cranelift_codegen/machinst/
abi.rs

1//! Implementation of a vanilla ABI, shared between several machines. The
2//! implementation here assumes that arguments will be passed in registers
3//! first, then additional args on the stack; that the stack grows downward,
4//! contains a standard frame (return address and frame pointer), and the
5//! compiler is otherwise free to allocate space below that with its choice of
6//! layout; and that the machine has some notion of caller- and callee-save
7//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
8//! mold and thus both of these backends use this shared implementation.
9//!
10//! See the documentation in specific machine backends for the "instantiation"
11//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
12//! and return values, and any other special requirements.
13//!
14//! For now the implementation here assumes a 64-bit machine, but we intend to
15//! make this 32/64-bit-generic shortly.
16//!
17//! # Vanilla ABI
18//!
19//! First, arguments and return values are passed in registers up to a certain
20//! fixed count, after which they overflow onto the stack. Multiple return
21//! values either fit in registers, or are returned in a separate return-value
22//! area on the stack, given by a hidden extra parameter.
23//!
24//! Note that the exact stack layout is up to us. We settled on the
25//! below design based on several requirements. In particular, we need
26//! to be able to generate instructions (or instruction sequences) to
27//! access arguments, stack slots, and spill slots before we know how
28//! many spill slots or clobber-saves there will be, because of our
29//! pass structure. We also prefer positive offsets to negative
30//! offsets because of an asymmetry in some machines' addressing modes
31//! (e.g., on AArch64, positive offsets have a larger possible range
32//! without a long-form sequence to synthesize an arbitrary
33//! offset). We also need clobber-save registers to be "near" the
34//! frame pointer: Windows unwind information requires it to be within
35//! 240 bytes of RBP. Finally, it is not allowed to access memory
36//! below the current SP value.
37//!
38//! We assume that a prologue first pushes the frame pointer (and
39//! return address above that, if the machine does not do that in
40//! hardware). We set FP to point to this two-word frame record. We
41//! store all other frame slots below this two-word frame record, as
42//! well as enough space for arguments to the largest possible
43//! function call. The stack pointer then remains at this position
44//! for the duration of the function, allowing us to address all
45//! frame storage at positive offsets from SP.
46//!
47//! Note that if we ever support dynamic stack-space allocation (for
48//! `alloca`), we will need a way to reference spill slots and stack
49//! slots relative to a dynamic SP, because we will no longer be able
50//! to know a static offset from SP to the slots at any particular
51//! program point. Probably the best solution at that point will be to
52//! revert to using the frame pointer as the reference for all slots,
53//! to allow generating spill/reload and stackslot accesses before we
54//! know how large the clobber-saves will be.
55//!
56//! # Stack Layout
57//!
58//! The stack looks like:
59//!
60//! ```plain
61//!   (high address)
62//!                              |          ...              |
63//!                              | caller frames             |
64//!                              |          ...              |
65//!                              +===========================+
66//!                              |          ...              |
67//!                              | stack args                |
68//! Canonical Frame Address -->  | (accessed via FP)         |
69//!                              +---------------------------+
70//! SP at function entry ----->  | return address            |
71//!                              +---------------------------+
72//! FP after prologue -------->  | FP (pushed by prologue)   |
73//!                              +---------------------------+           -----
74//!                              |          ...              |             |
75//!                              | clobbered callee-saves    |             |
76//! unwind-frame base -------->  | (pushed by prologue)      |             |
77//!                              +---------------------------+   -----     |
78//!                              |          ...              |     |       |
79//!                              | spill slots               |     |       |
80//!                              | (accessed via SP)         |   fixed   active
81//!                              |          ...              |   frame    size
82//!                              | stack slots               |  storage    |
83//!                              | (accessed via SP)         |    size     |
84//!                              | (alloc'd by prologue)     |     |       |
85//!                              +---------------------------+   -----     |
86//!                              | [alignment as needed]     |             |
87//!                              |          ...              |             |
88//!                              | args for largest call     |             |
89//! SP ----------------------->  | (alloc'd by prologue)     |             |
90//!                              +===========================+           -----
91//!
92//!   (low address)
93//! ```
94//!
95//! # Multi-value Returns
96//!
97//! We support multi-value returns by using multiple return-value
98//! registers. In some cases this is an extension of the base system
99//! ABI. See each platform's `abi.rs` implementation for details.
100
101use crate::CodegenError;
102use crate::entity::SecondaryMap;
103use crate::ir::types::*;
104use crate::ir::{ArgumentExtension, ArgumentPurpose, ExceptionTag, Signature};
105use crate::isa::TargetIsa;
106use crate::settings::ProbestackStrategy;
107use crate::{ir, isa};
108use crate::{machinst::*, trace};
109use alloc::boxed::Box;
110use regalloc2::{MachineEnv, PReg, PRegSet};
111use rustc_hash::FxHashMap;
112use smallvec::smallvec;
113use std::collections::HashMap;
114use std::marker::PhantomData;
115
116/// A small vector of instructions (with some reasonable size); appropriate for
117/// a small fixed sequence implementing one operation.
118pub type SmallInstVec<I> = SmallVec<[I; 4]>;
119
120/// A type used by backends to track argument-binding info in the "args"
121/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
122#[derive(Clone, Debug)]
123pub struct ArgPair {
124    /// The vreg that is defined by this args pseudoinst.
125    pub vreg: Writable<Reg>,
126    /// The preg that the arg arrives in; this constrains the vreg's
127    /// placement at the pseudoinst.
128    pub preg: Reg,
129}
130
131/// A type used by backends to track return register binding info in the "ret"
132/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
133#[derive(Clone, Debug)]
134pub struct RetPair {
135    /// The vreg that is returned by this pseudionst.
136    pub vreg: Reg,
137    /// The preg that the arg is returned through; this constrains the vreg's
138    /// placement at the pseudoinst.
139    pub preg: Reg,
140}
141
142/// A location for (part of) an argument or return value. These "storage slots"
143/// are specified for each register-sized part of an argument.
144#[derive(Clone, Copy, Debug, PartialEq, Eq)]
145pub enum ABIArgSlot {
146    /// In a real register.
147    Reg {
148        /// Register that holds this arg.
149        reg: RealReg,
150        /// Value type of this arg.
151        ty: ir::Type,
152        /// Should this arg be zero- or sign-extended?
153        extension: ir::ArgumentExtension,
154    },
155    /// Arguments only: on stack, at given offset from SP at entry.
156    Stack {
157        /// Offset of this arg relative to the base of stack args.
158        offset: i64,
159        /// Value type of this arg.
160        ty: ir::Type,
161        /// Should this arg be zero- or sign-extended?
162        extension: ir::ArgumentExtension,
163    },
164}
165
166impl ABIArgSlot {
167    /// The type of the value that will be stored in this slot.
168    pub fn get_type(&self) -> ir::Type {
169        match self {
170            ABIArgSlot::Reg { ty, .. } => *ty,
171            ABIArgSlot::Stack { ty, .. } => *ty,
172        }
173    }
174}
175
176/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
177/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
178/// super rare (and never happen with Wasm).
179pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
180
181/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
182/// Value to be passed with its parts in more than one location at the ABI
183/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
184/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
185/// number of "parts" should correspond to the number of registers used to store
186/// this type according to the machine backend.
187///
188/// As an invariant, the `purpose` for every part must match. As a further
189/// invariant, a `StructArg` part cannot appear with any other part.
190#[derive(Clone, Debug)]
191pub enum ABIArg {
192    /// Storage slots (registers or stack locations) for each part of the
193    /// argument value. The number of slots must equal the number of register
194    /// parts used to store a value of this type.
195    Slots {
196        /// Slots, one per register part.
197        slots: ABIArgSlotVec,
198        /// Purpose of this arg.
199        purpose: ir::ArgumentPurpose,
200    },
201    /// Structure argument. We reserve stack space for it, but the CLIF-level
202    /// semantics are a little weird: the value passed to the call instruction,
203    /// and received in the corresponding block param, is a *pointer*. On the
204    /// caller side, we memcpy the data from the passed-in pointer to the stack
205    /// area; on the callee side, we compute a pointer to this stack area and
206    /// provide that as the argument's value.
207    StructArg {
208        /// Offset of this arg relative to base of stack args.
209        offset: i64,
210        /// Size of this arg on the stack.
211        size: u64,
212        /// Purpose of this arg.
213        purpose: ir::ArgumentPurpose,
214    },
215    /// Implicit argument. Similar to a StructArg, except that we have the
216    /// target type, not a pointer type, at the CLIF-level. This argument is
217    /// still being passed via reference implicitly.
218    ImplicitPtrArg {
219        /// Register or stack slot holding a pointer to the buffer.
220        pointer: ABIArgSlot,
221        /// Offset of the argument buffer.
222        offset: i64,
223        /// Type of the implicit argument.
224        ty: Type,
225        /// Purpose of this arg.
226        purpose: ir::ArgumentPurpose,
227    },
228}
229
230impl ABIArg {
231    /// Create an ABIArg from one register.
232    pub fn reg(
233        reg: RealReg,
234        ty: ir::Type,
235        extension: ir::ArgumentExtension,
236        purpose: ir::ArgumentPurpose,
237    ) -> ABIArg {
238        ABIArg::Slots {
239            slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
240            purpose,
241        }
242    }
243
244    /// Create an ABIArg from one stack slot.
245    pub fn stack(
246        offset: i64,
247        ty: ir::Type,
248        extension: ir::ArgumentExtension,
249        purpose: ir::ArgumentPurpose,
250    ) -> ABIArg {
251        ABIArg::Slots {
252            slots: smallvec![ABIArgSlot::Stack {
253                offset,
254                ty,
255                extension,
256            }],
257            purpose,
258        }
259    }
260}
261
262/// Are we computing information about arguments or return values? Much of the
263/// handling is factored out into common routines; this enum allows us to
264/// distinguish which case we're handling.
265#[derive(Clone, Copy, Debug, PartialEq, Eq)]
266pub enum ArgsOrRets {
267    /// Arguments.
268    Args,
269    /// Return values.
270    Rets,
271}
272
273/// Abstract location for a machine-specific ABI impl to translate into the
274/// appropriate addressing mode.
275#[derive(Clone, Copy, Debug, PartialEq, Eq)]
276pub enum StackAMode {
277    /// Offset into the current frame's argument area.
278    IncomingArg(i64, u32),
279    /// Offset within the stack slots in the current frame.
280    Slot(i64),
281    /// Offset into the callee frame's argument area.
282    OutgoingArg(i64),
283}
284
285impl StackAMode {
286    fn offset_by(&self, offset: u32) -> Self {
287        match self {
288            StackAMode::IncomingArg(off, size) => {
289                StackAMode::IncomingArg(off.checked_add(i64::from(offset)).unwrap(), *size)
290            }
291            StackAMode::Slot(off) => StackAMode::Slot(off.checked_add(i64::from(offset)).unwrap()),
292            StackAMode::OutgoingArg(off) => {
293                StackAMode::OutgoingArg(off.checked_add(i64::from(offset)).unwrap())
294            }
295        }
296    }
297}
298
299/// Trait implemented by machine-specific backend to represent ISA flags.
300pub trait IsaFlags: Clone {
301    /// Get a flag indicating whether forward-edge CFI is enabled.
302    fn is_forward_edge_cfi_enabled(&self) -> bool {
303        false
304    }
305}
306
307/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
308/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
309/// `ABIArg`s in `SigSet` and exposes just the args for the current
310/// `compute_arg_locs` call.
