cranelift_codegen/machinst/lower.rs
1//! This module implements lowering (instruction selection) from Cranelift IR
2//! to machine instructions with virtual registers. This is *almost* the final
3//! machine code, except for register allocation.
4
5// TODO: separate the IR-query core of `Lower` from the lowering logic built on
6// top of it, e.g. the side-effect/coloring analysis and the scan support.
7
8use crate::entity::SecondaryMap;
9use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
10use crate::ir::pcc::{Fact, FactContext, PccError, PccResult};
11use crate::ir::{
12 ArgumentPurpose, Block, BlockArg, Constant, ConstantData, DataFlowGraph, ExternalName,
13 Function, GlobalValue, GlobalValueData, Immediate, Inst, InstructionData, MemFlags,
14 RelSourceLoc, Type, Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
15};
16use crate::machinst::valueregs::InvalidSentinel;
17use crate::machinst::{
18 writable_value_regs, ABIMachineSpec, BackwardsInsnIndex, BlockIndex, BlockLoweringOrder,
19 Callee, InsnIndex, LoweredBlock, MachLabel, Reg, SigSet, VCode, VCodeBuilder, VCodeConstant,
20 VCodeConstantData, VCodeConstants, VCodeInst, ValueRegs, Writable,
21};
22use crate::settings::Flags;
23use crate::{trace, CodegenError, CodegenResult};
24use alloc::vec::Vec;
25use cranelift_control::ControlPlane;
26use rustc_hash::{FxHashMap, FxHashSet};
27use smallvec::{smallvec, SmallVec};
28use std::fmt::Debug;
29
30use super::{VCodeBuildDirection, VRegAllocator};
31
32/// A vector of ValueRegs, used to represent the outputs of an instruction.
33pub type InstOutput = SmallVec<[ValueRegs<Reg>; 2]>;
34
35/// An "instruction color" partitions CLIF instructions by side-effecting ops.
36/// All instructions with the same "color" are guaranteed not to be separated by
37/// any side-effecting op (for this purpose, loads are also considered
38/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
39/// furthermore, it is guaranteed that for any two instructions A and B such
40/// that color(A) == color(B), either A dominates B and B postdominates A, or
41/// vice-versa. (For now, in practice, only ops in the same basic block can ever
42/// have the same color, trivially providing the second condition.) Intuitively,
43/// this means that the ops of the same color must always execute "together", as
44/// part of one atomic contiguous section of the dynamic execution trace, and
45/// they can be freely permuted (modulo true dataflow dependencies) without
46/// affecting program behavior.
47#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
48struct InstColor(u32);
49impl InstColor {
50 fn new(n: u32) -> InstColor {
51 InstColor(n)
52 }
53
54 /// Get an arbitrary index representing this color. The index is unique
55 /// *within a single function compilation*, but indices may be reused across
56 /// functions.
57 pub fn get(self) -> u32 {
58 self.0
59 }
60}
61
62/// A representation of all of the ways in which a value is available, aside
63/// from as a direct register.
64///
65/// - An instruction, if it would be allowed to occur at the current location
66/// instead (see [Lower::get_input_as_source_or_const()] for more details).
67///
68/// - A constant, if the value is known to be a constant.
69#[derive(Clone, Copy, Debug)]
70pub struct NonRegInput {
71 /// An instruction produces this value (as the given output), and its
72 /// computation (and side-effect if applicable) could occur at the
73 /// current instruction's location instead.
74 ///
75 /// If this instruction's operation is merged into the current instruction,
76 /// the backend must call [Lower::sink_inst()].
77 ///
78 /// This enum indicates whether this use of the source instruction
79 /// is unique or not.
80 pub inst: InputSourceInst,
81 /// The value is a known constant.
82 pub constant: Option<u64>,
83}
84
85/// When examining an input to an instruction, this enum provides one
86/// of several options: there is or isn't a single instruction (that
87/// we can see and merge with) that produces that input's value, and
88/// we are or aren't the single user of that instruction.
89#[derive(Clone, Copy, Debug)]
90pub enum InputSourceInst {
91 /// The input in question is the single, unique use of the given
92 /// instruction and output index, and it can be sunk to the
93 /// location of this input.
94 UniqueUse(Inst, usize),
95 /// The input in question is one of multiple uses of the given
96 /// instruction. It can still be sunk to the location of this
97 /// input.
98 Use(Inst, usize),
99 /// We cannot determine which instruction produced the input, or
100 /// it is one of several instructions (e.g., due to a control-flow
101 /// merge and blockparam), or the source instruction cannot be
102 /// allowed to sink to the current location due to side-effects.
103 None,
104}
105
106impl InputSourceInst {
107 /// Get the instruction and output index for this source, whether
108 /// we are its single or one of many users.
109 pub fn as_inst(&self) -> Option<(Inst, usize)> {
110 match self {
111 &InputSourceInst::UniqueUse(inst, output_idx)
112 | &InputSourceInst::Use(inst, output_idx) => Some((inst, output_idx)),
113 &InputSourceInst::None => None,
114 }
115 }
116}
117
118/// A machine backend.
119pub trait LowerBackend {
120 /// The machine instruction type.
121 type MInst: VCodeInst;
122
123 /// Lower a single instruction.
124 ///
125 /// For a branch, this function should not generate the actual branch
126 /// instruction. However, it must force any values it needs for the branch
127 /// edge (block-param actuals) into registers, because the actual branch
128 /// generation (`lower_branch()`) happens *after* any possible merged
129 /// out-edge.
130 ///
131 /// Returns `None` if no lowering for the instruction was found.
132 fn lower(&self, ctx: &mut Lower<Self::MInst>, inst: Inst) -> Option<InstOutput>;
133
134 /// Lower a block-terminating group of branches (which together can be seen
135 /// as one N-way branch), given a vcode MachLabel for each target.
136 ///
137 /// Returns `None` if no lowering for the branch was found.
138 fn lower_branch(
139 &self,
140 ctx: &mut Lower<Self::MInst>,
141 inst: Inst,
142 targets: &[MachLabel],
143 ) -> Option<()>;
144
145 /// A bit of a hack: give a fixed register that always holds the result of a
146 /// `get_pinned_reg` instruction, if known. This allows elision of moves
147 /// into the associated vreg, instead using the real reg directly.
148 fn maybe_pinned_reg(&self) -> Option<Reg> {
149 None
150 }
151
152 /// The type of state carried between `check_fact` invocations.
153 type FactFlowState: Default + Clone + Debug;
154
155 /// Check any facts about an instruction, given VCode with facts
156 /// on VRegs. Takes mutable `VCode` so that it can propagate some
157 /// kinds of facts automatically.
158 fn check_fact(
159 &self,
160 _ctx: &FactContext<'_>,
161 _vcode: &mut VCode<Self::MInst>,
162 _inst: InsnIndex,
163 _state: &mut Self::FactFlowState,
164 ) -> PccResult<()> {
165 Err(PccError::UnimplementedBackend)
166 }
167}
168
169/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
170/// from original Inst to MachInsts.
171pub struct Lower<'func, I: VCodeInst> {
172 /// The function to lower.
173 pub(crate) f: &'func Function,
174
175 /// Lowered machine instructions.
176 vcode: VCodeBuilder<I>,
177
178 /// VReg allocation context, given to the vcode field at build time to finalize the vcode.
179 vregs: VRegAllocator<I>,
180
181 /// Mapping from `Value` (SSA value in IR) to virtual register.
182 value_regs: SecondaryMap<Value, ValueRegs<Reg>>,
183
184 /// sret registers, if needed.
185 sret_reg: Option<ValueRegs<Reg>>,
186
187 /// Instruction colors at block exits. From this map, we can recover all
188 /// instruction colors by scanning backward from the block end and
189 /// decrementing on any color-changing (side-effecting) instruction.
190 block_end_colors: SecondaryMap<Block, InstColor>,
191
192 /// Instruction colors at side-effecting ops. This is the *entry* color,
193 /// i.e., the version of global state that exists before an instruction
194 /// executes. For each side-effecting instruction, the *exit* color is its
195 /// entry color plus one.
