args_size: u32,
1051
1052 /// The size of the incoming argument area, taking into account any
1053 /// potential increase in size required for tail calls present in the
1054 /// function. In the case that no tail calls are present, this value
1055 /// will be the same as [`Self::incoming_args_size`].
1056 pub tail_args_size: u32,
1057
1058 /// Size of the "setup area", typically holding the return address
1059 /// and/or the saved frame pointer. This may be written either during
1060 /// the call itself (e.g. a pushed return address) or by code emitted
1061 /// from gen_prologue_frame_setup. In any case, after that code has
1062 /// completed execution, the stack pointer is expected to point to the
1063 /// bottom of this area. The same holds at the start of code emitted
1064 /// by gen_epilogue_frame_restore.
1065 pub setup_area_size: u32,
1066
1067 /// Size of the area used to save callee-saved clobbered registers.
1068 /// This area is accessed by code emitted from gen_clobber_save and
1069 /// gen_clobber_restore.
1070 pub clobber_size: u32,
1071
1072 /// Storage allocated for the fixed part of the stack frame.
1073 /// This contains stack slots and spill slots.
1074 pub fixed_frame_storage_size: u32,
1075
1076 /// The size of all stackslots.
1077 pub stackslots_size: u32,
1078
1079 /// Stack size to be reserved for outgoing arguments, if used by
1080 /// the current ABI, or 0 otherwise. After gen_clobber_save and
1081 /// before gen_clobber_restore, the stack pointer points to the
1082 /// bottom of this area.
1083 pub outgoing_args_size: u32,
1084
1085 /// Sorted list of callee-saved registers that are clobbered
1086 /// according to the ABI. These registers will be saved and
1087 /// restored by gen_clobber_save and gen_clobber_restore.
1088 pub clobbered_callee_saves: Vec<Writable<RealReg>>,
1089
1090 /// The function's call pattern classification.
1091 pub function_calls: FunctionCalls,
1092}
1093
1094impl FrameLayout {
1095 /// Split the clobbered callee-save registers into integer-class and
1096 /// float-class groups.
1097 ///
1098 /// This method does not currently support vector-class callee-save
1099 /// registers because no current backend has them.
1100 pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
1101 let (ints, floats) = self.clobbered_callee_saves.split_at(
1102 self.clobbered_callee_saves
1103 .partition_point(|r| r.to_reg().class() == RegClass::Int),
1104 );
1105 debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
1106 (ints, floats)
1107 }
1108
1109 /// The size of FP to SP while the frame is active (not during prologue
1110 /// setup or epilogue tear down).
1111 pub fn active_size(&self) -> u32 {
1112 self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1113 }
1114
1115 /// Get the offset from the SP to the sized stack slots area.
1116 pub fn sp_to_sized_stack_slots(&self) -> u32 {
1117 self.outgoing_args_size
1118 }
1119
1120 /// Get the offset of a spill slot from SP.
1121 pub fn spillslot_offset(&self, spillslot: SpillSlot) -> i64 {
1122 // Offset from beginning of spillslot area.
1123 let islot = spillslot.index() as i64;
1124 let spill_off = islot * self.word_bytes as i64;
1125 let sp_off = self.stackslots_size as i64 + spill_off;
1126
1127 sp_off
1128 }
1129
1130 /// Get the offset from SP up to FP.
1131 pub fn sp_to_fp(&self) -> u32 {
1132 self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1133 }
1134}
1135
1136/// ABI object for a function body.
1137pub struct Callee<M: ABIMachineSpec> {
1138 /// CLIF-level signature, possibly normalized.
1139 ir_sig: ir::Signature,
1140 /// Signature: arg and retval regs.
1141 sig: Sig,
1142 /// Defined dynamic types.
1143 dynamic_type_sizes: HashMap<Type, u32>,
1144 /// Offsets to each dynamic stackslot.
1145 dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
1146 /// Offsets to each sized stackslot.
1147 sized_stackslots: PrimaryMap<StackSlot, u32>,
1148 /// Descriptors for sized stackslots.
1149 sized_stackslot_keys: SecondaryMap<StackSlot, Option<StackSlotKey>>,
1150 /// Total stack size of all stackslots
1151 stackslots_size: u32,
1152 /// Stack size to be reserved for outgoing arguments.
1153 outgoing_args_size: u32,
1154 /// Initially the number of bytes originating in the callers frame where stack arguments will
1155 /// live. After lowering this number may be larger than the size expected by the function being
1156 /// compiled, as tail calls potentially require more space for stack arguments.
1157 tail_args_size: u32,
1158 /// Register-argument defs, to be provided to the `args`
1159 /// pseudo-inst, and pregs to constrain them to.
1160 reg_args: Vec<ArgPair>,
1161 /// Finalized frame layout for this function.
1162 frame_layout: Option<FrameLayout>,
1163 /// The register holding the return-area pointer, if needed.
1164 ret_area_ptr: Option<Reg>,
1165 /// Calling convention this function expects.
1166 call_conv: isa::CallConv,
1167 /// The settings controlling this function's compilation.
1168 flags: settings::Flags,
1169 /// The ISA-specific flag values controlling this function's compilation.
1170 isa_flags: M::F,
1171 /// If this function has a stack limit specified, then `Reg` is where the
1172 /// stack limit will be located after the instructions specified have been
1173 /// executed.
1174 ///
1175 /// Note that this is intended for insertion into the prologue, if
1176 /// present. Also note that because the instructions here execute in the
1177 /// prologue this happens after legalization/register allocation/etc so we
1178 /// need to be extremely careful with each instruction. The instructions are
1179 /// manually register-allocated and carefully only use caller-saved
1180 /// registers and keep nothing live after this sequence of instructions.
1181 stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
1182
1183 _mach: PhantomData<M>,
1184}
1185
1186fn get_special_purpose_param_register(
1187 f: &ir::Function,
1188 sigs: &SigSet,
1189 sig: Sig,
1190 purpose: ir::ArgumentPurpose,
1191) -> Option<Reg> {
1192 let idx = f.signature.special_param_index(purpose)?;
1193 match &sigs.args(sig)[idx] {
1194 &ABIArg::Slots { ref slots, .. } => match &slots[0] {
1195 &ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
1196 _ => None,
1197 },
1198 _ => None,
1199 }
1200}
1201
1202fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
1203 Some(val.checked_add(mask)? & !mask)
1204}
1205
1206impl<M: ABIMachineSpec> Callee<M> {
1207 /// Create a new body ABI instance.
1208 pub fn new(
1209 f: &ir::Function,
1210 isa: &dyn TargetIsa,
1211 isa_flags: &M::F,
1212 sigs: &SigSet,
1213 ) -> CodegenResult<Self> {
1214 trace!("ABI: func signature {:?}", f.signature);
1215
1216 let flags = isa.flags().clone();
1217 let sig = sigs.abi_sig_for_signature(&f.signature);
1218
1219 let call_conv = f.signature.call_conv;
1220 // Only these calling conventions are supported.
1221 debug_assert!(
1222 call_conv == isa::CallConv::SystemV
1223 || call_conv == isa::CallConv::Tail
1224 || call_conv == isa::CallConv::Fast
1225 || call_conv == isa::CallConv::WindowsFastcall
1226 || call_conv == isa::CallConv::AppleAarch64
1227 || call_conv == isa::CallConv::Winch
1228 || call_conv == isa::CallConv::PreserveAll,
1229 "Unsupported calling convention: {call_conv:?}"
1230 );
1231
1232 // Compute sized stackslot locations and total stackslot size.
