1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
//! AArch64 ISA definitions: instruction arguments.

use crate::ir::types::*;
use crate::isa::aarch64::inst::*;

//=============================================================================
// Instruction sub-components: shift and extend descriptors

/// A shift operator for a register or immediate.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum ShiftOp {
    /// Logical shift left.
    LSL = 0b00,
    /// Logical shift right.
    LSR = 0b01,
    /// Arithmetic shift right.
    ASR = 0b10,
    /// Rotate right.
    ROR = 0b11,
}

impl ShiftOp {
    /// Get the encoding of this shift op.
    pub fn bits(self) -> u8 {
        self as u8
    }
}

/// A shift operator amount.
#[derive(Clone, Copy, Debug)]
pub struct ShiftOpShiftImm(u8);

impl ShiftOpShiftImm {
    /// Maximum shift for shifted-register operands.
    pub const MAX_SHIFT: u64 = 63;

    /// Create a new shiftop shift amount, if possible.
    pub fn maybe_from_shift(shift: u64) -> Option<ShiftOpShiftImm> {
        if shift <= Self::MAX_SHIFT {
            Some(ShiftOpShiftImm(shift as u8))
        } else {
            None
        }
    }

    /// Return the shift amount.
    pub fn value(self) -> u8 {
        self.0
    }

    /// Mask down to a given number of bits.
    pub fn mask(self, bits: u8) -> ShiftOpShiftImm {
        ShiftOpShiftImm(self.0 & (bits - 1))
    }
}

/// A shift operator with an amount, guaranteed to be within range.
#[derive(Copy, Clone, Debug)]
pub struct ShiftOpAndAmt {
    /// The shift operator.
    op: ShiftOp,
    /// The shift operator amount.
    shift: ShiftOpShiftImm,
}

impl ShiftOpAndAmt {
    /// Create a new shift operator with an amount.
    pub fn new(op: ShiftOp, shift: ShiftOpShiftImm) -> ShiftOpAndAmt {
        ShiftOpAndAmt { op, shift }
    }

    /// Get the shift op.
    pub fn op(&self) -> ShiftOp {
        self.op
    }

    /// Get the shift amount.
    pub fn amt(&self) -> ShiftOpShiftImm {
        self.shift
    }
}

/// An extend operator for a register.
#[derive(Clone, Copy, Debug)]
#[repr(u8)]
pub enum ExtendOp {
    /// Unsigned extend byte.
    UXTB = 0b000,
    /// Unsigned extend halfword.
    UXTH = 0b001,
    /// Unsigned extend word.
    UXTW = 0b010,
    /// Unsigned extend doubleword.
    UXTX = 0b011,
    /// Signed extend byte.
    SXTB = 0b100,
    /// Signed extend halfword.
    SXTH = 0b101,
    /// Signed extend word.
    SXTW = 0b110,
    /// Signed extend doubleword.
    SXTX = 0b111,
}

impl ExtendOp {
    /// Encoding of this op.
    pub fn bits(self) -> u8 {
        self as u8
    }
}

//=============================================================================
// Instruction sub-components (memory addresses): definitions

/// A reference to some memory address.
#[derive(Clone, Debug)]
pub enum MemLabel {
    /// An address in the code, a constant pool or jumptable, with relative
    /// offset from this instruction. This form must be used at emission time;
    /// see `memlabel_finalize()` for how other forms are lowered to this one.
    PCRel(i32),
    /// An address that refers to a label within a `MachBuffer`, for example a
    /// constant that lives in the pool at the end of the function.
    Mach(MachLabel),
}

impl AMode {
    /// Memory reference using an address in a register.
    pub fn reg(reg: Reg) -> AMode {
        // Use UnsignedOffset rather than Unscaled to use ldr rather than ldur.
        // This also does not use PostIndexed / PreIndexed as they update the register.
        AMode::UnsignedOffset {
            rn: reg,
            uimm12: UImm12Scaled::zero(I64),
        }
    }

    /// Memory reference using `reg1 + sizeof(ty) * reg2` as an address, with `reg2` sign- or
    /// zero-extended as per `op`.
    pub fn reg_plus_reg_scaled_extended(reg1: Reg, reg2: Reg, op: ExtendOp) -> AMode {
        AMode::RegScaledExtended {
            rn: reg1,
            rm: reg2,
            extendop: op,
        }
    }
}

pub use crate::isa::aarch64::lower::isle::generated_code::PairAMode;

//=============================================================================
// Instruction sub-components (conditions, branches and branch targets):
// definitions

