wasmtime/runtime/module.rs
1use crate::prelude::*;
2#[cfg(feature = "std")]
3use crate::runtime::vm::open_file_for_mmap;
4use crate::runtime::vm::{CompiledModuleId, ModuleMemoryImages, VMWasmCallFunction};
5use crate::sync::OnceLock;
6use crate::{
7 code::CodeObject,
8 code_memory::CodeMemory,
9 instantiate::CompiledModule,
10 resources::ResourcesRequired,
11 types::{ExportType, ExternType, ImportType},
12 Engine,
13};
14use alloc::sync::Arc;
15use core::fmt;
16use core::ops::Range;
17use core::ptr::NonNull;
18#[cfg(feature = "std")]
19use std::{fs::File, path::Path};
20use wasmparser::{Parser, ValidPayload, Validator};
21use wasmtime_environ::{
22 CompiledModuleInfo, EntityIndex, HostPtr, ModuleTypes, ObjectKind, TypeTrace, VMOffsets,
23 VMSharedTypeIndex,
24};
25mod registry;
26
27pub use registry::*;
28
29/// A compiled WebAssembly module, ready to be instantiated.
30///
31/// A `Module` is a compiled in-memory representation of an input WebAssembly
32/// binary. A `Module` is then used to create an [`Instance`](crate::Instance)
33/// through an instantiation process. You cannot call functions or fetch
34/// globals, for example, on a `Module` because it's purely a code
35/// representation. Instead you'll need to create an
36/// [`Instance`](crate::Instance) to interact with the wasm module.
37///
38/// A `Module` can be created by compiling WebAssembly code through APIs such as
39/// [`Module::new`]. This would be a JIT-style use case where code is compiled
40/// just before it's used. Alternatively a `Module` can be compiled in one
41/// process and [`Module::serialize`] can be used to save it to storage. A later
42/// call to [`Module::deserialize`] will quickly load the module to execute and
43/// does not need to compile any code, representing a more AOT-style use case.
44///
45/// Currently a `Module` does not implement any form of tiering or dynamic
46/// optimization of compiled code. Creation of a `Module` via [`Module::new`] or
47/// related APIs will perform the entire compilation step synchronously. When
48/// finished no further compilation will happen at runtime or later during
49/// execution of WebAssembly instances for example.
50///
51/// Compilation of WebAssembly by default goes through Cranelift and is
52/// recommended to be done once-per-module. The same WebAssembly binary need not
53/// be compiled multiple times and can instead used an embedder-cached result of
54/// the first call.
55///
56/// `Module` is thread-safe and safe to share across threads.
57///
58/// ## Modules and `Clone`
59///
60/// Using `clone` on a `Module` is a cheap operation. It will not create an
61/// entirely new module, but rather just a new reference to the existing module.
62/// In other words it's a shallow copy, not a deep copy.
63///
64/// ## Examples
65///
66/// There are a number of ways you can create a `Module`, for example pulling
67/// the bytes from a number of locations. One example is loading a module from
68/// the filesystem:
69///
70/// ```no_run
71/// # use wasmtime::*;
72/// # fn main() -> anyhow::Result<()> {
73/// let engine = Engine::default();
74/// let module = Module::from_file(&engine, "path/to/foo.wasm")?;
75/// # Ok(())
76/// # }
77/// ```
78///
79/// You can also load the wasm text format if more convenient too:
80///
81/// ```no_run
82/// # use wasmtime::*;
83/// # fn main() -> anyhow::Result<()> {
84/// let engine = Engine::default();
85/// // Now we're using the WebAssembly text extension: `.wat`!
86/// let module = Module::from_file(&engine, "path/to/foo.wat")?;
87/// # Ok(())
88/// # }
89/// ```
90///
91/// And if you've already got the bytes in-memory you can use the
92/// [`Module::new`] constructor:
93///
94/// ```no_run
95/// # use wasmtime::*;
96/// # fn main() -> anyhow::Result<()> {
97/// let engine = Engine::default();
98/// # let wasm_bytes: Vec<u8> = Vec::new();
99/// let module = Module::new(&engine, &wasm_bytes)?;
100///
101/// // It also works with the text format!
102/// let module = Module::new(&engine, "(module (func))")?;
103/// # Ok(())
104/// # }
105/// ```
106///
107/// Serializing and deserializing a module looks like:
108///
109/// ```no_run
110/// # use wasmtime::*;
111/// # fn main() -> anyhow::Result<()> {
112/// let engine = Engine::default();
113/// # let wasm_bytes: Vec<u8> = Vec::new();
114/// let module = Module::new(&engine, &wasm_bytes)?;
115/// let module_bytes = module.serialize()?;
116///
117/// // ... can save `module_bytes` to disk or other storage ...
118///
119/// // recreate the module from the serialized bytes. For the `unsafe` bits
120/// // see the documentation of `deserialize`.
121/// let module = unsafe { Module::deserialize(&engine, &module_bytes)? };
122/// # Ok(())
123/// # }
124/// ```
125///
126/// [`Config`]: crate::Config
127#[derive(Clone)]
128pub struct Module {
129 inner: Arc<ModuleInner>,
130}
131
132struct ModuleInner {
133 engine: Engine,
134 /// The compiled artifacts for this module that will be instantiated and
135 /// executed.
136 module: CompiledModule,
137
138 /// Runtime information such as the underlying mmap, type information, etc.
139 ///
140 /// Note that this `Arc` is used to share information between compiled
141 /// modules within a component. For bare core wasm modules created with
142 /// `Module::new`, for example, this is a uniquely owned `Arc`.
143 code: Arc<CodeObject>,
144
145 /// A set of initialization images for memories, if any.