196 side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,
197
198 /// Current color as we scan during lowering. While we are lowering an
199 /// instruction, this is equal to the color *at entry to* the instruction.
200 cur_scan_entry_color: Option<InstColor>,
201
202 /// Current instruction as we scan during lowering.
203 cur_inst: Option<Inst>,
204
205 /// Instruction constant values, if known.
206 inst_constants: FxHashMap<Inst, u64>,
207
208 /// Use-counts per SSA value, as counted in the input IR. These
209 /// are "coarsened", in the abstract-interpretation sense: we only
210 /// care about "0, 1, many" states, as this is all we need and
211 /// this lets us do an efficient fixpoint analysis.
212 ///
213 /// See doc comment on `ValueUseState` for more details.
214 value_ir_uses: SecondaryMap<Value, ValueUseState>,
215
216 /// Actual uses of each SSA value so far, incremented while lowering.
217 value_lowered_uses: SecondaryMap<Value, u32>,
218
219 /// Effectful instructions that have been sunk; they are not codegen'd at
220 /// their original locations.
221 inst_sunk: FxHashSet<Inst>,
222
223 /// Instructions collected for the CLIF inst in progress, in forward order.
224 ir_insts: Vec<I>,
225
226 /// Try-call block arg normal-return values, indexed by instruction.
227 try_call_rets: FxHashMap<Inst, SmallVec<[ValueRegs<Writable<Reg>>; 2]>>,
228
229 /// Try-call block arg exceptional-return payloads, indexed by
230 /// instruction. Payloads are carried in registers per the ABI and
231 /// can only be one register each.
232 try_call_payloads: FxHashMap<Inst, SmallVec<[Writable<Reg>; 2]>>,
233
234 /// The register to use for GetPinnedReg, if any, on this architecture.
235 pinned_reg: Option<Reg>,
236
237 /// Compilation flags.
238 flags: Flags,
239}
240
241/// How is a value used in the IR?
242///
243/// This can be seen as a coarsening of an integer count. We only need
244/// distinct states for zero, one, or many.
245///
246/// This analysis deserves further explanation. The basic idea is that
247/// we want to allow instruction lowering to know whether a value that
248/// an instruction references is *only* referenced by that one use, or
249/// by others as well. This is necessary to know when we might want to
250/// move a side-effect: we cannot, for example, duplicate a load, so
251/// we cannot let instruction lowering match a load as part of a
252/// subpattern and potentially incorporate it.
253///
254/// Note that a lot of subtlety comes into play once we have
255/// *indirect* uses. The classical example of this in our development
256/// history was the x86 compare instruction, which is incorporated
257/// into flags users (e.g. `selectif`, `trueif`, branches) and can
258/// subsequently incorporate loads, or at least we would like it
259/// to. However, danger awaits: the compare might be the only user of
260/// a load, so we might think we can just move the load (and nothing
261/// is duplicated -- success!), except that the compare itself is
262/// codegen'd in multiple places, where it is incorporated as a
263/// subpattern itself.
264///
265/// So we really want a notion of "unique all the way along the
266/// matching path". Rust's `&T` and `&mut T` offer a partial analogy
267/// to the semantics that we want here: we want to know when we've
268/// matched a unique use of an instruction, and that instruction's
269/// unique use of another instruction, etc, just as `&mut T` can only
270/// be obtained by going through a chain of `&mut T`. If one has a
271/// `&T` to a struct containing `&mut T` (one of several uses of an
272/// instruction that itself has a unique use of an instruction), one
273/// can only get a `&T` (one can only get a "I am one of several users
274/// of this instruction" result).
275///
276/// We could track these paths, either dynamically as one "looks up the operand
277/// tree" or precomputed. But the former requires state and means that the
278/// `Lower` API carries that state implicitly, which we'd like to avoid if we
279/// can. And the latter implies O(n^2) storage: it is an all-pairs property (is
280/// inst `i` unique from the point of view of `j`).
281///
282/// To make matters even a little more complex still, a value that is
283/// not uniquely used when initially viewing the IR can *become*
284/// uniquely used, at least as a root allowing further unique uses of
285/// e.g. loads to merge, if no other instruction actually merges
286/// it. To be more concrete, if we have `v1 := load; v2 := op v1; v3
287/// := op v2; v4 := op v2` then `v2` is non-uniquely used, so from the
288/// point of view of lowering `v4` or `v3`, we cannot merge the load
289/// at `v1`. But if we decide just to use the assigned register for
290/// `v2` at both `v3` and `v4`, then we only actually codegen `v2`
291/// once, so it *is* a unique root at that point and we *can* merge
292/// the load.
293///
294/// Note also that the color scheme is not sufficient to give us this
295/// information, for various reasons: reasoning about side-effects
296/// does not tell us about potential duplication of uses through pure
297/// ops.
298///
299/// To keep things simple and avoid error-prone lowering APIs that
300/// would extract more information about whether instruction merging
301/// happens or not (we don't have that info now, and it would be
302/// difficult to refactor to get it and make that refactor 100%
303/// correct), we give up on the above "can become unique if not
304/// actually merged" point. Instead, we compute a
305/// transitive-uniqueness. That is what this enum represents.
306///
307/// There is one final caveat as well to the result of this analysis. Notably,
308/// we define some instructions to be "root" instructions, which means that we
309/// assume they will always be codegen'd at the root of a matching tree, and not
310/// matched. (This comes with the caveat that we actually enforce this property
311/// by making them "opaque" to subtree matching in
312/// `get_value_as_source_or_const`). Because they will always be codegen'd once,
313/// they in some sense "reset" multiplicity: these root instructions can be used
314/// many times, but because their result(s) are only computed once, they only
315/// use their inputs once.
316///
317/// We currently define all multi-result instructions to be "root" instructions,
318/// because it is too complex to reason about matching through them, and they
319/// cause too-coarse-grained approximation of multiplicity otherwise: the
320/// analysis would have to assume (as it used to!) that they are always
321/// multiply-used, simply because they have multiple outputs even if those
322/// outputs are used only once.
323///
324/// In the future we could define other instructions to be "root" instructions
325/// as well, if we make the corresponding change to get_value_as_source_or_const
326/// as well.
327///
328/// To define `ValueUseState` more plainly: a value is `Unused` if no references
329/// exist to it; `Once` if only one other op refers to it, *and* that other op
330/// is `Unused` or `Once`; and `Multiple` otherwise. In other words, `Multiple`
331/// is contagious (except through root instructions): even if an op's result
332/// value is directly used only once in the CLIF, that value is `Multiple` if
333/// the op that uses it is itself used multiple times (hence could be codegen'd
334/// multiple times). In brief, this analysis tells us whether, if every op
335/// merged all of its operand tree, a given op could be codegen'd in more than
336/// one place.
337///
338/// To compute this, we first consider direct uses. At this point
339/// `Unused` answers are correct, `Multiple` answers are correct, but
340/// some `Once`s may change to `Multiple`s. Then we propagate
341/// `Multiple` transitively using a workqueue/fixpoint algorithm.
342#[derive(Clone, Copy, Debug, PartialEq, Eq)]
343enum ValueUseState {
344 /// Not used at all.
345 Unused,
346 /// Used exactly once.
347 Once,
348 /// Used multiple times.
349 Multiple,
350}
351
352impl ValueUseState {
353 /// Add one use.
354 fn inc(&mut self) {
355 let new = match self {
356 Self::Unused => Self::Once,
357 Self::Once | Self::Multiple => Self::Multiple,
358 };
359 *self = new;
360 }
361}
362
363/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
364/// reference.
365#[derive(Clone, Copy, Debug, PartialEq, Eq)]
366pub enum RelocDistance {
367 /// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
368 /// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
369 /// 128MB offset. If unsure, use `Far` instead.
370 Near,
371 /// Target of relocation could be anywhere in the address space.
372 Far,
373}
374
375impl<'func, I: VCodeInst> Lower<'func, I> {
376 /// Prepare a new lowering context for the given IR function.
