wasmtime/runtime/module.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
use crate::prelude::*;
#[cfg(feature = "std")]
use crate::runtime::vm::open_file_for_mmap;
use crate::runtime::vm::{CompiledModuleId, MmapVec, ModuleMemoryImages, VMWasmCallFunction};
use crate::sync::OnceLock;
use crate::{
code::CodeObject,
code_memory::CodeMemory,
instantiate::CompiledModule,
resources::ResourcesRequired,
type_registry::TypeCollection,
types::{ExportType, ExternType, ImportType},
Engine,
};
use alloc::sync::Arc;
use core::fmt;
use core::ops::Range;
use core::ptr::NonNull;
#[cfg(feature = "std")]
use std::{fs::File, path::Path};
use wasmparser::{Parser, ValidPayload, Validator};
use wasmtime_environ::{
CompiledModuleInfo, EntityIndex, HostPtr, ModuleTypes, ObjectKind, TypeTrace, VMOffsets,
VMSharedTypeIndex,
};
mod registry;
pub use registry::*;
/// A compiled WebAssembly module, ready to be instantiated.
///
/// A `Module` is a compiled in-memory representation of an input WebAssembly
/// binary. A `Module` is then used to create an [`Instance`](crate::Instance)
/// through an instantiation process. You cannot call functions or fetch
/// globals, for example, on a `Module` because it's purely a code
/// representation. Instead you'll need to create an
/// [`Instance`](crate::Instance) to interact with the wasm module.
///
/// A `Module` can be created by compiling WebAssembly code through APIs such as
/// [`Module::new`]. This would be a JIT-style use case where code is compiled
/// just before it's used. Alternatively a `Module` can be compiled in one
/// process and [`Module::serialize`] can be used to save it to storage. A later
/// call to [`Module::deserialize`] will quickly load the module to execute and
/// does not need to compile any code, representing a more AOT-style use case.
///
/// Currently a `Module` does not implement any form of tiering or dynamic
/// optimization of compiled code. Creation of a `Module` via [`Module::new`] or
/// related APIs will perform the entire compilation step synchronously. When
/// finished no further compilation will happen at runtime or later during
/// execution of WebAssembly instances for example.
///
/// Compilation of WebAssembly by default goes through Cranelift and is
/// recommended to be done once-per-module. The same WebAssembly binary need not
/// be compiled multiple times and can instead used an embedder-cached result of
/// the first call.
///
/// `Module` is thread-safe and safe to share across threads.
///
/// ## Modules and `Clone`
///
/// Using `clone` on a `Module` is a cheap operation. It will not create an
/// entirely new module, but rather just a new reference to the existing module.
/// In other words it's a shallow copy, not a deep copy.
///
/// ## Examples
///
/// There are a number of ways you can create a `Module`, for example pulling
/// the bytes from a number of locations. One example is loading a module from
/// the filesystem:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// let module = Module::from_file(&engine, "path/to/foo.wasm")?;
/// # Ok(())
/// # }
/// ```
///
/// You can also load the wasm text format if more convenient too:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// // Now we're using the WebAssembly text extension: `.wat`!
/// let module = Module::from_file(&engine, "path/to/foo.wat")?;
/// # Ok(())
/// # }
/// ```
///
/// And if you've already got the bytes in-memory you can use the
/// [`Module::new`] constructor:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// # let wasm_bytes: Vec<u8> = Vec::new();
/// let module = Module::new(&engine, &wasm_bytes)?;
///
/// // It also works with the text format!
/// let module = Module::new(&engine, "(module (func))")?;
/// # Ok(())
/// # }
/// ```
///
/// Serializing and deserializing a module looks like:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// # let wasm_bytes: Vec<u8> = Vec::new();
/// let module = Module::new(&engine, &wasm_bytes)?;
/// let module_bytes = module.serialize()?;
///
/// // ... can save `module_bytes` to disk or other storage ...
///
/// // recreate the module from the serialized bytes. For the `unsafe` bits
/// // see the documentation of `deserialize`.
/// let module = unsafe { Module::deserialize(&engine, &module_bytes)? };
/// # Ok(())
/// # }
/// ```
///
/// [`Config`]: crate::Config
#[derive(Clone)]
pub struct Module {
inner: Arc<ModuleInner>,
}
struct ModuleInner {
engine: Engine,
/// The compiled artifacts for this module that will be instantiated and
/// executed.
module: CompiledModule,
/// Runtime information such as the underlying mmap, type information, etc.