1233 let mut end_offset: u32 = 0;
1234 let mut sized_stackslots = PrimaryMap::new();
1235 let mut sized_stackslot_keys = SecondaryMap::new();
1236
1237 for (stackslot, data) in f.sized_stack_slots.iter() {
1238 // We start our computation possibly unaligned where the previous
1239 // stackslot left off.
1240 let unaligned_start_offset = end_offset;
1241
1242 // The start of the stackslot must be aligned.
1243 //
1244 // We always at least machine-word-align slots, but also
1245 // satisfy the user's requested alignment.
1246 debug_assert!(data.align_shift < 32);
1247 let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
1248 let mask = align - 1;
1249 let start_offset = checked_round_up(unaligned_start_offset, mask)
1250 .ok_or(CodegenError::ImplLimitExceeded)?;
1251
1252 // The end offset is the start offset increased by the size
1253 end_offset = start_offset
1254 .checked_add(data.size)
1255 .ok_or(CodegenError::ImplLimitExceeded)?;
1256
1257 debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
1258 sized_stackslots.push(start_offset);
1259 sized_stackslot_keys[stackslot] = data.key;
1260 }
1261
1262 // Compute dynamic stackslot locations and total stackslot size.
1263 let mut dynamic_stackslots = PrimaryMap::new();
1264 for (stackslot, data) in f.dynamic_stack_slots.iter() {
1265 debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
1266
1267 // This computation is similar to the stackslots above
1268 let unaligned_start_offset = end_offset;
1269
1270 let mask = M::word_bytes() - 1;
1271 let start_offset = checked_round_up(unaligned_start_offset, mask)
1272 .ok_or(CodegenError::ImplLimitExceeded)?;
1273
1274 let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
1275 CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
1276 })?;
1277
1278 end_offset = start_offset
1279 .checked_add(isa.dynamic_vector_bytes(ty))
1280 .ok_or(CodegenError::ImplLimitExceeded)?;
1281
1282 dynamic_stackslots.push(start_offset);
1283 }
1284
1285 // The size of the stackslots needs to be word aligned
1286 let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
1287 .ok_or(CodegenError::ImplLimitExceeded)?;
1288
1289 let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
1290 for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
1291 let ty = f
1292 .get_concrete_dynamic_ty(dyn_ty)
1293 .unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
1294 let size = isa.dynamic_vector_bytes(ty);
1295 dynamic_type_sizes.insert(ty, size);
1296 }
1297
1298 // Figure out what instructions, if any, will be needed to check the
1299 // stack limit. This can either be specified as a special-purpose
1300 // argument or as a global value which often calculates the stack limit
1301 // from the arguments.
1302 let stack_limit = f
1303 .stack_limit
1304 .map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));
1305
1306 let tail_args_size = sigs[sig].sized_stack_arg_space;
1307
1308 Ok(Self {
1309 ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
1310 sig,
1311 dynamic_stackslots,
1312 dynamic_type_sizes,
1313 sized_stackslots,
1314 sized_stackslot_keys,
1315 stackslots_size,
1316 outgoing_args_size: 0,
1317 tail_args_size,
1318 reg_args: vec![],
1319 frame_layout: None,
1320 ret_area_ptr: None,
1321 call_conv,
1322 flags,
1323 isa_flags: isa_flags.clone(),
1324 stack_limit,
1325 _mach: PhantomData,
1326 })
1327 }
1328
1329 /// Inserts instructions necessary for checking the stack limit into the
1330 /// prologue.
1331 ///
1332 /// This function will generate instructions necessary for perform a stack
1333 /// check at the header of a function. The stack check is intended to trap
1334 /// if the stack pointer goes below a particular threshold, preventing stack
1335 /// overflow in wasm or other code. The `stack_limit` argument here is the
1336 /// register which holds the threshold below which we're supposed to trap.
1337 /// This function is known to allocate `stack_size` bytes and we'll push
1338 /// instructions onto `insts`.
1339 ///
1340 /// Note that the instructions generated here are special because this is
1341 /// happening so late in the pipeline (e.g. after register allocation). This
1342 /// means that we need to do manual register allocation here and also be
1343 /// careful to not clobber any callee-saved or argument registers. For now
1344 /// this routine makes do with the `spilltmp_reg` as one temporary
1345 /// register, and a second register of `tmp2` which is caller-saved. This
1346 /// should be fine for us since no spills should happen in this sequence of
1347 /// instructions, so our register won't get accidentally clobbered.
1348 ///
1349 /// No values can be live after the prologue, but in this case that's ok
1350 /// because we just need to perform a stack check before progressing with
1351 /// the rest of the function.
1352 fn insert_stack_check(
1353 &self,
1354 stack_limit: Reg,
1355 stack_size: u32,
1356 insts: &mut SmallInstVec<M::I>,
1357 ) {
1358 // With no explicit stack allocated we can just emit the simple check of
1359 // the stack registers against the stack limit register, and trap if
1360 // it's out of bounds.
1361 if stack_size == 0 {
1362 insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1363 return;
1364 }
1365
1366 // Note that the 32k stack size here is pretty special. See the
1367 // documentation in x86/abi.rs for why this is here. The general idea is
1368 // that we're protecting against overflow in the addition that happens
1369 // below.
1370 if stack_size >= 32 * 1024 {
1371 insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1372 }
1373
1374 // Add the `stack_size` to `stack_limit`, placing the result in
1375 // `scratch`.
1376 //
1377 // Note though that `stack_limit`'s register may be the same as
1378 // `scratch`. If our stack size doesn't fit into an immediate this
1379 // means we need a second scratch register for loading the stack size
1380 // into a register.
1381 let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
1382 insts.extend(M::gen_add_imm(
1383 self.call_conv,
1384 scratch,
1385 stack_limit,
1386 stack_size,
1387 ));
1388 insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
1389 }
1390}
1391
1392/// Generates the instructions necessary for the `gv` to be materialized into a
1393/// register.
1394///
1395/// This function will return a register that will contain the result of
1396/// evaluating `gv`. It will also return any instructions necessary to calculate
1397/// the value of the register.
1398///
1399/// Note that global values are typically lowered to instructions via the
1400/// standard legalization pass. Unfortunately though prologue generation happens
1401/// so late in the pipeline that we can't use these legalization passes to
1402/// generate the instructions for `gv`. As a result we duplicate some lowering
1403/// of `gv` here and support only some global values. This is similar to what
1404/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
1405/// in the future too!
1406///
1407/// Also note that this function will make use of `writable_spilltmp_reg()` as a
1408/// temporary register to store values in if necessary. Currently after we write
1409/// to this register there's guaranteed to be no spilled values between where
1410/// it's used, because we're not participating in register allocation anyway!