377 pub fn new(
378 f: &'func Function,
379 abi: Callee<I::ABIMachineSpec>,
380 emit_info: I::Info,
381 block_order: BlockLoweringOrder,
382 sigs: SigSet,
383 flags: Flags,
384 ) -> CodegenResult<Self> {
385 let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
386 let vcode = VCodeBuilder::new(
387 sigs,
388 abi,
389 emit_info,
390 block_order,
391 constants,
392 VCodeBuildDirection::Backward,
393 flags.log2_min_function_alignment(),
394 );
395
396 // We usually need two VRegs per instruction result, plus extras for
397 // various temporaries, but two per Value is a good starting point.
398 let mut vregs = VRegAllocator::with_capacity(f.dfg.num_values() * 2);
399
400 let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());
401 let mut try_call_rets = FxHashMap::default();
402 let mut try_call_payloads = FxHashMap::default();
403
404 // Assign a vreg to each block param, each inst result, and
405 // each edge-defined block-call arg.
406 for bb in f.layout.blocks() {
407 for ¶m in f.dfg.block_params(bb) {
408 let ty = f.dfg.value_type(param);
409 if value_regs[param].is_invalid() {
410 let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[param].clone())?;
411 value_regs[param] = regs;
412 trace!("bb {} param {}: regs {:?}", bb, param, regs);
413 }
414 }
415 for inst in f.layout.block_insts(bb) {
416 for &result in f.dfg.inst_results(inst) {
417 let ty = f.dfg.value_type(result);
418 if value_regs[result].is_invalid() && !ty.is_invalid() {
419 let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[result].clone())?;
420 value_regs[result] = regs;
421 trace!(
422 "bb {} inst {} ({:?}): result {} regs {:?}",
423 bb,
424 inst,
425 f.dfg.insts[inst],
426 result,
427 regs,
428 );
429 }
430 }
431
432 if let Some(et) = f.dfg.insts[inst].exception_table() {
433 let exdata = &f.dfg.exception_tables[et];
434 let sig = &f.dfg.signatures[exdata.signature()];
435
436 let mut rets = smallvec![];
437 for ty in sig.returns.iter().map(|ret| ret.value_type) {
438 rets.push(vregs.alloc(ty)?.map(|r| Writable::from_reg(r)));
439 }
440 try_call_rets.insert(inst, rets);
441
442 let mut payloads = smallvec![];
443 for &ty in sig
444 .call_conv
445 .exception_payload_types(I::ABIMachineSpec::word_type())
446 {
447 payloads.push(Writable::from_reg(vregs.alloc(ty)?.only_reg().unwrap()));
448 }
449 try_call_payloads.insert(inst, payloads);
450 }
451 }
452 }
453
454 // Find the sret register, if it's used.
455 let mut sret_param = None;
456 for ret in vcode.abi().signature().returns.iter() {
457 if ret.purpose == ArgumentPurpose::StructReturn {
458 let entry_bb = f.stencil.layout.entry_block().unwrap();
459 for (¶m, sig_param) in f
460 .dfg
461 .block_params(entry_bb)
462 .iter()
463 .zip(vcode.abi().signature().params.iter())
464 {
465 if sig_param.purpose == ArgumentPurpose::StructReturn {
466 assert!(sret_param.is_none());
467 sret_param = Some(param);
468 }
469 }
470
471 assert!(sret_param.is_some());
472 }
473 }
474
475 let sret_reg = sret_param.map(|param| {
476 let regs = value_regs[param];
477 assert!(regs.len() == 1);
478 regs
479 });
480
481 // Compute instruction colors, find constant instructions, and find instructions with
482 // side-effects, in one combined pass.
483 let mut cur_color = 0;
484 let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
485 let mut side_effect_inst_entry_colors = FxHashMap::default();
486 let mut inst_constants = FxHashMap::default();
487 for bb in f.layout.blocks() {
488 cur_color += 1;
489 for inst in f.layout.block_insts(bb) {
490 let side_effect = has_lowering_side_effect(f, inst);
491
492 trace!("bb {} inst {} has color {}", bb, inst, cur_color);
493 if side_effect {
494 side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
495 trace!(" -> side-effecting; incrementing color for next inst");
496 cur_color += 1;
497 }
498
499 // Determine if this is a constant; if so, add to the table.
500 if let Some(c) = is_constant_64bit(f, inst) {
501 trace!(" -> constant: {}", c);
502 inst_constants.insert(inst, c);
503 }
504 }
505
506 block_end_colors[bb] = InstColor::new(cur_color);
507 }
508
509 let value_ir_uses = compute_use_states(f, sret_param);
510
511 Ok(Lower {
512 f,
513 vcode,
514 vregs,
515 value_regs,
516 sret_reg,
517 block_end_colors,
518 side_effect_inst_entry_colors,
519 inst_constants,
520 value_ir_uses,
521 value_lowered_uses: SecondaryMap::default(),
522 inst_sunk: FxHashSet::default(),
523 cur_scan_entry_color: None,
524 cur_inst: None,
525 ir_insts: vec![],
526 try_call_rets,
527 try_call_payloads,
528 pinned_reg: None,
529 flags,
530 })
531 }
532
533 pub fn sigs(&self) -> &SigSet {
534 self.vcode.sigs()
535 }
536
537 pub fn sigs_mut(&mut self) -> &mut SigSet {
538 self.vcode.sigs_mut()
539 }
540
541 pub fn vregs_mut(&mut self) -> &mut VRegAllocator<I> {
542 &mut self.vregs
543 }
544
545 fn gen_arg_setup(&mut self) {
546 if let Some(entry_bb) = self.f.layout.entry_block() {
547 trace!(
548 "gen_arg_setup: entry BB {} args are:\n{:?}",
549 entry_bb,
550 self.f.dfg.block_params(entry_bb)
551 );
552
553 for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
554 if self.value_ir_uses[*param] == ValueUseState::Unused {
555 continue;
556 }
557 let regs = writable_value_regs(self.value_regs[*param]);
558 for insn in self
559 .vcode
560 .vcode
561 .abi
562 .gen_copy_arg_to_regs(&self.vcode.vcode.sigs, i, regs, &mut self.vregs)
563 .into_iter()
564 {
565 self.emit(insn);
566 }
567 }
568 if let Some(insn) = self
569 .vcode
570 .vcode
571 .abi
572 .gen_retval_area_setup(&self.vcode.vcode.sigs, &mut self.vregs)
573 {
574 self.emit(insn);
575 }
576
577 // The `args` instruction below must come first. Finish
578 // the current "IR inst" (with a default source location,
579 // as for other special instructions inserted during
580 // lowering) and continue the scan backward.
581 self.finish_ir_inst(Default::default());
582
583 if let Some(insn) = self.vcode.vcode.abi.take_args() {
584 self.emit(insn);
585 }
586 }
587 }
588
589 /// Generate the return instruction.
590 pub fn gen_return(&mut self, rets: Vec<ValueRegs<Reg>>) {
591 let mut out_rets = vec![];
592
593 let mut rets = rets.into_iter();
594 for (i, ret) in self
595 .abi()
596 .signature()
597 .returns
598 .clone()
599 .into_iter()
600 .enumerate()
601 {
602 let regs = if ret.purpose == ArgumentPurpose::StructReturn {
603 self.sret_reg.unwrap()
604 } else {
605 rets.next().unwrap()
606 };
607
608 let (regs, insns) = self.vcode.abi().gen_copy_regs_to_retval(
609 self.vcode.sigs(),
610 i,
611 regs,
612 &mut self.vregs,
613 );
614 out_rets.extend(regs);
615 for insn in insns {
616 self.emit(insn);
617 }
618 }
619
620 // Hack: generate a virtual instruction that uses vmctx in
621 // order to keep it alive for the duration of the function,
622 // for the benefit of debuginfo.
623 if self.f.dfg.values_labels.is_some() {
624 if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
625 if self.value_ir_uses[vmctx_val] != ValueUseState::Unused {
626 let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
627 self.emit(I::gen_dummy_use(vmctx_reg));
628 }
629 }
630 }
631
632 let inst = self.abi().gen_rets(out_rets);
633 self.emit(inst);
634 }
635
636 /// Has this instruction been sunk to a use-site (i.e., away from its
637 /// original location)?