311pub struct ArgsAccumulator<'a> {
312    sig_set_abi_args: &'a mut Vec<ABIArg>,
313    start: usize,
314    non_formal_flag: bool,
315}
316
317impl<'a> ArgsAccumulator<'a> {
318    fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
319        let start = sig_set_abi_args.len();
320        ArgsAccumulator {
321            sig_set_abi_args,
322            start,
323            non_formal_flag: false,
324        }
325    }
326
327    #[inline]
328    pub fn push(&mut self, arg: ABIArg) {
329        debug_assert!(!self.non_formal_flag);
330        self.sig_set_abi_args.push(arg)
331    }
332
333    #[inline]
334    pub fn push_non_formal(&mut self, arg: ABIArg) {
335        self.non_formal_flag = true;
336        self.sig_set_abi_args.push(arg)
337    }
338
339    #[inline]
340    pub fn args(&self) -> &[ABIArg] {
341        &self.sig_set_abi_args[self.start..]
342    }
343
344    #[inline]
345    pub fn args_mut(&mut self) -> &mut [ABIArg] {
346        &mut self.sig_set_abi_args[self.start..]
347    }
348}
349
350/// Trait implemented by machine-specific backend to provide information about
351/// register assignments and to allow generating the specific instructions for
352/// stack loads/saves, prologues/epilogues, etc.
353pub trait ABIMachineSpec {
354    /// The instruction type.
355    type I: VCodeInst;
356
357    /// The ISA flags type.
358    type F: IsaFlags;
359
360    /// This is the limit for the size of argument and return-value areas on the
361    /// stack. We place a reasonable limit here to avoid integer overflow issues
362    /// with 32-bit arithmetic.
363    const STACK_ARG_RET_SIZE_LIMIT: u32;
364
365    /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
366    fn word_bits() -> u32;
367
368    /// Returns the number of bytes in a word.
369    fn word_bytes() -> u32 {
370        return Self::word_bits() / 8;
371    }
372
373    /// Returns word-size integer type.
374    fn word_type() -> Type {
375        match Self::word_bits() {
376            32 => I32,
377            64 => I64,
378            _ => unreachable!(),
379        }
380    }
381
382    /// Returns word register class.
383    fn word_reg_class() -> RegClass {
384        RegClass::Int
385    }
386
387    /// Returns required stack alignment in bytes.
388    fn stack_align(call_conv: isa::CallConv) -> u32;
389
390    /// Process a list of parameters or return values and allocate them to registers
391    /// and stack slots.
392    ///
393    /// The argument locations should be pushed onto the given `ArgsAccumulator`
394    /// in order. Any extra arguments added (such as return area pointers)
395    /// should come at the end of the list so that the first N lowered
396    /// parameters align with the N clif parameters.
397    ///
398    /// Returns the stack-space used (rounded up to as alignment requires), and
399    /// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
400    /// that was added.
401    fn compute_arg_locs(
402        call_conv: isa::CallConv,
403        flags: &settings::Flags,
404        params: &[ir::AbiParam],
405        args_or_rets: ArgsOrRets,
406        add_ret_area_ptr: bool,
407        args: ArgsAccumulator,
408    ) -> CodegenResult<(u32, Option<usize>)>;
409
410    /// Generate a load from the stack.
411    fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
412
413    /// Generate a store to the stack.
414    fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
415
416    /// Generate a move.
417    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
418
419    /// Generate an integer-extend operation.
420    fn gen_extend(
421        to_reg: Writable<Reg>,
422        from_reg: Reg,
423        is_signed: bool,
424        from_bits: u8,
425        to_bits: u8,
426    ) -> Self::I;
427
428    /// Generate an "args" pseudo-instruction to capture input args in
429    /// registers.
430    fn gen_args(args: Vec<ArgPair>) -> Self::I;
431
432    /// Generate a "rets" pseudo-instruction that moves vregs to return
433    /// registers.
434    fn gen_rets(rets: Vec<RetPair>) -> Self::I;
435
436    /// Generate an add-with-immediate. Note that even if this uses a scratch
437    /// register, it must satisfy two requirements:
438    ///
439    /// - The add-imm sequence must only clobber caller-save registers that are
440    ///   not used for arguments, because it will be placed in the prologue
441    ///   before the clobbered callee-save registers are saved.
442    ///
443    /// - The add-imm sequence must work correctly when `from_reg` and/or
444    ///   `into_reg` are the register returned by `get_stacklimit_reg()`.
445    fn gen_add_imm(
446        call_conv: isa::CallConv,
447        into_reg: Writable<Reg>,
448        from_reg: Reg,
449        imm: u32,
450    ) -> SmallInstVec<Self::I>;
451
452    /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
453    /// the stack pointer is less than the given limit register (assuming the
454    /// stack grows downward).
455    fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
456
457    /// Generate an instruction to compute an address of a stack slot (FP- or
458    /// SP-based offset).
459    fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;
460
461    /// Get a fixed register to use to compute a stack limit. This is needed for
462    /// certain sequences generated after the register allocator has already
463    /// run. This must satisfy two requirements:
464    ///
465    /// - It must be a caller-save register that is not used for arguments,
466    ///   because it will be clobbered in the prologue before the clobbered
467    ///   callee-save registers are saved.
468    ///
469    /// - It must be safe to pass as an argument and/or destination to
470    ///   `gen_add_imm()`. This is relevant when an addition with a large
471    ///   immediate needs its own temporary; it cannot use the same fixed
472    ///   temporary as this one.
473    fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;
474
475    /// Generate a load to the given [base+offset] address.
476    fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
477
478    /// Generate a store from the given [base+offset] address.
479    fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
480
481    /// Adjust the stack pointer up or down.
482    fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
483
484    /// Compute a FrameLayout structure containing a sorted list of all clobbered
485    /// registers that are callee-saved according to the ABI, as well as the sizes
486    /// of all parts of the stack frame.  The result is used to emit the prologue
487    /// and epilogue routines.
488    fn compute_frame_layout(
489        call_conv: isa::CallConv,
490        flags: &settings::Flags,
491        sig: &Signature,
492        regs: &[Writable<RealReg>],
493        is_leaf: bool,
494        incoming_args_size: u32,
495        tail_args_size: u32,
496        stackslots_size: u32,
497        fixed_frame_storage_size: u32,
498        outgoing_args_size: u32,
499    ) -> FrameLayout;
500
501    /// Generate the usual frame-setup sequence for this architecture: e.g.,
502    /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
503    /// AArch64.
504    fn gen_prologue_frame_setup(
505        call_conv: isa::CallConv,
506        flags: &settings::Flags,
507        isa_flags: &Self::F,
508        frame_layout: &FrameLayout,
509    ) -> SmallInstVec<Self::I>;
510
511    /// Generate the usual frame-restore sequence for this architecture.
512    fn gen_epilogue_frame_restore(
513        call_conv: isa::CallConv,
514        flags: &settings::Flags,
515        isa_flags: &Self::F,
516        frame_layout: &FrameLayout,
517    ) -> SmallInstVec<Self::I>;
518
519    /// Generate a return instruction.
520    fn gen_return(
521        call_conv: isa::CallConv,
522        isa_flags: &Self::F,
523        frame_layout: &FrameLayout,
524    ) -> SmallInstVec<Self::I>;
525
526    /// Generate a probestack call.
527    fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
528
529    /// Generate a inline stack probe.
530    fn gen_inline_probestack(
531        insts: &mut SmallInstVec<Self::I>,
532        call_conv: isa::CallConv,
533        frame_size: u32,
534        guard_size: u32,
535    );
536
537    /// Generate a clobber-save sequence. The implementation here should return
538    /// a sequence of instructions that "push" or otherwise save to the stack all
539    /// registers written/modified by the function body that are callee-saved.
540    /// The sequence of instructions should adjust the stack pointer downward,
541    /// and should align as necessary according to ABI requirements.
542    fn gen_clobber_save(
543        call_conv: isa::CallConv,
544        flags: &settings::Flags,
545        frame_layout: &FrameLayout,
546    ) -> SmallVec<[Self::I; 16]>;
547
548    /// Generate a clobber-restore sequence. This sequence should perform the
549    /// opposite of the clobber-save sequence generated above, assuming that SP
550    /// going into the sequence is at the same point that it was left when the
551    /// clobber-save sequence finished.
552    fn gen_clobber_restore(
553        call_conv: isa::CallConv,
554        flags: &settings::Flags,
555        frame_layout: &FrameLayout,
556    ) -> SmallVec<[Self::I; 16]>;
557
558    /// Generate a memcpy invocation. Used to set up struct
559    /// args. Takes `src`, `dst` as read-only inputs and passes a temporary
560    /// allocator.
561    fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
562        call_conv: isa::CallConv,
563        dst: Reg,
564        src: Reg,
565        size: usize,
566        alloc_tmp: F,
567    ) -> SmallVec<[Self::I; 8]>;
568
569    /// Get the number of spillslots required for the given register-class.
570    fn get_number_of_spillslots_for_value(
571        rc: RegClass,
572        target_vector_bytes: u32,
573        isa_flags: &Self::F,
574    ) -> u32;
575
576    /// Get the ABI-dependent MachineEnv for managing register allocation.
577    fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;
578
579    /// Get all caller-save registers, that is, registers that we expect
580    /// not to be saved across a call to a callee with the given ABI.
581    fn get_regs_clobbered_by_call(
582        call_conv_of_callee: isa::CallConv,
583        is_exception: bool,
584    ) -> PRegSet;
585
586    /// Get the needed extension mode, given the mode attached to the argument
587    /// in the signature and the calling convention. The input (the attribute in
588    /// the signature) specifies what extension type should be done *if* the ABI
589    /// requires extension to the full register; this method's return value
590    /// indicates whether the extension actually *will* be done.
591    fn get_ext_mode(
592        call_conv: isa::CallConv,
593        specified: ir::ArgumentExtension,
594    ) -> ir::ArgumentExtension;
595
596    /// Get a temporary register that is available to use after a call
597    /// completes and that does not interfere with register-carried
598    /// return values. This is used to move stack-carried return
599    /// values directly into spillslots if needed.
600    fn retval_temp_reg(call_conv_of_callee: isa::CallConv) -> Writable<Reg>;
601
602    /// Get the exception payload registers, if any, for a calling
603    /// convention.
604    fn exception_payload_regs(_call_conv: isa::CallConv) -> &'static [Reg] {
605        &[]
606    }
607}
608
609/// Out-of-line data for calls, to keep the size of `Inst` down.
610#[derive(Clone, Debug)]
611pub struct CallInfo<T> {
612    /// Receiver of this call
613    pub dest: T,
614    /// Register uses of this call.
615    pub uses: CallArgList,
616    /// Register defs of this call.
617    pub defs: CallRetList,
618    /// Registers clobbered by this call, as per its calling convention.
619    pub clobbers: PRegSet,
620    /// The calling convention of the callee.
621    pub callee_conv: isa::CallConv,
622    /// The calling convention of the caller.
623    pub caller_conv: isa::CallConv,
624    /// The number of bytes that the callee will pop from the stack for the
625    /// caller, if any. (Used for popping stack arguments with the `tail`
626    /// calling convention.)
627    pub callee_pop_size: u32,
628    /// Information for a try-call, if this is one. We combine
629    /// handling of calls and try-calls as much as possible to share
630    /// argument/return logic; they mostly differ in the metadata that
631    /// they emit, which this information feeds into.