146 ///
147 /// Note that this is behind a `OnceCell` to lazily create this image. On
148 /// Linux where `memfd_create` may be used to create the backing memory
149 /// image this is a pretty expensive operation, so by deferring it this
150 /// improves memory usage for modules that are created but may not ever be
151 /// instantiated.
152 memory_images: OnceLock<Option<ModuleMemoryImages>>,
153
154 /// Flag indicating whether this module can be serialized or not.
155 #[cfg(any(feature = "cranelift", feature = "winch"))]
156 serializable: bool,
157
158 /// Runtime offset information for `VMContext`.
159 offsets: VMOffsets<HostPtr>,
160}
161
162impl fmt::Debug for Module {
163 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
164 f.debug_struct("Module")
165 .field("name", &self.name())
166 .finish_non_exhaustive()
167 }
168}
169
170impl fmt::Debug for ModuleInner {
171 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
172 f.debug_struct("ModuleInner")
173 .field("name", &self.module.module().name.as_ref())
174 .finish_non_exhaustive()
175 }
176}
177
178impl Module {
179 /// Creates a new WebAssembly `Module` from the given in-memory `bytes`.
180 ///
181 /// The `bytes` provided must be in one of the following formats:
182 ///
183 /// * A [binary-encoded][binary] WebAssembly module. This is always supported.
184 /// * A [text-encoded][text] instance of the WebAssembly text format.
185 /// This is only supported when the `wat` feature of this crate is enabled.
186 /// If this is supplied then the text format will be parsed before validation.
187 /// Note that the `wat` feature is enabled by default.
188 ///
189 /// The data for the wasm module must be loaded in-memory if it's present
190 /// elsewhere, for example on disk. This requires that the entire binary is
191 /// loaded into memory all at once, this API does not support streaming
192 /// compilation of a module.
193 ///
194 /// The WebAssembly binary will be decoded and validated. It will also be
195 /// compiled according to the configuration of the provided `engine`.
196 ///
197 /// # Errors
198 ///
199 /// This function may fail and return an error. Errors may include
200 /// situations such as:
201 ///
202 /// * The binary provided could not be decoded because it's not a valid
203 /// WebAssembly binary
204 /// * The WebAssembly binary may not validate (e.g. contains type errors)
205 /// * Implementation-specific limits were exceeded with a valid binary (for
206 /// example too many locals)
207 /// * The wasm binary may use features that are not enabled in the
208 /// configuration of `engine`
209 /// * If the `wat` feature is enabled and the input is text, then it may be
210 /// rejected if it fails to parse.
211 ///
212 /// The error returned should contain full information about why module
213 /// creation failed if one is returned.
214 ///
215 /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
216 /// [text]: https://webassembly.github.io/spec/core/text/index.html
217 ///
218 /// # Examples
219 ///
220 /// The `new` function can be invoked with a in-memory array of bytes:
221 ///
222 /// ```no_run
223 /// # use wasmtime::*;
224 /// # fn main() -> anyhow::Result<()> {
225 /// # let engine = Engine::default();
226 /// # let wasm_bytes: Vec<u8> = Vec::new();
227 /// let module = Module::new(&engine, &wasm_bytes)?;
228 /// # Ok(())
229 /// # }
230 /// ```
231 ///
232 /// Or you can also pass in a string to be parsed as the wasm text
233 /// format:
234 ///
235 /// ```
236 /// # use wasmtime::*;
237 /// # fn main() -> anyhow::Result<()> {
238 /// # let engine = Engine::default();
239 /// let module = Module::new(&engine, "(module (func))")?;
240 /// # Ok(())
241 /// # }
242 /// ```
243 #[cfg(any(feature = "cranelift", feature = "winch"))]
244 pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
245 crate::CodeBuilder::new(engine)
246 .wasm_binary_or_text(bytes.as_ref(), None)?
247 .compile_module()
248 }
249
250 /// Creates a new WebAssembly `Module` from the contents of the given
251 /// `file` on disk.
252 ///
253 /// This is a convenience function that will read the `file` provided and
254 /// pass the bytes to the [`Module::new`] function. For more information
255 /// see [`Module::new`]
256 ///
257 /// # Examples
258 ///
259 /// ```no_run
260 /// # use wasmtime::*;
261 /// # fn main() -> anyhow::Result<()> {
262 /// let engine = Engine::default();
263 /// let module = Module::from_file(&engine, "./path/to/foo.wasm")?;
264 /// # Ok(())
265 /// # }
266 /// ```
267 ///
268 /// The `.wat` text format is also supported:
269 ///
270 /// ```no_run
271 /// # use wasmtime::*;
272 /// # fn main() -> anyhow::Result<()> {
273 /// # let engine = Engine::default();
274 /// let module = Module::from_file(&engine, "./path/to/foo.wat")?;
275 /// # Ok(())
276 /// # }
277 /// ```
278 #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
279 pub fn from_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
280 crate::CodeBuilder::new(engine)
281 .wasm_binary_or_text_file(file.as_ref())?
282 .compile_module()
283 }
284
285 /// Creates a new WebAssembly `Module` from the given in-memory `binary`
286 /// data.
287 ///
288 /// This is similar to [`Module::new`] except that it requires that the
289 /// `binary` input is a WebAssembly binary, the text format is not supported
290 /// by this function. It's generally recommended to use [`Module::new`], but
291 /// if it's required to not support the text format this function can be
292 /// used instead.