638 fn is_inst_sunk(&self, inst: Inst) -> bool {
639 self.inst_sunk.contains(&inst)
640 }
641
642 // Is any result of this instruction needed?
643 fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
644 self.f
645 .dfg
646 .inst_results(inst)
647 .iter()
648 .any(|&result| self.value_lowered_uses[result] > 0)
649 }
650
651 fn lower_clif_block<B: LowerBackend<MInst = I>>(
652 &mut self,
653 backend: &B,
654 block: Block,
655 ctrl_plane: &mut ControlPlane,
656 ) -> CodegenResult<()> {
657 self.cur_scan_entry_color = Some(self.block_end_colors[block]);
658 // Lowering loop:
659 // - For each non-branch instruction, in reverse order:
660 // - If side-effecting (load, store, branch/call/return,
661 // possible trap), or if used outside of this block, or if
662 // demanded by another inst, then lower.
663 //
664 // That's it! Lowering of side-effecting ops will force all *needed*
665 // (live) non-side-effecting ops to be lowered at the right places, via
666 // the `use_input_reg()` callback on the `Lower` (that's us). That's
667 // because `use_input_reg()` sets the eager/demand bit for any insts
668 // whose result registers are used.
669 //
670 // We set the VCodeBuilder to "backward" mode, so we emit
671 // blocks in reverse order wrt the BlockIndex sequence, and
672 // emit instructions in reverse order within blocks. Because
673 // the machine backend calls `ctx.emit()` in forward order, we
674 // collect per-IR-inst lowered instructions in `ir_insts`,
675 // then reverse these and append to the VCode at the end of
676 // each IR instruction.
677 for inst in self.f.layout.block_insts(block).rev() {
678 let data = &self.f.dfg.insts[inst];
679 let has_side_effect = has_lowering_side_effect(self.f, inst);
680 // If inst has been sunk to another location, skip it.
681 if self.is_inst_sunk(inst) {
682 continue;
683 }
684 // Are any outputs used at least once?
685 let value_needed = self.is_any_inst_result_needed(inst);
686 trace!(
687 "lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
688 block,
689 inst,
690 data,
691 data.opcode().is_branch(),
692 has_side_effect,
693 value_needed,
694 );
695
696 // Update scan state to color prior to this inst (as we are scanning
697 // backward).
698 self.cur_inst = Some(inst);
699 if has_side_effect {
700 let entry_color = *self
701 .side_effect_inst_entry_colors
702 .get(&inst)
703 .expect("every side-effecting inst should have a color-map entry");
704 self.cur_scan_entry_color = Some(entry_color);
705 }
706
707 // Skip lowering branches; these are handled separately
708 // (see `lower_clif_branches()` below).
709 if self.f.dfg.insts[inst].opcode().is_branch() {
710 continue;
711 }
712
713 // Value defined by "inst" becomes live after it in normal
714 // order, and therefore **before** in reversed order.
715 self.emit_value_label_live_range_start_for_inst(inst);
716
717 // Normal instruction: codegen if the instruction is side-effecting
718 // or any of its outputs is used.
719 if has_side_effect || value_needed {
720 trace!("lowering: inst {}: {}", inst, self.f.dfg.display_inst(inst));
721 let temp_regs = match backend.lower(self, inst) {
722 Some(regs) => regs,
723 None => {
724 let ty = if self.num_outputs(inst) > 0 {
725 Some(self.output_ty(inst, 0))
726 } else {
727 None
728 };
729 return Err(CodegenError::Unsupported(format!(
730 "should be implemented in ISLE: inst = `{}`, type = `{:?}`",
731 self.f.dfg.display_inst(inst),
732 ty
733 )));
734 }
735 };
736
737 // The ISLE generated code emits its own registers to define the
738 // instruction's lowered values in. However, other instructions
739 // that use this SSA value will be lowered assuming that the value
740 // is generated into a pre-assigned, different, register.
741 //
742 // To connect the two, we set up "aliases" in the VCodeBuilder
743 // that apply when it is building the Operand table for the
744 // regalloc to use. These aliases effectively rewrite any use of
745 // the pre-assigned register to the register that was returned by
746 // the ISLE lowering logic.
747 let results = self.f.dfg.inst_results(inst);
748 debug_assert_eq!(temp_regs.len(), results.len());
749 for (regs, &result) in temp_regs.iter().zip(results) {
750 let dsts = self.value_regs[result];
751 let mut regs = regs.regs().iter();
752 for &dst in dsts.regs().iter() {
753 let temp = regs.next().copied().unwrap_or(Reg::invalid_sentinel());
754 trace!("set vreg alias: {result:?} = {dst:?}, lowering = {temp:?}");
755 self.vregs.set_vreg_alias(dst, temp);
756 }
757 }
758 }
759
760 let start = self.vcode.vcode.num_insts();
761 let loc = self.srcloc(inst);
762 self.finish_ir_inst(loc);
763
764 // If the instruction had a user stack map, forward it from the CLIF
765 // to the vcode.
766 if let Some(entries) = self.f.dfg.user_stack_map_entries(inst) {
767 let end = self.vcode.vcode.num_insts();
768 debug_assert!(end > start);
769 debug_assert_eq!(
770 (start..end)
771 .filter(|i| self.vcode.vcode[InsnIndex::new(*i)].is_safepoint())
772 .count(),
773 1
774 );
775 for i in start..end {
776 let iix = InsnIndex::new(i);
777 if self.vcode.vcode[iix].is_safepoint() {
778 trace!(
779 "Adding user stack map from clif\n\n\
780 {inst:?} `{}`\n\n\
781 to vcode\n\n\
782 {iix:?} `{}`",
783 self.f.dfg.display_inst(inst),
784 &self.vcode.vcode[iix].pretty_print_inst(&mut Default::default()),
785 );
786 self.vcode
787 .add_user_stack_map(BackwardsInsnIndex::new(iix.index()), entries);
788 break;
789 }
790 }
791 }
792
793 // maybe insert random instruction
794 if ctrl_plane.get_decision() {
795 if ctrl_plane.get_decision() {
796 let imm: u64 = ctrl_plane.get_arbitrary();
797 let reg = self.alloc_tmp(crate::ir::types::I64).regs()[0];
798 I::gen_imm_u64(imm, reg).map(|inst| self.emit(inst));
799 } else {
800 let imm: f64 = ctrl_plane.get_arbitrary();
801 let tmp = self.alloc_tmp(crate::ir::types::I64).regs()[0];
802 let reg = self.alloc_tmp(crate::ir::types::F64).regs()[0];
803 for inst in I::gen_imm_f64(imm, tmp, reg) {
804 self.emit(inst);
805 }
806 }
807 }
808 }
809
810 // Add the block params to this block.
811 self.add_block_params(block)?;
812
813 self.cur_scan_entry_color = None;
814 Ok(())
815 }
816
817 fn add_block_params(&mut self, block: Block) -> CodegenResult<()> {
818 for ¶m in self.f.dfg.block_params(block) {
819 for ® in self.value_regs[param].regs() {
820 let vreg = reg.to_virtual_reg().unwrap();
821 self.vcode.add_block_param(vreg);
822 }
823 }
824 Ok(())
825 }
826
827 fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
828 if let Some(ref values_labels) = self.f.dfg.values_labels {
829 debug_assert!(self.f.dfg.value_is_real(val));
830 trace!(
831 "get_value_labels: val {} -> {:?}",
832 val,
833 values_labels.get(&val)
834 );
835 match values_labels.get(&val) {
836 Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
837 Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
838 self.get_value_labels(value, depth + 1)
839 }
840 _ => None,
841 }
842 } else {
843 None
844 }
845 }
846
847 fn emit_value_label_marks_for_value(&mut self, val: Value) {
848 let regs = self.value_regs[val];
849 if regs.len() > 1 {
850 return;
851 }
852 let reg = regs.only_reg().unwrap();
853
854 if let Some(label_starts) = self.get_value_labels(val, 0) {
855 let labels = label_starts
856 .iter()
857 .map(|&ValueLabelStart { label, .. }| label)
858 .collect::<FxHashSet<_>>();
859 for label in labels {
860 trace!(
861 "value labeling: defines val {:?} -> reg {:?} -> label {:?}",
862 val,
863 reg,
864 label,
865 );
866 self.vcode.add_value_label(reg, label);
867 }
868 }
869 }
870
871 fn emit_value_label_live_range_start_for_inst(&mut self, inst: Inst) {
872 if self.f.dfg.values_labels.is_none() {
873 return;
874 }
875
876 trace!(
877 "value labeling: srcloc {}: inst {}",
878 self.srcloc(inst),
879 inst
880 );
881 for &val in self.f.dfg.inst_results(inst) {
882 self.emit_value_label_marks_for_value(val);
883 }
884 }
885
886 fn emit_value_label_live_range_start_for_block_args(&mut self, block: Block) {
887 if self.f.dfg.values_labels.is_none() {
888 return;
889 }
890
891 trace!("value labeling: block {}", block);
892 for &arg in self.f.dfg.block_params(block) {
893 self.emit_value_label_marks_for_value(arg);
894 }
895 self.finish_ir_inst(Default::default());
896 }
897
898 fn finish_ir_inst(&mut self, loc: RelSourceLoc) {
899 // The VCodeBuilder builds in reverse order (and reverses at
900 // the end), but `ir_insts` is in forward order, so reverse
901 // it.