632    pub try_call_info: Option<TryCallInfo>,
633}
634
635/// Out-of-line information present on `try_call` instructions only:
636/// information that is used to generate exception-handling tables and
637/// link up to destination blocks properly.
638#[derive(Clone, Debug)]
639pub struct TryCallInfo {
640    /// The target to jump to on a normal returhn.
641    pub continuation: MachLabel,
642    /// Exception tags to catch and corresponding destination labels.
643    pub exception_handlers: Box<[TryCallHandler]>,
644}
645
646/// Information about an individual handler at a try-call site.
647#[derive(Clone, Debug)]
648pub enum TryCallHandler {
649    /// If the tag matches (given the current context), recover at the
650    /// label.
651    Tag(ExceptionTag, MachLabel),
652    /// Recover at the label unconditionally.
653    Default(MachLabel),
654    /// Set the dynamic context for interpreting tags at this point in
655    /// the handler list.
656    Context(Reg),
657}
658
659impl<T> CallInfo<T> {
660    /// Creates an empty set of info with no clobbers/uses/etc with the
661    /// specified ABI
662    pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
663        CallInfo {
664            dest,
665            uses: smallvec![],
666            defs: smallvec![],
667            clobbers: PRegSet::empty(),
668            caller_conv: call_conv,
669            callee_conv: call_conv,
670            callee_pop_size: 0,
671            try_call_info: None,
672        }
673    }
674}
675
676/// The id of an ABI signature within the `SigSet`.
677#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
678pub struct Sig(u32);
679cranelift_entity::entity_impl!(Sig);
680
681impl Sig {
682    fn prev(self) -> Option<Sig> {
683        self.0.checked_sub(1).map(Sig)
684    }
685}
686
687/// ABI information shared between body (callee) and caller.
688#[derive(Clone, Debug)]
689pub struct SigData {
690    /// Currently both return values and arguments are stored in a continuous space vector
691    /// in `SigSet::abi_args`.
692    ///
693    /// ```plain
694    ///                  +----------------------------------------------+
695    ///                  | return values                                |
696    ///                  | ...                                          |
697    ///   rets_end   --> +----------------------------------------------+
698    ///                  | arguments                                    |
699    ///                  | ...                                          |
700    ///   args_end   --> +----------------------------------------------+
701    ///
702    /// ```
703    ///
704    /// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
705    ///
706    /// Argument location ending offset (regs or stack slots). Stack offsets are relative to
707    /// SP on entry to function.
708    ///
709    /// This is a index into the `SigSet::abi_args`.
710    args_end: u32,
711
712    /// Return-value location ending offset. Stack offsets are relative to the return-area
713    /// pointer.
714    ///
715    /// This is a index into the `SigSet::abi_args`.
716    rets_end: u32,
717
718    /// Space on stack used to store arguments. We're storing the size in u32 to
719    /// reduce the size of the struct.
720    sized_stack_arg_space: u32,
721
722    /// Space on stack used to store return values. We're storing the size in u32 to
723    /// reduce the size of the struct.
724    sized_stack_ret_space: u32,
725
726    /// Index in `args` of the stack-return-value-area argument.
727    stack_ret_arg: Option<u16>,
728
729    /// Calling convention used.
730    call_conv: isa::CallConv,
731}
732
733impl SigData {
734    /// Get total stack space required for arguments.
735    pub fn sized_stack_arg_space(&self) -> u32 {
736        self.sized_stack_arg_space
737    }
738
739    /// Get total stack space required for return values.
740    pub fn sized_stack_ret_space(&self) -> u32 {
741        self.sized_stack_ret_space
742    }
743
744    /// Get calling convention used.
745    pub fn call_conv(&self) -> isa::CallConv {
746        self.call_conv
747    }
748
749    /// The index of the stack-return-value-area argument, if any.
750    pub fn stack_ret_arg(&self) -> Option<u16> {
751        self.stack_ret_arg
752    }
753}
754
755/// A (mostly) deduplicated set of ABI signatures.
756///
757/// We say "mostly" because we do not dedupe between signatures interned via
758/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
759/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
760/// this final bit of deduplication would require filling out the
761/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
762/// hash map itself but params and returns vecs in each signature) that we want
763/// to avoid.
764///
765/// In general, prefer using the `ir::SigRef`-taking methods to the
766/// `ir::Signature`-taking methods when you can get away with it, as they don't
767/// require cloning non-copy types that will trigger heap allocations.
768///
769/// This type can be indexed by `Sig` to access its associated `SigData`.
770pub struct SigSet {
771    /// Interned `ir::Signature`s that we already have an ABI signature for.
772    ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
773
774    /// Interned `ir::SigRef`s that we already have an ABI signature for.
775    ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
776
777    /// A single, shared allocation for all `ABIArg`s used by all
778    /// `SigData`s. Each `SigData` references its args/rets via indices into
779    /// this allocation.
780    abi_args: Vec<ABIArg>,
781
782    /// The actual ABI signatures, keyed by `Sig`.
783    sigs: PrimaryMap<Sig, SigData>,
784}
785
786impl SigSet {
787    /// Construct a new `SigSet`, interning all of the signatures used by the
788    /// given function.
789    pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
790    where
791        M: ABIMachineSpec,
792    {
793        let arg_estimate = func.dfg.signatures.len() * 6;
794
795        let mut sigs = SigSet {
796            ir_signature_to_abi_sig: FxHashMap::default(),
797            ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
798            abi_args: Vec::with_capacity(arg_estimate),
799            sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
800        };
801
802        sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
803        for sig_ref in func.dfg.signatures.keys() {
804            sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
805        }
806
807        Ok(sigs)
808    }
809
810    /// Have we already interned an ABI signature for the given `ir::Signature`?
811    pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
812        self.ir_signature_to_abi_sig.contains_key(signature)
813    }
814
815    /// Construct and intern an ABI signature for the given `ir::Signature`.
816    pub fn make_abi_sig_from_ir_signature<M>(
817        &mut self,
818        signature: ir::Signature,
819        flags: &settings::Flags,
820    ) -> CodegenResult<Sig>
821    where
822        M: ABIMachineSpec,
823    {
824        // Because the `HashMap` entry API requires taking ownership of the
825        // lookup key -- and we want to avoid unnecessary clones of
826        // `ir::Signature`s, even at the cost of duplicate lookups -- we can't
827        // have a single, get-or-create-style method for interning
828        // `ir::Signature`s into ABI signatures. So at least (debug) assert that
829        // we aren't creating duplicate ABI signatures for the same
830        // `ir::Signature`.
831        debug_assert!(!self.have_abi_sig_for_signature(&signature));
832
833        let sig_data = self.from_func_sig::<M>(&signature, flags)?;
834        let sig = self.sigs.push(sig_data);
835        self.ir_signature_to_abi_sig.insert(signature, sig);
836        Ok(sig)
837    }
838
839    fn make_abi_sig_from_ir_sig_ref<M>(
840        &mut self,
841        sig_ref: ir::SigRef,
842        dfg: &ir::DataFlowGraph,
843        flags: &settings::Flags,
844    ) -> CodegenResult<Sig>
845    where
846        M: ABIMachineSpec,
847    {
848        if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
849            return Ok(sig);
850        }
851        let signature = &dfg.signatures[sig_ref];
852        let sig_data = self.from_func_sig::<M>(signature, flags)?;
853        let sig = self.sigs.push(sig_data);
854        self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
855        Ok(sig)
856    }
857
858    /// Get the already-interned ABI signature id for the given `ir::SigRef`.
859    pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
860        self.ir_sig_ref_to_abi_sig[sig_ref]
861            .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
862    }
863
864    /// Get the already-interned ABI signature id for the given `ir::Signature`.
865    pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
866        self.ir_signature_to_abi_sig
867            .get(signature)
868            .copied()
869            .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
870    }
871
872    pub fn from_func_sig<M: ABIMachineSpec>(
873        &mut self,
874        sig: &ir::Signature,
875        flags: &settings::Flags,
876    ) -> CodegenResult<SigData> {
877        // Keep in sync with ensure_struct_return_ptr_is_returned
878        if sig.uses_special_return(ArgumentPurpose::StructReturn) {
879            panic!("Explicit StructReturn return value not allowed: {sig:?}")
880        }
881        let tmp;
882        let returns = if let Some(struct_ret_index) =
883            sig.special_param_index(ArgumentPurpose::StructReturn)
884        {
885            if !sig.returns.is_empty() {
886                panic!("No return values are allowed when using StructReturn: {sig:?}");
887            }
888            tmp = [sig.params[struct_ret_index]];
889            &tmp
890        } else {
891            sig.returns.as_slice()
892        };
893
894        // Compute args and retvals from signature. Handle retvals first,
895        // because we may need to add a return-area arg to the args.
896
897        // NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
898        // `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
899        // compute_arg_locs order.
900        let (sized_stack_ret_space, _) = M::compute_arg_locs(
901            sig.call_conv,
902            flags,
903            &returns,
904            ArgsOrRets::Rets,
905            /* extra ret-area ptr = */ false,
906            ArgsAccumulator::new(&mut self.abi_args),
907        )?;
908        if !flags.enable_multi_ret_implicit_sret() {
909            assert_eq!(sized_stack_ret_space, 0);
910        }
911        let rets_end = u32::try_from(self.abi_args.len()).unwrap();
912
913        // To avoid overflow issues, limit the return size to something reasonable.
914        if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
915            return Err(CodegenError::ImplLimitExceeded);
916        }
917
918        let need_stack_return_area = sized_stack_ret_space > 0;
919        if need_stack_return_area {
920            assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
921        }
922
923        let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
924            sig.call_conv,
925            flags,
926            &sig.params,
927            ArgsOrRets::Args,
928            need_stack_return_area,
929            ArgsAccumulator::new(&mut self.abi_args),
930        )?;
931        let args_end = u32::try_from(self.abi_args.len()).unwrap();
932
933        // To avoid overflow issues, limit the arg size to something reasonable.
934        if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
935            return Err(CodegenError::ImplLimitExceeded);
936        }
937
938        trace!(
939            "ABISig: sig {:?} => args end = {} rets end = {}
940             arg stack = {} ret stack = {} stack_ret_arg = {:?}",
941            sig,
942            args_end,
943            rets_end,
944            sized_stack_arg_space,
945            sized_stack_ret_space,
946            need_stack_return_area,
947        );
948
949        let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
950        Ok(SigData {
951            args_end,
952            rets_end,
953            sized_stack_arg_space,
954            sized_stack_ret_space,
955            stack_ret_arg,
956            call_conv: sig.call_conv,
957        })
958    }
959
960    /// Get this signature's ABI arguments.
961    pub fn args(&self, sig: Sig) -> &[ABIArg] {
962        let sig_data = &self.sigs[sig];
963        // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
964        let start = usize::try_from(sig_data.rets_end).unwrap();
965        let end = usize::try_from(sig_data.args_end).unwrap();
966        &self.abi_args[start..end]
967    }
968
969    /// Get information specifying how to pass the implicit pointer
970    /// to the return-value area on the stack, if required.
971    pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
972        let sig_data = &self.sigs[sig];
973        if let Some(i) = sig_data.stack_ret_arg {
974            Some(self.args(sig)[usize::from(i)].clone())
975        } else {
976            None
977        }
978    }
979
980    /// Get information specifying how to pass one argument.
981    pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
982        self.args(sig)[idx].clone()
983    }
984
985    /// Get this signature's ABI returns.
986    pub fn rets(&self, sig: Sig) -> &[ABIArg] {
987        let sig_data = &self.sigs[sig];
988        // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
989        let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
990        let end = usize::try_from(sig_data.rets_end).unwrap();
991        &self.abi_args[start..end]
992    }
993
994    /// Get information specifying how to pass one return value.