1411fn gen_stack_limit<M: ABIMachineSpec>(
1412 f: &ir::Function,
1413 sigs: &SigSet,
1414 sig: Sig,
1415 gv: ir::GlobalValue,
1416) -> (Reg, SmallInstVec<M::I>) {
1417 let mut insts = smallvec![];
1418 let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
1419 return (reg, insts);
1420}
1421
1422fn generate_gv<M: ABIMachineSpec>(
1423 f: &ir::Function,
1424 sigs: &SigSet,
1425 sig: Sig,
1426 gv: ir::GlobalValue,
1427 insts: &mut SmallInstVec<M::I>,
1428) -> Reg {
1429 match f.global_values[gv] {
1430 // Return the direct register the vmcontext is in
1431 ir::GlobalValueData::VMContext => {
1432 get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
1433 .expect("no vmcontext parameter found")
1434 }
1435 // Load our base value into a register, then load from that register
1436 // in to a temporary register.
1437 ir::GlobalValueData::Load {
1438 base,
1439 offset,
1440 global_type: _,
1441 flags: _,
1442 } => {
1443 let base = generate_gv::<M>(f, sigs, sig, base, insts);
1444 let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
1445 insts.push(M::gen_load_base_offset(
1446 into_reg,
1447 base,
1448 offset.into(),
1449 M::word_type(),
1450 ));
1451 return into_reg.to_reg();
1452 }
1453 ref other => panic!("global value for stack limit not supported: {other}"),
1454 }
1455}
1456
1457/// Returns true if the signature needs to be legalized.
1458fn missing_struct_return(sig: &ir::Signature) -> bool {
1459 sig.uses_special_param(ArgumentPurpose::StructReturn)
1460 && !sig.uses_special_return(ArgumentPurpose::StructReturn)
1461}
1462
1463fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
1464 // Keep in sync with Callee::new
1465 let mut sig = sig.clone();
1466 if sig.uses_special_return(ArgumentPurpose::StructReturn) {
1467 panic!("Explicit StructReturn return value not allowed: {sig:?}")
1468 }
1469 if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
1470 if !sig.returns.is_empty() {
1471 panic!("No return values are allowed when using StructReturn: {sig:?}");
1472 }
1473 sig.returns.insert(0, sig.params[struct_ret_index]);
1474 }
1475 sig
1476}
1477
1478/// ### Pre-Regalloc Functions
1479///
1480/// These methods of `Callee` may only be called before regalloc.
1481impl<M: ABIMachineSpec> Callee<M> {
1482 /// Access the (possibly legalized) signature.
1483 pub fn signature(&self) -> &ir::Signature {
1484 debug_assert!(
1485 !missing_struct_return(&self.ir_sig),
1486 "`Callee::ir_sig` is always legalized"
1487 );
1488 &self.ir_sig
1489 }
1490
1491 /// Initialize. This is called after the Callee is constructed because it
1492 /// may allocate a temp vreg, which can only be allocated once the lowering
1493 /// context exists.
1494 pub fn init_retval_area(
1495 &mut self,
1496 sigs: &SigSet,
1497 vregs: &mut VRegAllocator<M::I>,
1498 ) -> CodegenResult<()> {
1499 if sigs[self.sig].stack_ret_arg.is_some() {
1500 let ret_area_ptr = vregs.alloc(M::word_type())?;
1501 self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
1502 }
1503 Ok(())
1504 }
1505
1506 /// Get the return area pointer register, if any.
1507 pub fn ret_area_ptr(&self) -> Option<Reg> {
1508 self.ret_area_ptr
1509 }
1510
1511 /// Accumulate outgoing arguments.
1512 ///
1513 /// This ensures that at least `size` bytes are allocated in the prologue to
1514 /// be available for use in function calls to hold arguments and/or return
1515 /// values. If this function is called multiple times, the maximum of all
1516 /// `size` values will be available.
1517 pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
1518 if size > self.outgoing_args_size {
1519 self.outgoing_args_size = size;
1520 }
1521 }
1522
1523 /// Accumulate the incoming argument area size requirements for a tail call,
1524 /// as it could be larger than the incoming arguments of the function
1525 /// currently being compiled.
1526 pub fn accumulate_tail_args_size(&mut self, size: u32) {
1527 if size > self.tail_args_size {
1528 self.tail_args_size = size;
1529 }
1530 }
1531
1532 pub fn is_forward_edge_cfi_enabled(&self) -> bool {
1533 self.isa_flags.is_forward_edge_cfi_enabled()
1534 }
1535
1536 /// Get the calling convention implemented by this ABI object.
1537 pub fn call_conv(&self) -> isa::CallConv {
1538 self.call_conv
1539 }
1540
1541 /// Get the ABI-dependent MachineEnv for managing register allocation.
1542 pub fn machine_env(&self) -> &MachineEnv {
1543 M::get_machine_env(&self.flags, self.call_conv)
1544 }
1545
1546 /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
1547 pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
1548 &self.sized_stackslots
1549 }
1550
1551 /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
1552 pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
1553 &self.dynamic_stackslots
1554 }
1555
1556 /// Generate an instruction which copies an argument to a destination
1557 /// register.
1558 pub fn gen_copy_arg_to_regs(
1559 &mut self,
1560 sigs: &SigSet,
1561 idx: usize,
1562 into_regs: ValueRegs<Writable<Reg>>,
1563 vregs: &mut VRegAllocator<M::I>,
1564 ) -> SmallInstVec<M::I> {
1565 let mut insts = smallvec![];
1566 let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
1567 match slot {
1568 &ABIArgSlot::Reg { reg, .. } => {
1569 // Add a preg -> def pair to the eventual `args`
1570 // instruction. Extension mode doesn't matter
1571 // (we're copying out, not in; we ignore high bits
1572 // by convention).
1573 let arg = ArgPair {
1574 vreg: *into_reg,
1575 preg: reg.into(),
1576 };
1577 self.reg_args.push(arg);
1578 }
1579 &ABIArgSlot::Stack {
1580 offset,
1581 ty,
1582 extension,
1583 ..
1584 } => {
1585 // However, we have to respect the extension mode for stack
1586 // slots, or else we grab the wrong bytes on big-endian.
1587 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1588 let ty =
1589 if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
1590 M::word_type()
1591 } else {
1592 ty
1593 };
1594 insts.push(M::gen_load_stack(
1595 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1596 *into_reg,
1597 ty,
1598 ));
1599 }
1600 }
1601 };
1602
1603 match &sigs.args(self.sig)[idx] {
1604 &ABIArg::Slots { ref slots, .. } => {
1605 assert_eq!(into_regs.len(), slots.len());
1606 for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
1607 copy_arg_slot_to_reg(&slot, &into_reg);
1608 }
1609 }
1610 &ABIArg::StructArg { offset, .. } => {
1611 let into_reg = into_regs.only_reg().unwrap();
1612 // Buffer address is implicitly defined by the ABI.
1613 insts.push(M::gen_get_stack_addr(
1614 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1615 into_reg,
1616 ));
1617 }
1618 &ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
1619 let into_reg = into_regs.only_reg().unwrap();
1620 // We need to dereference the pointer.
1621 let base = match &pointer {
1622 &ABIArgSlot::Reg { reg, ty, .. } => {
1623 let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
1624 self.reg_args.push(ArgPair {
1625 vreg: Writable::from_reg(tmp),
1626 preg: reg.into(),
1627 });
1628 tmp
1629 }
1630 &ABIArgSlot::Stack { offset, ty, .. } => {
1631 let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
1632 .only_reg()
1633 .unwrap();
1634 insts.push(M::gen_load_stack(
1635 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1636 addr_reg,
1637 ty,
1638 ));
1639 addr_reg.to_reg()
1640 }
1641 };
1642 insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
1643 }
1644 }
1645 insts
1646 }
1647
1648 /// Generate an instruction which copies a source register to a return value slot.