902 for inst in self.ir_insts.drain(..).rev() {
903 self.vcode.push(inst, loc);
904 }
905 }
906
907 fn finish_bb(&mut self) {
908 self.vcode.end_bb();
909 }
910
911 fn lower_clif_branch<B: LowerBackend<MInst = I>>(
912 &mut self,
913 backend: &B,
914 // Lowered block index:
915 bindex: BlockIndex,
916 // Original CLIF block:
917 block: Block,
918 branch: Inst,
919 targets: &[MachLabel],
920 ) -> CodegenResult<()> {
921 trace!(
922 "lower_clif_branch: block {} branch {:?} targets {:?}",
923 block,
924 branch,
925 targets,
926 );
927 // When considering code-motion opportunities, consider the current
928 // program point to be this branch.
929 self.cur_inst = Some(branch);
930
931 // Lower the branch in ISLE.
932 backend
933 .lower_branch(self, branch, targets)
934 .unwrap_or_else(|| {
935 panic!(
936 "should be implemented in ISLE: branch = `{}`",
937 self.f.dfg.display_inst(branch),
938 )
939 });
940 let loc = self.srcloc(branch);
941 self.finish_ir_inst(loc);
942 // Add block param outputs for current block.
943 self.lower_branch_blockparam_args(bindex);
944 Ok(())
945 }
946
947 fn lower_branch_blockparam_args(&mut self, block: BlockIndex) {
948 let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
949
950 // TODO: why not make `block_order` public?
951 for succ_idx in 0..self.vcode.block_order().succ_indices(block).1.len() {
952 branch_arg_vregs.clear();
953 let (succ, args) = self.collect_block_call(block, succ_idx, &mut branch_arg_vregs);
954 self.vcode.add_succ(succ, args);
955 }
956 }
957
958 fn collect_branch_and_targets(
959 &self,
960 bindex: BlockIndex,
961 _bb: Block,
962 targets: &mut SmallVec<[MachLabel; 2]>,
963 ) -> Option<Inst> {
964 targets.clear();
965 let (opt_inst, succs) = self.vcode.block_order().succ_indices(bindex);
966 targets.extend(succs.iter().map(|succ| MachLabel::from_block(*succ)));
967 opt_inst
968 }
969
970 /// Collect the outgoing block-call arguments for a given edge out
971 /// of a lowered block.
972 fn collect_block_call<'a>(
973 &mut self,
974 block: BlockIndex,
975 succ_idx: usize,
976 buffer: &'a mut SmallVec<[Reg; 16]>,
977 ) -> (BlockIndex, &'a [Reg]) {
978 let block_order = self.vcode.block_order();
979 let (_, succs) = block_order.succ_indices(block);
980 let succ = succs[succ_idx];
981 let this_lb = block_order.lowered_order()[block.index()];
982 let succ_lb = block_order.lowered_order()[succ.index()];
983
984 let (branch_inst, succ_idx) = match (this_lb, succ_lb) {
985 (_, LoweredBlock::CriticalEdge { .. }) => {
986 // The successor is a split-critical-edge block. In this
987 // case, this block-call has no arguments, and the
988 // arguments go on the critical edge block's unconditional
989 // branch instead.
990 return (succ, &[]);
991 }
992 (LoweredBlock::CriticalEdge { pred, succ_idx, .. }, _) => {
993 // This is a split-critical-edge block. In this case, our
994 // block-call has the arguments that in the CLIF appear in
995 // the predecessor's branch to this edge.
996 let branch_inst = self.f.layout.last_inst(pred).unwrap();
997 (branch_inst, succ_idx as usize)
998 }
999
1000 (this, _) => {
1001 let block = this.orig_block().unwrap();
1002 // Ordinary block, with an ordinary block as
1003 // successor. Take the arguments from the branch.
1004 let branch_inst = self.f.layout.last_inst(block).unwrap();
1005 (branch_inst, succ_idx)
1006 }
1007 };
1008
1009 let block_call = self.f.dfg.insts[branch_inst]
1010 .branch_destination(&self.f.dfg.jump_tables, &self.f.dfg.exception_tables)[succ_idx];
1011 for arg in block_call.args(&self.f.dfg.value_lists) {
1012 match arg {
1013 BlockArg::Value(arg) => {
1014 debug_assert!(self.f.dfg.value_is_real(arg));
1015 let regs = self.put_value_in_regs(arg);
1016 buffer.extend_from_slice(regs.regs());
1017 }
1018 BlockArg::TryCallRet(i) => {
1019 let regs = self.try_call_rets.get(&branch_inst).unwrap()[i as usize]
1020 .map(|r| r.to_reg());
1021 buffer.extend_from_slice(regs.regs());
1022 }
1023 BlockArg::TryCallExn(i) => {
1024 let reg =
1025 self.try_call_payloads.get(&branch_inst).unwrap()[i as usize].to_reg();
1026 buffer.push(reg);
1027 }
1028 }
1029 }
1030 (succ, &buffer[..])
1031 }
1032
1033 /// Lower the function.
1034 pub fn lower<B: LowerBackend<MInst = I>>(
1035 mut self,
1036 backend: &B,
1037 ctrl_plane: &mut ControlPlane,
1038 ) -> CodegenResult<VCode<I>> {
1039 trace!("about to lower function: {:?}", self.f);
1040
1041 self.vcode.init_retval_area(&mut self.vregs)?;
1042
1043 // Get the pinned reg here (we only parameterize this function on `B`,
1044 // not the whole `Lower` impl).
1045 self.pinned_reg = backend.maybe_pinned_reg();
1046
1047 self.vcode.set_entry(BlockIndex::new(0));
1048
1049 // Reused vectors for branch lowering.
1050 let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
1051
1052 // get a copy of the lowered order; we hold this separately because we
1053 // need a mut ref to the vcode to mutate it below.
1054 let lowered_order: SmallVec<[LoweredBlock; 64]> = self
1055 .vcode
1056 .block_order()
1057 .lowered_order()
1058 .iter()
1059 .cloned()
1060 .collect();
1061
1062 // Main lowering loop over lowered blocks.
1063 for (bindex, lb) in lowered_order.iter().enumerate().rev() {
1064 let bindex = BlockIndex::new(bindex);
1065
1066 // Lower the block body in reverse order (see comment in
1067 // `lower_clif_block()` for rationale).
1068
1069 // End branch.
1070 if let Some(bb) = lb.orig_block() {
1071 if let Some(branch) = self.collect_branch_and_targets(bindex, bb, &mut targets) {
1072 self.lower_clif_branch(backend, bindex, bb, branch, &targets)?;
1073 self.finish_ir_inst(self.srcloc(branch));
1074 }
1075 } else {
1076 // If no orig block, this must be a pure edge block;
1077 // get the successor and emit a jump. This block has
1078 // no block params; and this jump's block-call args
1079 // will be filled in by
1080 // `lower_branch_blockparam_args`.