995    pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
996        self.rets(sig)[idx].clone()
997    }
998
999    /// Get the number of arguments expected.
1000    pub fn num_args(&self, sig: Sig) -> usize {
1001        let len = self.args(sig).len();
1002        if self.sigs[sig].stack_ret_arg.is_some() {
1003            len - 1
1004        } else {
1005            len
1006        }
1007    }
1008
1009    /// Get the number of return values expected.
1010    pub fn num_rets(&self, sig: Sig) -> usize {
1011        self.rets(sig).len()
1012    }
1013}
1014
1015// NB: we do _not_ implement `IndexMut` because these signatures are
1016// deduplicated and shared!
1017impl std::ops::Index<Sig> for SigSet {
1018    type Output = SigData;
1019
1020    fn index(&self, sig: Sig) -> &Self::Output {
1021        &self.sigs[sig]
1022    }
1023}
1024
1025/// Structure describing the layout of a function's stack frame.
1026#[derive(Clone, Debug, Default)]
1027pub struct FrameLayout {
1028    /// Word size in bytes, so this struct can be
1029    /// monomorphic/independent of `ABIMachineSpec`.
1030    pub word_bytes: u32,
1031
1032    /// N.B. The areas whose sizes are given in this structure fully
1033    /// cover the current function's stack frame, from high to low
1034    /// stack addresses in the sequence below.  Each size contains
1035    /// any alignment padding that may be required by the ABI.
1036
1037    /// Size of incoming arguments on the stack.  This is not technically
1038    /// part of this function's frame, but code in the function will still
1039    /// need to access it.  Depending on the ABI, we may need to set up a
1040    /// frame pointer to do so; we also may need to pop this area from the
1041    /// stack upon return.
1042    pub incoming_args_size: u32,
1043
1044    /// The size of the incoming argument area, taking into account any
1045    /// potential increase in size required for tail calls present in the
1046    /// function. In the case that no tail calls are present, this value
1047    /// will be the same as [`Self::incoming_args_size`].
1048    pub tail_args_size: u32,
1049
1050    /// Size of the "setup area", typically holding the return address
1051    /// and/or the saved frame pointer.  This may be written either during
1052    /// the call itself (e.g. a pushed return address) or by code emitted
1053    /// from gen_prologue_frame_setup.  In any case, after that code has
1054    /// completed execution, the stack pointer is expected to point to the
1055    /// bottom of this area.  The same holds at the start of code emitted
1056    /// by gen_epilogue_frame_restore.
1057    pub setup_area_size: u32,
1058
1059    /// Size of the area used to save callee-saved clobbered registers.
1060    /// This area is accessed by code emitted from gen_clobber_save and
1061    /// gen_clobber_restore.
1062    pub clobber_size: u32,
1063
1064    /// Storage allocated for the fixed part of the stack frame.
1065    /// This contains stack slots and spill slots.
1066    pub fixed_frame_storage_size: u32,
1067
1068    /// The size of all stackslots.
1069    pub stackslots_size: u32,
1070
1071    /// Stack size to be reserved for outgoing arguments, if used by
1072    /// the current ABI, or 0 otherwise.  After gen_clobber_save and
1073    /// before gen_clobber_restore, the stack pointer points to the
1074    /// bottom of this area.
1075    pub outgoing_args_size: u32,
1076
1077    /// Sorted list of callee-saved registers that are clobbered
1078    /// according to the ABI.  These registers will be saved and
1079    /// restored by gen_clobber_save and gen_clobber_restore.
1080    pub clobbered_callee_saves: Vec<Writable<RealReg>>,
1081}
1082
1083impl FrameLayout {
1084    /// Split the clobbered callee-save registers into integer-class and
1085    /// float-class groups.
1086    ///
1087    /// This method does not currently support vector-class callee-save
1088    /// registers because no current backend has them.
1089    pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
1090        let (ints, floats) = self.clobbered_callee_saves.split_at(
1091            self.clobbered_callee_saves
1092                .partition_point(|r| r.to_reg().class() == RegClass::Int),
1093        );
1094        debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
1095        (ints, floats)
1096    }
1097
1098    /// The size of FP to SP while the frame is active (not during prologue
1099    /// setup or epilogue tear down).
1100    pub fn active_size(&self) -> u32 {
1101        self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1102    }
1103
1104    /// Get the offset from the SP to the sized stack slots area.
1105    pub fn sp_to_sized_stack_slots(&self) -> u32 {
1106        self.outgoing_args_size
1107    }
1108
1109    /// Get the offset of a spill slot from SP.
1110    pub fn spillslot_offset(&self, spillslot: SpillSlot) -> i64 {
1111        // Offset from beginning of spillslot area.
1112        let islot = spillslot.index() as i64;
1113        let spill_off = islot * self.word_bytes as i64;
1114        let sp_off = self.stackslots_size as i64 + spill_off;
1115
1116        sp_off
1117    }
1118
1119    /// Get the offset from SP up to FP.
1120    pub fn sp_to_fp(&self) -> u32 {
1121        self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1122    }
1123}
1124
1125/// ABI object for a function body.
1126pub struct Callee<M: ABIMachineSpec> {
1127    /// CLIF-level signature, possibly normalized.
1128    ir_sig: ir::Signature,
1129    /// Signature: arg and retval regs.
1130    sig: Sig,
1131    /// Defined dynamic types.
1132    dynamic_type_sizes: HashMap<Type, u32>,
1133    /// Offsets to each dynamic stackslot.
1134    dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
1135    /// Offsets to each sized stackslot.
1136    sized_stackslots: PrimaryMap<StackSlot, u32>,
1137    /// Total stack size of all stackslots
1138    stackslots_size: u32,
1139    /// Stack size to be reserved for outgoing arguments.
1140    outgoing_args_size: u32,
1141    /// Initially the number of bytes originating in the callers frame where stack arguments will
1142    /// live. After lowering this number may be larger than the size expected by the function being
1143    /// compiled, as tail calls potentially require more space for stack arguments.
1144    tail_args_size: u32,
1145    /// Register-argument defs, to be provided to the `args`
1146    /// pseudo-inst, and pregs to constrain them to.
1147    reg_args: Vec<ArgPair>,
1148    /// Finalized frame layout for this function.
1149    frame_layout: Option<FrameLayout>,
1150    /// The register holding the return-area pointer, if needed.
1151    ret_area_ptr: Option<Reg>,
1152    /// Calling convention this function expects.
1153    call_conv: isa::CallConv,
1154    /// The settings controlling this function's compilation.
1155    flags: settings::Flags,
1156    /// The ISA-specific flag values controlling this function's compilation.
1157    isa_flags: M::F,
1158    /// Whether or not this function is a "leaf", meaning it calls no other
1159    /// functions
1160    is_leaf: bool,
1161    /// If this function has a stack limit specified, then `Reg` is where the
1162    /// stack limit will be located after the instructions specified have been
1163    /// executed.
1164    ///
1165    /// Note that this is intended for insertion into the prologue, if
1166    /// present. Also note that because the instructions here execute in the
1167    /// prologue this happens after legalization/register allocation/etc so we
1168    /// need to be extremely careful with each instruction. The instructions are
1169    /// manually register-allocated and carefully only use caller-saved
1170    /// registers and keep nothing live after this sequence of instructions.
1171    stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
1172
1173    _mach: PhantomData<M>,
1174}
1175
1176fn get_special_purpose_param_register(
1177    f: &ir::Function,
1178    sigs: &SigSet,
1179    sig: Sig,
1180    purpose: ir::ArgumentPurpose,
1181) -> Option<Reg> {
1182    let idx = f.signature.special_param_index(purpose)?;
1183    match &sigs.args(sig)[idx] {
1184        &ABIArg::Slots { ref slots, .. } => match &slots[0] {
1185            &ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
1186            _ => None,
1187        },
1188        _ => None,
1189    }
1190}
1191
1192fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
1193    Some(val.checked_add(mask)? & !mask)
1194}
1195
1196impl<M: ABIMachineSpec> Callee<M> {
1197    /// Create a new body ABI instance.
1198    pub fn new(
1199        f: &ir::Function,
1200        isa: &dyn TargetIsa,
1201        isa_flags: &M::F,
1202        sigs: &SigSet,
1203    ) -> CodegenResult<Self> {
1204        trace!("ABI: func signature {:?}", f.signature);
1205
1206        let flags = isa.flags().clone();
1207        let sig = sigs.abi_sig_for_signature(&f.signature);
1208
1209        let call_conv = f.signature.call_conv;
1210        // Only these calling conventions are supported.
1211        debug_assert!(
1212            call_conv == isa::CallConv::SystemV
1213                || call_conv == isa::CallConv::Tail
1214                || call_conv == isa::CallConv::Fast
1215                || call_conv == isa::CallConv::Cold
1216                || call_conv == isa::CallConv::WindowsFastcall
1217                || call_conv == isa::CallConv::AppleAarch64
1218                || call_conv == isa::CallConv::Winch,
1219            "Unsupported calling convention: {call_conv:?}"
1220        );
1221
1222        // Compute sized stackslot locations and total stackslot size.
1223        let mut end_offset: u32 = 0;
1224        let mut sized_stackslots = PrimaryMap::new();
1225
1226        for (stackslot, data) in f.sized_stack_slots.iter() {
1227            // We start our computation possibly unaligned where the previous
1228            // stackslot left off.
1229            let unaligned_start_offset = end_offset;
1230
1231            // The start of the stackslot must be aligned.
1232            //
1233            // We always at least machine-word-align slots, but also
1234            // satisfy the user's requested alignment.
1235            debug_assert!(data.align_shift < 32);
1236            let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
1237            let mask = align - 1;
1238            let start_offset = checked_round_up(unaligned_start_offset, mask)
1239                .ok_or(CodegenError::ImplLimitExceeded)?;
1240
1241            // The end offset is the start offset increased by the size
1242            end_offset = start_offset
1243                .checked_add(data.size)
1244                .ok_or(CodegenError::ImplLimitExceeded)?;
1245
1246            debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
1247            sized_stackslots.push(start_offset);
1248        }
1249
1250        // Compute dynamic stackslot locations and total stackslot size.
1251        let mut dynamic_stackslots = PrimaryMap::new();
1252        for (stackslot, data) in f.dynamic_stack_slots.iter() {
1253            debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
1254
1255            // This computation is similar to the stackslots above
1256            let unaligned_start_offset = end_offset;
1257
1258            let mask = M::word_bytes() - 1;
1259            let start_offset = checked_round_up(unaligned_start_offset, mask)
1260                .ok_or(CodegenError::ImplLimitExceeded)?;
1261
1262            let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
1263                CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
1264            })?;
1265
1266            end_offset = start_offset
1267                .checked_add(isa.dynamic_vector_bytes(ty))
1268                .ok_or(CodegenError::ImplLimitExceeded)?;
1269
1270            dynamic_stackslots.push(start_offset);
1271        }
1272
1273        // The size of the stackslots needs to be word aligned
1274        let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
1275            .ok_or(CodegenError::ImplLimitExceeded)?;
1276
1277        let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
1278        for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
1279            let ty = f
1280                .get_concrete_dynamic_ty(dyn_ty)
1281                .unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
1282            let size = isa.dynamic_vector_bytes(ty);
1283            dynamic_type_sizes.insert(ty, size);
1284        }
1285
1286        // Figure out what instructions, if any, will be needed to check the
1287        // stack limit. This can either be specified as a special-purpose
1288        // argument or as a global value which often calculates the stack limit
1289        // from the arguments.