1649 pub fn gen_copy_regs_to_retval(
1650 &self,
1651 sigs: &SigSet,
1652 idx: usize,
1653 from_regs: ValueRegs<Reg>,
1654 vregs: &mut VRegAllocator<M::I>,
1655 ) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
1656 let mut reg_pairs = smallvec![];
1657 let mut ret = smallvec![];
1658 let word_bits = M::word_bits() as u8;
1659 match &sigs.rets(self.sig)[idx] {
1660 &ABIArg::Slots { ref slots, .. } => {
1661 assert_eq!(from_regs.len(), slots.len());
1662 for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1663 match slot {
1664 &ABIArgSlot::Reg {
1665 reg, ty, extension, ..
1666 } => {
1667 let from_bits = ty_bits(ty) as u8;
1668 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1669 let vreg = match (ext, from_bits) {
1670 (ir::ArgumentExtension::Uext, n)
1671 | (ir::ArgumentExtension::Sext, n)
1672 if n < word_bits =>
1673 {
1674 let signed = ext == ir::ArgumentExtension::Sext;
1675 let dst =
1676 writable_value_regs(vregs.alloc_with_deferred_error(ty))
1677 .only_reg()
1678 .unwrap();
1679 ret.push(M::gen_extend(
1680 dst, from_reg, signed, from_bits,
1681 /* to_bits = */ word_bits,
1682 ));
1683 dst.to_reg()
1684 }
1685 _ => {
1686 // No move needed, regalloc2 will emit it using the constraint
1687 // added by the RetPair.
1688 from_reg
1689 }
1690 };
1691 reg_pairs.push(RetPair {
1692 vreg,
1693 preg: Reg::from(reg),
1694 });
1695 }
1696 &ABIArgSlot::Stack {
1697 offset,
1698 ty,
1699 extension,
1700 ..
1701 } => {
1702 let mut ty = ty;
1703 let from_bits = ty_bits(ty) as u8;
1704 // A machine ABI implementation should ensure that stack frames
1705 // have "reasonable" size. All current ABIs for machinst
1706 // backends (aarch64 and x64) enforce a 128MB limit.
1707 let off = i32::try_from(offset).expect(
1708 "Argument stack offset greater than 2GB; should hit impl limit first",
1709 );
1710 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1711 // Trash the from_reg; it should be its last use.
1712 match (ext, from_bits) {
1713 (ir::ArgumentExtension::Uext, n)
1714 | (ir::ArgumentExtension::Sext, n)
1715 if n < word_bits =>
1716 {
1717 assert_eq!(M::word_reg_class(), from_reg.class());
1718 let signed = ext == ir::ArgumentExtension::Sext;
1719 let dst =
1720 writable_value_regs(vregs.alloc_with_deferred_error(ty))
1721 .only_reg()
1722 .unwrap();
1723 ret.push(M::gen_extend(
1724 dst, from_reg, signed, from_bits,
1725 /* to_bits = */ word_bits,
1726 ));
1727 // Store the extended version.
1728 ty = M::word_type();
1729 }
1730 _ => {}
1731 };
1732 ret.push(M::gen_store_base_offset(
1733 self.ret_area_ptr.unwrap(),
1734 off,
1735 from_reg,
1736 ty,
1737 ));
1738 }
1739 }
1740 }
1741 }
1742 ABIArg::StructArg { .. } => {
1743 panic!("StructArg in return position is unsupported");
1744 }
1745 ABIArg::ImplicitPtrArg { .. } => {
1746 panic!("ImplicitPtrArg in return position is unsupported");
1747 }
1748 }
1749 (reg_pairs, ret)
1750 }
1751
1752 /// Generate any setup instruction needed to save values to the
1753 /// return-value area. This is usually used when were are multiple return
1754 /// values or an otherwise large return value that must be passed on the
1755 /// stack; typically the ABI specifies an extra hidden argument that is a
1756 /// pointer to that memory.
1757 pub fn gen_retval_area_setup(
1758 &mut self,
1759 sigs: &SigSet,
1760 vregs: &mut VRegAllocator<M::I>,
1761 ) -> Option<M::I> {
1762 if let Some(i) = sigs[self.sig].stack_ret_arg {
1763 let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
1764 let insts =
1765 self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
1766 insts.into_iter().next().map(|inst| {
1767 trace!(
1768 "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
1769 inst,
1770 ret_area_ptr.to_reg()
1771 );
1772 inst
1773 })
1774 } else {
1775 trace!("gen_retval_area_setup: not needed");
1776 None
1777 }
1778 }
1779
1780 /// Generate a return instruction.
1781 pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
1782 M::gen_rets(rets)
1783 }
1784
1785 /// Set up arguments values `args` for a call with signature `sig`.
1786 /// This will return a series of instructions to be emitted to set
1787 /// up all arguments, as well as a `CallArgList` list representing
1788 /// the arguments passed in registers. The latter need to be added
1789 /// as constraints to the actual call instruction.
1790 pub fn gen_call_args(
1791 &self,
1792 sigs: &SigSet,
1793 sig: Sig,
1794 args: &[ValueRegs<Reg>],
1795 is_tail_call: bool,
1796 flags: &settings::Flags,
1797 vregs: &mut VRegAllocator<M::I>,
1798 ) -> (CallArgList, SmallInstVec<M::I>) {
1799 let mut uses: CallArgList = smallvec![];
1800 let mut insts = smallvec![];
1801
1802 assert_eq!(args.len(), sigs.num_args(sig));
1803
1804 let call_conv = sigs[sig].call_conv;
1805 let stack_arg_space = sigs[sig].sized_stack_arg_space;
1806 let stack_arg = |offset| {
1807 if is_tail_call {
1808 StackAMode::IncomingArg(offset, stack_arg_space)
1809 } else {
1810 StackAMode::OutgoingArg(offset)
1811 }
1812 };
1813
1814 let word_ty = M::word_type();
1815 let word_rc = M::word_reg_class();
1816 let word_bits = M::word_bits() as usize;
1817
1818 if is_tail_call {
1819 debug_assert_eq!(
1820 self.call_conv,
1821 isa::CallConv::Tail,
1822 "Can only do `return_call`s from within a `tail` calling convention function"
1823 );
1824 }
1825
1826 // Helper to process a single argument slot (register or stack slot).
1827 // This will either add the register to the `uses` list or write the
1828 // value to the stack slot in the outgoing argument area (or for tail
1829 // calls, the incoming argument area).
1830 let mut process_arg_slot = |insts: &mut SmallInstVec<M::I>, slot, vreg, ty| {
1831 match &slot {
1832 &ABIArgSlot::Reg { reg, .. } => {
1833 uses.push(CallArgPair {
1834 vreg,
1835 preg: reg.into(),
1836 });
1837 }
1838 &ABIArgSlot::Stack { offset, .. } => {
1839 insts.push(M::gen_store_stack(stack_arg(offset), vreg, ty));
1840 }
1841 };
1842 };
1843
1844 // First pass: Handle `StructArg` arguments. These need to be copied
1845 // into their associated stack buffers. This should happen before any
1846 // of the other arguments are processed, as the `memcpy` call might
1847 // clobber registers used by other arguments.
