wasmtime_cranelift/
obj.rs

1//! Object file builder.
2//!
3//! Creates ELF image based on `Compilation` information. The ELF contains
4//! functions and trampolines in the ".text" section. It also contains all
5//! relocation records for the linking stage. If DWARF sections exist, their
6//! content will be written as well.
7//!
8//! The object file has symbols for each function and trampoline, as well as
9//! symbols that refer to libcalls.
10//!
11//! The function symbol names have format "_wasm_function_N", where N is
12//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
13//! function body, the imported wasm function do not. The trampolines symbol
14//! names have format "_trampoline_N", where N is `SignatureIndex`.
15
16use crate::{CompiledFunction, RelocationTarget};
17use anyhow::Result;
18use cranelift_codegen::binemit::Reloc;
19use cranelift_codegen::isa::unwind::{systemv, UnwindInfo};
20use cranelift_codegen::TextSectionBuilder;
21use cranelift_control::ControlPlane;
22use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
23use gimli::RunTimeEndian;
24use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
25use object::{Architecture, SectionFlags, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
26use std::collections::HashMap;
27use std::ops::Range;
28use wasmtime_environ::obj::{self, LibCall};
29use wasmtime_environ::{Compiler, TripleExt, Unsigned};
30
31const TEXT_SECTION_NAME: &[u8] = b".text";
32
33fn text_align(compiler: &dyn Compiler) -> u64 {
34    // text pages will not be made executable with pulley, so the section
35    // doesn't need to be padded out to page alignment boundaries.
36    if compiler.triple().is_pulley() {
37        0x1
38    } else {
39        compiler.page_size_align()
40    }
41}
42
43/// A helper structure used to assemble the final text section of an executable,
44/// plus unwinding information and other related details.
45///
46/// This builder relies on Cranelift-specific internals but assembles into a
47/// generic `Object` which will get further appended to in a compiler-agnostic
48/// fashion later.
49pub struct ModuleTextBuilder<'a> {
50    /// The target that we're compiling for, used to query target-specific
51    /// information as necessary.
52    compiler: &'a dyn Compiler,
53
54    /// The object file that we're generating code into.
55    obj: &'a mut Object<'static>,
56
57    /// The WebAssembly module we're generating code for.
58    text_section: SectionId,
59
60    unwind_info: UnwindInfoBuilder<'a>,
61
62    /// In-progress text section that we're using cranelift's `MachBuffer` to
63    /// build to resolve relocations (calls) between functions.
64    text: Box<dyn TextSectionBuilder>,
65
66    /// Symbols defined in the object for libcalls that relocations are applied
67    /// against.
68    ///
69    /// Note that this isn't typically used. It's only used for SSE-disabled
70    /// builds without SIMD on x86_64 right now.
71    libcall_symbols: HashMap<LibCall, SymbolId>,
72
73    ctrl_plane: ControlPlane,
74}
75
76impl<'a> ModuleTextBuilder<'a> {
77    /// Creates a new builder for the text section of an executable.
78    ///
79    /// The `.text` section will be appended to the specified `obj` along with
80    /// any unwinding or such information as necessary. The `num_funcs`
81    /// parameter indicates the number of times the `append_func` function will
82    /// be called. The `finish` function will panic if this contract is not met.
83    pub fn new(
84        obj: &'a mut Object<'static>,
85        compiler: &'a dyn Compiler,
86        text: Box<dyn TextSectionBuilder>,
87    ) -> Self {
88        // Entire code (functions and trampolines) will be placed
89        // in the ".text" section.
90        let text_section = obj.add_section(
91            obj.segment_name(StandardSegment::Text).to_vec(),
92            TEXT_SECTION_NAME.to_vec(),
93            SectionKind::Text,
94        );
95
96        // If this target is Pulley then flag the text section as not needing the
97        // executable bit in virtual memory which means that the runtime won't
98        // try to call `Mmap::make_executable`, which makes Pulley more
99        // portable.
100        if compiler.triple().is_pulley() {
101            let section = obj.section_mut(text_section);
102            assert!(matches!(section.flags, SectionFlags::None));
103            section.flags = SectionFlags::Elf {
104                sh_flags: obj::SH_WASMTIME_NOT_EXECUTED,
105            };
106        }
107
108        Self {
109            compiler,
110            obj,
111            text_section,
112            unwind_info: Default::default(),
113            text,
114            libcall_symbols: HashMap::default(),
115            ctrl_plane: ControlPlane::default(),
116        }
117    }
118
119    /// Appends the `func` specified named `name` to this object.