1290        let stack_limit = f
1291            .stack_limit
1292            .map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));
1293
1294        let tail_args_size = sigs[sig].sized_stack_arg_space;
1295
1296        Ok(Self {
1297            ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
1298            sig,
1299            dynamic_stackslots,
1300            dynamic_type_sizes,
1301            sized_stackslots,
1302            stackslots_size,
1303            outgoing_args_size: 0,
1304            tail_args_size,
1305            reg_args: vec![],
1306            frame_layout: None,
1307            ret_area_ptr: None,
1308            call_conv,
1309            flags,
1310            isa_flags: isa_flags.clone(),
1311            is_leaf: f.is_leaf(),
1312            stack_limit,
1313            _mach: PhantomData,
1314        })
1315    }
1316
1317    /// Inserts instructions necessary for checking the stack limit into the
1318    /// prologue.
1319    ///
1320    /// This function will generate instructions necessary for perform a stack
1321    /// check at the header of a function. The stack check is intended to trap
1322    /// if the stack pointer goes below a particular threshold, preventing stack
1323    /// overflow in wasm or other code. The `stack_limit` argument here is the
1324    /// register which holds the threshold below which we're supposed to trap.
1325    /// This function is known to allocate `stack_size` bytes and we'll push
1326    /// instructions onto `insts`.
1327    ///
1328    /// Note that the instructions generated here are special because this is
1329    /// happening so late in the pipeline (e.g. after register allocation). This
1330    /// means that we need to do manual register allocation here and also be
1331    /// careful to not clobber any callee-saved or argument registers. For now
1332    /// this routine makes do with the `spilltmp_reg` as one temporary
1333    /// register, and a second register of `tmp2` which is caller-saved. This
1334    /// should be fine for us since no spills should happen in this sequence of
1335    /// instructions, so our register won't get accidentally clobbered.
1336    ///
1337    /// No values can be live after the prologue, but in this case that's ok
1338    /// because we just need to perform a stack check before progressing with
1339    /// the rest of the function.
1340    fn insert_stack_check(
1341        &self,
1342        stack_limit: Reg,
1343        stack_size: u32,
1344        insts: &mut SmallInstVec<M::I>,
1345    ) {
1346        // With no explicit stack allocated we can just emit the simple check of
1347        // the stack registers against the stack limit register, and trap if
1348        // it's out of bounds.
1349        if stack_size == 0 {
1350            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1351            return;
1352        }
1353
1354        // Note that the 32k stack size here is pretty special. See the
1355        // documentation in x86/abi.rs for why this is here. The general idea is
1356        // that we're protecting against overflow in the addition that happens
1357        // below.
1358        if stack_size >= 32 * 1024 {
1359            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1360        }
1361
1362        // Add the `stack_size` to `stack_limit`, placing the result in
1363        // `scratch`.
1364        //
1365        // Note though that `stack_limit`'s register may be the same as
1366        // `scratch`. If our stack size doesn't fit into an immediate this
1367        // means we need a second scratch register for loading the stack size
1368        // into a register.
1369        let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
1370        insts.extend(M::gen_add_imm(
1371            self.call_conv,
1372            scratch,
1373            stack_limit,
1374            stack_size,
1375        ));
1376        insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
1377    }
1378}
1379
1380/// Generates the instructions necessary for the `gv` to be materialized into a
1381/// register.
1382///
1383/// This function will return a register that will contain the result of
1384/// evaluating `gv`. It will also return any instructions necessary to calculate
1385/// the value of the register.
1386///
1387/// Note that global values are typically lowered to instructions via the
1388/// standard legalization pass. Unfortunately though prologue generation happens
1389/// so late in the pipeline that we can't use these legalization passes to
1390/// generate the instructions for `gv`. As a result we duplicate some lowering
1391/// of `gv` here and support only some global values. This is similar to what
1392/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
1393/// in the future too!
1394///
1395/// Also note that this function will make use of `writable_spilltmp_reg()` as a
1396/// temporary register to store values in if necessary. Currently after we write
1397/// to this register there's guaranteed to be no spilled values between where
1398/// it's used, because we're not participating in register allocation anyway!
1399fn gen_stack_limit<M: ABIMachineSpec>(
1400    f: &ir::Function,
1401    sigs: &SigSet,
1402    sig: Sig,
1403    gv: ir::GlobalValue,
1404) -> (Reg, SmallInstVec<M::I>) {
1405    let mut insts = smallvec![];
1406    let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
1407    return (reg, insts);
1408}
1409
1410fn generate_gv<M: ABIMachineSpec>(
1411    f: &ir::Function,
1412    sigs: &SigSet,
1413    sig: Sig,
1414    gv: ir::GlobalValue,
1415    insts: &mut SmallInstVec<M::I>,
1416) -> Reg {
1417    match f.global_values[gv] {
1418        // Return the direct register the vmcontext is in
1419        ir::GlobalValueData::VMContext => {
1420            get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
1421                .expect("no vmcontext parameter found")
1422        }
1423        // Load our base value into a register, then load from that register
1424        // in to a temporary register.
1425        ir::GlobalValueData::Load {
1426            base,
1427            offset,
1428            global_type: _,
1429            flags: _,
1430        } => {
1431            let base = generate_gv::<M>(f, sigs, sig, base, insts);
1432            let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
1433            insts.push(M::gen_load_base_offset(
1434                into_reg,
1435                base,
1436                offset.into(),
1437                M::word_type(),
1438            ));
1439            return into_reg.to_reg();
1440        }
1441        ref other => panic!("global value for stack limit not supported: {other}"),
1442    }
1443}
1444
1445/// Returns true if the signature needs to be legalized.
1446fn missing_struct_return(sig: &ir::Signature) -> bool {
1447    sig.uses_special_param(ArgumentPurpose::StructReturn)
1448        && !sig.uses_special_return(ArgumentPurpose::StructReturn)
1449}
1450
1451fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
1452    // Keep in sync with Callee::new
1453    let mut sig = sig.clone();
1454    if sig.uses_special_return(ArgumentPurpose::StructReturn) {
1455        panic!("Explicit StructReturn return value not allowed: {sig:?}")
1456    }
1457    if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
1458        if !sig.returns.is_empty() {
1459            panic!("No return values are allowed when using StructReturn: {sig:?}");
1460        }
1461        sig.returns.insert(0, sig.params[struct_ret_index]);
1462    }
1463    sig
1464}
1465
1466/// ### Pre-Regalloc Functions
1467///
1468/// These methods of `Callee` may only be called before regalloc.
1469impl<M: ABIMachineSpec> Callee<M> {
1470    /// Access the (possibly legalized) signature.
1471    pub fn signature(&self) -> &ir::Signature {
1472        debug_assert!(
1473            !missing_struct_return(&self.ir_sig),
1474            "`Callee::ir_sig` is always legalized"
1475        );
1476        &self.ir_sig
1477    }
1478
1479    /// Initialize. This is called after the Callee is constructed because it
1480    /// may allocate a temp vreg, which can only be allocated once the lowering
1481    /// context exists.
1482    pub fn init_retval_area(
1483        &mut self,
1484        sigs: &SigSet,
1485        vregs: &mut VRegAllocator<M::I>,
1486    ) -> CodegenResult<()> {
1487        if sigs[self.sig].stack_ret_arg.is_some() {
1488            let ret_area_ptr = vregs.alloc(M::word_type())?;
1489            self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
1490        }
1491        Ok(())
1492    }
1493
1494    /// Get the return area pointer register, if any.
1495    pub fn ret_area_ptr(&self) -> Option<Reg> {
1496        self.ret_area_ptr
1497    }
1498
1499    /// Accumulate outgoing arguments.
1500    ///
1501    /// This ensures that at least `size` bytes are allocated in the prologue to
1502    /// be available for use in function calls to hold arguments and/or return
1503    /// values. If this function is called multiple times, the maximum of all
1504    /// `size` values will be available.
1505    pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
1506        if size > self.outgoing_args_size {
1507            self.outgoing_args_size = size;
1508        }
1509    }
1510
1511    /// Accumulate the incoming argument area size requirements for a tail call,
1512    /// as it could be larger than the incoming arguments of the function
1513    /// currently being compiled.
1514    pub fn accumulate_tail_args_size(&mut self, size: u32) {
1515        if size > self.tail_args_size {
1516            self.tail_args_size = size;
1517        }
1518    }
1519
1520    pub fn is_forward_edge_cfi_enabled(&self) -> bool {
1521        self.isa_flags.is_forward_edge_cfi_enabled()
1522    }
1523
1524    /// Get the calling convention implemented by this ABI object.
1525    pub fn call_conv(&self) -> isa::CallConv {
1526        self.call_conv
1527    }
1528
1529    /// Get the ABI-dependent MachineEnv for managing register allocation.
1530    pub fn machine_env(&self) -> &MachineEnv {
1531        M::get_machine_env(&self.flags, self.call_conv)
1532    }
1533
1534    /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
1535    pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
1536        &self.sized_stackslots
1537    }
1538
1539    /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
1540    pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
1541        &self.dynamic_stackslots
1542    }
1543
1544    /// Generate an instruction which copies an argument to a destination
1545    /// register.
1546    pub fn gen_copy_arg_to_regs(
1547        &mut self,
1548        sigs: &SigSet,
1549        idx: usize,
1550        into_regs: ValueRegs<Writable<Reg>>,
1551        vregs: &mut VRegAllocator<M::I>,
1552    ) -> SmallInstVec<M::I> {
1553        let mut insts = smallvec![];
1554        let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
1555            match slot {
1556                &ABIArgSlot::Reg { reg, .. } => {
1557                    // Add a preg -> def pair to the eventual `args`
1558                    // instruction.  Extension mode doesn't matter
1559                    // (we're copying out, not in; we ignore high bits
1560                    // by convention).
1561                    let arg = ArgPair {
1562                        vreg: *into_reg,
1563                        preg: reg.into(),
1564                    };
1565                    self.reg_args.push(arg);
1566                }
1567                &ABIArgSlot::Stack {
1568                    offset,
1569                    ty,
1570                    extension,
1571                    ..
1572                } => {
1573                    // However, we have to respect the extension mode for stack
1574                    // slots, or else we grab the wrong bytes on big-endian.
1575                    let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1576                    let ty =
1577                        if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
1578                            M::word_type()
1579                        } else {
1580                            ty
1581                        };
1582                    insts.push(M::gen_load_stack(
1583                        StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1584                        *into_reg,
1585                        ty,
1586                    ));
1587                }
1588            }
1589        };
1590
1591        match &sigs.args(self.sig)[idx] {
1592            &ABIArg::Slots { ref slots, .. } => {
1593                assert_eq!(into_regs.len(), slots.len());
1594                for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
1595                    copy_arg_slot_to_reg(&slot, &into_reg);
1596                }
1597            }
1598            &ABIArg::StructArg { offset, .. } => {
1599                let into_reg = into_regs.only_reg().unwrap();
1600                // Buffer address is implicitly defined by the ABI.
1601                insts.push(M::gen_get_stack_addr(
1602                    StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1603                    into_reg,
1604                ));
1605            }
1606            &ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
1607                let into_reg = into_regs.only_reg().unwrap();
1608                // We need to dereference the pointer.