1848 for (idx, from_regs) in args.iter().enumerate() {
1849 match &sigs.args(sig)[idx] {
1850 &ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
1851 &ABIArg::StructArg { offset, size, .. } => {
1852 let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1853 insts.push(M::gen_get_stack_addr(
1854 stack_arg(offset),
1855 Writable::from_reg(tmp),
1856 ));
1857 insts.extend(M::gen_memcpy(
1858 isa::CallConv::for_libcall(flags, call_conv),
1859 tmp,
1860 from_regs.only_reg().unwrap(),
1861 size as usize,
1862 |ty| {
1863 Writable::from_reg(
1864 vregs.alloc_with_deferred_error(ty).only_reg().unwrap(),
1865 )
1866 },
1867 ));
1868 }
1869 }
1870 }
1871
1872 // Second pass: Handle everything except `StructArg` arguments.
1873 for (idx, from_regs) in args.iter().enumerate() {
1874 match sigs.args(sig)[idx] {
1875 ABIArg::Slots { ref slots, .. } => {
1876 assert_eq!(from_regs.len(), slots.len());
1877 for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1878 // Load argument slot value from `from_reg`, and perform any zero-
1879 // or sign-extension that is required by the ABI.
1880 let (ty, extension) = match *slot {
1881 ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1882 ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
1883 };
1884 let ext = M::get_ext_mode(call_conv, extension);
1885 let (vreg, ty) = if ext != ir::ArgumentExtension::None
1886 && ty_bits(ty) < word_bits
1887 {
1888 assert_eq!(word_rc, from_reg.class());
1889 let signed = match ext {
1890 ir::ArgumentExtension::Uext => false,
1891 ir::ArgumentExtension::Sext => true,
1892 _ => unreachable!(),
1893 };
1894 let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1895 insts.push(M::gen_extend(
1896 Writable::from_reg(tmp),
1897 *from_reg,
1898 signed,
1899 ty_bits(ty) as u8,
1900 word_bits as u8,
1901 ));
1902 (tmp, word_ty)
1903 } else {
1904 (*from_reg, ty)
1905 };
1906 process_arg_slot(&mut insts, *slot, vreg, ty);
1907 }
1908 }
1909 ABIArg::ImplicitPtrArg {
1910 offset,
1911 pointer,
1912 ty,
1913 ..
1914 } => {
1915 let vreg = from_regs.only_reg().unwrap();
1916 let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1917 insts.push(M::gen_get_stack_addr(
1918 stack_arg(offset),
1919 Writable::from_reg(tmp),
1920 ));
1921 insts.push(M::gen_store_base_offset(tmp, 0, vreg, ty));
1922 process_arg_slot(&mut insts, pointer, tmp, word_ty);
1923 }
1924 ABIArg::StructArg { .. } => {}
1925 }
1926 }
1927
1928 // Finally, set the stack-return pointer to the return argument area.
1929 // For tail calls, this means forwarding the incoming stack-return pointer.
1930 if let Some(ret_arg) = sigs.get_ret_arg(sig) {
1931 let ret_area = if is_tail_call {
1932 self.ret_area_ptr.expect(
1933 "if the tail callee has a return pointer, then the tail caller must as well",
1934 )
1935 } else {
1936 let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1937 let amode = StackAMode::OutgoingArg(stack_arg_space.into());
1938 insts.push(M::gen_get_stack_addr(amode, Writable::from_reg(tmp)));
1939 tmp
1940 };
1941 match ret_arg {
1942 // The return pointer must occupy a single slot.
1943 ABIArg::Slots { slots, .. } => {
1944 assert_eq!(slots.len(), 1);
1945 process_arg_slot(&mut insts, slots[0], ret_area, word_ty);
1946 }
1947 _ => unreachable!(),
1948 }
1949 }
1950
1951 (uses, insts)
1952 }
1953
1954 /// Set up return values `outputs` for a call with signature `sig`.
1955 /// This does not emit (or return) any instructions, but returns a
1956 /// `CallRetList` representing the return value constraints. This
1957 /// needs to be added to the actual call instruction.
1958 ///
1959 /// If `try_call_payloads` is non-zero, it is expected to hold
1960 /// exception payload registers for try_call instructions. These
1961 /// will be added as needed to the `CallRetList` as well.
1962 pub fn gen_call_rets(
1963 &self,
1964 sigs: &SigSet,
1965 sig: Sig,
1966 outputs: &[ValueRegs<Reg>],
1967 try_call_payloads: Option<&[Writable<Reg>]>,
1968 vregs: &mut VRegAllocator<M::I>,
1969 ) -> CallRetList {
1970 let callee_conv = sigs[sig].call_conv;
1971 let stack_arg_space = sigs[sig].sized_stack_arg_space;
1972
1973 let word_ty = M::word_type();
1974 let word_bits = M::word_bits() as usize;
1975
1976 let mut defs: CallRetList = smallvec![];
1977 let mut outputs = outputs.into_iter();
1978 let num_rets = sigs.num_rets(sig);
1979 for idx in 0..num_rets {
1980 let ret = sigs.rets(sig)[idx].clone();
1981 match ret {
1982 ABIArg::Slots {
1983 ref slots, purpose, ..
1984 } => {
1985 // We do not use the returned copy of the return buffer pointer,
1986 // so skip any StructReturn returns that may be present.
1987 if purpose == ArgumentPurpose::StructReturn {
1988 continue;
1989 }
1990 let retval_regs = outputs.next().unwrap();
1991 assert_eq!(retval_regs.len(), slots.len());
1992 for (slot, retval_reg) in slots.iter().zip(retval_regs.regs().iter()) {
1993 // We do not perform any extension because we're copying out, not in,
1994 // and we ignore high bits in our own registers by convention. However,
1995 // we still need to use the proper extended type to access stack slots
1996 // (this is critical on big-endian systems).
1997 let (ty, extension) = match *slot {
1998 ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1999 ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
2000 };
2001 let ext = M::get_ext_mode(callee_conv, extension);
2002 let ty = if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
2003 word_ty
2004 } else {
2005 ty
2006 };
2007
2008 match slot {
2009 &ABIArgSlot::Reg { reg, .. } => {
2010 defs.push(CallRetPair {
2011 vreg: Writable::from_reg(*retval_reg),
2012 location: RetLocation::Reg(reg.into(), ty),
2013 });
2014 }
2015 &ABIArgSlot::Stack { offset, .. } => {
2016 let amode =
2017 StackAMode::OutgoingArg(offset + i64::from(stack_arg_space));
2018 defs.push(CallRetPair {
2019 vreg: Writable::from_reg(*retval_reg),
2020 location: RetLocation::Stack(amode, ty),
2021 });
2022 }
2023 }
2024 }
2025 }
2026 ABIArg::StructArg { .. } => {
2027 panic!("StructArg not supported in return position");
2028 }
2029 ABIArg::ImplicitPtrArg { .. } => {
2030 panic!("ImplicitPtrArg not supported in return position");
2031 }
2032 }
2033 }
2034 assert!(outputs.next().is_none());
2035
2036 if let Some(try_call_payloads) = try_call_payloads {
2037 // Let `M` say where the payload values are going to end up and then
2038 // double-check it's the same size as the calling convention's
2039 // reported number of exception types.