293 ///
294 /// # Examples
295 ///
296 /// ```
297 /// # use wasmtime::*;
298 /// # fn main() -> anyhow::Result<()> {
299 /// # let engine = Engine::default();
300 /// let wasm = b"\0asm\x01\0\0\0";
301 /// let module = Module::from_binary(&engine, wasm)?;
302 /// # Ok(())
303 /// # }
304 /// ```
305 ///
306 /// Note that the text format is **not** accepted by this function:
307 ///
308 /// ```
309 /// # use wasmtime::*;
310 /// # fn main() -> anyhow::Result<()> {
311 /// # let engine = Engine::default();
312 /// assert!(Module::from_binary(&engine, b"(module)").is_err());
313 /// # Ok(())
314 /// # }
315 /// ```
316 #[cfg(any(feature = "cranelift", feature = "winch"))]
317 pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result<Module> {
318 crate::CodeBuilder::new(engine)
319 .wasm_binary(binary, None)?
320 .compile_module()
321 }
322
323 /// Creates a new WebAssembly `Module` from the contents of the given `file`
324 /// on disk, but with assumptions that the file is from a trusted source.
325 /// The file should be a binary- or text-format WebAssembly module, or a
326 /// precompiled artifact generated by the same version of Wasmtime.
327 ///
328 /// # Unsafety
329 ///
330 /// All of the reasons that [`deserialize`] is `unsafe` apply to this
331 /// function as well. Arbitrary data loaded from a file may trick Wasmtime
332 /// into arbitrary code execution since the contents of the file are not
333 /// validated to be a valid precompiled module.
334 ///
335 /// [`deserialize`]: Module::deserialize
336 ///
337 /// Additionally though this function is also `unsafe` because the file
338 /// referenced must remain unchanged and a valid precompiled module for the
339 /// entire lifetime of the [`Module`] returned. Any changes to the file on
340 /// disk may change future instantiations of the module to be incorrect.
341 /// This is because the file is mapped into memory and lazily loaded pages
342 /// reflect the current state of the file, not necessarily the original
343 /// state of the file.
344 #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
345 pub unsafe fn from_trusted_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
346 let open_file = open_file_for_mmap(file.as_ref())?;
347 let mmap = crate::runtime::vm::MmapVec::from_file(open_file)?;
348 if &mmap[0..4] == b"\x7fELF" {
349 let code = engine.load_code(mmap, ObjectKind::Module)?;
350 return Module::from_parts(engine, code, None);
351 }
352
353 crate::CodeBuilder::new(engine)
354 .wasm_binary_or_text(&mmap[..], Some(file.as_ref()))?
355 .compile_module()
356 }
357
358 /// Deserializes an in-memory compiled module previously created with
359 /// [`Module::serialize`] or [`Engine::precompile_module`].
360 ///
361 /// This function will deserialize the binary blobs emitted by
362 /// [`Module::serialize`] and [`Engine::precompile_module`] back into an
363 /// in-memory [`Module`] that's ready to be instantiated.
364 ///
365 /// Note that the [`Module::deserialize_file`] method is more optimized than
366 /// this function, so if the serialized module is already present in a file
367 /// it's recommended to use that method instead.
368 ///
369 /// # Unsafety
370 ///
371 /// This function is marked as `unsafe` because if fed invalid input or used
372 /// improperly this could lead to memory safety vulnerabilities. This method
373 /// should not, for example, be exposed to arbitrary user input.
374 ///
375 /// The structure of the binary blob read here is only lightly validated
376 /// internally in `wasmtime`. This is intended to be an efficient
377 /// "rehydration" for a [`Module`] which has very few runtime checks beyond
378 /// deserialization. Arbitrary input could, for example, replace valid
379 /// compiled code with any other valid compiled code, meaning that this can
380 /// trivially be used to execute arbitrary code otherwise.
381 ///
382 /// For these reasons this function is `unsafe`. This function is only
383 /// designed to receive the previous input from [`Module::serialize`] and
384 /// [`Engine::precompile_module`]. If the exact output of those functions
385 /// (unmodified) is passed to this function then calls to this function can
386 /// be considered safe. It is the caller's responsibility to provide the
387 /// guarantee that only previously-serialized bytes are being passed in
388 /// here.
389 ///
390 /// Note that this function is designed to be safe receiving output from
391 /// *any* compiled version of `wasmtime` itself. This means that it is safe
392 /// to feed output from older versions of Wasmtime into this function, in
393 /// addition to newer versions of wasmtime (from the future!). These inputs
394 /// will deterministically and safely produce an `Err`. This function only
395 /// successfully accepts inputs from the same version of `wasmtime`, but the
396 /// safety guarantee only applies to externally-defined blobs of bytes, not
397 /// those defined by any version of wasmtime. (this means that if you cache
398 /// blobs across versions of wasmtime you can be safely guaranteed that
399 /// future versions of wasmtime will reject old cache entries).
400 pub unsafe fn deserialize(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
401 let code = engine.load_code_bytes(bytes.as_ref(), ObjectKind::Module)?;
402 Module::from_parts(engine, code, None)
403 }
404
405 /// Same as [`deserialize`], except that the contents of `path` are read to
406 /// deserialize into a [`Module`].
407 ///
408 /// This method is provided because it can be faster than [`deserialize`]
409 /// since the data doesn't need to be copied around, but rather the module
410 /// can be used directly from an mmap'd view of the file provided.
411 ///
412 /// [`deserialize`]: Module::deserialize
413 ///
414 /// # Unsafety
415 ///
416 /// All of the reasons that [`deserialize`] is `unsafe` applies to this
417 /// function as well. Arbitrary data loaded from a file may trick Wasmtime
418 /// into arbitrary code execution since the contents of the file are not
419 /// validated to be a valid precompiled module.
420 ///
421 /// Additionally though this function is also `unsafe` because the file
422 /// referenced must remain unchanged and a valid precompiled module for the
423 /// entire lifetime of the [`Module`] returned. Any changes to the file on
424 /// disk may change future instantiations of the module to be incorrect.
425 /// This is because the file is mapped into memory and lazily loaded pages
426 /// reflect the current state of the file, not necessarily the original
427 /// state of the file.