120    ///
121    /// The `resolve_reloc_target` closure is used to resolve a relocation
122    /// target to an adjacent function which has already been added or will be
123    /// added to this object. The argument is the relocation target specified
124    /// within `CompiledFunction` and the return value must be an index where
125    /// the target will be defined by the `n`th call to `append_func`.
126    ///
127    /// Returns the symbol associated with the function as well as the range
128    /// that the function resides within the text section.
129    pub fn append_func(
130        &mut self,
131        name: &str,
132        compiled_func: &'a CompiledFunction,
133        resolve_reloc_target: impl Fn(wasmtime_environ::RelocationTarget) -> usize,
134    ) -> (SymbolId, Range<u64>) {
135        let body = compiled_func.buffer.data();
136        let alignment = compiled_func.alignment;
137        let body_len = body.len() as u64;
138        let off = self
139            .text
140            .append(true, &body, alignment, &mut self.ctrl_plane);
141
142        let symbol_id = self.obj.add_symbol(Symbol {
143            name: name.as_bytes().to_vec(),
144            value: off,
145            size: body_len,
146            kind: SymbolKind::Text,
147            scope: SymbolScope::Compilation,
148            weak: false,
149            section: SymbolSection::Section(self.text_section),
150            flags: SymbolFlags::None,
151        });
152
153        if let Some(info) = compiled_func.unwind_info() {
154            self.unwind_info.push(off, body_len, info);
155        }
156
157        for r in compiled_func.relocations() {
158            let reloc_offset = off + u64::from(r.offset);
159            match r.reloc_target {
160                // Relocations against user-defined functions means that this is
161                // a relocation against a module-local function, typically a
162                // call between functions. The `text` field is given priority to
163                // resolve this relocation before we actually emit an object
164                // file, but if it can't handle it then we pass through the
165                // relocation.
166                RelocationTarget::Wasm(_) | RelocationTarget::Builtin(_) => {
167                    let target = resolve_reloc_target(r.reloc_target);
168                    if self
169                        .text
170                        .resolve_reloc(reloc_offset, r.reloc, r.addend, target)
171                    {
172                        continue;
173                    }
174
175                    // At this time it's expected that all relocations are
176                    // handled by `text.resolve_reloc`, and anything that isn't
177                    // handled is a bug in `text.resolve_reloc` or something
178                    // transitively there. If truly necessary, though, then this
179                    // loop could also be updated to forward the relocation to
180                    // the final object file as well.
181                    panic!(
182                        "unresolved relocation could not be processed against \
183                         {:?}: {r:?}",
184                        r.reloc_target,
185                    );
186                }
187
188                // Relocations against libcalls are not common at this time and
189                // are only used in non-default configurations that disable wasm
190                // SIMD, disable SSE features, and for wasm modules that still
191                // use floating point operations.
192                //
193                // Currently these relocations are all expected to be absolute
194                // 8-byte relocations so that's asserted here and then encoded
195                // directly into the object as a normal object relocation. This
196                // is processed at module load time to resolve the relocations.
197                RelocationTarget::HostLibcall(call) => {
198                    let symbol = *self.libcall_symbols.entry(call).or_insert_with(|| {
199                        self.obj.add_symbol(Symbol {
200                            name: call.symbol().as_bytes().to_vec(),
201                            value: 0,
202                            size: 0,
203                            kind: SymbolKind::Text,
204                            scope: SymbolScope::Linkage,
205                            weak: false,
206                            section: SymbolSection::Undefined,
207                            flags: SymbolFlags::None,
208                        })
209                    });
210                    let flags = match r.reloc {
211                        Reloc::Abs8 => object::RelocationFlags::Generic {
212                            encoding: object::RelocationEncoding::Generic,
213                            kind: object::RelocationKind::Absolute,
214                            size: 64,
215                        },
216                        other => unimplemented!("unimplemented relocation kind {other:?}"),
217                    };
218                    self.obj
219                        .add_relocation(
220                            self.text_section,
221                            object::write::Relocation {
222                                symbol,
223                                flags,
224                                offset: reloc_offset,
225                                addend: r.addend,
226                            },
227                        )
228                        .unwrap();
229                }
230
231                // This relocation is used to fill in which hostcall id is
232                // desired within the `call_indirect_host` opcode of Pulley
233                // itself. The relocation target is the start of the instruction
234                // and the goal is to insert the static signature number, `n`,
235                // into the instruction.