1609                let base = match &pointer {
1610                    &ABIArgSlot::Reg { reg, ty, .. } => {
1611                        let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
1612                        self.reg_args.push(ArgPair {
1613                            vreg: Writable::from_reg(tmp),
1614                            preg: reg.into(),
1615                        });
1616                        tmp
1617                    }
1618                    &ABIArgSlot::Stack { offset, ty, .. } => {
1619                        let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
1620                            .only_reg()
1621                            .unwrap();
1622                        insts.push(M::gen_load_stack(
1623                            StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1624                            addr_reg,
1625                            ty,
1626                        ));
1627                        addr_reg.to_reg()
1628                    }
1629                };
1630                insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
1631            }
1632        }
1633        insts
1634    }
1635
1636    /// Generate an instruction which copies a source register to a return value slot.
1637    pub fn gen_copy_regs_to_retval(
1638        &self,
1639        sigs: &SigSet,
1640        idx: usize,
1641        from_regs: ValueRegs<Reg>,
1642        vregs: &mut VRegAllocator<M::I>,
1643    ) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
1644        let mut reg_pairs = smallvec![];
1645        let mut ret = smallvec![];
1646        let word_bits = M::word_bits() as u8;
1647        match &sigs.rets(self.sig)[idx] {
1648            &ABIArg::Slots { ref slots, .. } => {
1649                assert_eq!(from_regs.len(), slots.len());
1650                for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1651                    match slot {
1652                        &ABIArgSlot::Reg {
1653                            reg, ty, extension, ..
1654                        } => {
1655                            let from_bits = ty_bits(ty) as u8;
1656                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1657                            let vreg = match (ext, from_bits) {
1658                                (ir::ArgumentExtension::Uext, n)
1659                                | (ir::ArgumentExtension::Sext, n)
1660                                    if n < word_bits =>
1661                                {
1662                                    let signed = ext == ir::ArgumentExtension::Sext;
1663                                    let dst =
1664                                        writable_value_regs(vregs.alloc_with_deferred_error(ty))
1665                                            .only_reg()
1666                                            .unwrap();
1667                                    ret.push(M::gen_extend(
1668                                        dst, from_reg, signed, from_bits,
1669                                        /* to_bits = */ word_bits,
1670                                    ));
1671                                    dst.to_reg()
1672                                }
1673                                _ => {
1674                                    // No move needed, regalloc2 will emit it using the constraint
1675                                    // added by the RetPair.
1676                                    from_reg
1677                                }
1678                            };
1679                            reg_pairs.push(RetPair {
1680                                vreg,
1681                                preg: Reg::from(reg),
1682                            });
1683                        }
1684                        &ABIArgSlot::Stack {
1685                            offset,
1686                            ty,
1687                            extension,
1688                            ..
1689                        } => {
1690                            let mut ty = ty;
1691                            let from_bits = ty_bits(ty) as u8;
1692                            // A machine ABI implementation should ensure that stack frames
1693                            // have "reasonable" size. All current ABIs for machinst
1694                            // backends (aarch64 and x64) enforce a 128MB limit.
1695                            let off = i32::try_from(offset).expect(
1696                                "Argument stack offset greater than 2GB; should hit impl limit first",
1697                                );
1698                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1699                            // Trash the from_reg; it should be its last use.
1700                            match (ext, from_bits) {
1701                                (ir::ArgumentExtension::Uext, n)
1702                                | (ir::ArgumentExtension::Sext, n)
1703                                    if n < word_bits =>
1704                                {
1705                                    assert_eq!(M::word_reg_class(), from_reg.class());
1706                                    let signed = ext == ir::ArgumentExtension::Sext;
1707                                    let dst =
1708                                        writable_value_regs(vregs.alloc_with_deferred_error(ty))
1709                                            .only_reg()
1710                                            .unwrap();
1711                                    ret.push(M::gen_extend(
1712                                        dst, from_reg, signed, from_bits,
1713                                        /* to_bits = */ word_bits,
1714                                    ));
1715                                    // Store the extended version.
1716                                    ty = M::word_type();
1717                                }
1718                                _ => {}
1719                            };
1720                            ret.push(M::gen_store_base_offset(
1721                                self.ret_area_ptr.unwrap(),
1722                                off,
1723                                from_reg,
1724                                ty,
1725                            ));
1726                        }
1727                    }
1728                }
1729            }
1730            ABIArg::StructArg { .. } => {
1731                panic!("StructArg in return position is unsupported");
1732            }
1733            ABIArg::ImplicitPtrArg { .. } => {
1734                panic!("ImplicitPtrArg in return position is unsupported");
1735            }
1736        }
1737        (reg_pairs, ret)
1738    }
1739
1740    /// Generate any setup instruction needed to save values to the
1741    /// return-value area. This is usually used when were are multiple return
1742    /// values or an otherwise large return value that must be passed on the
1743    /// stack; typically the ABI specifies an extra hidden argument that is a
1744    /// pointer to that memory.
1745    pub fn gen_retval_area_setup(
1746        &mut self,
1747        sigs: &SigSet,
1748        vregs: &mut VRegAllocator<M::I>,
1749    ) -> Option<M::I> {
1750        if let Some(i) = sigs[self.sig].stack_ret_arg {
1751            let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
1752            let insts =
1753                self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
1754            insts.into_iter().next().map(|inst| {
1755                trace!(
1756                    "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
1757                    inst,
1758                    ret_area_ptr.to_reg()
1759                );
1760                inst
1761            })
1762        } else {
1763            trace!("gen_retval_area_setup: not needed");
1764            None
1765        }
1766    }
1767
1768    /// Generate a return instruction.
1769    pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
1770        M::gen_rets(rets)
1771    }
1772
1773    /// Set up arguments values `args` for a call with signature `sig`.
1774    /// This will return a series of instructions to be emitted to set
1775    /// up all arguments, as well as a `CallArgList` list representing
1776    /// the arguments passed in registers.  The latter need to be added
1777    /// as constraints to the actual call instruction.
1778    pub fn gen_call_args(
1779        &self,
1780        sigs: &SigSet,
1781        sig: Sig,
1782        args: &[ValueRegs<Reg>],
1783        is_tail_call: bool,
1784        flags: &settings::Flags,
1785        vregs: &mut VRegAllocator<M::I>,
1786    ) -> (CallArgList, SmallInstVec<M::I>) {
1787        let mut uses: CallArgList = smallvec![];
1788        let mut insts = smallvec![];
1789
1790        assert_eq!(args.len(), sigs.num_args(sig));
1791
1792        let call_conv = sigs[sig].call_conv;
1793        let stack_arg_space = sigs[sig].sized_stack_arg_space;
1794        let stack_arg = |offset| {
1795            if is_tail_call {
1796                StackAMode::IncomingArg(offset, stack_arg_space)
1797            } else {
1798                StackAMode::OutgoingArg(offset)
1799            }
1800        };
1801
1802        let word_ty = M::word_type();
1803        let word_rc = M::word_reg_class();
1804        let word_bits = M::word_bits() as usize;
1805
1806        if is_tail_call {
1807            debug_assert_eq!(
1808                self.call_conv,
1809                isa::CallConv::Tail,
1810                "Can only do `return_call`s from within a `tail` calling convention function"
1811            );
1812        }
1813
1814        // Helper to process a single argument slot (register or stack slot).
1815        // This will either add the register to the `uses` list or write the
1816        // value to the stack slot in the outgoing argument area (or for tail
1817        // calls, the incoming argument area).
1818        let mut process_arg_slot = |insts: &mut SmallInstVec<M::I>, slot, vreg, ty| {
1819            match &slot {
1820                &ABIArgSlot::Reg { reg, .. } => {
1821                    uses.push(CallArgPair {
1822                        vreg,
1823                        preg: reg.into(),
1824                    });
1825                }
1826                &ABIArgSlot::Stack { offset, .. } => {
1827                    insts.push(M::gen_store_stack(stack_arg(offset), vreg, ty));
1828                }
1829            };
1830        };
1831
1832        // First pass: Handle `StructArg` arguments.  These need to be copied
1833        // into their associated stack buffers.  This should happen before any
1834        // of the other arguments are processed, as the `memcpy` call might
1835        // clobber registers used by other arguments.
1836        for (idx, from_regs) in args.iter().enumerate() {
1837            match &sigs.args(sig)[idx] {
1838                &ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
1839                &ABIArg::StructArg { offset, size, .. } => {
1840                    let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1841                    insts.push(M::gen_get_stack_addr(
1842                        stack_arg(offset),
1843                        Writable::from_reg(tmp),
1844                    ));
1845                    insts.extend(M::gen_memcpy(
1846                        isa::CallConv::for_libcall(flags, call_conv),
1847                        tmp,
1848                        from_regs.only_reg().unwrap(),
1849                        size as usize,
1850                        |ty| {
1851                            Writable::from_reg(
1852                                vregs.alloc_with_deferred_error(ty).only_reg().unwrap(),
1853                            )
1854                        },
1855                    ));
1856                }
1857            }
1858        }
1859
1860        // Second pass: Handle everything except `StructArg` arguments.
1861        for (idx, from_regs) in args.iter().enumerate() {
1862            match sigs.args(sig)[idx] {
1863                ABIArg::Slots { ref slots, .. } => {
1864                    assert_eq!(from_regs.len(), slots.len());
1865                    for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1866                        // Load argument slot value from `from_reg`, and perform any zero-
1867                        // or sign-extension that is required by the ABI.
1868                        let (ty, extension) = match *slot {
1869                            ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1870                            ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
1871                        };
1872                        let ext = M::get_ext_mode(call_conv, extension);
1873                        let (vreg, ty) = if ext != ir::ArgumentExtension::None
1874                            && ty_bits(ty) < word_bits
1875                        {
1876                            assert_eq!(word_rc, from_reg.class());
1877                            let signed = match ext {
1878                                ir::ArgumentExtension::Uext => false,
1879                                ir::ArgumentExtension::Sext => true,
1880                                _ => unreachable!(),
1881                            };
1882                            let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1883                            insts.push(M::gen_extend(
1884                                Writable::from_reg(tmp),
1885                                *from_reg,
1886                                signed,
1887                                ty_bits(ty) as u8,
1888                                word_bits as u8,
1889                            ));
1890                            (tmp, word_ty)
1891                        } else {
1892                            (*from_reg, ty)
1893                        };
1894                        process_arg_slot(&mut insts, *slot, vreg, ty);
1895                    }
1896                }
1897                ABIArg::ImplicitPtrArg {
1898                    offset,
1899                    pointer,
1900                    ty,
1901                    ..
1902                } => {
1903                    let vreg = from_regs.only_reg().unwrap();
1904                    let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1905                    insts.push(M::gen_get_stack_addr(
1906                        stack_arg(offset),
1907                        Writable::from_reg(tmp),
1908                    ));
1909                    insts.push(M::gen_store_base_offset(tmp, 0, vreg, ty));
1910                    process_arg_slot(&mut insts, pointer, tmp, word_ty);
1911                }
1912                ABIArg::StructArg { .. } => {}
1913            }
1914        }
1915
1916        // Finally, set the stack-return pointer to the return argument area.
1917        // For tail calls, this means forwarding the incoming stack-return pointer.
1918        if let Some(ret_arg) = sigs.get_ret_arg(sig) {
1919            let ret_area = if is_tail_call {
1920                self.ret_area_ptr.expect(
1921                    "if the tail callee has a return pointer, then the tail caller must as well",
1922                )
1923            } else {
1924                let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1925                let amode = StackAMode::OutgoingArg(stack_arg_space.into());
1926                insts.push(M::gen_get_stack_addr(amode, Writable::from_reg(tmp)));
1927                tmp
1928            };
1929            match ret_arg {
1930                // The return pointer must occupy a single slot.
