wasmtime_cranelift/obj.rs
1//! Object file builder.
2//!
3//! Creates ELF image based on `Compilation` information. The ELF contains
4//! functions and trampolines in the ".text" section. It also contains all
5//! relocation records for the linking stage. If DWARF sections exist, their
6//! content will be written as well.
7//!
8//! The object file has symbols for each function and trampoline, as well as
9//! symbols that refer to libcalls.
10//!
11//! The function symbol names have format "_wasm_function_N", where N is
12//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
13//! function body, the imported wasm function do not. The trampolines symbol
14//! names have format "_trampoline_N", where N is `SignatureIndex`.
15
16use crate::{CompiledFunction, RelocationTarget};
17use anyhow::Result;
18use cranelift_codegen::binemit::Reloc;
19use cranelift_codegen::isa::unwind::{systemv, UnwindInfo};
20use cranelift_codegen::TextSectionBuilder;
21use cranelift_control::ControlPlane;
22use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
23use gimli::RunTimeEndian;
24use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
25use object::{Architecture, SectionFlags, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
26use std::collections::HashMap;
27use std::ops::Range;
28use wasmtime_environ::obj::{self, LibCall};
29use wasmtime_environ::{Compiler, TripleExt, Unsigned};
30
31const TEXT_SECTION_NAME: &[u8] = b".text";
32
33fn text_align(compiler: &dyn Compiler) -> u64 {
34 // text pages will not be made executable with pulley, so the section
35 // doesn't need to be padded out to page alignment boundaries.
36 if compiler.triple().is_pulley() {
37 0x1
38 } else {
39 compiler.page_size_align()
40 }
41}
42
43/// A helper structure used to assemble the final text section of an executable,
44/// plus unwinding information and other related details.
45///
46/// This builder relies on Cranelift-specific internals but assembles into a
47/// generic `Object` which will get further appended to in a compiler-agnostic
48/// fashion later.
49pub struct ModuleTextBuilder<'a> {
50 /// The target that we're compiling for, used to query target-specific
51 /// information as necessary.
52 compiler: &'a dyn Compiler,
53
54 /// The object file that we're generating code into.
55 obj: &'a mut Object<'static>,
56
57 /// The WebAssembly module we're generating code for.
58 text_section: SectionId,
59
60 unwind_info: UnwindInfoBuilder<'a>,
61
62 /// In-progress text section that we're using cranelift's `MachBuffer` to
63 /// build to resolve relocations (calls) between functions.
64 text: Box<dyn TextSectionBuilder>,
65
66 /// Symbols defined in the object for libcalls that relocations are applied
67 /// against.
68 ///
69 /// Note that this isn't typically used. It's only used for SSE-disabled
70 /// builds without SIMD on x86_64 right now.
71 libcall_symbols: HashMap<LibCall, SymbolId>,
72
73 ctrl_plane: ControlPlane,
74}
75
76impl<'a> ModuleTextBuilder<'a> {
77 /// Creates a new builder for the text section of an executable.
78 ///
79 /// The `.text` section will be appended to the specified `obj` along with
80 /// any unwinding or such information as necessary. The `num_funcs`
81 /// parameter indicates the number of times the `append_func` function will
82 /// be called. The `finish` function will panic if this contract is not met.
83 pub fn new(
84 obj: &'a mut Object<'static>,
85 compiler: &'a dyn Compiler,
86 text: Box<dyn TextSectionBuilder>,
87 ) -> Self {
88 // Entire code (functions and trampolines) will be placed
89 // in the ".text" section.
90 let text_section = obj.add_section(
91 obj.segment_name(StandardSegment::Text).to_vec(),
92 TEXT_SECTION_NAME.to_vec(),
93 SectionKind::Text,
94 );
95
96 // If this target is Pulley then flag the text section as not needing the
97 // executable bit in virtual memory which means that the runtime won't
98 // try to call `Mmap::make_executable`, which makes Pulley more
99 // portable.
100 if compiler.triple().is_pulley() {
101 let section = obj.section_mut(text_section);
102 assert!(matches!(section.flags, SectionFlags::None));
103 section.flags = SectionFlags::Elf {
104 sh_flags: obj::SH_WASMTIME_NOT_EXECUTED,
105 };
106 }
107
108 Self {
109 compiler,
110 obj,
111 text_section,
112 unwind_info: Default::default(),
113 text,
114 libcall_symbols: HashMap::default(),
115 ctrl_plane: ControlPlane::default(),
116 }
117 }
118
119 /// Appends the `func` specified named `name` to this object.