236                //
237                // At this time the instruction looks like:
238                //
239                //      +------+------+------+------+
240                //      | OP   | OP_EXTENDED |  N   |
241                //      +------+------+------+------+
242                //
243                // This 4-byte encoding has `OP` indicating this is an "extended
244                // opcode" where `OP_EXTENDED` is a 16-bit extended opcode.
245                // The `N` byte is the index of the signature being called and
246                // is what's b eing filled in.
247                //
248                // See the `test_call_indirect_host_width` in
249                // `pulley/tests/all.rs` for this guarantee as well.
250                RelocationTarget::PulleyHostcall(n) => {
251                    #[cfg(feature = "pulley")]
252                    {
253                        use pulley_interpreter::encode::Encode;
254                        assert_eq!(pulley_interpreter::CallIndirectHost::WIDTH, 4);
255                    }
256                    let byte = u8::try_from(n).unwrap();
257                    self.text.write(reloc_offset + 3, &[byte]);
258                }
259            };
260        }
261        (symbol_id, off..off + body_len)
262    }
263
264    /// Forces "veneers" to be used for inter-function calls in the text
265    /// section which means that in-bounds optimized addresses are never used.
266    ///
267    /// This is only useful for debugging cranelift itself and typically this
268    /// option is disabled.
269    pub fn force_veneers(&mut self) {
270        self.text.force_veneers();
271    }
272
273    /// Appends the specified amount of bytes of padding into the text section.
274    ///
275    /// This is only useful when fuzzing and/or debugging cranelift itself and
276    /// for production scenarios `padding` is 0 and this function does nothing.
277    pub fn append_padding(&mut self, padding: usize) {
278        if padding == 0 {
279            return;
280        }
281        self.text
282            .append(false, &vec![0; padding], 1, &mut self.ctrl_plane);
283    }
284
285    /// Indicates that the text section has been written completely and this
286    /// will finish appending it to the original object.
287    ///
288    /// Note that this will also write out the unwind information sections if
289    /// necessary.
290    pub fn finish(mut self) {
291        // Finish up the text section now that we're done adding functions.
292        let text = self.text.finish(&mut self.ctrl_plane);
293        self.obj
294            .section_mut(self.text_section)
295            .set_data(text, text_align(self.compiler));
296
297        // Append the unwind information for all our functions, if necessary.
298        self.unwind_info
299            .append_section(self.compiler, self.obj, self.text_section);
300    }
301}
302
303/// Builder used to create unwind information for a set of functions added to a
304/// text section.
305#[derive(Default)]
306struct UnwindInfoBuilder<'a> {
307    windows_xdata: Vec<u8>,
308    windows_pdata: Vec<RUNTIME_FUNCTION>,
309    systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
310}
311
312// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
313// to ensure everything is always `u32` and to have it available on all
314// platforms. Note that all of these specifiers here are relative to a "base
315// address" which we define as the base of where the text section is eventually
316// loaded.
317#[expect(non_camel_case_types, reason = "matching Windows style, not Rust")]
318struct RUNTIME_FUNCTION {
319    begin: u32,
320    end: u32,
321    unwind_address: u32,
322}
323
324impl<'a> UnwindInfoBuilder<'a> {
325    /// Pushes the unwind information for a function into this builder.
326    ///
327    /// The function being described must be located at `function_offset` within
328    /// the text section itself, and the function's size is specified by
329    /// `function_len`.
330    ///
331    /// The `info` should come from Cranelift. and is handled here depending on
332    /// its flavor.
333    fn push(&mut self, function_offset: u64, function_len: u64, info: &'a UnwindInfo) {
334        match info {
335            // Windows unwind information is stored in two locations:
336            //
337            // * First is the actual unwinding information which is stored
338            //   in the `.xdata` section. This is where `info`'s emitted
339            //   information will go into.
340            // * Second are pointers to connect all this unwind information,
341            //   stored in the `.pdata` section. The `.pdata` section is an
342            //   array of `RUNTIME_FUNCTION` structures.