1081 let succ = self.vcode.block_order().succ_indices(bindex).1[0];
1082 self.emit(I::gen_jump(MachLabel::from_block(succ)));
1083 self.finish_ir_inst(Default::default());
1084 self.lower_branch_blockparam_args(bindex);
1085 }
1086
1087 // Original block body.
1088 if let Some(bb) = lb.orig_block() {
1089 self.lower_clif_block(backend, bb, ctrl_plane)?;
1090 self.emit_value_label_live_range_start_for_block_args(bb);
1091 }
1092
1093 if bindex.index() == 0 {
1094 // Set up the function with arg vreg inits.
1095 self.gen_arg_setup();
1096 self.finish_ir_inst(Default::default());
1097 }
1098
1099 self.finish_bb();
1100
1101 // Check for any deferred vreg-temp allocation errors, and
1102 // bubble one up at this time if it exists.
1103 if let Some(e) = self.vregs.take_deferred_error() {
1104 return Err(e);
1105 }
1106 }
1107
1108 // Now that we've emitted all instructions into the
1109 // VCodeBuilder, let's build the VCode.
1110 trace!(
1111 "built vcode:\n{:?}Backwards {:?}",
1112 &self.vregs,
1113 &self.vcode.vcode
1114 );
1115 let vcode = self.vcode.build(self.vregs);
1116
1117 Ok(vcode)
1118 }
1119
1120 pub fn value_is_unused(&self, val: Value) -> bool {
1121 match self.value_ir_uses[val] {
1122 ValueUseState::Unused => true,
1123 _ => false,
1124 }
1125 }
1126}
1127
1128/// Pre-analysis: compute `value_ir_uses`. See comment on
1129/// `ValueUseState` for a description of what this analysis
1130/// computes.
1131fn compute_use_states(
1132 f: &Function,
1133 sret_param: Option<Value>,
1134) -> SecondaryMap<Value, ValueUseState> {
1135 // We perform the analysis without recursion, so we don't
1136 // overflow the stack on long chains of ops in the input.
1137 //
1138 // This is sort of a hybrid of a "shallow use-count" pass and
1139 // a DFS. We iterate over all instructions and mark their args
1140 // as used. However when we increment a use-count to
1141 // "Multiple" we push its args onto the stack and do a DFS,
1142 // immediately marking the whole dependency tree as
1143 // Multiple. Doing both (shallow use-counting over all insts,
1144 // and deep Multiple propagation) lets us trim both
1145 // traversals, stopping recursion when a node is already at
1146 // the appropriate state.
1147 //
1148 // In particular, note that the *coarsening* into {Unused,
1149 // Once, Multiple} is part of what makes this pass more
1150 // efficient than a full indirect-use-counting pass.
1151
1152 let mut value_ir_uses = SecondaryMap::with_default(ValueUseState::Unused);
1153
1154 if let Some(sret_param) = sret_param {
1155 // There's an implicit use of the struct-return parameter in each
1156 // copy of the function epilogue, which we count here.
1157 value_ir_uses[sret_param] = ValueUseState::Multiple;
1158 }
1159
1160 // Stack of iterators over Values as we do DFS to mark
1161 // Multiple-state subtrees. The iterator type is whatever is
1162 // returned by `uses` below.
1163 let mut stack: SmallVec<[_; 16]> = smallvec![];
1164
1165 // Find the args for the inst corresponding to the given value.
1166 //
1167 // Note that "root" instructions are skipped here. This means that multiple
1168 // uses of any result of a multi-result instruction are not considered
1169 // multiple uses of the operands of a multi-result instruction. This
1170 // requires tight coupling with `get_value_as_source_or_const` above which
1171 // is the consumer of the map that this function is producing.
1172 let uses = |value| {
1173 trace!(" -> pushing args for {} onto stack", value);
1174 if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
1175 if is_value_use_root(f, src_inst) {
1176 None
1177 } else {
1178 Some(f.dfg.inst_values(src_inst))
1179 }
1180 } else {
1181 None
1182 }
1183 };
1184
1185 // Do a DFS through `value_ir_uses` to mark a subtree as
1186 // Multiple.
1187 for inst in f
1188 .layout
1189 .blocks()
1190 .flat_map(|block| f.layout.block_insts(block))
1191 {
1192 // Iterate over all values used by all instructions, noting an
1193 // additional use on each operand.
1194 for arg in f.dfg.inst_values(inst) {
1195 debug_assert!(f.dfg.value_is_real(arg));
1196 let old = value_ir_uses[arg];
1197 value_ir_uses[arg].inc();
1198 let new = value_ir_uses[arg];
1199 trace!("arg {} used, old state {:?}, new {:?}", arg, old, new);
1200
1201 // On transition to Multiple, do DFS.
1202 if old == ValueUseState::Multiple || new != ValueUseState::Multiple {
1203 continue;
1204 }
1205 if let Some(iter) = uses(arg) {
1206 stack.push(iter);
1207 }
1208 while let Some(iter) = stack.last_mut() {
1209 if let Some(value) = iter.next() {
1210 debug_assert!(f.dfg.value_is_real(value));
1211 trace!(" -> DFS reaches {}", value);
1212 if value_ir_uses[value] == ValueUseState::Multiple {
1213 // Truncate DFS here: no need to go further,
1214 // as whole subtree must already be Multiple.
1215 // With debug asserts, check one level of
1216 // that invariant at least.
1217 debug_assert!(uses(value).into_iter().flatten().all(|arg| {
1218 debug_assert!(f.dfg.value_is_real(arg));
1219 value_ir_uses[arg] == ValueUseState::Multiple
1220 }));
1221 continue;
1222 }
1223 value_ir_uses[value] = ValueUseState::Multiple;
1224 trace!(" -> became Multiple");
1225 if let Some(iter) = uses(value) {
1226 stack.push(iter);
1227 }
1228 } else {
1229 // Empty iterator, discard.
1230 stack.pop();
1231 }
1232 }
1233 }
1234 }
1235
1236 value_ir_uses
1237}
1238
1239/// Definition of a "root" instruction for the calculation of `ValueUseState`.
1240///
1241/// This function calculates whether `inst` is considered a "root" for value-use
1242/// information. This concept is used to forcibly prevent looking-through the
1243/// instruction during `get_value_as_source_or_const` as it additionally
1244/// prevents propagating `Multiple`-used results of the `inst` here to the
1245/// operands of the instruction.
1246///
1247/// Currently this is defined as multi-result instructions. That means that
1248/// lowerings are never allowed to look through a multi-result instruction to
1249/// generate patterns. Note that this isn't possible in ISLE today anyway so
1250/// this isn't currently much of a loss.
1251///
1252/// The main purpose of this function is to prevent the operands of a
1253/// multi-result instruction from being forcibly considered `Multiple`-used
1254/// regardless of circumstances.
1255fn is_value_use_root(f: &Function, inst: Inst) -> bool {
1256 f.dfg.inst_results(inst).len() > 1
1257}
1258
1259/// Function-level queries.
1260impl<'func, I: VCodeInst> Lower<'func, I> {
1261 pub fn dfg(&self) -> &DataFlowGraph {
1262 &self.f.dfg
1263 }
1264
1265 /// Get the `Callee`.
1266 pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
1267 self.vcode.abi()
1268 }
1269
1270 /// Get the `Callee`.
1271 pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
1272 self.vcode.abi_mut()
1273 }
1274}
1275
1276/// Instruction input/output queries.
1277impl<'func, I: VCodeInst> Lower<'func, I> {
1278 /// Get the instdata for a given IR instruction.
1279 pub fn data(&self, ir_inst: Inst) -> &InstructionData {
1280 &self.f.dfg.insts[ir_inst]
1281 }
1282
1283 /// Likewise, but starting with a GlobalValue identifier.
1284 pub fn symbol_value_data<'b>(
1285 &'b self,
1286 global_value: GlobalValue,
1287 ) -> Option<(&'b ExternalName, RelocDistance, i64)> {
1288 let gvdata = &self.f.global_values[global_value];
1289 match gvdata {
1290 &GlobalValueData::Symbol {
1291 ref name,
1292 ref offset,
1293 colocated,
1294 ..