///
/// Note that this `Arc` is used to share information between compiled
/// modules within a component. For bare core wasm modules created with
/// `Module::new`, for example, this is a uniquely owned `Arc`.
code: Arc<CodeObject>,
/// A set of initialization images for memories, if any.
///
/// Note that this is behind a `OnceCell` to lazily create this image. On
/// Linux where `memfd_create` may be used to create the backing memory
/// image this is a pretty expensive operation, so by deferring it this
/// improves memory usage for modules that are created but may not ever be
/// instantiated.
memory_images: OnceLock<Option<ModuleMemoryImages>>,
/// Flag indicating whether this module can be serialized or not.
serializable: bool,
/// Runtime offset information for `VMContext`.
offsets: VMOffsets<HostPtr>,
}
impl fmt::Debug for Module {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Module")
.field("name", &self.name())
.finish_non_exhaustive()
}
}
impl fmt::Debug for ModuleInner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ModuleInner")
.field("name", &self.module.module().name.as_ref())
.finish_non_exhaustive()
}
}
impl Module {
/// Creates a new WebAssembly `Module` from the given in-memory `bytes`.
///
/// The `bytes` provided must be in one of the following formats:
///
/// * A [binary-encoded][binary] WebAssembly module. This is always supported.
/// * A [text-encoded][text] instance of the WebAssembly text format.
/// This is only supported when the `wat` feature of this crate is enabled.
/// If this is supplied then the text format will be parsed before validation.
/// Note that the `wat` feature is enabled by default.
///
/// The data for the wasm module must be loaded in-memory if it's present
/// elsewhere, for example on disk. This requires that the entire binary is
/// loaded into memory all at once, this API does not support streaming
/// compilation of a module.
///
/// The WebAssembly binary will be decoded and validated. It will also be
/// compiled according to the configuration of the provided `engine`.
///
/// # Errors
///
/// This function may fail and return an error. Errors may include
/// situations such as:
///
/// * The binary provided could not be decoded because it's not a valid
/// WebAssembly binary
/// * The WebAssembly binary may not validate (e.g. contains type errors)
/// * Implementation-specific limits were exceeded with a valid binary (for
/// example too many locals)
/// * The wasm binary may use features that are not enabled in the
/// configuration of `engine`
/// * If the `wat` feature is enabled and the input is text, then it may be
/// rejected if it fails to parse.
///
/// The error returned should contain full information about why module
/// creation failed if one is returned.
///
/// [binary]: https://webassembly.github.io/spec/core/binary/index.html
/// [text]: https://webassembly.github.io/spec/core/text/index.html
///
/// # Examples
///
/// The `new` function can be invoked with a in-memory array of bytes:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// # let wasm_bytes: Vec<u8> = Vec::new();
/// let module = Module::new(&engine, &wasm_bytes)?;
/// # Ok(())
/// # }
/// ```
///
/// Or you can also pass in a string to be parsed as the wasm text
/// format:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module (func))")?;
/// # Ok(())
/// # }
/// ```
#[cfg(any(feature = "cranelift", feature = "winch"))]
pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
crate::CodeBuilder::new(engine)
.wasm_binary_or_text(bytes.as_ref(), None)?
.compile_module()
}
/// Creates a new WebAssembly `Module` from the contents of the given
/// `file` on disk.
///
/// This is a convenience function that will read the `file` provided and
/// pass the bytes to the [`Module::new`] function. For more information
/// see [`Module::new`]
///
/// # Examples
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// let module = Module::from_file(&engine, "./path/to/foo.wasm")?;
/// # Ok(())
/// # }
/// ```
///
/// The `.wat` text format is also supported:
///
/// ```no_run
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::from_file(&engine, "./path/to/foo.wat")?;
/// # Ok(())
/// # }
/// ```
#[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
pub fn from_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
crate::CodeBuilder::new(engine)
.wasm_binary_or_text_file(file.as_ref())?
.compile_module()
}
/// Creates a new WebAssembly `Module` from the given in-memory `binary`
/// data.
///
/// This is similar to [`Module::new`] except that it requires that the
/// `binary` input is a WebAssembly binary, the text format is not supported
/// by this function. It's generally recommended to use [`Module::new`], but
/// if it's required to not support the text format this function can be
/// used instead.
///
/// # Examples
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wasm = b"\0asm\x01\0\0\0";
/// let module = Module::from_binary(&engine, wasm)?;
/// # Ok(())
/// # }
/// ```
///
/// Note that the text format is **not** accepted by this function:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// assert!(Module::from_binary(&engine, b"(module)").is_err());
/// # Ok(())
/// # }
/// ```
#[cfg(any(feature = "cranelift", feature = "winch"))]
pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result<Module> {
crate::CodeBuilder::new(engine)
.wasm_binary(binary, None)?