343            //
344            // Due to how these will be loaded at runtime the `.pdata` isn't
345            // actually assembled byte-wise here. Instead that's deferred to
346            // happen later during `write_windows_unwind_info` which will apply
347            // a further offset to `unwind_address`.
348            //
349            // FIXME: in theory we could "intern" the `unwind_info` value
350            // here within the `.xdata` section. Most of our unwind
351            // information for functions is probably pretty similar in which
352            // case the `.xdata` could be quite small and `.pdata` could
353            // have multiple functions point to the same unwinding
354            // information.
355            UnwindInfo::WindowsX64(info) => {
356                let unwind_size = info.emit_size();
357                let mut unwind_info = vec![0; unwind_size];
358                info.emit(&mut unwind_info);
359
360                // `.xdata` entries are always 4-byte aligned
361                while self.windows_xdata.len() % 4 != 0 {
362                    self.windows_xdata.push(0x00);
363                }
364                let unwind_address = self.windows_xdata.len();
365                self.windows_xdata.extend_from_slice(&unwind_info);
366
367                // Record a `RUNTIME_FUNCTION` which this will point to.
368                self.windows_pdata.push(RUNTIME_FUNCTION {
369                    begin: u32::try_from(function_offset).unwrap(),
370                    end: u32::try_from(function_offset + function_len).unwrap(),
371                    unwind_address: u32::try_from(unwind_address).unwrap(),
372                });
373            }
374
375            // See https://learn.microsoft.com/en-us/cpp/build/arm64-exception-handling
376            UnwindInfo::WindowsArm64(info) => {
377                let code_words = info.code_words();
378                let mut unwind_codes = vec![0; (code_words * 4) as usize];
379                info.emit(&mut unwind_codes);
380
381                // `.xdata` entries are always 4-byte aligned
382                while self.windows_xdata.len() % 4 != 0 {
383                    self.windows_xdata.push(0x00);
384                }
385
386                // First word:
387                // 0-17:    Function Length
388                // 18-19:   Version (must be 0)
389                // 20:      X bit (is exception data present?)
390                // 21:      E bit (has single packed epilogue?)
391                // 22-26:   Epilogue count
392                // 27-31:   Code words count
393                let requires_extended_counts = code_words > (1 << 5);
394                let encoded_function_len = function_len / 4;
395                assert!(encoded_function_len < (1 << 18), "function too large");
396                let mut word1 = u32::try_from(encoded_function_len).unwrap();
397                if !requires_extended_counts {
398                    word1 |= u32::from(code_words) << 27;
399                }
400                let unwind_address = self.windows_xdata.len();
401                self.windows_xdata.extend_from_slice(&word1.to_le_bytes());
402
403                if requires_extended_counts {
404                    // Extended counts word:
405                    // 0-15:    Epilogue count
406                    // 16-23:   Code words count
407                    let extended_counts_word = (code_words as u32) << 16;
408                    self.windows_xdata
409                        .extend_from_slice(&extended_counts_word.to_le_bytes());
410                }
411
412                // Skip epilogue information: Per comment on [`UnwindInst`], we
413                // do not emit information about epilogues.
414
415                // Emit the unwind codes.
416                self.windows_xdata.extend_from_slice(&unwind_codes);
417
418                // Record a `RUNTIME_FUNCTION` which this will point to.
419                // NOTE: `end` is not used, so leave it as 0.
420                self.windows_pdata.push(RUNTIME_FUNCTION {
421                    begin: u32::try_from(function_offset).unwrap(),
422                    end: 0,
423                    unwind_address: u32::try_from(unwind_address).unwrap(),
424                });
425            }
426
427            // System-V is different enough that we just record the unwinding
428            // information to get processed at a later time.
429            UnwindInfo::SystemV(info) => {
430                self.systemv_unwind_info.push((function_offset, info));
431            }
432
433            _ => panic!("some unwind info isn't handled here"),
434        }
435    }
436
437    /// Appends the unwind information section, if any, to the `obj` specified.
438    ///
439    /// This function must be called immediately after the text section was
440    /// added to a builder. The unwind information section must trail the text
441    /// section immediately.
442    ///
443    /// The `text_section`'s section identifier is passed into this function.
444    fn append_section(
445        &self,
446        compiler: &dyn Compiler,
447        obj: &mut Object<'_>,
448        text_section: SectionId,
449    ) {
450        // This write will align the text section to a page boundary and then
451        // return the offset at that point. This gives us the full size of the
452        // text section at that point, after alignment.