/// Condition for conditional branches.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum Cond {
    /// Equal.
    Eq = 0,
    /// Not equal.
    Ne = 1,
    /// Unsigned greater than or equal to.
    Hs = 2,
    /// Unsigned less than.
    Lo = 3,
    /// Minus, negative.
    Mi = 4,
    /// Positive or zero.
    Pl = 5,
    /// Signed overflow.
    Vs = 6,
    /// No signed overflow.
    Vc = 7,
    /// Unsigned greater than.
    Hi = 8,
    /// Unsigned less than or equal to.
    Ls = 9,
    /// Signed greater or equal to.
    Ge = 10,
    /// Signed less than.
    Lt = 11,
    /// Signed greater than.
    Gt = 12,
    /// Signed less than or equal.
    Le = 13,
    /// Always executed.
    Al = 14,
    /// Always executed.
    Nv = 15,
}

impl Cond {
    /// Return the inverted condition.
    pub fn invert(self) -> Cond {
        match self {
            Cond::Eq => Cond::Ne,
            Cond::Ne => Cond::Eq,

            Cond::Hs => Cond::Lo,
            Cond::Lo => Cond::Hs,

            Cond::Mi => Cond::Pl,
            Cond::Pl => Cond::Mi,

            Cond::Vs => Cond::Vc,
            Cond::Vc => Cond::Vs,

            Cond::Hi => Cond::Ls,
            Cond::Ls => Cond::Hi,

            Cond::Ge => Cond::Lt,
            Cond::Lt => Cond::Ge,

            Cond::Gt => Cond::Le,
            Cond::Le => Cond::Gt,

            Cond::Al => Cond::Nv,
            Cond::Nv => Cond::Al,
        }
    }

    /// Return the machine encoding of this condition.
    pub fn bits(self) -> u32 {
        self as u32
    }
}

/// The kind of conditional branch: the common-case-optimized "reg-is-zero" /
/// "reg-is-nonzero" variants, or the generic one that tests the machine
/// condition codes.
#[derive(Clone, Copy, Debug)]
pub enum CondBrKind {
    /// Condition: given register is zero.
    Zero(Reg),
    /// Condition: given register is nonzero.
    NotZero(Reg),
    /// Condition: the given condition-code test is true.
    Cond(Cond),
}

impl CondBrKind {
    /// Return the inverted branch condition.
    pub fn invert(self) -> CondBrKind {
        match self {
            CondBrKind::Zero(reg) => CondBrKind::NotZero(reg),
            CondBrKind::NotZero(reg) => CondBrKind::Zero(reg),
            CondBrKind::Cond(c) => CondBrKind::Cond(c.invert()),
        }
    }
}

/// A branch target. Either unresolved (basic-block index) or resolved (offset
/// from end of current instruction).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum BranchTarget {
    /// An unresolved reference to a Label, as passed into
    /// `lower_branch_group()`.
    Label(MachLabel),
    /// A fixed PC offset.
    ResolvedOffset(i32),
}

impl BranchTarget {
    /// Return the target's label, if it is a label-based target.
    pub fn as_label(self) -> Option<MachLabel> {
        match self {
            BranchTarget::Label(l) => Some(l),
            _ => None,
        }
    }

    /// Return the target's offset, if specified, or zero if label-based.
    pub fn as_offset14_or_zero(self) -> u32 {
        self.as_offset_bounded(14)
    }

    /// Return the target's offset, if specified, or zero if label-based.
    pub fn as_offset19_or_zero(self) -> u32 {
        self.as_offset_bounded(19)
    }

    /// Return the target's offset, if specified, or zero if label-based.
    pub fn as_offset26_or_zero(self) -> u32 {
        self.as_offset_bounded(26)
    }

    fn as_offset_bounded(self, bits: u32) -> u32 {
        let off = match self {
            BranchTarget::ResolvedOffset(off) => off >> 2,
            _ => 0,
        };
        let hi = (1 << (bits - 1)) - 1;
        let lo = -(1 << bits - 1);
        assert!(off <= hi);
        assert!(off >= lo);
        (off as u32) & ((1 << bits) - 1)
    }
}

impl PrettyPrint for ShiftOpAndAmt {
    fn pretty_print(&self, _: u8) -> String {
        format!("{:?} {}", self.op(), self.amt().value())
    }
}

impl PrettyPrint for ExtendOp {
    fn pretty_print(&self, _: u8) -> String {
        format!("{:?}", self)
    }
}