.compile_module()
}
/// Creates a new WebAssembly `Module` from the contents of the given `file`
/// on disk, but with assumptions that the file is from a trusted source.
/// The file should be a binary- or text-format WebAssembly module, or a
/// precompiled artifact generated by the same version of Wasmtime.
///
/// # Unsafety
///
/// All of the reasons that [`deserialize`] is `unsafe` apply to this
/// function as well. Arbitrary data loaded from a file may trick Wasmtime
/// into arbitrary code execution since the contents of the file are not
/// validated to be a valid precompiled module.
///
/// [`deserialize`]: Module::deserialize
///
/// Additionally though this function is also `unsafe` because the file
/// referenced must remain unchanged and a valid precompiled module for the
/// entire lifetime of the [`Module`] returned. Any changes to the file on
/// disk may change future instantiations of the module to be incorrect.
/// This is because the file is mapped into memory and lazily loaded pages
/// reflect the current state of the file, not necessarily the original
/// state of the file.
#[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
pub unsafe fn from_trusted_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
let open_file = open_file_for_mmap(file.as_ref())?;
let mmap = MmapVec::from_file(open_file)?;
if &mmap[0..4] == b"\x7fELF" {
let code = engine.load_code(mmap, ObjectKind::Module)?;
return Module::from_parts(engine, code, None);
}
crate::CodeBuilder::new(engine)
.wasm_binary_or_text(&mmap[..], Some(file.as_ref()))?
.compile_module()
}
/// Deserializes an in-memory compiled module previously created with
/// [`Module::serialize`] or [`Engine::precompile_module`].
///
/// This function will deserialize the binary blobs emitted by
/// [`Module::serialize`] and [`Engine::precompile_module`] back into an
/// in-memory [`Module`] that's ready to be instantiated.
///
/// Note that the [`Module::deserialize_file`] method is more optimized than
/// this function, so if the serialized module is already present in a file
/// it's recommended to use that method instead.
///
/// # Unsafety
///
/// This function is marked as `unsafe` because if fed invalid input or used
/// improperly this could lead to memory safety vulnerabilities. This method
/// should not, for example, be exposed to arbitrary user input.
///
/// The structure of the binary blob read here is only lightly validated
/// internally in `wasmtime`. This is intended to be an efficient
/// "rehydration" for a [`Module`] which has very few runtime checks beyond
/// deserialization. Arbitrary input could, for example, replace valid
/// compiled code with any other valid compiled code, meaning that this can
/// trivially be used to execute arbitrary code otherwise.
///
/// For these reasons this function is `unsafe`. This function is only
/// designed to receive the previous input from [`Module::serialize`] and
/// [`Engine::precompile_module`]. If the exact output of those functions
/// (unmodified) is passed to this function then calls to this function can
/// be considered safe. It is the caller's responsibility to provide the
/// guarantee that only previously-serialized bytes are being passed in
/// here.
///
/// Note that this function is designed to be safe receiving output from
/// *any* compiled version of `wasmtime` itself. This means that it is safe
/// to feed output from older versions of Wasmtime into this function, in
/// addition to newer versions of wasmtime (from the future!). These inputs
/// will deterministically and safely produce an `Err`. This function only
/// successfully accepts inputs from the same version of `wasmtime`, but the
/// safety guarantee only applies to externally-defined blobs of bytes, not
/// those defined by any version of wasmtime. (this means that if you cache
/// blobs across versions of wasmtime you can be safely guaranteed that
/// future versions of wasmtime will reject old cache entries).
pub unsafe fn deserialize(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
let code = engine.load_code_bytes(bytes.as_ref(), ObjectKind::Module)?;
Module::from_parts(engine, code, None)
}
/// Same as [`deserialize`], except that the contents of `path` are read to
/// deserialize into a [`Module`].
///
/// This method is provided because it can be faster than [`deserialize`]
/// since the data doesn't need to be copied around, but rather the module
/// can be used directly from an mmap'd view of the file provided.
///
/// [`deserialize`]: Module::deserialize
///
/// # Unsafety
///
/// All of the reasons that [`deserialize`] is `unsafe` applies to this
/// function as well. Arbitrary data loaded from a file may trick Wasmtime
/// into arbitrary code execution since the contents of the file are not
/// validated to be a valid precompiled module.