453        let text_section_size = obj.append_section_data(text_section, &[], text_align(compiler));
454
455        if self.windows_xdata.len() > 0 {
456            assert!(self.systemv_unwind_info.len() == 0);
457            // The `.xdata` section must come first to be just-after the `.text`
458            // section for the reasons documented in `write_windows_unwind_info`
459            // below.
460            let segment = obj.segment_name(StandardSegment::Data).to_vec();
461            let xdata_id = obj.add_section(segment, b".xdata".to_vec(), SectionKind::ReadOnlyData);
462            let segment = obj.segment_name(StandardSegment::Data).to_vec();
463            let pdata_id = obj.add_section(segment, b".pdata".to_vec(), SectionKind::ReadOnlyData);
464            self.write_windows_unwind_info(obj, xdata_id, pdata_id, text_section_size);
465        }
466
467        if self.systemv_unwind_info.len() > 0 {
468            let segment = obj.segment_name(StandardSegment::Data).to_vec();
469            let section_id =
470                obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
471            self.write_systemv_unwind_info(compiler, obj, section_id, text_section_size)
472        }
473    }
474
475    /// This function appends a nonstandard section to the object which is only
476    /// used during `CodeMemory::publish`.
477    ///
478    /// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
479    /// the object file itself. This way registration of unwind info can simply
480    /// pass this slice to the OS itself and there's no need to recalculate
481    /// anything on the other end of loading a module from a precompiled object.
482    ///
483    /// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
484    fn write_windows_unwind_info(
485        &self,
486        obj: &mut Object<'_>,
487        xdata_id: SectionId,
488        pdata_id: SectionId,
489        text_section_size: u64,
490    ) {
491        // Append the `.xdata` section, or the actual unwinding information
492        // codes and such which were built as we found unwind information for
493        // functions.
494        obj.append_section_data(xdata_id, &self.windows_xdata, 4);
495
496        // Next append the `.pdata` section, or the array of `RUNTIME_FUNCTION`
497        // structures stored in the binary.
498        //
499        // This memory will be passed at runtime to `RtlAddFunctionTable` which
500        // takes a "base address" and the entries within `RUNTIME_FUNCTION` are
501        // all relative to this base address. The base address we pass is the
502        // address of the text section itself so all the pointers here must be
503        // text-section-relative. The `begin` and `end` fields for the function
504        // it describes are already text-section-relative, but the
505        // `unwind_address` field needs to be updated here since the value
506        // stored right now is `xdata`-section-relative. We know that the
507        // `xdata` section follows the `.text` section so the
508        // `text_section_size` is added in to calculate the final
509        // `.text`-section-relative address of the unwind information.
510        let xdata_rva = |address| {
511            let address = u64::from(address);
512            let address = address + text_section_size;
513            u32::try_from(address).unwrap()
514        };
515        let pdata = match obj.architecture() {
516            Architecture::X86_64 => {
517                let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 3 * 4);
518                for info in self.windows_pdata.iter() {
519                    pdata.extend_from_slice(&info.begin.to_le_bytes());
520                    pdata.extend_from_slice(&info.end.to_le_bytes());
521                    pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
522                }
523                pdata
524            }
525
526            Architecture::Aarch64 => {
527                // Windows Arm64 .pdata also supports packed unwind data, but
528                // we're not currently using that.
529                let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 2 * 4);
530                for info in self.windows_pdata.iter() {
531                    pdata.extend_from_slice(&info.begin.to_le_bytes());
532                    pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
533                }
534                pdata
535            }
536
537            _ => unimplemented!("unsupported architecture for windows unwind info"),
538        };
539        obj.append_section_data(pdata_id, &pdata, 4);
540    }
541
542    /// This function appends a nonstandard section to the object which is only
543    /// used during `CodeMemory::publish`.
544    ///
545    /// This will generate a `.eh_frame` section, but not one that can be
546    /// naively loaded. The goal of this section is that we can create the
547    /// section once here and never again does it need to change. To describe
548    /// dynamically loaded functions though each individual FDE needs to talk
549    /// about the function's absolute address that it's referencing. Naturally
550    /// we don't actually know the function's absolute address when we're
551    /// creating an object here.