2040 let pregs = M::exception_payload_regs(callee_conv);
2041 assert_eq!(
2042 callee_conv.exception_payload_types(M::word_type()).len(),
2043 pregs.len()
2044 );
2045
2046 // We need to update `defs` to contain the exception
2047 // payload regs as well. We have two sources of info that
2048 // we join:
2049 //
2050 // - The machine-specific ABI implementation `M`, which
2051 // tells us the particular registers that payload values
2052 // must be in
2053 // - The passed-in lowering context, which gives us the
2054 // vregs we must define.
2055 //
2056 // Note that payload values may need to end up in the same
2057 // physical registers as ordinary return values; this is
2058 // not a conflict, because we either get one or the
2059 // other. For regalloc's purposes, we define both starting
2060 // here at the callsite, but we can share one def in the
2061 // `defs` list and alias one vreg to another. Thus we
2062 // handle the two cases below for each payload register:
2063 // overlaps a return value (and we alias to it) or not
2064 // (and we add a def).
2065 for (i, &preg) in pregs.iter().enumerate() {
2066 let vreg = try_call_payloads[i];
2067 if let Some(existing) = defs.iter().find(|def| match def.location {
2068 RetLocation::Reg(r, _) => r == preg,
2069 _ => false,
2070 }) {
2071 vregs.set_vreg_alias(vreg.to_reg(), existing.vreg.to_reg());
2072 } else {
2073 defs.push(CallRetPair {
2074 vreg,
2075 location: RetLocation::Reg(preg, word_ty),
2076 });
2077 }
2078 }
2079 }
2080
2081 defs
2082 }
2083
2084 /// Populate a `CallInfo` for a call with signature `sig`.
2085 ///
2086 /// `dest` is the target-specific call destination value
2087 /// `uses` is the `CallArgList` describing argument constraints
2088 /// `defs` is the `CallRetList` describing return constraints
2089 /// `try_call_info` describes exception targets for try_call instructions
2090 /// `patchable` describes whether this callsite should emit metadata
2091 /// for patching to enable/disable it.
2092 ///
2093 /// The clobber list is computed here from the above data.
2094 pub fn gen_call_info<T>(
2095 &self,
2096 sigs: &SigSet,
2097 sig: Sig,
2098 dest: T,
2099 uses: CallArgList,
2100 defs: CallRetList,
2101 try_call_info: Option<TryCallInfo>,
2102 patchable: bool,
2103 ) -> CallInfo<T> {
2104 let caller_conv = self.call_conv;
2105 let callee_conv = sigs[sig].call_conv;
2106 let stack_arg_space = sigs[sig].sized_stack_arg_space;
2107
2108 let clobbers = {
2109 // Get clobbers: all caller-saves. These may include return value
2110 // regs, which we will remove from the clobber set below.
2111 let mut clobbers =
2112 <M>::get_regs_clobbered_by_call(callee_conv, try_call_info.is_some());
2113
2114 // Remove retval regs from clobbers.
2115 for def in &defs {
2116 if let RetLocation::Reg(preg, _) = def.location {
2117 clobbers.remove(PReg::from(preg.to_real_reg().unwrap()));
2118 }
2119 }
2120
2121 clobbers
2122 };
2123
2124 // Any adjustment to SP to account for required outgoing arguments/stack return values must
2125 // be done inside of the call pseudo-op, to ensure that SP is always in a consistent
2126 // state for all other instructions. For example, if a tail-call abi function is called
2127 // here, the reclamation of the outgoing argument area must be done inside of the call
2128 // pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
2129 // function. (Except the prologue and epilogue, but those are fairly special parts of the
2130 // function that establish the SP invariants that are relied on elsewhere and are generated
2131 // after the register allocator has run and thus cannot have register allocator-inserted
2132 // references to SP offsets.)
2133
2134 let callee_pop_size = if callee_conv == isa::CallConv::Tail {
2135 // The tail calling convention has callees pop stack arguments.
2136 stack_arg_space
2137 } else {
2138 0
2139 };
2140
2141 CallInfo {
2142 dest,
2143 uses,
2144 defs,
2145 clobbers,
2146 callee_conv,
2147 caller_conv,
2148 callee_pop_size,
2149 try_call_info,
2150 patchable,
2151 }
2152 }
2153
2154 /// Get the raw offset of a sized stackslot in the slot region.
2155 pub fn sized_stackslot_offset(&self, slot: StackSlot) -> u32 {
2156 self.sized_stackslots[slot]
2157 }
2158
2159 /// Produce an instruction that computes a sized stackslot address.
2160 pub fn sized_stackslot_addr(
2161 &self,
2162 slot: StackSlot,
2163 offset: u32,
2164 into_reg: Writable<Reg>,
2165 ) -> M::I {
2166 // Offset from beginning of stackslot area.
2167 let stack_off = self.sized_stackslots[slot] as i64;
2168 let sp_off: i64 = stack_off + (offset as i64);
2169 M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
2170 }
2171
2172 /// Produce an instruction that computes a dynamic stackslot address.
2173 pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
2174 let stack_off = self.dynamic_stackslots[slot] as i64;
2175 M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
2176 }
2177
2178 /// Get an `args` pseudo-inst, if any, that should appear at the
2179 /// very top of the function body prior to regalloc.
2180 pub fn take_args(&mut self) -> Option<M::I> {
2181 if self.reg_args.len() > 0 {
2182 // Very first instruction is an `args` pseudo-inst that
2183 // establishes live-ranges for in-register arguments and
2184 // constrains them at the start of the function to the
2185 // locations defined by the ABI.
2186 Some(M::gen_args(std::mem::take(&mut self.reg_args)))
2187 } else {
2188 None
2189 }
2190 }
2191}
2192
2193/// ### Post-Regalloc Functions
2194///
2195/// These methods of `Callee` may only be called after
2196/// regalloc.
2197impl<M: ABIMachineSpec> Callee<M> {
2198 /// Compute the final frame layout, post-regalloc.
2199 ///
2200 /// This must be called before gen_prologue or gen_epilogue.
2201 pub fn compute_frame_layout(
2202 &mut self,
2203 sigs: &SigSet,
2204 spillslots: usize,
2205 clobbered: Vec<Writable<RealReg>>,
2206 function_calls: FunctionCalls,
2207 ) {
2208 let bytes = M::word_bytes();
2209 let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
2210 let mask = M::stack_align(self.call_conv) - 1;
2211 let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
2212 self.frame_layout = Some(M::compute_frame_layout(
2213 self.call_conv,
2214 &self.flags,
2215 self.signature(),
2216 &clobbered,
2217 function_calls,
2218 self.stack_args_size(sigs),
2219 self.tail_args_size,
2220 self.stackslots_size,
2221 total_stacksize,
2222 self.outgoing_args_size,
2223 ));
2224 }
2225
2226 /// Generate a prologue, post-regalloc.
2227 ///
2228 /// This should include any stack frame or other setup necessary to use the
2229 /// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
2230 pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
2231 let frame_layout = self.frame_layout();
2232 let mut insts = smallvec![];
2233
2234 // Set up frame.