428 #[cfg(feature = "std")]
429 pub unsafe fn deserialize_file(engine: &Engine, path: impl AsRef<Path>) -> Result<Module> {
430 let file = open_file_for_mmap(path.as_ref())?;
431 Self::deserialize_open_file(engine, file)
432 .with_context(|| format!("failed deserialization for: {}", path.as_ref().display()))
433 }
434
435 /// Same as [`deserialize_file`], except that it takes an open `File`
436 /// instead of a path.
437 ///
438 /// This method is provided because it can be used instead of
439 /// [`deserialize_file`] in situations where `wasmtime` is running with
440 /// limited file system permissions. In that case a process
441 /// with file system access can pass already opened files to `wasmtime`.
442 ///
443 /// [`deserialize_file`]: Module::deserialize_file
444 ///
445 /// Note that the corresponding will be mapped as private writeable
446 /// (copy-on-write) and executable. For `windows` this means the file needs
447 /// to be opened with at least `FILE_GENERIC_READ | FILE_GENERIC_EXECUTE`
448 /// [`access_mode`].
449 ///
450 /// [`access_mode`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.access_mode
451 ///
452 /// # Unsafety
453 ///
454 /// All of the reasons that [`deserialize_file`] is `unsafe` applies to this
455 /// function as well.
456 #[cfg(feature = "std")]
457 pub unsafe fn deserialize_open_file(engine: &Engine, file: File) -> Result<Module> {
458 let code = engine.load_code_file(file, ObjectKind::Module)?;
459 Module::from_parts(engine, code, None)
460 }
461
462 /// Entrypoint for creating a `Module` for all above functions, both
463 /// of the AOT and jit-compiled categories.
464 ///
465 /// In all cases the compilation artifact, `code_memory`, is provided here.
466 /// The `info_and_types` argument is `None` when a module is being
467 /// deserialized from a precompiled artifact or it's `Some` if it was just
468 /// compiled and the values are already available.
469 pub(crate) fn from_parts(
470 engine: &Engine,
471 code_memory: Arc<CodeMemory>,
472 info_and_types: Option<(CompiledModuleInfo, ModuleTypes)>,
473 ) -> Result<Self> {
474 // Acquire this module's metadata and type information, deserializing
475 // it from the provided artifact if it wasn't otherwise provided
476 // already.
477 let (mut info, mut types) = match info_and_types {
478 Some((info, types)) => (info, types),
479 None => postcard::from_bytes(code_memory.wasmtime_info())?,
480 };
481
482 // Register function type signatures into the engine for the lifetime
483 // of the `Module` that will be returned. This notably also builds up
484 // maps for trampolines to be used for this module when inserted into
485 // stores.
486 //
487 // Note that the unsafety here should be ok since the `trampolines`
488 // field should only point to valid trampoline function pointers
489 // within the text section.
490 let signatures =
491 engine.register_and_canonicalize_types(&mut types, core::iter::once(&mut info.module));
492
493 // Package up all our data into a `CodeObject` and delegate to the final
494 // step of module compilation.
495 let code = Arc::new(CodeObject::new(code_memory, signatures, types.into()));
496 Module::from_parts_raw(engine, code, info, true)
497 }
498
499 pub(crate) fn from_parts_raw(
500 engine: &Engine,
501 code: Arc<CodeObject>,
502 info: CompiledModuleInfo,
503 serializable: bool,
504 ) -> Result<Self> {
505 let module =
506 CompiledModule::from_artifacts(code.code_memory().clone(), info, engine.profiler())?;
507
508 // Validate the module can be used with the current instance allocator.
509 let offsets = VMOffsets::new(HostPtr, module.module());
510 engine
511 .allocator()
512 .validate_module(module.module(), &offsets)?;
513
514 let _ = serializable;
515
516 Ok(Self {
517 inner: Arc::new(ModuleInner {
518 engine: engine.clone(),
519 code,
520 memory_images: OnceLock::new(),
521 module,
522 #[cfg(any(feature = "cranelift", feature = "winch"))]
523 serializable,
524 offsets,
525 }),
526 })
527 }
528
529 /// Validates `binary` input data as a WebAssembly binary given the
530 /// configuration in `engine`.
531 ///
532 /// This function will perform a speedy validation of the `binary` input
533 /// WebAssembly module (which is in [binary form][binary], the text format
534 /// is not accepted by this function) and return either `Ok` or `Err`
535 /// depending on the results of validation. The `engine` argument indicates
536 /// configuration for WebAssembly features, for example, which are used to
537 /// indicate what should be valid and what shouldn't be.
538 ///
539 /// Validation automatically happens as part of [`Module::new`].
540 ///
541 /// # Errors
542 ///
543 /// If validation fails for any reason (type check error, usage of a feature
544 /// that wasn't enabled, etc) then an error with a description of the
545 /// validation issue will be returned.
546 ///
547 /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
548 pub fn validate(engine: &Engine, binary: &[u8]) -> Result<()> {
549 let mut validator = Validator::new_with_features(engine.features());
550
551 let mut functions = Vec::new();
552 for payload in Parser::new(0).parse_all(binary) {
553 let payload = payload?;
554 if let ValidPayload::Func(a, b) = validator.payload(&payload)? {
555 functions.push((a, b));
556 }
557 if let wasmparser::Payload::Version { encoding, .. } = &payload {
558 if let wasmparser::Encoding::Component = encoding {
559 bail!("component passed to module validation");
560 }
561 }
562 }
563
564 engine.run_maybe_parallel(functions, |(validator, body)| {
565 // FIXME: it would be best here to use a rayon-specific parallel
566 // iterator that maintains state-per-thread to share the function
567 // validator allocations (`Default::default` here) across multiple
568 // functions.