1931                ABIArg::Slots { slots, .. } => {
1932                    assert_eq!(slots.len(), 1);
1933                    process_arg_slot(&mut insts, slots[0], ret_area, word_ty);
1934                }
1935                _ => unreachable!(),
1936            }
1937        }
1938
1939        (uses, insts)
1940    }
1941
1942    /// Set up return values `outputs` for a call with signature `sig`.
1943    /// This does not emit (or return) any instructions, but returns a
1944    /// `CallRetList` representing the return value constraints.  This
1945    /// needs to be added to the actual call instruction.
1946    ///
1947    /// If `try_call_payloads` is non-zero, it is expected to hold
1948    /// exception payload registers for try_call instructions.  These
1949    /// will be added as needed to the `CallRetList` as well.
1950    pub fn gen_call_rets(
1951        &self,
1952        sigs: &SigSet,
1953        sig: Sig,
1954        outputs: &[ValueRegs<Reg>],
1955        try_call_payloads: Option<&[Writable<Reg>]>,
1956        vregs: &mut VRegAllocator<M::I>,
1957    ) -> CallRetList {
1958        let callee_conv = sigs[sig].call_conv;
1959        let stack_arg_space = sigs[sig].sized_stack_arg_space;
1960
1961        let word_ty = M::word_type();
1962        let word_bits = M::word_bits() as usize;
1963
1964        let mut defs: CallRetList = smallvec![];
1965        let mut outputs = outputs.into_iter();
1966        let num_rets = sigs.num_rets(sig);
1967        for idx in 0..num_rets {
1968            let ret = sigs.rets(sig)[idx].clone();
1969            match ret {
1970                ABIArg::Slots {
1971                    ref slots, purpose, ..
1972                } => {
1973                    // We do not use the returned copy of the return buffer pointer,
1974                    // so skip any StructReturn returns that may be present.
1975                    if purpose == ArgumentPurpose::StructReturn {
1976                        continue;
1977                    }
1978                    let retval_regs = outputs.next().unwrap();
1979                    assert_eq!(retval_regs.len(), slots.len());
1980                    for (slot, retval_reg) in slots.iter().zip(retval_regs.regs().iter()) {
1981                        // We do not perform any extension because we're copying out, not in,
1982                        // and we ignore high bits in our own registers by convention.  However,
1983                        // we still need to use the proper extended type to access stack slots
1984                        // (this is critical on big-endian systems).
1985                        let (ty, extension) = match *slot {
1986                            ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1987                            ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
1988                        };
1989                        let ext = M::get_ext_mode(callee_conv, extension);
1990                        let ty = if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
1991                            word_ty
1992                        } else {
1993                            ty
1994                        };
1995
1996                        match slot {
1997                            &ABIArgSlot::Reg { reg, .. } => {
1998                                defs.push(CallRetPair {
1999                                    vreg: Writable::from_reg(*retval_reg),
2000                                    location: RetLocation::Reg(reg.into(), ty),
2001                                });
2002                            }
2003                            &ABIArgSlot::Stack { offset, .. } => {
2004                                let amode =
2005                                    StackAMode::OutgoingArg(offset + i64::from(stack_arg_space));
2006                                defs.push(CallRetPair {
2007                                    vreg: Writable::from_reg(*retval_reg),
2008                                    location: RetLocation::Stack(amode, ty),
2009                                });
2010                            }
2011                        }
2012                    }
2013                }
2014                ABIArg::StructArg { .. } => {
2015                    panic!("StructArg not supported in return position");
2016                }
2017                ABIArg::ImplicitPtrArg { .. } => {
2018                    panic!("ImplicitPtrArg not supported in return position");
2019                }
2020            }
2021        }
2022        assert!(outputs.next().is_none());
2023
2024        if let Some(try_call_payloads) = try_call_payloads {
2025            // We need to update `defs` to contain the exception
2026            // payload regs as well. We have two sources of info that
2027            // we join:
2028            //
2029            // - The machine-specific ABI implementation `M`, which
2030            //   tells us the particular registers that payload values
2031            //   must be in
2032            // - The passed-in lowering context, which gives us the
2033            //   vregs we must define.
2034            //
2035            // Note that payload values may need to end up in the same
2036            // physical registers as ordinary return values; this is
2037            // not a conflict, because we either get one or the
2038            // other. For regalloc's purposes, we define both starting
2039            // here at the callsite, but we can share one def in the
2040            // `defs` list and alias one vreg to another. Thus we
2041            // handle the two cases below for each payload register:
2042            // overlaps a return value (and we alias to it) or not
2043            // (and we add a def).
2044            let pregs = M::exception_payload_regs(callee_conv);
2045            for (i, &preg) in pregs.iter().enumerate() {
2046                let vreg = try_call_payloads[i];
2047                if let Some(existing) = defs.iter().find(|def| match def.location {
2048                    RetLocation::Reg(r, _) => r == preg,
2049                    _ => false,
2050                }) {
2051                    vregs.set_vreg_alias(vreg.to_reg(), existing.vreg.to_reg());
2052                } else {
2053                    defs.push(CallRetPair {
2054                        vreg,
2055                        location: RetLocation::Reg(preg, word_ty),
2056                    });
2057                }
2058            }
2059        }
2060
2061        defs
2062    }
2063
2064    /// Populate a `CallInfo` for a call with signature `sig`.
2065    ///
2066    /// `dest` is the target-specific call destination value
2067    /// `uses` is the `CallArgList` describing argument constraints
2068    /// `defs` is the `CallRetList` describing return constraints
2069    /// `try_call_info` describes exception targets for try_call instructions
2070    ///
2071    /// The clobber list is computed here from the above data.
2072    pub fn gen_call_info<T>(
2073        &self,
2074        sigs: &SigSet,
2075        sig: Sig,
2076        dest: T,
2077        uses: CallArgList,
2078        defs: CallRetList,
2079        try_call_info: Option<TryCallInfo>,
2080    ) -> CallInfo<T> {
2081        let caller_conv = self.call_conv;
2082        let callee_conv = sigs[sig].call_conv;
2083        let stack_arg_space = sigs[sig].sized_stack_arg_space;
2084
2085        let clobbers = {
2086            // Get clobbers: all caller-saves. These may include return value
2087            // regs, which we will remove from the clobber set below.
2088            let mut clobbers =
2089                <M>::get_regs_clobbered_by_call(callee_conv, try_call_info.is_some());
2090
2091            // Remove retval regs from clobbers.
2092            for def in &defs {
2093                if let RetLocation::Reg(preg, _) = def.location {
2094                    clobbers.remove(PReg::from(preg.to_real_reg().unwrap()));
2095                }
2096            }
2097
2098            clobbers
2099        };
2100
2101        // Any adjustment to SP to account for required outgoing arguments/stack return values must
2102        // be done inside of the call pseudo-op, to ensure that SP is always in a consistent
2103        // state for all other instructions. For example, if a tail-call abi function is called
2104        // here, the reclamation of the outgoing argument area must be done inside of the call
2105        // pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
2106        // function. (Except the prologue and epilogue, but those are fairly special parts of the
2107        // function that establish the SP invariants that are relied on elsewhere and are generated
2108        // after the register allocator has run and thus cannot have register allocator-inserted
2109        // references to SP offsets.)
2110
2111        let callee_pop_size = if callee_conv == isa::CallConv::Tail {
2112            // The tail calling convention has callees pop stack arguments.
2113            stack_arg_space
2114        } else {
2115            0
2116        };
2117
2118        CallInfo {
2119            dest,
2120            uses,
2121            defs,
2122            clobbers,
2123            callee_conv,
2124            caller_conv,
2125            callee_pop_size,
2126            try_call_info,
2127        }
2128    }
2129
2130    /// Produce an instruction that computes a sized stackslot address.
2131    pub fn sized_stackslot_addr(
2132        &self,
2133        slot: StackSlot,
2134        offset: u32,
2135        into_reg: Writable<Reg>,
2136    ) -> M::I {
2137        // Offset from beginning of stackslot area.
2138        let stack_off = self.sized_stackslots[slot] as i64;
2139        let sp_off: i64 = stack_off + (offset as i64);
2140        M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
2141    }
2142
2143    /// Produce an instruction that computes a dynamic stackslot address.
2144    pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
2145        let stack_off = self.dynamic_stackslots[slot] as i64;
2146        M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
2147    }
2148
2149    /// Get an `args` pseudo-inst, if any, that should appear at the
2150    /// very top of the function body prior to regalloc.
2151    pub fn take_args(&mut self) -> Option<M::I> {
2152        if self.reg_args.len() > 0 {
2153            // Very first instruction is an `args` pseudo-inst that
2154            // establishes live-ranges for in-register arguments and
2155            // constrains them at the start of the function to the
2156            // locations defined by the ABI.
2157            Some(M::gen_args(std::mem::take(&mut self.reg_args)))
2158        } else {
2159            None
2160        }
2161    }
2162}
2163
2164/// ### Post-Regalloc Functions
2165///
2166/// These methods of `Callee` may only be called after
2167/// regalloc.
2168impl<M: ABIMachineSpec> Callee<M> {
2169    /// Compute the final frame layout, post-regalloc.
2170    ///
2171    /// This must be called before gen_prologue or gen_epilogue.
2172    pub fn compute_frame_layout(
2173        &mut self,
2174        sigs: &SigSet,
2175        spillslots: usize,
2176        clobbered: Vec<Writable<RealReg>>,
2177    ) {
2178        let bytes = M::word_bytes();
2179        let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
2180        let mask = M::stack_align(self.call_conv) - 1;
2181        let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
2182        self.frame_layout = Some(M::compute_frame_layout(
2183            self.call_conv,
2184            &self.flags,
2185            self.signature(),
2186            &clobbered,
2187            self.is_leaf,
2188            self.stack_args_size(sigs),
2189            self.tail_args_size,
2190            self.stackslots_size,
2191            total_stacksize,
2192            self.outgoing_args_size,
2193        ));
2194    }
2195
2196    /// Generate a prologue, post-regalloc.
2197    ///
2198    /// This should include any stack frame or other setup necessary to use the
2199    /// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
2200    pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
2201        let frame_layout = self.frame_layout();
2202        let mut insts = smallvec![];
2203
2204        // Set up frame.
2205        insts.extend(M::gen_prologue_frame_setup(
2206            self.call_conv,
2207            &self.flags,
2208            &self.isa_flags,
2209            &frame_layout,
2210        ));
2211
2212        // The stack limit check needs to cover all the stack adjustments we
2213        // might make, up to the next stack limit check in any function we
2214        // call. Since this happens after frame setup, the current function's
2215        // setup area needs to be accounted for in the caller's stack limit
2216        // check, but we need to account for any setup area that our callees
2217        // might need. Note that s390x may also use the outgoing args area for
2218        // backtrace support even in leaf functions, so that should be accounted
2219        // for unconditionally.
2220        let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
2221            + frame_layout.clobber_size
2222            + frame_layout.fixed_frame_storage_size
2223            + frame_layout.outgoing_args_size
2224            + if self.is_leaf {
2225                0
2226            } else {
2227                frame_layout.setup_area_size
2228            };
2229
2230        // Leaf functions with zero stack don't need a stack check if one's
2231        // specified, otherwise always insert the stack check.