120 ///
121 /// The `resolve_reloc_target` closure is used to resolve a relocation
122 /// target to an adjacent function which has already been added or will be
123 /// added to this object. The argument is the relocation target specified
124 /// within `CompiledFunction` and the return value must be an index where
125 /// the target will be defined by the `n`th call to `append_func`.
126 ///
127 /// Returns the symbol associated with the function as well as the range
128 /// that the function resides within the text section.
129 pub fn append_func(
130 &mut self,
131 name: &str,
132 compiled_func: &'a CompiledFunction,
133 resolve_reloc_target: impl Fn(wasmtime_environ::RelocationTarget) -> usize,
134 ) -> (SymbolId, Range<u64>) {
135 let body = compiled_func.buffer.data();
136 let alignment = compiled_func.alignment;
137 let body_len = body.len() as u64;
138 let off = self
139 .text
140 .append(true, &body, alignment, &mut self.ctrl_plane);
141
142 let symbol_id = self.obj.add_symbol(Symbol {
143 name: name.as_bytes().to_vec(),
144 value: off,
145 size: body_len,
146 kind: SymbolKind::Text,
147 scope: SymbolScope::Compilation,
148 weak: false,
149 section: SymbolSection::Section(self.text_section),
150 flags: SymbolFlags::None,
151 });
152
153 if let Some(info) = compiled_func.unwind_info() {
154 self.unwind_info.push(off, body_len, info);
155 }
156
157 for r in compiled_func.relocations() {
158 let reloc_offset = off + u64::from(r.offset);
159 match r.reloc_target {
160 // Relocations against user-defined functions means that this is
161 // a relocation against a module-local function, typically a
162 // call between functions. The `text` field is given priority to
163 // resolve this relocation before we actually emit an object
164 // file, but if it can't handle it then we pass through the
165 // relocation.
166 RelocationTarget::Wasm(_) | RelocationTarget::Builtin(_) => {
167 let target = resolve_reloc_target(r.reloc_target);
168 if self
169 .text
170 .resolve_reloc(reloc_offset, r.reloc, r.addend, target)
171 {
172 continue;
173 }
174
175 // At this time it's expected that all relocations are
176 // handled by `text.resolve_reloc`, and anything that isn't
177 // handled is a bug in `text.resolve_reloc` or something
178 // transitively there. If truly necessary, though, then this
179 // loop could also be updated to forward the relocation to
180 // the final object file as well.
181 panic!(
182 "unresolved relocation could not be processed against \
183 {:?}: {r:?}",
184 r.reloc_target,
185 );
186 }
187
188 // Relocations against libcalls are not common at this time and
189 // are only used in non-default configurations that disable wasm
190 // SIMD, disable SSE features, and for wasm modules that still
191 // use floating point operations.
192 //
193 // Currently these relocations are all expected to be absolute
194 // 8-byte relocations so that's asserted here and then encoded
195 // directly into the object as a normal object relocation. This
196 // is processed at module load time to resolve the relocations.
197 RelocationTarget::HostLibcall(call) => {
198 let symbol = *self.libcall_symbols.entry(call).or_insert_with(|| {
199 self.obj.add_symbol(Symbol {
200 name: call.symbol().as_bytes().to_vec(),
201 value: 0,
202 size: 0,
203 kind: SymbolKind::Text,
204 scope: SymbolScope::Linkage,
205 weak: false,
206 section: SymbolSection::Undefined,
207 flags: SymbolFlags::None,
208 })
209 });
210 let flags = match r.reloc {
211 Reloc::Abs8 => object::RelocationFlags::Generic {
212 encoding: object::RelocationEncoding::Generic,
213 kind: object::RelocationKind::Absolute,
214 size: 64,
215 },
216 other => unimplemented!("unimplemented relocation kind {other:?}"),
217 };
218 self.obj
219 .add_relocation(
220 self.text_section,
221 object::write::Relocation {
222 symbol,
223 flags,
224 offset: reloc_offset,
225 addend: r.addend,
226 },
227 )
228 .unwrap();
229 }
230
231 // This relocation is used to fill in which hostcall id is
232 // desired within the `call_indirect_host` opcode of Pulley
233 // itself. The relocation target is the start of the instruction
234 // and the goal is to insert the static signature number, `n`,
235 // into the instruction.