impl PrettyPrint for MemLabel {
    fn pretty_print(&self, _: u8) -> String {
        match self {
            MemLabel::PCRel(off) => format!("pc+{}", off),
            MemLabel::Mach(off) => format!("label({})", off.get()),
        }
    }
}

fn shift_for_type(size_bytes: u8) -> usize {
    match size_bytes {
        1 => 0,
        2 => 1,
        4 => 2,
        8 => 3,
        16 => 4,
        _ => panic!("unknown type size: {size_bytes}"),
    }
}

impl PrettyPrint for AMode {
    fn pretty_print(&self, size_bytes: u8) -> String {
        debug_assert!(size_bytes != 0);
        match self {
            &AMode::Unscaled { rn, simm9 } => {
                let reg = pretty_print_reg(rn);
                if simm9.value != 0 {
                    let simm9 = simm9.pretty_print(8);
                    format!("[{}, {}]", reg, simm9)
                } else {
                    format!("[{}]", reg)
                }
            }
            &AMode::UnsignedOffset { rn, uimm12 } => {
                let reg = pretty_print_reg(rn);
                if uimm12.value() != 0 {
                    let uimm12 = uimm12.pretty_print(8);
                    format!("[{}, {}]", reg, uimm12)
                } else {
                    format!("[{}]", reg)
                }
            }
            &AMode::RegReg { rn, rm } => {
                let r1 = pretty_print_reg(rn);
                let r2 = pretty_print_reg(rm);
                format!("[{}, {}]", r1, r2)
            }
            &AMode::RegScaled { rn, rm } => {
                let r1 = pretty_print_reg(rn);
                let r2 = pretty_print_reg(rm);
                let shift = shift_for_type(size_bytes);
                format!("[{}, {}, LSL #{}]", r1, r2, shift)
            }
            &AMode::RegScaledExtended { rn, rm, extendop } => {
                let shift = shift_for_type(size_bytes);
                let size = match extendop {
                    ExtendOp::SXTW | ExtendOp::UXTW => OperandSize::Size32,
                    _ => OperandSize::Size64,
                };
                let r1 = pretty_print_reg(rn);
                let r2 = pretty_print_ireg(rm, size);
                let op = extendop.pretty_print(0);
                format!("[{}, {}, {} #{}]", r1, r2, op, shift)
            }
            &AMode::RegExtended { rn, rm, extendop } => {
                let size = match extendop {
                    ExtendOp::SXTW | ExtendOp::UXTW => OperandSize::Size32,
                    _ => OperandSize::Size64,
                };
                let r1 = pretty_print_reg(rn);
                let r2 = pretty_print_ireg(rm, size);
                let op = extendop.pretty_print(0);
                format!("[{}, {}, {}]", r1, r2, op)
            }
            &AMode::Label { ref label } => label.pretty_print(0),
            &AMode::SPPreIndexed { simm9 } => {
                let simm9 = simm9.pretty_print(8);
                format!("[sp, {}]!", simm9)
            }
            &AMode::SPPostIndexed { simm9 } => {
                let simm9 = simm9.pretty_print(8);
                format!("[sp], {}", simm9)
            }
            AMode::Const { addr } => format!("[const({})]", addr.as_u32()),

            // Eliminated by `mem_finalize()`.
            &AMode::SPOffset { .. }
            | &AMode::FPOffset { .. }
            | &AMode::IncomingArg { .. }
            | &AMode::NominalSPOffset { .. }
            | &AMode::RegOffset { .. } => {
                panic!("Unexpected pseudo mem-arg mode: {:?}", self)
            }
        }
    }
}

impl PrettyPrint for PairAMode {
    fn pretty_print(&self, _: u8) -> String {
        match self {
            &PairAMode::SignedOffset { reg, simm7 } => {
                let reg = pretty_print_reg(reg);
                if simm7.value != 0 {
                    let simm7 = simm7.pretty_print(8);
                    format!("[{}, {}]", reg, simm7)
                } else {
                    format!("[{}]", reg)
                }
            }
            &PairAMode::SPPreIndexed { simm7 } => {
                let simm7 = simm7.pretty_print(8);
                format!("[sp, {}]!", simm7)
            }
            &PairAMode::SPPostIndexed { simm7 } => {
                let simm7 = simm7.pretty_print(8);
                format!("[sp], {}", simm7)
            }
        }
    }
}

impl PrettyPrint for Cond {
    fn pretty_print(&self, _: u8) -> String {
        let mut s = format!("{:?}", self);
        s.make_ascii_lowercase();
        s
    }
}

impl PrettyPrint for BranchTarget {
    fn pretty_print(&self, _: u8) -> String {
        match self {
            &BranchTarget::Label(label) => format!("label{:?}", label.get()),
            &BranchTarget::ResolvedOffset(off) => format!("{}", off),
        }
    }
}