2235 insts.extend(M::gen_prologue_frame_setup(
2236 self.call_conv,
2237 &self.flags,
2238 &self.isa_flags,
2239 &frame_layout,
2240 ));
2241
2242 // The stack limit check needs to cover all the stack adjustments we
2243 // might make, up to the next stack limit check in any function we
2244 // call. Since this happens after frame setup, the current function's
2245 // setup area needs to be accounted for in the caller's stack limit
2246 // check, but we need to account for any setup area that our callees
2247 // might need. Note that s390x may also use the outgoing args area for
2248 // backtrace support even in leaf functions, so that should be accounted
2249 // for unconditionally.
2250 let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
2251 + frame_layout.clobber_size
2252 + frame_layout.fixed_frame_storage_size
2253 + frame_layout.outgoing_args_size
2254 + if frame_layout.function_calls == FunctionCalls::None {
2255 0
2256 } else {
2257 frame_layout.setup_area_size
2258 };
2259
2260 // Leaf functions with zero stack don't need a stack check if one's
2261 // specified, otherwise always insert the stack check.
2262 if total_stacksize > 0 || frame_layout.function_calls != FunctionCalls::None {
2263 if let Some((reg, stack_limit_load)) = &self.stack_limit {
2264 insts.extend(stack_limit_load.clone());
2265 self.insert_stack_check(*reg, total_stacksize, &mut insts);
2266 }
2267
2268 if self.flags.enable_probestack() {
2269 let guard_size = 1 << self.flags.probestack_size_log2();
2270 match self.flags.probestack_strategy() {
2271 ProbestackStrategy::Inline => M::gen_inline_probestack(
2272 &mut insts,
2273 self.call_conv,
2274 total_stacksize,
2275 guard_size,
2276 ),
2277 ProbestackStrategy::Outline => {
2278 if total_stacksize >= guard_size {
2279 M::gen_probestack(&mut insts, total_stacksize);
2280 }
2281 }
2282 }
2283 }
2284 }
2285
2286 // Save clobbered registers.
2287 insts.extend(M::gen_clobber_save(
2288 self.call_conv,
2289 &self.flags,
2290 &frame_layout,
2291 ));
2292
2293 insts
2294 }
2295
2296 /// Generate an epilogue, post-regalloc.
2297 ///
2298 /// Note that this must generate the actual return instruction (rather than
2299 /// emitting this in the lowering logic), because the epilogue code comes
2300 /// before the return and the two are likely closely related.
2301 pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
2302 let frame_layout = self.frame_layout();
2303 let mut insts = smallvec![];
2304
2305 // Restore clobbered registers.
2306 insts.extend(M::gen_clobber_restore(
2307 self.call_conv,
2308 &self.flags,
2309 &frame_layout,
2310 ));
2311
2312 // Tear down frame.
2313 insts.extend(M::gen_epilogue_frame_restore(
2314 self.call_conv,
2315 &self.flags,
2316 &self.isa_flags,
2317 &frame_layout,
2318 ));
2319
2320 // And return.
2321 insts.extend(M::gen_return(
2322 self.call_conv,
2323 &self.isa_flags,
2324 &frame_layout,
2325 ));
2326
2327 trace!("Epilogue: {:?}", insts);
2328 insts
2329 }
2330
2331 /// Return a reference to the computed frame layout information. This
2332 /// function will panic if it's called before [`Self::compute_frame_layout`].
2333 pub fn frame_layout(&self) -> &FrameLayout {
2334 self.frame_layout
2335 .as_ref()
2336 .expect("frame layout not computed before prologue generation")
2337 }
2338
2339 /// Returns the offset from SP to FP for the given function, after
2340 /// the prologue has set up the frame. This comprises the spill
2341 /// slots and stack-storage slots as well as storage for clobbered
2342 /// callee-save registers and outgoing arguments at callsites
2343 /// (space for which is reserved during frame setup).
2344 pub fn sp_to_fp_offset(&self) -> u32 {
2345 let frame_layout = self.frame_layout();
2346 frame_layout.clobber_size
2347 + frame_layout.fixed_frame_storage_size
2348 + frame_layout.outgoing_args_size
2349 }
2350
2351 /// Returns offset from the slot base in the current frame to the caller's SP.
2352 pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
2353 // Note: this looks very similar to `frame_size()` above, but
2354 // it differs in both endpoints: it measures from the bottom
2355 // of stackslots, excluding outgoing args; and it includes the
2356 // setup area (FP/LR) size and any extra tail-args space.
2357 let frame_layout = self.frame_layout();
2358 frame_layout.clobber_size
2359 + frame_layout.fixed_frame_storage_size
2360 + frame_layout.setup_area_size
2361 + (frame_layout.tail_args_size - frame_layout.incoming_args_size)
2362 }
2363
2364 /// Returns the size of arguments expected on the stack.
2365 pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
2366 sigs[self.sig].sized_stack_arg_space
2367 }
2368
2369 /// Get the spill-slot size.
2370 pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
2371 let max = if self.dynamic_type_sizes.len() == 0 {
2372 16
2373 } else {
2374 *self
2375 .dynamic_type_sizes
2376 .iter()
2377 .max_by(|x, y| x.1.cmp(&y.1))
2378 .map(|(_k, v)| v)
2379 .unwrap()
2380 };
2381 M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
2382 }
2383
2384 /// Get the spill slot offset relative to the fixed allocation area start.
2385 pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
2386 self.frame_layout().spillslot_offset(slot)
2387 }
2388
2389 /// Generate a spill.
2390 pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
2391 let ty = M::I::canonical_type_for_rc(from_reg.class());
2392 debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2393
2394 let sp_off = self.get_spillslot_offset(to_slot);
2395 trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");
2396
2397 let from = StackAMode::Slot(sp_off);
2398 <M>::gen_store_stack(from, Reg::from(from_reg), ty)
2399 }
2400
2401 /// Generate a reload (fill).
2402 pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
2403 let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
2404 debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2405
2406 let sp_off = self.get_spillslot_offset(from_slot);
2407 trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");
2408
2409 let from = StackAMode::Slot(sp_off);
2410 <M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
2411 }
2412
2413 /// Provide metadata to be emitted alongside machine code.
2414 ///
2415 /// This metadata describes the frame layout sufficiently to find
2416 /// stack slots, so that runtimes and unwinders can observe state
2417 /// set up by compiled code in stackslots allocated for that
2418 /// purpose.
2419 pub fn frame_slot_metadata(&self) -> MachBufferFrameLayout {
2420 let frame_to_fp_offset = self.sp_to_fp_offset();
2421 let mut stackslots = SecondaryMap::with_capacity(self.sized_stackslots.len());
2422 let storage_area_base = self.frame_layout().outgoing_args_size;
2423 for (slot, storage_area_offset) in &self.sized_stackslots {
2424 stackslots[slot] = MachBufferStackSlot {
2425 offset: storage_area_base.checked_add(*storage_area_offset).unwrap(),
2426 key: self.sized_stackslot_keys[slot],
2427 };
2428 }
2429 MachBufferFrameLayout {
2430 frame_to_fp_offset,
2431 stackslots,
2432 }
2433 }
2434}
2435
2436/// An input argument to a call instruction: the vreg that is used,
2437/// and the preg it is constrained to (per the ABI).