236 //
237 // At this time the instruction looks like:
238 //
239 // +------+------+------+------+
240 // | OP | OP_EXTENDED | N |
241 // +------+------+------+------+
242 //
243 // This 4-byte encoding has `OP` indicating this is an "extended
244 // opcode" where `OP_EXTENDED` is a 16-bit extended opcode.
245 // The `N` byte is the index of the signature being called and
246 // is what's b eing filled in.
247 //
248 // See the `test_call_indirect_host_width` in
249 // `pulley/tests/all.rs` for this guarantee as well.
250 RelocationTarget::PulleyHostcall(n) => {
251 #[cfg(feature = "pulley")]
252 {
253 use pulley_interpreter::encode::Encode;
254 assert_eq!(pulley_interpreter::CallIndirectHost::WIDTH, 4);
255 }
256 let byte = u8::try_from(n).unwrap();
257 self.text.write(reloc_offset + 3, &[byte]);
258 }
259 };
260 }
261 (symbol_id, off..off + body_len)
262 }
263
264 /// Forces "veneers" to be used for inter-function calls in the text
265 /// section which means that in-bounds optimized addresses are never used.
266 ///
267 /// This is only useful for debugging cranelift itself and typically this
268 /// option is disabled.
269 pub fn force_veneers(&mut self) {
270 self.text.force_veneers();
271 }
272
273 /// Appends the specified amount of bytes of padding into the text section.
274 ///
275 /// This is only useful when fuzzing and/or debugging cranelift itself and
276 /// for production scenarios `padding` is 0 and this function does nothing.
277 pub fn append_padding(&mut self, padding: usize) {
278 if padding == 0 {
279 return;
280 }
281 self.text
282 .append(false, &vec![0; padding], 1, &mut self.ctrl_plane);
283 }
284
285 /// Indicates that the text section has been written completely and this
286 /// will finish appending it to the original object.
287 ///
288 /// Note that this will also write out the unwind information sections if
289 /// necessary.
290 pub fn finish(mut self) {
291 // Finish up the text section now that we're done adding functions.
292 let text = self.text.finish(&mut self.ctrl_plane);
293 self.obj
294 .section_mut(self.text_section)
295 .set_data(text, text_align(self.compiler));
296
297 // Append the unwind information for all our functions, if necessary.
298 self.unwind_info
299 .append_section(self.compiler, self.obj, self.text_section);
300 }
301}
302
303/// Builder used to create unwind information for a set of functions added to a
304/// text section.
305#[derive(Default)]
306struct UnwindInfoBuilder<'a> {
307 windows_xdata: Vec<u8>,
308 windows_pdata: Vec<RUNTIME_FUNCTION>,
309 systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
310}
311
312// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
313// to ensure everything is always `u32` and to have it available on all
314// platforms. Note that all of these specifiers here are relative to a "base
315// address" which we define as the base of where the text section is eventually
316// loaded.
317#[expect(non_camel_case_types, reason = "matching Windows style, not Rust")]
318struct RUNTIME_FUNCTION {
319 begin: u32,
320 end: u32,
321 unwind_address: u32,
322}
323
324impl<'a> UnwindInfoBuilder<'a> {
325 /// Pushes the unwind information for a function into this builder.
326 ///
327 /// The function being described must be located at `function_offset` within
328 /// the text section itself, and the function's size is specified by
329 /// `function_len`.
330 ///
331 /// The `info` should come from Cranelift. and is handled here depending on
332 /// its flavor.
333 fn push(&mut self, function_offset: u64, function_len: u64, info: &'a UnwindInfo) {
334 match info {
335 // Windows unwind information is stored in two locations:
336 //
337 // * First is the actual unwinding information which is stored
338 // in the `.xdata` section. This is where `info`'s emitted
339 // information will go into.
340 // * Second are pointers to connect all this unwind information,
341 // stored in the `.pdata` section. The `.pdata` section is an
342 // array of `RUNTIME_FUNCTION` structures.