/// Type used to communicate the operand size of a machine instruction, as AArch64 has 32- and
/// 64-bit variants of many instructions (and integer registers).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum OperandSize {
    /// 32-bit.
    Size32,
    /// 64-bit.
    Size64,
}

impl OperandSize {
    /// 32-bit case?
    pub fn is32(self) -> bool {
        self == OperandSize::Size32
    }

    /// 64-bit case?
    pub fn is64(self) -> bool {
        self == OperandSize::Size64
    }

    /// Convert from a needed width to the smallest size that fits.
    pub fn from_bits<I: Into<usize>>(bits: I) -> OperandSize {
        let bits: usize = bits.into();
        assert!(bits <= 64);
        if bits <= 32 {
            OperandSize::Size32
        } else {
            OperandSize::Size64
        }
    }

    /// Return the operand size in bits.
    pub fn bits(&self) -> u8 {
        match self {
            OperandSize::Size32 => 32,
            OperandSize::Size64 => 64,
        }
    }

    /// Convert from an integer type into the smallest size that fits.
    pub fn from_ty(ty: Type) -> OperandSize {
        debug_assert!(!ty.is_vector());

        Self::from_bits(ty_bits(ty))
    }

    /// Convert to I32, I64, or I128.
    pub fn to_ty(self) -> Type {
        match self {
            OperandSize::Size32 => I32,
            OperandSize::Size64 => I64,
        }
    }

    /// Register interpretation bit.
    /// When 0, the register is interpreted as the 32-bit version.
    /// When 1, the register is interpreted as the 64-bit version.
    pub fn sf_bit(&self) -> u32 {
        match self {
            OperandSize::Size32 => 0,
            OperandSize::Size64 => 1,
        }
    }

    /// The maximum unsigned value representable in a value of this size.
    pub fn max_value(&self) -> u64 {
        match self {
            OperandSize::Size32 => u32::MAX as u64,
            OperandSize::Size64 => u64::MAX,
        }
    }
}

/// Type used to communicate the size of a scalar SIMD & FP operand.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ScalarSize {
    /// 8-bit.
    Size8,
    /// 16-bit.
    Size16,
    /// 32-bit.
    Size32,
    /// 64-bit.
    Size64,
    /// 128-bit.
    Size128,
}

impl ScalarSize {
    /// Convert to an integer operand size.
    pub fn operand_size(&self) -> OperandSize {
        match self {
            ScalarSize::Size8 | ScalarSize::Size16 | ScalarSize::Size32 => OperandSize::Size32,
            ScalarSize::Size64 => OperandSize::Size64,
            _ => panic!("Unexpected operand_size request for: {:?}", self),
        }
    }

    /// Return the encoding bits that are used by some scalar FP instructions
    /// for a particular operand size.
    pub fn ftype(&self) -> u32 {
        match self {
            ScalarSize::Size16 => 0b11,
            ScalarSize::Size32 => 0b00,
            ScalarSize::Size64 => 0b01,
            _ => panic!("Unexpected scalar FP operand size: {:?}", self),
        }
    }

    /// Return the widened version of the scalar size.
    pub fn widen(&self) -> ScalarSize {
        match self {
            ScalarSize::Size8 => ScalarSize::Size16,
            ScalarSize::Size16 => ScalarSize::Size32,
            ScalarSize::Size32 => ScalarSize::Size64,
            ScalarSize::Size64 => ScalarSize::Size128,
            ScalarSize::Size128 => panic!("can't widen 128-bits"),
        }
    }

    /// Return the narrowed version of the scalar size.
    pub fn narrow(&self) -> ScalarSize {
        match self {
            ScalarSize::Size8 => panic!("can't narrow 8-bits"),
            ScalarSize::Size16 => ScalarSize::Size8,
            ScalarSize::Size32 => ScalarSize::Size16,
            ScalarSize::Size64 => ScalarSize::Size32,
            ScalarSize::Size128 => ScalarSize::Size64,
        }
    }

    /// Return a type with the same size as this scalar.
    pub fn ty(&self) -> Type {
        match self {
            ScalarSize::Size8 => I8,
            ScalarSize::Size16 => I16,
            ScalarSize::Size32 => I32,
            ScalarSize::Size64 => I64,
            ScalarSize::Size128 => I128,
        }
    }
}