552    ///
553    /// To solve this problem the FDE address encoding mode is set to
554    /// `DW_EH_PE_pcrel`. This means that the actual effective address that the
555    /// FDE describes is a relative to the address of the FDE itself. By
556    /// leveraging this relative-ness we can assume that the relative distance
557    /// between the FDE and the function it describes is constant, which should
558    /// allow us to generate an FDE ahead-of-time here.
559    ///
560    /// For now this assumes that all the code of functions will start at a
561    /// page-aligned address when loaded into memory. The eh_frame encoded here
562    /// then assumes that the text section is itself page aligned to its size
563    /// and the eh_frame will follow just after the text section. This means
564    /// that the relative offsets we're using here is the FDE going backwards
565    /// into the text section itself.
566    ///
567    /// Note that the library we're using to create the FDEs, `gimli`, doesn't
568    /// actually encode addresses relative to the FDE itself. Instead the
569    /// addresses are encoded relative to the start of the `.eh_frame` section.
570    /// This makes it much easier for us where we provide the relative offset
571    /// from the start of `.eh_frame` to the function in the text section, which
572    /// given our layout basically means the offset of the function in the text
573    /// section from the end of the text section.
574    ///
575    /// A final note is that the reason we page-align the text section's size is
576    /// so the .eh_frame lives on a separate page from the text section itself.
577    /// This allows `.eh_frame` to have different virtual memory permissions,
578    /// such as being purely read-only instead of read/execute like the code
579    /// bits.
580    fn write_systemv_unwind_info(
581        &self,
582        compiler: &dyn Compiler,
583        obj: &mut Object<'_>,
584        section_id: SectionId,
585        text_section_size: u64,
586    ) {
587        let mut cie = match compiler.create_systemv_cie() {
588            Some(cie) => cie,
589            None => return,
590        };
591        let mut table = FrameTable::default();
592        cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
593        let cie_id = table.add_cie(cie);
594
595        for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
596            let backwards_off = text_section_size - text_section_off;
597            let actual_offset = -i64::try_from(backwards_off).unwrap();
598            // Note that gimli wants an unsigned 64-bit integer here, but
599            // unwinders just use this constant for a relative addition with the
600            // address of the FDE, which means that the sign doesn't actually
601            // matter.
602            let fde = unwind_info.to_fde(Address::Constant(actual_offset.unsigned()));
603            table.add_fde(cie_id, fde);
604        }
605        let endian = match compiler.triple().endianness().unwrap() {
606            target_lexicon::Endianness::Little => RunTimeEndian::Little,
607            target_lexicon::Endianness::Big => RunTimeEndian::Big,
608        };
609        let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
610        table.write_eh_frame(&mut eh_frame).unwrap();
611
612        // Some unwinding implementations expect a terminating "empty" length so
613        // a 0 is written at the end of the table for those implementations.
614        let mut endian_vec = (eh_frame.0).0;
615        endian_vec.write_u32(0).unwrap();
616        obj.append_section_data(section_id, endian_vec.slice(), 1);
617
618        use gimli::constants;
619        use gimli::write::Error;
620
621        struct MyVec(EndianVec<RunTimeEndian>);
622
623        impl Writer for MyVec {
624            type Endian = RunTimeEndian;
625
626            fn endian(&self) -> RunTimeEndian {
627                self.0.endian()
628            }
629
630            fn len(&self) -> usize {
631                self.0.len()
632            }
633
634            fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
635                self.0.write(buf)
636            }
637
638            fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
639                self.0.write_at(pos, buf)
640            }
641
642            // FIXME(gimli-rs/gimli#576) this is the definition we want for
643            // `write_eh_pointer` but the default implementation, at the time
644            // of this writing, uses `offset - val` instead of `val - offset`.
645            // A PR has been merged to fix this but until that's published we
646            // can't use it.
647            fn write_eh_pointer(
648                &mut self,
649                address: Address,
650                eh_pe: constants::DwEhPe,
651                size: u8,
652            ) -> Result<(), Error> {
653                let val = match address {
654                    Address::Constant(val) => val,
655                    Address::Symbol { .. } => unreachable!(),
656                };
657                assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
658                let offset = self.len() as u64;
659                let val = val.wrapping_sub(offset);
660                self.write_eh_pointer_data(val, eh_pe.format(), size)
661            }
662        }
663    }
664}