2232        if total_stacksize > 0 || !self.is_leaf {
2233            if let Some((reg, stack_limit_load)) = &self.stack_limit {
2234                insts.extend(stack_limit_load.clone());
2235                self.insert_stack_check(*reg, total_stacksize, &mut insts);
2236            }
2237
2238            if self.flags.enable_probestack() {
2239                let guard_size = 1 << self.flags.probestack_size_log2();
2240                match self.flags.probestack_strategy() {
2241                    ProbestackStrategy::Inline => M::gen_inline_probestack(
2242                        &mut insts,
2243                        self.call_conv,
2244                        total_stacksize,
2245                        guard_size,
2246                    ),
2247                    ProbestackStrategy::Outline => {
2248                        if total_stacksize >= guard_size {
2249                            M::gen_probestack(&mut insts, total_stacksize);
2250                        }
2251                    }
2252                }
2253            }
2254        }
2255
2256        // Save clobbered registers.
2257        insts.extend(M::gen_clobber_save(
2258            self.call_conv,
2259            &self.flags,
2260            &frame_layout,
2261        ));
2262
2263        insts
2264    }
2265
2266    /// Generate an epilogue, post-regalloc.
2267    ///
2268    /// Note that this must generate the actual return instruction (rather than
2269    /// emitting this in the lowering logic), because the epilogue code comes
2270    /// before the return and the two are likely closely related.
2271    pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
2272        let frame_layout = self.frame_layout();
2273        let mut insts = smallvec![];
2274
2275        // Restore clobbered registers.
2276        insts.extend(M::gen_clobber_restore(
2277            self.call_conv,
2278            &self.flags,
2279            &frame_layout,
2280        ));
2281
2282        // Tear down frame.
2283        insts.extend(M::gen_epilogue_frame_restore(
2284            self.call_conv,
2285            &self.flags,
2286            &self.isa_flags,
2287            &frame_layout,
2288        ));
2289
2290        // And return.
2291        insts.extend(M::gen_return(
2292            self.call_conv,
2293            &self.isa_flags,
2294            &frame_layout,
2295        ));
2296
2297        trace!("Epilogue: {:?}", insts);
2298        insts
2299    }
2300
2301    /// Return a reference to the computed frame layout information. This
2302    /// function will panic if it's called before [`Self::compute_frame_layout`].
2303    pub fn frame_layout(&self) -> &FrameLayout {
2304        self.frame_layout
2305            .as_ref()
2306            .expect("frame layout not computed before prologue generation")
2307    }
2308
2309    /// Returns the full frame size for the given function, after prologue
2310    /// emission has run. This comprises the spill slots and stack-storage
2311    /// slots as well as storage for clobbered callee-save registers, but
2312    /// not arguments arguments pushed at callsites within this function,
2313    /// or other ephemeral pushes.
2314    pub fn frame_size(&self) -> u32 {
2315        let frame_layout = self.frame_layout();
2316        frame_layout.clobber_size + frame_layout.fixed_frame_storage_size
2317    }
2318
2319    /// Returns offset from the slot base in the current frame to the caller's SP.
2320    pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
2321        let frame_layout = self.frame_layout();
2322        frame_layout.clobber_size
2323            + frame_layout.fixed_frame_storage_size
2324            + frame_layout.setup_area_size
2325    }
2326
2327    /// Returns the size of arguments expected on the stack.
2328    pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
2329        sigs[self.sig].sized_stack_arg_space
2330    }
2331
2332    /// Get the spill-slot size.
2333    pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
2334        let max = if self.dynamic_type_sizes.len() == 0 {
2335            16
2336        } else {
2337            *self
2338                .dynamic_type_sizes
2339                .iter()
2340                .max_by(|x, y| x.1.cmp(&y.1))
2341                .map(|(_k, v)| v)
2342                .unwrap()
2343        };
2344        M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
2345    }
2346
2347    /// Get the spill slot offset relative to the fixed allocation area start.
2348    pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
2349        self.frame_layout().spillslot_offset(slot)
2350    }
2351
2352    /// Generate a spill.
2353    pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
2354        let ty = M::I::canonical_type_for_rc(from_reg.class());
2355        debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2356
2357        let sp_off = self.get_spillslot_offset(to_slot);
2358        trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");
2359
2360        let from = StackAMode::Slot(sp_off);
2361        <M>::gen_store_stack(from, Reg::from(from_reg), ty)
2362    }
2363
2364    /// Generate a reload (fill).
2365    pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
2366        let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
2367        debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2368
2369        let sp_off = self.get_spillslot_offset(from_slot);
2370        trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");
2371
2372        let from = StackAMode::Slot(sp_off);
2373        <M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
2374    }
2375}
2376
2377/// An input argument to a call instruction: the vreg that is used,
2378/// and the preg it is constrained to (per the ABI).
2379#[derive(Clone, Debug)]
2380pub struct CallArgPair {
2381    /// The virtual register to use for the argument.
2382    pub vreg: Reg,
2383    /// The real register into which the arg goes.
2384    pub preg: Reg,
2385}
2386
2387/// An output return value from a call instruction: the vreg that is
2388/// defined, and the preg or stack location it is constrained to (per
2389/// the ABI).
2390#[derive(Clone, Debug)]
2391pub struct CallRetPair {
2392    /// The virtual register to define from this return value.
2393    pub vreg: Writable<Reg>,
2394    /// The real register from which the return value is read.
2395    pub location: RetLocation,
2396}
2397
2398/// A location to load a return-value from after a call completes.
2399#[derive(Clone, Debug, PartialEq, Eq)]
2400pub enum RetLocation {
2401    /// A physical register.
2402    Reg(Reg, Type),
2403    /// A stack location, identified by a `StackAMode`.
2404    Stack(StackAMode, Type),
2405}
2406
2407pub type CallArgList = SmallVec<[CallArgPair; 8]>;
2408pub type CallRetList = SmallVec<[CallRetPair; 8]>;
2409
2410impl<T> CallInfo<T> {
2411    /// Emit loads for any stack-carried return values using the call
2412    /// info and allocations.
2413    pub fn emit_retval_loads<
2414        M: ABIMachineSpec,
2415        EmitFn: FnMut(M::I),
2416        IslandFn: Fn(u32) -> Option<M::I>,
2417    >(
2418        &self,
2419        stackslots_size: u32,
2420        mut emit: EmitFn,
2421        emit_island: IslandFn,
2422    ) {
2423        // Count stack-ret locations and emit an island to account for
2424        // this space usage.
2425        let mut space_needed = 0;
2426        for CallRetPair { location, .. } in &self.defs {
2427            if let RetLocation::Stack(..) = location {
2428                // Assume up to ten instructions, semi-arbitrarily:
2429                // load from stack, store to spillslot, codegen of
2430                // large offsets on RISC ISAs.
2431                space_needed += 10 * M::I::worst_case_size();
2432            }
2433        }
2434        if space_needed > 0 {
2435            if let Some(island_inst) = emit_island(space_needed) {
2436                emit(island_inst);
2437            }
2438        }
2439
2440        let temp = M::retval_temp_reg(self.callee_conv);
2441        // The temporary must be noted as clobbered.
2442        debug_assert!(
2443            M::get_regs_clobbered_by_call(self.callee_conv, self.try_call_info.is_some())
2444                .contains(PReg::from(temp.to_reg().to_real_reg().unwrap()))
2445        );
2446
2447        for CallRetPair { vreg, location } in &self.defs {
2448            match location {
2449                RetLocation::Reg(preg, ..) => {
2450                    // The temporary must not also be an actual return
2451                    // value register.
2452                    debug_assert!(*preg != temp.to_reg());
2453                }
2454                RetLocation::Stack(amode, ty) => {
2455                    if let Some(spillslot) = vreg.to_reg().to_spillslot() {
2456                        // `temp` is an integer register of machine word
2457                        // width, but `ty` may be floating-point/vector,
2458                        // which (i) may not be loadable directly into an
2459                        // int reg, and (ii) may be wider than a machine
2460                        // word. For simplicity, and because there are not
2461                        // always easy choices for volatile float/vec regs
2462                        // (see e.g. x86-64, where fastcall clobbers only
2463                        // xmm0-xmm5, but tail uses xmm0-xmm7 for
2464                        // returns), we use the integer temp register in
2465                        // steps.
2466                        let parts = (ty.bytes() + M::word_bytes() - 1) / M::word_bytes();
2467                        for part in 0..parts {
2468                            emit(M::gen_load_stack(
2469                                amode.offset_by(part * M::word_bytes()),
2470                                temp,
2471                                M::word_type(),
2472                            ));
2473                            emit(M::gen_store_stack(
2474                                StackAMode::Slot(
2475                                    i64::from(stackslots_size)
2476                                        + i64::from(M::word_bytes())
2477                                            * ((spillslot.index() as i64) + (part as i64)),
2478                                ),
2479                                temp.to_reg(),
2480                                M::word_type(),
2481                            ));
2482                        }
2483                    } else {
2484                        assert_ne!(*vreg, temp);
2485                        emit(M::gen_load_stack(*amode, *vreg, *ty));
2486                    }
2487                }
2488            }
2489        }
2490    }
2491}
2492
2493impl TryCallInfo {
2494    pub(crate) fn exception_handlers(
2495        &self,
2496        layout: &FrameLayout,
2497    ) -> impl Iterator<Item = MachExceptionHandler> {
2498        self.exception_handlers.iter().map(|handler| match handler {
2499            TryCallHandler::Tag(tag, label) => MachExceptionHandler::Tag(*tag, *label),
2500            TryCallHandler::Default(label) => MachExceptionHandler::Default(*label),
2501            TryCallHandler::Context(reg) => {
2502                let loc = if let Some(spillslot) = reg.to_spillslot() {
2503                    // The spillslot offset is relative to the "fixed
2504                    // storage area", which comes after outgoing args.
2505                    let offset = layout.spillslot_offset(spillslot) + i64::from(layout.outgoing_args_size);
2506                    ExceptionContextLoc::SPOffset(u32::try_from(offset).expect("SP offset cannot be negative or larger than 4GiB"))
2507                } else if let Some(realreg) = reg.to_real_reg() {
2508                    ExceptionContextLoc::GPR(realreg.hw_enc())
2509                } else {
2510                    panic!("Virtual register present in try-call handler clause after register allocation");
2511                };
2512                MachExceptionHandler::Context(loc)
2513            }
2514        })
2515    }
2516
2517    pub(crate) fn pretty_print_dests(&self) -> String {
2518        self.exception_handlers
2519            .iter()
2520            .map(|handler| match handler {
2521                TryCallHandler::Tag(tag, label) => format!("{tag:?}: {label:?}"),
2522                TryCallHandler::Default(label) => format!("default: {label:?}"),
2523                TryCallHandler::Context(loc) => format!("context {loc:?}"),
2524            })
2525            .collect::<Vec<_>>()
2526            .join(", ")
2527    }
2528
2529    pub(crate) fn collect_operands(&mut self, collector: &mut impl OperandVisitor) {
2530        for handler in &mut self.exception_handlers {
2531            match handler {
2532                TryCallHandler::Context(ctx) => {
2533                    collector.any_late_use(ctx);
2534                }
2535                TryCallHandler::Tag(_, _) | TryCallHandler::Default(_) => {}
2536            }
2537        }
2538    }
2539}
2540
2541#[cfg(test)]
2542mod tests {
2543    use super::SigData;
2544
2545    #[test]
2546    fn sig_data_size() {
2547        // The size of `SigData` is performance sensitive, so make sure
2548        // we don't regress it unintentionally.
2549        assert_eq!(std::mem::size_of::<SigData>(), 24);
2550    }
2551}