343 //
344 // Due to how these will be loaded at runtime the `.pdata` isn't
345 // actually assembled byte-wise here. Instead that's deferred to
346 // happen later during `write_windows_unwind_info` which will apply
347 // a further offset to `unwind_address`.
348 //
349 // FIXME: in theory we could "intern" the `unwind_info` value
350 // here within the `.xdata` section. Most of our unwind
351 // information for functions is probably pretty similar in which
352 // case the `.xdata` could be quite small and `.pdata` could
353 // have multiple functions point to the same unwinding
354 // information.
355 UnwindInfo::WindowsX64(info) => {
356 let unwind_size = info.emit_size();
357 let mut unwind_info = vec![0; unwind_size];
358 info.emit(&mut unwind_info);
359
360 // `.xdata` entries are always 4-byte aligned
361 while self.windows_xdata.len() % 4 != 0 {
362 self.windows_xdata.push(0x00);
363 }
364 let unwind_address = self.windows_xdata.len();
365 self.windows_xdata.extend_from_slice(&unwind_info);
366
367 // Record a `RUNTIME_FUNCTION` which this will point to.
368 self.windows_pdata.push(RUNTIME_FUNCTION {
369 begin: u32::try_from(function_offset).unwrap(),
370 end: u32::try_from(function_offset + function_len).unwrap(),
371 unwind_address: u32::try_from(unwind_address).unwrap(),
372 });
373 }
374
375 // See https://learn.microsoft.com/en-us/cpp/build/arm64-exception-handling
376 UnwindInfo::WindowsArm64(info) => {
377 let code_words = info.code_words();
378 let mut unwind_codes = vec![0; (code_words * 4) as usize];
379 info.emit(&mut unwind_codes);
380
381 // `.xdata` entries are always 4-byte aligned
382 while self.windows_xdata.len() % 4 != 0 {
383 self.windows_xdata.push(0x00);
384 }
385
386 // First word:
387 // 0-17: Function Length
388 // 18-19: Version (must be 0)
389 // 20: X bit (is exception data present?)
390 // 21: E bit (has single packed epilogue?)
391 // 22-26: Epilogue count
392 // 27-31: Code words count
393 let requires_extended_counts = code_words > (1 << 5);
394 let encoded_function_len = function_len / 4;
395 assert!(encoded_function_len < (1 << 18), "function too large");
396 let mut word1 = u32::try_from(encoded_function_len).unwrap();
397 if !requires_extended_counts {
398 word1 |= u32::from(code_words) << 27;
399 }
400 let unwind_address = self.windows_xdata.len();
401 self.windows_xdata.extend_from_slice(&word1.to_le_bytes());
402
403 if requires_extended_counts {
404 // Extended counts word:
405 // 0-15: Epilogue count
406 // 16-23: Code words count
407 let extended_counts_word = (code_words as u32) << 16;
408 self.windows_xdata
409 .extend_from_slice(&extended_counts_word.to_le_bytes());
410 }
411
412 // Skip epilogue information: Per comment on [`UnwindInst`], we
413 // do not emit information about epilogues.
414
415 // Emit the unwind codes.
416 self.windows_xdata.extend_from_slice(&unwind_codes);
417
418 // Record a `RUNTIME_FUNCTION` which this will point to.
419 // NOTE: `end` is not used, so leave it as 0.
420 self.windows_pdata.push(RUNTIME_FUNCTION {
421 begin: u32::try_from(function_offset).unwrap(),
422 end: 0,
423 unwind_address: u32::try_from(unwind_address).unwrap(),
424 });
425 }
426
427 // System-V is different enough that we just record the unwinding
428 // information to get processed at a later time.
429 UnwindInfo::SystemV(info) => {
430 self.systemv_unwind_info.push((function_offset, info));
431 }
432
433 _ => panic!("some unwind info isn't handled here"),
434 }
435 }
436
437 /// Appends the unwind information section, if any, to the `obj` specified.
438 ///
439 /// This function must be called immediately after the text section was
440 /// added to a builder. The unwind information section must trail the text
441 /// section immediately.
442 ///
443 /// The `text_section`'s section identifier is passed into this function.
444 fn append_section(
445 &self,
446 compiler: &dyn Compiler,
447 obj: &mut Object<'_>,
448 text_section: SectionId,
449 ) {
450 // This write will align the text section to a page boundary and then
451 // return the offset at that point. This gives us the full size of the
452 // text section at that point, after alignment.