569 validator.into_validator(Default::default()).validate(&body)
570 })?;
571 Ok(())
572 }
573
574 /// Serializes this module to a vector of bytes.
575 ///
576 /// This function is similar to the [`Engine::precompile_module`] method
577 /// where it produces an artifact of Wasmtime which is suitable to later
578 /// pass into [`Module::deserialize`]. If a module is never instantiated
579 /// then it's recommended to use [`Engine::precompile_module`] instead of
580 /// this method, but if a module is both instantiated and serialized then
581 /// this method can be useful to get the serialized version without
582 /// compiling twice.
583 #[cfg(any(feature = "cranelift", feature = "winch"))]
584 pub fn serialize(&self) -> Result<Vec<u8>> {
585 // The current representation of compiled modules within a compiled
586 // component means that it cannot be serialized. The mmap returned here
587 // is the mmap for the entire component and while it contains all
588 // necessary data to deserialize this particular module it's all
589 // embedded within component-specific information.
590 //
591 // It's not the hardest thing in the world to support this but it's
592 // expected that there's not much of a use case at this time. In theory
593 // all that needs to be done is to edit the `.wasmtime.info` section
594 // to contains this module's metadata instead of the metadata for the
595 // whole component. The metadata itself is fairly trivially
596 // recreateable here it's more that there's no easy one-off API for
597 // editing the sections of an ELF object to use here.
598 //
599 // Overall for now this simply always returns an error in this
600 // situation. If you're reading this and feel that the situation should
601 // be different please feel free to open an issue.
602 if !self.inner.serializable {
603 bail!("cannot serialize a module exported from a component");
604 }
605 Ok(self.compiled_module().mmap().to_vec())
606 }
607
608 pub(crate) fn compiled_module(&self) -> &CompiledModule {
609 &self.inner.module
610 }
611
612 pub(crate) fn code_object(&self) -> &Arc<CodeObject> {
613 &self.inner.code
614 }
615
616 pub(crate) fn env_module(&self) -> &Arc<wasmtime_environ::Module> {
617 self.compiled_module().module()
618 }
619
620 pub(crate) fn types(&self) -> &ModuleTypes {
621 self.inner.code.module_types()
622 }
623
624 #[cfg(any(feature = "component-model", feature = "gc-drc"))]
625 pub(crate) fn signatures(&self) -> &crate::type_registry::TypeCollection {
626 self.inner.code.signatures()
627 }
628
629 /// Returns identifier/name that this [`Module`] has. This name
630 /// is used in traps/backtrace details.
631 ///
632 /// Note that most LLVM/clang/Rust-produced modules do not have a name
633 /// associated with them, but other wasm tooling can be used to inject or
634 /// add a name.
635 ///
636 /// # Examples
637 ///
638 /// ```
639 /// # use wasmtime::*;
640 /// # fn main() -> anyhow::Result<()> {
641 /// # let engine = Engine::default();
642 /// let module = Module::new(&engine, "(module $foo)")?;
643 /// assert_eq!(module.name(), Some("foo"));
644 ///
645 /// let module = Module::new(&engine, "(module)")?;
646 /// assert_eq!(module.name(), None);
647 ///
648 /// # Ok(())
649 /// # }
650 /// ```
651 pub fn name(&self) -> Option<&str> {
652 self.compiled_module().module().name.as_deref()
653 }
654
655 /// Returns the list of imports that this [`Module`] has and must be
656 /// satisfied.
657 ///
658 /// This function returns the list of imports that the wasm module has, but
659 /// only the types of each import. The type of each import is used to
660 /// typecheck the [`Instance::new`](crate::Instance::new) method's `imports`
661 /// argument. The arguments to that function must match up 1-to-1 with the
662 /// entries in the array returned here.
663 ///
664 /// The imports returned reflect the order of the imports in the wasm module
665 /// itself, and note that no form of deduplication happens.
666 ///
667 /// # Examples
668 ///
669 /// Modules with no imports return an empty list here:
670 ///
671 /// ```
672 /// # use wasmtime::*;
673 /// # fn main() -> anyhow::Result<()> {
674 /// # let engine = Engine::default();
675 /// let module = Module::new(&engine, "(module)")?;
676 /// assert_eq!(module.imports().len(), 0);
677 /// # Ok(())
678 /// # }
679 /// ```
680 ///
681 /// and modules with imports will have a non-empty list:
682 ///
683 /// ```
684 /// # use wasmtime::*;
685 /// # fn main() -> anyhow::Result<()> {
686 /// # let engine = Engine::default();
687 /// let wat = r#"
688 /// (module
689 /// (import "host" "foo" (func))
690 /// )
691 /// "#;
692 /// let module = Module::new(&engine, wat)?;
693 /// assert_eq!(module.imports().len(), 1);
694 /// let import = module.imports().next().unwrap();
695 /// assert_eq!(import.module(), "host");
696 /// assert_eq!(import.name(), "foo");
697 /// match import.ty() {
698 /// ExternType::Func(_) => { /* ... */ }
699 /// _ => panic!("unexpected import type!"),
700 /// }
701 /// # Ok(())
702 /// # }
703 /// ```
704 pub fn imports<'module>(
705 &'module self,
706 ) -> impl ExactSizeIterator<Item = ImportType<'module>> + 'module {
707 let module = self.compiled_module().module();
708 let types = self.types();
709 let engine = self.engine();
710 module
711 .imports()
712 .map(move |(imp_mod, imp_field, ty)| {
713 debug_assert!(ty.is_canonicalized_for_runtime_usage());
714 ImportType::new(imp_mod, imp_field, ty, types, engine)
715 })
716 .collect::<Vec<_>>()
717 .into_iter()
718 }
719
720 /// Returns the list of exports that this [`Module`] has and will be
721 /// available after instantiation.