1295 } => {
1296 let offset = offset.bits();
1297 let dist = if colocated {
1298 RelocDistance::Near
1299 } else {
1300 RelocDistance::Far
1301 };
1302 Some((name, dist, offset))
1303 }
1304 _ => None,
1305 }
1306 }
1307
1308 /// Returns the memory flags of a given memory access.
1309 pub fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
1310 match &self.f.dfg.insts[ir_inst] {
1311 &InstructionData::AtomicCas { flags, .. } => Some(flags),
1312 &InstructionData::AtomicRmw { flags, .. } => Some(flags),
1313 &InstructionData::Load { flags, .. }
1314 | &InstructionData::LoadNoOffset { flags, .. }
1315 | &InstructionData::Store { flags, .. } => Some(flags),
1316 &InstructionData::StoreNoOffset { flags, .. } => Some(flags),
1317 _ => None,
1318 }
1319 }
1320
1321 /// Get the source location for a given instruction.
1322 pub fn srcloc(&self, ir_inst: Inst) -> RelSourceLoc {
1323 self.f.rel_srclocs()[ir_inst]
1324 }
1325
1326 /// Get the number of inputs to the given IR instruction. This is a count only of the Value
1327 /// arguments to the instruction: block arguments will not be included in this count.
1328 pub fn num_inputs(&self, ir_inst: Inst) -> usize {
1329 self.f.dfg.inst_args(ir_inst).len()
1330 }
1331
1332 /// Get the number of outputs to the given IR instruction.
1333 pub fn num_outputs(&self, ir_inst: Inst) -> usize {
1334 self.f.dfg.inst_results(ir_inst).len()
1335 }
1336
1337 /// Get the type for an instruction's input.
1338 pub fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1339 self.value_ty(self.input_as_value(ir_inst, idx))
1340 }
1341
1342 /// Get the type for a value.
1343 pub fn value_ty(&self, val: Value) -> Type {
1344 self.f.dfg.value_type(val)
1345 }
1346
1347 /// Get the type for an instruction's output.
1348 pub fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1349 self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
1350 }
1351
1352 /// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
1353 /// value, if possible.
1354 pub fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
1355 self.inst_constants.get(&ir_inst).map(|&c| {
1356 // The upper bits must be zero, enforced during legalization and by
1357 // the CLIF verifier.
1358 debug_assert_eq!(c, {
1359 let input_size = self.output_ty(ir_inst, 0).bits() as u64;
1360 let shift = 64 - input_size;
1361 (c << shift) >> shift
1362 });
1363 c
1364 })
1365 }
1366
1367 /// Get the input as one of two options other than a direct register:
1368 ///
1369 /// - An instruction, given that it is effect-free or able to sink its
1370 /// effect to the current instruction being lowered, and given it has only
1371 /// one output, and if effect-ful, given that this is the only use;
1372 /// - A constant, if the value is a constant.
1373 ///
1374 /// The instruction input may be available in either of these forms. It may
1375 /// be available in neither form, if the conditions are not met; if so, use
1376 /// `put_input_in_regs()` instead to get it in a register.
1377 ///
1378 /// If the backend merges the effect of a side-effecting instruction, it
1379 /// must call `sink_inst()`. When this is called, it indicates that the
1380 /// effect has been sunk to the current scan location. The sunk
1381 /// instruction's result(s) must have *no* uses remaining, because it will
1382 /// not be codegen'd (it has been integrated into the current instruction).
1383 pub fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
1384 let val = self.f.dfg.inst_args(ir_inst)[idx];
1385 debug_assert!(self.f.dfg.value_is_real(val));
1386 val
1387 }
1388
1389 /// Resolves a particular input of an instruction to the `Value` that it is
1390 /// represented with.
1391 ///
1392 /// For more information see [`Lower::get_value_as_source_or_const`].
1393 pub fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
1394 let val = self.input_as_value(ir_inst, idx);
1395 self.get_value_as_source_or_const(val)
1396 }
1397
1398 /// Resolves a `Value` definition to the source instruction it came from
1399 /// plus whether it's a unique-use of that instruction.
1400 ///
1401 /// This function is the workhorse of pattern-matching in ISLE which enables
1402 /// combining multiple instructions together. This is used implicitly in
1403 /// patterns such as `(iadd x (iconst y))` where this function is used to
1404 /// extract the `(iconst y)` operand.
1405 ///
1406 /// At its core this function is a wrapper around
1407 /// [`DataFlowGraph::value_def`]. This function applies a filter on top of
1408 /// that, however, to determine when it is actually safe to "look through"
1409 /// the `val` definition here and view the underlying instruction. This
1410 /// protects against duplicating side effects, such as loads, for example.
1411 ///
1412 /// Internally this uses the data computed from `compute_use_states` along
1413 /// with other instruction properties to know what to return.
1414 pub fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
1415 trace!(
1416 "get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
1417 val,
1418 self.cur_inst,
1419 self.cur_scan_entry_color,
1420 );
1421 let inst = match self.f.dfg.value_def(val) {
1422 // OK to merge source instruction if we have a source
1423 // instruction, and one of these two conditions hold:
1424 //
1425 // - It has no side-effects and this instruction is not a "value-use
1426 // root" instruction. Instructions which are considered "roots"
1427 // for value-use calculations do not have accurate information
1428 // known about the `ValueUseState` of their operands. This is
1429 // currently done for multi-result instructions to prevent a use
1430 // of each result from forcing all operands of the multi-result
1431 // instruction to also be `Multiple`. This in turn means that the
1432 // `ValueUseState` for operands of a "root" instruction to be a
1433 // lie if pattern matching were to look through the multi-result
1434 // instruction. As a result the "look through this instruction"
1435 // logic only succeeds if it's not a root instruction.
1436 //
1437 // - It has a side-effect, has one output value, that one
1438 // output has only one use, directly or indirectly (so
1439 // cannot be duplicated -- see comment on
1440 // `ValueUseState`), and the instruction's color is *one
1441 // less than* the current scan color.
1442 //
1443 // This latter set of conditions is testing whether a
1444 // side-effecting instruction can sink to the current scan
1445 // location; this is possible if the in-color of this inst is
1446 // equal to the out-color of the producing inst, so no other
1447 // side-effecting ops occur between them (which will only be true
1448 // if they are in the same BB, because color increments at each BB
1449 // start).
1450 //
1451 // If it is actually sunk, then in `merge_inst()`, we update the
1452 // scan color so that as we scan over the range past which the
1453 // instruction was sunk, we allow other instructions (that came
1454 // prior to the sunk instruction) to sink.
1455 ValueDef::Result(src_inst, result_idx) => {
1456 let src_side_effect = has_lowering_side_effect(self.f, src_inst);
1457 trace!(" -> src inst {}", src_inst);
1458 trace!(" -> has lowering side effect: {}", src_side_effect);
1459 if is_value_use_root(self.f, src_inst) {
1460 // If this instruction is a "root instruction" then it's
1461 // required that we can't look through it to see the
1462 // definition. This means that the `ValueUseState` for the
1463 // operands of this result assume that this instruction is
1464 // generated exactly once which might get violated were we
1465 // to allow looking through it.
1466 trace!(" -> is a root instruction");
1467 InputSourceInst::None
1468 } else if !src_side_effect {
1469 // Otherwise if this instruction has no side effects and the
1470 // value is used only once then we can look through it with
1471 // a "unique" tag. A non-unique `Use` can be shown for other
1472 // values ensuring consumers know how it's computed but that
1473 // it's not available to omit.
1474 if self.value_ir_uses[val] == ValueUseState::Once {
1475 InputSourceInst::UniqueUse(src_inst, result_idx)
1476 } else {
1477 InputSourceInst::Use(src_inst, result_idx)
1478 }
1479 } else {
1480 // Side-effect: test whether this is the only use of the
1481 // only result of the instruction, and whether colors allow
1482 // the code-motion.