453 let text_section_size = obj.append_section_data(text_section, &[], text_align(compiler));
454
455 if self.windows_xdata.len() > 0 {
456 assert!(self.systemv_unwind_info.len() == 0);
457 // The `.xdata` section must come first to be just-after the `.text`
458 // section for the reasons documented in `write_windows_unwind_info`
459 // below.
460 let segment = obj.segment_name(StandardSegment::Data).to_vec();
461 let xdata_id = obj.add_section(segment, b".xdata".to_vec(), SectionKind::ReadOnlyData);
462 let segment = obj.segment_name(StandardSegment::Data).to_vec();
463 let pdata_id = obj.add_section(segment, b".pdata".to_vec(), SectionKind::ReadOnlyData);
464 self.write_windows_unwind_info(obj, xdata_id, pdata_id, text_section_size);
465 }
466
467 if self.systemv_unwind_info.len() > 0 {
468 let segment = obj.segment_name(StandardSegment::Data).to_vec();
469 let section_id =
470 obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
471 self.write_systemv_unwind_info(compiler, obj, section_id, text_section_size)
472 }
473 }
474
475 /// This function appends a nonstandard section to the object which is only
476 /// used during `CodeMemory::publish`.
477 ///
478 /// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
479 /// the object file itself. This way registration of unwind info can simply
480 /// pass this slice to the OS itself and there's no need to recalculate
481 /// anything on the other end of loading a module from a precompiled object.
482 ///
483 /// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
484 fn write_windows_unwind_info(
485 &self,
486 obj: &mut Object<'_>,
487 xdata_id: SectionId,
488 pdata_id: SectionId,
489 text_section_size: u64,
490 ) {
491 // Append the `.xdata` section, or the actual unwinding information
492 // codes and such which were built as we found unwind information for
493 // functions.
494 obj.append_section_data(xdata_id, &self.windows_xdata, 4);
495
496 // Next append the `.pdata` section, or the array of `RUNTIME_FUNCTION`
497 // structures stored in the binary.
498 //
499 // This memory will be passed at runtime to `RtlAddFunctionTable` which
500 // takes a "base address" and the entries within `RUNTIME_FUNCTION` are
501 // all relative to this base address. The base address we pass is the
502 // address of the text section itself so all the pointers here must be
503 // text-section-relative. The `begin` and `end` fields for the function
504 // it describes are already text-section-relative, but the
505 // `unwind_address` field needs to be updated here since the value
506 // stored right now is `xdata`-section-relative. We know that the
507 // `xdata` section follows the `.text` section so the
508 // `text_section_size` is added in to calculate the final
509 // `.text`-section-relative address of the unwind information.
510 let xdata_rva = |address| {
511 let address = u64::from(address);
512 let address = address + text_section_size;
513 u32::try_from(address).unwrap()
514 };
515 let pdata = match obj.architecture() {
516 Architecture::X86_64 => {
517 let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 3 * 4);
518 for info in self.windows_pdata.iter() {
519 pdata.extend_from_slice(&info.begin.to_le_bytes());
520 pdata.extend_from_slice(&info.end.to_le_bytes());
521 pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
522 }
523 pdata
524 }
525
526 Architecture::Aarch64 => {
527 // Windows Arm64 .pdata also supports packed unwind data, but
528 // we're not currently using that.
529 let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 2 * 4);
530 for info in self.windows_pdata.iter() {
531 pdata.extend_from_slice(&info.begin.to_le_bytes());
532 pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
533 }
534 pdata
535 }
536
537 _ => unimplemented!("unsupported architecture for windows unwind info"),
538 };
539 obj.append_section_data(pdata_id, &pdata, 4);
540 }
541
542 /// This function appends a nonstandard section to the object which is only
543 /// used during `CodeMemory::publish`.
544 ///
545 /// This will generate a `.eh_frame` section, but not one that can be
546 /// naively loaded. The goal of this section is that we can create the
547 /// section once here and never again does it need to change. To describe
548 /// dynamically loaded functions though each individual FDE needs to talk
549 /// about the function's absolute address that it's referencing. Naturally
550 /// we don't actually know the function's absolute address when we're
551 /// creating an object here.