722 ///
723 /// This function will return the type of each item that will be returned
724 /// from [`Instance::exports`](crate::Instance::exports). Each entry in this
725 /// list corresponds 1-to-1 with that list, and the entries here will
726 /// indicate the name of the export along with the type of the export.
727 ///
728 /// # Examples
729 ///
730 /// Modules might not have any exports:
731 ///
732 /// ```
733 /// # use wasmtime::*;
734 /// # fn main() -> anyhow::Result<()> {
735 /// # let engine = Engine::default();
736 /// let module = Module::new(&engine, "(module)")?;
737 /// assert!(module.exports().next().is_none());
738 /// # Ok(())
739 /// # }
740 /// ```
741 ///
742 /// When the exports are not empty, you can inspect each export:
743 ///
744 /// ```
745 /// # use wasmtime::*;
746 /// # fn main() -> anyhow::Result<()> {
747 /// # let engine = Engine::default();
748 /// let wat = r#"
749 /// (module
750 /// (func (export "foo"))
751 /// (memory (export "memory") 1)
752 /// )
753 /// "#;
754 /// let module = Module::new(&engine, wat)?;
755 /// assert_eq!(module.exports().len(), 2);
756 ///
757 /// let mut exports = module.exports();
758 /// let foo = exports.next().unwrap();
759 /// assert_eq!(foo.name(), "foo");
760 /// match foo.ty() {
761 /// ExternType::Func(_) => { /* ... */ }
762 /// _ => panic!("unexpected export type!"),
763 /// }
764 ///
765 /// let memory = exports.next().unwrap();
766 /// assert_eq!(memory.name(), "memory");
767 /// match memory.ty() {
768 /// ExternType::Memory(_) => { /* ... */ }
769 /// _ => panic!("unexpected export type!"),
770 /// }
771 /// # Ok(())
772 /// # }
773 /// ```
774 pub fn exports<'module>(
775 &'module self,
776 ) -> impl ExactSizeIterator<Item = ExportType<'module>> + 'module {
777 let module = self.compiled_module().module();
778 let types = self.types();
779 let engine = self.engine();
780 module.exports.iter().map(move |(name, entity_index)| {
781 ExportType::new(name, module.type_of(*entity_index), types, engine)
782 })
783 }
784
785 /// Looks up an export in this [`Module`] by name.
786 ///
787 /// This function will return the type of an export with the given name.
788 ///
789 /// # Examples
790 ///
791 /// There may be no export with that name:
792 ///
793 /// ```
794 /// # use wasmtime::*;
795 /// # fn main() -> anyhow::Result<()> {
796 /// # let engine = Engine::default();
797 /// let module = Module::new(&engine, "(module)")?;
798 /// assert!(module.get_export("foo").is_none());
799 /// # Ok(())
800 /// # }
801 /// ```
802 ///
803 /// When there is an export with that name, it is returned:
804 ///
805 /// ```
806 /// # use wasmtime::*;
807 /// # fn main() -> anyhow::Result<()> {
808 /// # let engine = Engine::default();
809 /// let wat = r#"
810 /// (module
811 /// (func (export "foo"))
812 /// (memory (export "memory") 1)
813 /// )
814 /// "#;
815 /// let module = Module::new(&engine, wat)?;
816 /// let foo = module.get_export("foo");
817 /// assert!(foo.is_some());
818 ///
819 /// let foo = foo.unwrap();
820 /// match foo {
821 /// ExternType::Func(_) => { /* ... */ }
822 /// _ => panic!("unexpected export type!"),
823 /// }
824 ///
825 /// # Ok(())
826 /// # }
827 /// ```
828 pub fn get_export(&self, name: &str) -> Option<ExternType> {
829 let module = self.compiled_module().module();
830 let entity_index = module.exports.get(name)?;
831 Some(ExternType::from_wasmtime(
832 self.engine(),
833 self.types(),
834 &module.type_of(*entity_index),
835 ))
836 }
837
838 /// Looks up an export in this [`Module`] by name to get its index.
839 ///
840 /// This function will return the index of an export with the given name. This can be useful
841 /// to avoid the cost of looking up the export by name multiple times. Instead the
842 /// [`ModuleExport`] can be stored and used to look up the export on the
843 /// [`Instance`](crate::Instance) later.
844 pub fn get_export_index(&self, name: &str) -> Option<ModuleExport> {
845 let compiled_module = self.compiled_module();
846 let module = compiled_module.module();
847 module
848 .exports
849 .get_full(name)
850 .map(|(export_name_index, _, &entity)| ModuleExport {
851 module: self.id(),
852 entity,
853 export_name_index,
854 })
855 }
856
857 /// Returns the [`Engine`] that this [`Module`] was compiled by.
858 pub fn engine(&self) -> &Engine {
859 &self.inner.engine
860 }
861
862 /// Returns a summary of the resources required to instantiate this
863 /// [`Module`].
864 ///
865 /// Potential uses of the returned information:
866 ///
867 /// * Determining whether your pooling allocator configuration supports
868 /// instantiating this module.
869 ///
870 /// * Deciding how many of which `Module` you want to instantiate within a
871 /// fixed amount of resources, e.g. determining whether to create 5
872 /// instances of module X or 10 instances of module Y.
873 ///
874 /// # Example
875 ///
876 /// ```
877 /// # fn main() -> wasmtime::Result<()> {
878 /// use wasmtime::{Config, Engine, Module};
879 ///
880 /// let mut config = Config::new();
881 /// config.wasm_multi_memory(true);
882 /// let engine = Engine::new(&config)?;
883 ///
884 /// let module = Module::new(&engine, r#"
885 /// (module
886 /// ;; Import a memory. Doesn't count towards required resources.
887 /// (import "a" "b" (memory 10))
888 /// ;; Define two local memories. These count towards the required
889 /// ;; resources.