1483 trace!(
1484 " -> side-effecting op {} for val {}: use state {:?}",
1485 src_inst,
1486 val,
1487 self.value_ir_uses[val]
1488 );
1489 if self.cur_scan_entry_color.is_some()
1490 && self.value_ir_uses[val] == ValueUseState::Once
1491 && self.num_outputs(src_inst) == 1
1492 && self
1493 .side_effect_inst_entry_colors
1494 .get(&src_inst)
1495 .unwrap()
1496 .get()
1497 + 1
1498 == self.cur_scan_entry_color.unwrap().get()
1499 {
1500 InputSourceInst::UniqueUse(src_inst, 0)
1501 } else {
1502 InputSourceInst::None
1503 }
1504 }
1505 }
1506 _ => InputSourceInst::None,
1507 };
1508 let constant = inst.as_inst().and_then(|(inst, _)| self.get_constant(inst));
1509
1510 NonRegInput { inst, constant }
1511 }
1512
1513 /// Increment the reference count for the Value, ensuring that it gets lowered.
1514 pub fn increment_lowered_uses(&mut self, val: Value) {
1515 self.value_lowered_uses[val] += 1
1516 }
1517
1518 /// Put the `idx`th input into register(s) and return the assigned register.
1519 pub fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
1520 let val = self.f.dfg.inst_args(ir_inst)[idx];
1521 self.put_value_in_regs(val)
1522 }
1523
1524 /// Put the given value into register(s) and return the assigned register.
1525 pub fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
1526 debug_assert!(self.f.dfg.value_is_real(val));
1527 trace!("put_value_in_regs: val {}", val);
1528
1529 if let Some(inst) = self.f.dfg.value_def(val).inst() {
1530 assert!(!self.inst_sunk.contains(&inst));
1531 }
1532
1533 let regs = self.value_regs[val];
1534 trace!(" -> regs {:?}", regs);
1535 assert!(regs.is_valid());
1536
1537 self.value_lowered_uses[val] += 1;
1538
1539 regs
1540 }
1541
1542 /// Get the ValueRegs for the edge-defined values for special
1543 /// try-call-return block arguments.
1544 pub fn try_call_return_defs(&mut self, ir_inst: Inst) -> &[ValueRegs<Writable<Reg>>] {
1545 &self.try_call_rets.get(&ir_inst).unwrap()[..]
1546 }
1547
1548 /// Get the Regs for the edge-defined values for special
1549 /// try-call-return exception payload arguments.
1550 pub fn try_call_exception_defs(&mut self, ir_inst: Inst) -> &[Writable<Reg>] {
1551 &self.try_call_payloads.get(&ir_inst).unwrap()[..]
1552 }
1553}
1554
1555/// Codegen primitives: allocate temps, emit instructions, set result registers,
1556/// ask for an input to be gen'd into a register.
1557impl<'func, I: VCodeInst> Lower<'func, I> {
1558 /// Get a new temp.
1559 pub fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
1560 writable_value_regs(self.vregs.alloc_with_deferred_error(ty))
1561 }
1562
1563 /// Get the current root instruction that we are lowering.
1564 pub fn cur_inst(&self) -> Inst {
1565 self.cur_inst.unwrap()
1566 }
1567
1568 /// Emit a machine instruction.
1569 pub fn emit(&mut self, mach_inst: I) {
1570 trace!("emit: {:?}", mach_inst);
1571 self.ir_insts.push(mach_inst);
1572 }
1573
1574 /// Indicate that the side-effect of an instruction has been sunk to the
1575 /// current scan location. This should only be done with the instruction's
1576 /// original results are not used (i.e., `put_input_in_regs` is not invoked
1577 /// for the input produced by the sunk instruction), otherwise the
1578 /// side-effect will occur twice.
1579 pub fn sink_inst(&mut self, ir_inst: Inst) {
1580 assert!(has_lowering_side_effect(self.f, ir_inst));
1581 assert!(self.cur_scan_entry_color.is_some());
1582
1583 for result in self.dfg().inst_results(ir_inst) {
1584 assert!(self.value_lowered_uses[*result] == 0);
1585 }
1586
1587 let sunk_inst_entry_color = self
1588 .side_effect_inst_entry_colors
1589 .get(&ir_inst)
1590 .cloned()
1591 .unwrap();
1592 let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
1593 assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
1594 self.cur_scan_entry_color = Some(sunk_inst_entry_color);
1595 self.inst_sunk.insert(ir_inst);
1596 }
1597
1598 /// Retrieve immediate data given a handle.
1599 pub fn get_immediate_data(&self, imm: Immediate) -> &ConstantData {
1600 self.f.dfg.immediates.get(imm).unwrap()
1601 }
1602
1603 /// Retrieve constant data given a handle.
1604 pub fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
1605 self.f.dfg.constants.get(constant_handle)
1606 }
1607
1608 /// Indicate that a constant should be emitted.
1609 pub fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
1610 self.vcode.constants().insert(constant)
1611 }
1612
1613 /// Cause the value in `reg` to be in a virtual reg, by copying it into a
1614 /// new virtual reg if `reg` is a real reg. `ty` describes the type of the
1615 /// value in `reg`.
1616 pub fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
1617 if reg.to_virtual_reg().is_some() {
1618 reg
1619 } else {
1620 let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
1621 self.emit(I::gen_move(new_reg, reg, ty));
1622 new_reg.to_reg()
1623 }
1624 }
1625
1626 /// Add a range fact to a register, if no other fact is present.
1627 pub fn add_range_fact(&mut self, reg: Reg, bit_width: u16, min: u64, max: u64) {
1628 if self.flags.enable_pcc() {
1629 self.vregs.set_fact_if_missing(
1630 reg.to_virtual_reg().unwrap(),
1631 Fact::Range {
1632 bit_width,
1633 min,
1634 max,
1635 },
1636 );
1637 }
1638 }
1639}
1640
1641#[cfg(test)]
1642mod tests {
1643 use super::ValueUseState;
1644 use crate::cursor::{Cursor, FuncCursor};
1645 use crate::ir::types;
1646 use crate::ir::{Function, InstBuilder};
1647
1648 #[test]
1649 fn multi_result_use_once() {
1650 let mut func = Function::new();
1651 let block0 = func.dfg.make_block();
1652 let mut pos = FuncCursor::new(&mut func);
1653 pos.insert_block(block0);
1654 let v1 = pos.ins().iconst(types::I64, 0);
1655 let v2 = pos.ins().iconst(types::I64, 1);
1656 let v3 = pos.ins().iconcat(v1, v2);
1657 let (v4, v5) = pos.ins().isplit(v3);
1658 pos.ins().return_(&[v4, v5]);
1659 let func = pos.func;
1660
1661 let uses = super::compute_use_states(&func, None);
1662 assert_eq!(uses[v1], ValueUseState::Once);
1663 assert_eq!(uses[v2], ValueUseState::Once);
1664 assert_eq!(uses[v3], ValueUseState::Once);
1665 assert_eq!(uses[v4], ValueUseState::Once);
1666 assert_eq!(uses[v5], ValueUseState::Once);
1667 }
1668
1669 #[test]
1670 fn results_used_twice_but_not_operands() {
1671 let mut func = Function::new();
1672 let block0 = func.dfg.make_block();
1673 let mut pos = FuncCursor::new(&mut func);
1674 pos.insert_block(block0);
1675 let v1 = pos.ins().iconst(types::I64, 0);
1676 let v2 = pos.ins().iconst(types::I64, 1);
1677 let v3 = pos.ins().iconcat(v1, v2);
1678 let (v4, v5) = pos.ins().isplit(v3);
1679 pos.ins().return_(&[v4, v4]);
1680 let func = pos.func;
1681
1682 let uses = super::compute_use_states(&func, None);
1683 assert_eq!(uses[v1], ValueUseState::Once);
1684 assert_eq!(uses[v2], ValueUseState::Once);
1685 assert_eq!(uses[v3], ValueUseState::Once);
1686 assert_eq!(uses[v4], ValueUseState::Multiple);
1687 assert_eq!(uses[v5], ValueUseState::Unused);
1688 }
1689}