552 ///
553 /// To solve this problem the FDE address encoding mode is set to
554 /// `DW_EH_PE_pcrel`. This means that the actual effective address that the
555 /// FDE describes is a relative to the address of the FDE itself. By
556 /// leveraging this relative-ness we can assume that the relative distance
557 /// between the FDE and the function it describes is constant, which should
558 /// allow us to generate an FDE ahead-of-time here.
559 ///
560 /// For now this assumes that all the code of functions will start at a
561 /// page-aligned address when loaded into memory. The eh_frame encoded here
562 /// then assumes that the text section is itself page aligned to its size
563 /// and the eh_frame will follow just after the text section. This means
564 /// that the relative offsets we're using here is the FDE going backwards
565 /// into the text section itself.
566 ///
567 /// Note that the library we're using to create the FDEs, `gimli`, doesn't
568 /// actually encode addresses relative to the FDE itself. Instead the
569 /// addresses are encoded relative to the start of the `.eh_frame` section.
570 /// This makes it much easier for us where we provide the relative offset
571 /// from the start of `.eh_frame` to the function in the text section, which
572 /// given our layout basically means the offset of the function in the text
573 /// section from the end of the text section.
574 ///
575 /// A final note is that the reason we page-align the text section's size is
576 /// so the .eh_frame lives on a separate page from the text section itself.
577 /// This allows `.eh_frame` to have different virtual memory permissions,
578 /// such as being purely read-only instead of read/execute like the code
579 /// bits.
580 fn write_systemv_unwind_info(
581 &self,
582 compiler: &dyn Compiler,
583 obj: &mut Object<'_>,
584 section_id: SectionId,
585 text_section_size: u64,
586 ) {
587 let mut cie = match compiler.create_systemv_cie() {
588 Some(cie) => cie,
589 None => return,
590 };
591 let mut table = FrameTable::default();
592 cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
593 let cie_id = table.add_cie(cie);
594
595 for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
596 let backwards_off = text_section_size - text_section_off;
597 let actual_offset = -i64::try_from(backwards_off).unwrap();
598 // Note that gimli wants an unsigned 64-bit integer here, but
599 // unwinders just use this constant for a relative addition with the
600 // address of the FDE, which means that the sign doesn't actually
601 // matter.
602 let fde = unwind_info.to_fde(Address::Constant(actual_offset.unsigned()));
603 table.add_fde(cie_id, fde);
604 }
605 let endian = match compiler.triple().endianness().unwrap() {
606 target_lexicon::Endianness::Little => RunTimeEndian::Little,
607 target_lexicon::Endianness::Big => RunTimeEndian::Big,
608 };
609 let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
610 table.write_eh_frame(&mut eh_frame).unwrap();
611
612 // Some unwinding implementations expect a terminating "empty" length so
613 // a 0 is written at the end of the table for those implementations.
614 let mut endian_vec = (eh_frame.0).0;
615 endian_vec.write_u32(0).unwrap();
616 obj.append_section_data(section_id, endian_vec.slice(), 1);
617
618 use gimli::constants;
619 use gimli::write::Error;
620
621 struct MyVec(EndianVec<RunTimeEndian>);
622
623 impl Writer for MyVec {
624 type Endian = RunTimeEndian;
625
626 fn endian(&self) -> RunTimeEndian {
627 self.0.endian()
628 }
629
630 fn len(&self) -> usize {
631 self.0.len()
632 }
633
634 fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
635 self.0.write(buf)
636 }
637
638 fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
639 self.0.write_at(pos, buf)
640 }
641
642 // FIXME(gimli-rs/gimli#576) this is the definition we want for
643 // `write_eh_pointer` but the default implementation, at the time
644 // of this writing, uses `offset - val` instead of `val - offset`.
645 // A PR has been merged to fix this but until that's published we
646 // can't use it.
647 fn write_eh_pointer(
648 &mut self,
649 address: Address,
650 eh_pe: constants::DwEhPe,
651 size: u8,
652 ) -> Result<(), Error> {
653 let val = match address {
654 Address::Constant(val) => val,
655 Address::Symbol { .. } => unreachable!(),
656 };
657 assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
658 let offset = self.len() as u64;
659 let val = val.wrapping_sub(offset);
660 self.write_eh_pointer_data(val, eh_pe.format(), size)
661 }
662 }
663 }
664}