890 /// (memory 1)
891 /// (memory 6)
892 /// )
893 /// "#)?;
894 ///
895 /// let resources = module.resources_required();
896 ///
897 /// // Instantiating the module will require allocating two memories, and
898 /// // the maximum initial memory size is six Wasm pages.
899 /// assert_eq!(resources.num_memories, 2);
900 /// assert_eq!(resources.max_initial_memory_size, Some(6));
901 ///
902 /// // The module doesn't need any tables.
903 /// assert_eq!(resources.num_tables, 0);
904 /// assert_eq!(resources.max_initial_table_size, None);
905 /// # Ok(()) }
906 /// ```
907 pub fn resources_required(&self) -> ResourcesRequired {
908 let em = self.env_module();
909 let num_memories = u32::try_from(em.num_defined_memories()).unwrap();
910 let max_initial_memory_size = em
911 .memories
912 .values()
913 .skip(em.num_imported_memories)
914 .map(|memory| memory.limits.min)
915 .max();
916 let num_tables = u32::try_from(em.num_defined_tables()).unwrap();
917 let max_initial_table_size = em
918 .tables
919 .values()
920 .skip(em.num_imported_tables)
921 .map(|table| table.limits.min)
922 .max();
923 ResourcesRequired {
924 num_memories,
925 max_initial_memory_size,
926 num_tables,
927 max_initial_table_size,
928 }
929 }
930
931 /// Returns the range of bytes in memory where this module's compilation
932 /// image resides.
933 ///
934 /// The compilation image for a module contains executable code, data, debug
935 /// information, etc. This is roughly the same as the `Module::serialize`
936 /// but not the exact same.
937 ///
938 /// The range of memory reported here is exposed to allow low-level
939 /// manipulation of the memory in platform-specific manners such as using
940 /// `mlock` to force the contents to be paged in immediately or keep them
941 /// paged in after they're loaded.
942 ///
943 /// It is not safe to modify the memory in this range, nor is it safe to
944 /// modify the protections of memory in this range.
945 pub fn image_range(&self) -> Range<*const u8> {
946 self.compiled_module().mmap().image_range()
947 }
948
949 /// Force initialization of copy-on-write images to happen here-and-now
950 /// instead of when they're requested during first instantiation.
951 ///
952 /// When [copy-on-write memory
953 /// initialization](crate::Config::memory_init_cow) is enabled then Wasmtime
954 /// will lazily create the initialization image for a module. This method
955 /// can be used to explicitly dictate when this initialization happens.
956 ///
957 /// Note that this largely only matters on Linux when memfd is used.
958 /// Otherwise the copy-on-write image typically comes from disk and in that
959 /// situation the creation of the image is trivial as the image is always
960 /// sourced from disk. On Linux, though, when memfd is used a memfd is
961 /// created and the initialization image is written to it.
962 ///
963 /// Also note that this method is not required to be called, it's available
964 /// as a performance optimization if required but is otherwise handled
965 /// automatically.
966 pub fn initialize_copy_on_write_image(&self) -> Result<()> {
967 self.memory_images()?;
968 Ok(())
969 }
970
971 /// Get the map from `.text` section offsets to Wasm binary offsets for this
972 /// module.
973 ///
974 /// Each entry is a (`.text` section offset, Wasm binary offset) pair.
975 ///
976 /// Entries are yielded in order of `.text` section offset.
977 ///
978 /// Some entries are missing a Wasm binary offset. This is for code that is
979 /// not associated with any single location in the Wasm binary, or for when
980 /// source information was optimized away.
981 ///
982 /// Not every module has an address map, since address map generation can be
983 /// turned off on `Config`.
984 ///
985 /// There is not an entry for every `.text` section offset. Every offset
986 /// after an entry's offset, but before the next entry's offset, is
987 /// considered to map to the same Wasm binary offset as the original
988 /// entry. For example, the address map will not contain the following
989 /// sequence of entries:
990 ///
991 /// ```ignore
992 /// [
993 /// // ...
994 /// (10, Some(42)),
995 /// (11, Some(42)),
996 /// (12, Some(42)),
997 /// (13, Some(43)),
998 /// // ...
999 /// ]
1000 /// ```
1001 ///
1002 /// Instead, it will drop the entries for offsets `11` and `12` since they
1003 /// are the same as the entry for offset `10`:
1004 ///
1005 /// ```ignore
1006 /// [
1007 /// // ...
1008 /// (10, Some(42)),
1009 /// (13, Some(43)),
1010 /// // ...
1011 /// ]
1012 /// ```
1013 pub fn address_map<'a>(&'a self) -> Option<impl Iterator<Item = (usize, Option<u32>)> + 'a> {
1014 Some(
1015 wasmtime_environ::iterate_address_map(
1016 self.code_object().code_memory().address_map_data(),
1017 )?
1018 .map(|(offset, file_pos)| (offset as usize, file_pos.file_offset())),
1019 )
1020 }
1021
1022 /// Get this module's code object's `.text` section, containing its compiled
1023 /// executable code.
1024 pub fn text(&self) -> &[u8] {
1025 self.code_object().code_memory().text()
1026 }
1027
1028 /// Get information about functions in this module's `.text` section: their
1029 /// index, name, and offset+length.
1030 ///
1031 /// Results are yielded in a ModuleFunction struct.