/// Type used to communicate the size of a vector operand.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum VectorSize {
    /// 8-bit, 8 lanes.
    Size8x8,
    /// 8 bit, 16 lanes.
    Size8x16,
    /// 16-bit, 4 lanes.
    Size16x4,
    /// 16-bit, 8 lanes.
    Size16x8,
    /// 32-bit, 2 lanes.
    Size32x2,
    /// 32-bit, 4 lanes.
    Size32x4,
    /// 64-bit, 2 lanes.
    Size64x2,
}

impl VectorSize {
    /// Get the vector operand size with the given scalar size as lane size.
    pub fn from_lane_size(size: ScalarSize, is_128bit: bool) -> VectorSize {
        match (size, is_128bit) {
            (ScalarSize::Size8, false) => VectorSize::Size8x8,
            (ScalarSize::Size8, true) => VectorSize::Size8x16,
            (ScalarSize::Size16, false) => VectorSize::Size16x4,
            (ScalarSize::Size16, true) => VectorSize::Size16x8,
            (ScalarSize::Size32, false) => VectorSize::Size32x2,
            (ScalarSize::Size32, true) => VectorSize::Size32x4,
            (ScalarSize::Size64, true) => VectorSize::Size64x2,
            _ => panic!("Unexpected scalar FP operand size: {:?}", size),
        }
    }

    /// Get the integer operand size that corresponds to a lane of a vector with a certain size.
    pub fn operand_size(&self) -> OperandSize {
        match self {
            VectorSize::Size64x2 => OperandSize::Size64,
            _ => OperandSize::Size32,
        }
    }

    /// Get the scalar operand size that corresponds to a lane of a vector with a certain size.
    pub fn lane_size(&self) -> ScalarSize {
        match self {
            VectorSize::Size8x8 | VectorSize::Size8x16 => ScalarSize::Size8,
            VectorSize::Size16x4 | VectorSize::Size16x8 => ScalarSize::Size16,
            VectorSize::Size32x2 | VectorSize::Size32x4 => ScalarSize::Size32,
            VectorSize::Size64x2 => ScalarSize::Size64,
        }
    }

    /// Returns true if the VectorSize is 128-bits.
    pub fn is_128bits(&self) -> bool {
        match self {
            VectorSize::Size8x8 => false,
            VectorSize::Size8x16 => true,
            VectorSize::Size16x4 => false,
            VectorSize::Size16x8 => true,
            VectorSize::Size32x2 => false,
            VectorSize::Size32x4 => true,
            VectorSize::Size64x2 => true,
        }
    }

    /// Return the encoding bits that are used by some SIMD instructions
    /// for a particular operand size.
    pub fn enc_size(&self) -> (u32, u32) {
        let q = self.is_128bits() as u32;
        let size = match self.lane_size() {
            ScalarSize::Size8 => 0b00,
            ScalarSize::Size16 => 0b01,
            ScalarSize::Size32 => 0b10,
            ScalarSize::Size64 => 0b11,
            _ => unreachable!(),
        };

        (q, size)
    }

    /// Return the encoding bit that is used by some floating-point SIMD
    /// instructions for a particular operand size.
    pub fn enc_float_size(&self) -> u32 {
        match self.lane_size() {
            ScalarSize::Size32 => 0b0,
            ScalarSize::Size64 => 0b1,
            size => panic!("Unsupported floating-point size for vector op: {:?}", size),
        }
    }
}

impl APIKey {
    /// Returns the encoding of the `auti{key}` instruction used to decrypt the
    /// `lr` register.
    pub fn enc_auti_hint(&self) -> u32 {
        let (crm, op2) = match self {
            APIKey::AZ => (0b0011, 0b100),
            APIKey::ASP => (0b0011, 0b101),
            APIKey::BZ => (0b0011, 0b110),
            APIKey::BSP => (0b0011, 0b111),
        };
        0xd503201f | (crm << 8) | (op2 << 5)
    }
}

pub use crate::isa::aarch64::lower::isle::generated_code::TestBitAndBranchKind;

impl TestBitAndBranchKind {
    /// Complements this branch condition to act on the opposite result.
    pub fn complement(&self) -> TestBitAndBranchKind {
        match self {
            TestBitAndBranchKind::Z => TestBitAndBranchKind::NZ,
            TestBitAndBranchKind::NZ => TestBitAndBranchKind::Z,
        }
    }
}