2438#[derive(Clone, Debug)]
2439pub struct CallArgPair {
2440 /// The virtual register to use for the argument.
2441 pub vreg: Reg,
2442 /// The real register into which the arg goes.
2443 pub preg: Reg,
2444}
2445
2446/// An output return value from a call instruction: the vreg that is
2447/// defined, and the preg or stack location it is constrained to (per
2448/// the ABI).
2449#[derive(Clone, Debug)]
2450pub struct CallRetPair {
2451 /// The virtual register to define from this return value.
2452 pub vreg: Writable<Reg>,
2453 /// The real register from which the return value is read.
2454 pub location: RetLocation,
2455}
2456
2457/// A location to load a return-value from after a call completes.
2458#[derive(Clone, Debug, PartialEq, Eq)]
2459pub enum RetLocation {
2460 /// A physical register.
2461 Reg(Reg, Type),
2462 /// A stack location, identified by a `StackAMode`.
2463 Stack(StackAMode, Type),
2464}
2465
2466pub type CallArgList = SmallVec<[CallArgPair; 8]>;
2467pub type CallRetList = SmallVec<[CallRetPair; 8]>;
2468
2469impl<T> CallInfo<T> {
2470 /// Emit loads for any stack-carried return values using the call
2471 /// info and allocations.
2472 pub fn emit_retval_loads<
2473 M: ABIMachineSpec,
2474 EmitFn: FnMut(M::I),
2475 IslandFn: Fn(u32) -> Option<M::I>,
2476 >(
2477 &self,
2478 stackslots_size: u32,
2479 mut emit: EmitFn,
2480 emit_island: IslandFn,
2481 ) {
2482 // Count stack-ret locations and emit an island to account for
2483 // this space usage.
2484 let mut space_needed = 0;
2485 for CallRetPair { location, .. } in &self.defs {
2486 if let RetLocation::Stack(..) = location {
2487 // Assume up to ten instructions, semi-arbitrarily:
2488 // load from stack, store to spillslot, codegen of
2489 // large offsets on RISC ISAs.
2490 space_needed += 10 * M::I::worst_case_size();
2491 }
2492 }
2493 if space_needed > 0 {
2494 if let Some(island_inst) = emit_island(space_needed) {
2495 emit(island_inst);
2496 }
2497 }
2498
2499 let temp = M::retval_temp_reg(self.callee_conv);
2500 // The temporary must be noted as clobbered unless there are
2501 // no returns (hence it isn't needed). The latter can only be
2502 // the case statically for an ABI when the ABI doesn't allow
2503 // any returns at all (e.g., patchable-call ABI).
2504 debug_assert!(
2505 self.defs.is_empty()
2506 || M::get_regs_clobbered_by_call(self.callee_conv, self.try_call_info.is_some())
2507 .contains(PReg::from(temp.to_reg().to_real_reg().unwrap()))
2508 );
2509
2510 for CallRetPair { vreg, location } in &self.defs {
2511 match location {
2512 RetLocation::Reg(preg, ..) => {
2513 // The temporary must not also be an actual return
2514 // value register.
2515 debug_assert!(*preg != temp.to_reg());
2516 }
2517 RetLocation::Stack(amode, ty) => {
2518 if let Some(spillslot) = vreg.to_reg().to_spillslot() {
2519 // `temp` is an integer register of machine word
2520 // width, but `ty` may be floating-point/vector,
2521 // which (i) may not be loadable directly into an
2522 // int reg, and (ii) may be wider than a machine
2523 // word. For simplicity, and because there are not
2524 // always easy choices for volatile float/vec regs
2525 // (see e.g. x86-64, where fastcall clobbers only
2526 // xmm0-xmm5, but tail uses xmm0-xmm7 for
2527 // returns), we use the integer temp register in
2528 // steps.
2529 let parts = (ty.bytes() + M::word_bytes() - 1) / M::word_bytes();
2530 let one_part_load_ty =
2531 Type::int_with_byte_size(M::word_bytes().min(ty.bytes()) as u16)
2532 .unwrap();
2533 for part in 0..parts {
2534 emit(M::gen_load_stack(
2535 amode.offset_by(part * M::word_bytes()),
2536 temp,
2537 one_part_load_ty,
2538 ));
2539 emit(M::gen_store_stack(
2540 StackAMode::Slot(
2541 i64::from(stackslots_size)
2542 + i64::from(M::word_bytes())
2543 * ((spillslot.index() as i64) + (part as i64)),
2544 ),
2545 temp.to_reg(),
2546 M::word_type(),
2547 ));
2548 }
2549 } else {
2550 assert_ne!(*vreg, temp);
2551 emit(M::gen_load_stack(*amode, *vreg, *ty));
2552 }
2553 }
2554 }
2555 }
2556 }
2557}
2558
2559impl TryCallInfo {
2560 pub(crate) fn exception_handlers(
2561 &self,
2562 layout: &FrameLayout,
2563 ) -> impl Iterator<Item = MachExceptionHandler> {
2564 self.exception_handlers.iter().map(|handler| match handler {
2565 TryCallHandler::Tag(tag, label) => MachExceptionHandler::Tag(*tag, *label),
2566 TryCallHandler::Default(label) => MachExceptionHandler::Default(*label),
2567 TryCallHandler::Context(reg) => {
2568 let loc = if let Some(spillslot) = reg.to_spillslot() {
2569 // The spillslot offset is relative to the "fixed
2570 // storage area", which comes after outgoing args.
2571 let offset = layout.spillslot_offset(spillslot) + i64::from(layout.outgoing_args_size);
2572 ExceptionContextLoc::SPOffset(u32::try_from(offset).expect("SP offset cannot be negative or larger than 4GiB"))
2573 } else if let Some(realreg) = reg.to_real_reg() {
2574 ExceptionContextLoc::GPR(realreg.hw_enc())
2575 } else {
2576 panic!("Virtual register present in try-call handler clause after register allocation");
2577 };
2578 MachExceptionHandler::Context(loc)
2579 }
2580 })
2581 }
2582
2583 pub(crate) fn pretty_print_dests(&self) -> String {
2584 self.exception_handlers
2585 .iter()
2586 .map(|handler| match handler {
2587 TryCallHandler::Tag(tag, label) => format!("{tag:?}: {label:?}"),
2588 TryCallHandler::Default(label) => format!("default: {label:?}"),
2589 TryCallHandler::Context(loc) => format!("context {loc:?}"),
2590 })
2591 .collect::<Vec<_>>()
2592 .join(", ")
2593 }
2594
2595 pub(crate) fn collect_operands(&mut self, collector: &mut impl OperandVisitor) {
2596 for handler in &mut self.exception_handlers {
2597 match handler {
2598 TryCallHandler::Context(ctx) => {
2599 collector.any_late_use(ctx);
2600 }
2601 TryCallHandler::Tag(_, _) | TryCallHandler::Default(_) => {}
2602 }
2603 }
2604 }
2605}
2606
2607#[cfg(test)]
2608mod tests {
2609 use super::SigData;
2610
2611 #[test]
2612 fn sig_data_size() {
2613 // The size of `SigData` is performance sensitive, so make sure
2614 // we don't regress it unintentionally.
2615 assert_eq!(std::mem::size_of::<SigData>(), 24);
2616 }
2617}