1032 pub fn functions<'a>(&'a self) -> impl ExactSizeIterator<Item = ModuleFunction> + 'a {
1033 let module = self.compiled_module();
1034 module.finished_functions().map(|(idx, _)| {
1035 let loc = module.func_loc(idx);
1036 let idx = module.module().func_index(idx);
1037 ModuleFunction {
1038 index: idx,
1039 name: module.func_name(idx).map(|n| n.to_string()),
1040 offset: loc.start as usize,
1041 len: loc.length as usize,
1042 }
1043 })
1044 }
1045
1046 pub(crate) fn id(&self) -> CompiledModuleId {
1047 self.inner.module.unique_id()
1048 }
1049
1050 pub(crate) fn offsets(&self) -> &VMOffsets<HostPtr> {
1051 &self.inner.offsets
1052 }
1053
1054 /// Return the address, in memory, of the trampoline that allows Wasm to
1055 /// call a array function of the given signature.
1056 pub(crate) fn wasm_to_array_trampoline(
1057 &self,
1058 signature: VMSharedTypeIndex,
1059 ) -> Option<NonNull<VMWasmCallFunction>> {
1060 log::trace!("Looking up trampoline for {signature:?}");
1061 let trampoline_shared_ty = self.inner.engine.signatures().trampoline_type(signature);
1062 let trampoline_module_ty = self
1063 .inner
1064 .code
1065 .signatures()
1066 .trampoline_type(trampoline_shared_ty)?;
1067 debug_assert!(self
1068 .inner
1069 .engine
1070 .signatures()
1071 .borrow(
1072 self.inner
1073 .code
1074 .signatures()
1075 .shared_type(trampoline_module_ty)
1076 .unwrap()
1077 )
1078 .unwrap()
1079 .unwrap_func()
1080 .is_trampoline_type());
1081
1082 let ptr = self
1083 .compiled_module()
1084 .wasm_to_array_trampoline(trampoline_module_ty)
1085 .as_ptr()
1086 .cast::<VMWasmCallFunction>()
1087 .cast_mut();
1088 Some(NonNull::new(ptr).unwrap())
1089 }
1090
1091 pub(crate) fn memory_images(&self) -> Result<Option<&ModuleMemoryImages>> {
1092 let images = self
1093 .inner
1094 .memory_images
1095 .get_or_try_init(|| memory_images(&self.inner.engine, &self.inner.module))?
1096 .as_ref();
1097 Ok(images)
1098 }
1099
1100 /// Lookup the stack map at a program counter value.
1101 #[cfg(feature = "gc")]
1102 pub(crate) fn lookup_stack_map(&self, pc: usize) -> Option<&wasmtime_environ::StackMap> {
1103 let text_offset = pc - self.inner.module.text().as_ptr() as usize;
1104 let (index, func_offset) = self.inner.module.func_by_text_offset(text_offset)?;
1105 let info = self.inner.module.wasm_func_info(index);
1106
1107 // Do a binary search to find the stack map for the given offset.
1108 let index = match info
1109 .stack_maps
1110 .binary_search_by_key(&func_offset, |i| i.code_offset)
1111 {
1112 // Found it.
1113 Ok(i) => i,
1114
1115 // No stack map associated with this PC.
1116 //
1117 // Because we know we are in Wasm code, and we must be at some kind
1118 // of call/safepoint, then the Cranelift backend must have avoided
1119 // emitting a stack map for this location because no refs were live.
1120 Err(_) => return None,
1121 };
1122
1123 Some(&info.stack_maps[index].stack_map)
1124 }
1125}
1126
1127/// Describes a function for a given module.
1128pub struct ModuleFunction {
1129 pub index: wasmtime_environ::FuncIndex,
1130 pub name: Option<String>,
1131 pub offset: usize,
1132 pub len: usize,
1133}
1134
1135impl Drop for ModuleInner {
1136 fn drop(&mut self) {
1137 // When a `Module` is being dropped that means that it's no longer
1138 // present in any `Store` and it's additionally not longer held by any
1139 // embedder. Take this opportunity to purge any lingering instantiations
1140 // within a pooling instance allocator, if applicable.
1141 self.engine
1142 .allocator()
1143 .purge_module(self.module.unique_id());
1144 }
1145}
1146
1147/// Describes the location of an export in a module.
1148#[derive(Copy, Clone)]
1149pub struct ModuleExport {
1150 /// The module that this export is defined in.
1151 pub(crate) module: CompiledModuleId,
1152 /// A raw index into the wasm module.
1153 pub(crate) entity: EntityIndex,
1154 /// The index of the export name.
1155 pub(crate) export_name_index: usize,
1156}
1157
1158fn _assert_send_sync() {
1159 fn _assert<T: Send + Sync>() {}
1160 _assert::<Module>();
1161}
1162
1163/// Helper method to construct a `ModuleMemoryImages` for an associated
1164/// `CompiledModule`.
1165fn memory_images(engine: &Engine, module: &CompiledModule) -> Result<Option<ModuleMemoryImages>> {
1166 // If initialization via copy-on-write is explicitly disabled in
1167 // configuration then this path is skipped entirely.
1168 if !engine.tunables().memory_init_cow {
1169 return Ok(None);
1170 }
1171
1172 // ... otherwise logic is delegated to the `ModuleMemoryImages::new`
1173 // constructor.
1174 let mmap = if engine.config().force_memory_init_memfd {
1175 None
1176 } else {
1177 Some(module.mmap())
1178 };
1179 ModuleMemoryImages::new(module.module(), module.code_memory().wasm_data(), mmap)
1180}
1181
1182#[cfg(test)]
1183mod tests {
1184 use crate::{Engine, Module};
1185 use wasmtime_environ::MemoryInitialization;
1186
1187 #[test]
1188 fn cow_on_by_default() {
1189 let engine = Engine::default();
1190 let module = Module::new(
1191 &engine,
1192 r#"
1193 (module
1194 (memory 1)
1195 (data (i32.const 100) "abcd")
1196 )
1197 "#,
1198 )
1199 .unwrap();
1200
1201 let init = &module.env_module().memory_initialization;
1202 assert!(matches!(init, MemoryInitialization::Static { .. }));
1203 }
1204}