///
/// Additionally though this function is also `unsafe` because the file
/// referenced must remain unchanged and a valid precompiled module for the
/// entire lifetime of the [`Module`] returned. Any changes to the file on
/// disk may change future instantiations of the module to be incorrect.
/// This is because the file is mapped into memory and lazily loaded pages
/// reflect the current state of the file, not necessarily the original
/// state of the file.
#[cfg(feature = "std")]
pub unsafe fn deserialize_file(engine: &Engine, path: impl AsRef<Path>) -> Result<Module> {
let file = open_file_for_mmap(path.as_ref())?;
Self::deserialize_open_file(engine, file)
.with_context(|| format!("failed deserialization for: {}", path.as_ref().display()))
}
/// Same as [`deserialize_file`], except that it takes an open `File`
/// instead of a path.
///
/// This method is provided because it can be used instead of
/// [`deserialize_file`] in situations where `wasmtime` is running with
/// limited file system permissions. In that case a process
/// with file system access can pass already opened files to `wasmtime`.
///
/// [`deserialize_file`]: Module::deserialize_file
///
/// Note that the corresponding will be mapped as private writeable
/// (copy-on-write) and executable. For `windows` this means the file needs
/// to be opened with at least `FILE_GENERIC_READ | FILE_GENERIC_EXECUTE`
/// [`access_mode`].
///
/// [`access_mode`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.access_mode
///
/// # Unsafety
///
/// All of the reasons that [`deserialize_file`] is `unsafe` applies to this
/// function as well.
#[cfg(feature = "std")]
pub unsafe fn deserialize_open_file(engine: &Engine, file: File) -> Result<Module> {
let code = engine.load_code_file(file, ObjectKind::Module)?;
Module::from_parts(engine, code, None)
}
/// Entrypoint for creating a `Module` for all above functions, both
/// of the AOT and jit-compiled categories.
///
/// In all cases the compilation artifact, `code_memory`, is provided here.
/// The `info_and_types` argument is `None` when a module is being
/// deserialized from a precompiled artifact or it's `Some` if it was just
/// compiled and the values are already available.
pub(crate) fn from_parts(
engine: &Engine,
code_memory: Arc<CodeMemory>,
info_and_types: Option<(CompiledModuleInfo, ModuleTypes)>,
) -> Result<Self> {
// Acquire this module's metadata and type information, deserializing
// it from the provided artifact if it wasn't otherwise provided
// already.
let (info, types) = match info_and_types {
Some((info, types)) => (info, types),
None => postcard::from_bytes(code_memory.wasmtime_info()).err2anyhow()?,
};
// Register function type signatures into the engine for the lifetime
// of the `Module` that will be returned. This notably also builds up
// maps for trampolines to be used for this module when inserted into
// stores.
//
// Note that the unsafety here should be ok since the `trampolines`
// field should only point to valid trampoline function pointers
// within the text section.
let signatures = TypeCollection::new_for_module(engine, &types);
// Package up all our data into a `CodeObject` and delegate to the final
// step of module compilation.
let code = Arc::new(CodeObject::new(code_memory, signatures, types.into()));
Module::from_parts_raw(engine, code, info, true)
}
pub(crate) fn from_parts_raw(
engine: &Engine,
code: Arc<CodeObject>,
info: CompiledModuleInfo,
serializable: bool,
) -> Result<Self> {
let module =
CompiledModule::from_artifacts(code.code_memory().clone(), info, engine.profiler())?;
// Validate the module can be used with the current instance allocator.
let offsets = VMOffsets::new(HostPtr, module.module());
engine
.allocator()
.validate_module(module.module(), &offsets)?;
Ok(Self {
inner: Arc::new(ModuleInner {
engine: engine.clone(),
code,
memory_images: OnceLock::new(),
module,
serializable,
offsets,
}),
})
}
/// Validates `binary` input data as a WebAssembly binary given the
/// configuration in `engine`.
///
/// This function will perform a speedy validation of the `binary` input
/// WebAssembly module (which is in [binary form][binary], the text format
/// is not accepted by this function) and return either `Ok` or `Err`
/// depending on the results of validation. The `engine` argument indicates
/// configuration for WebAssembly features, for example, which are used to
/// indicate what should be valid and what shouldn't be.
///
/// Validation automatically happens as part of [`Module::new`].
///
/// # Errors
///
/// If validation fails for any reason (type check error, usage of a feature
/// that wasn't enabled, etc) then an error with a description of the
/// validation issue will be returned.
///
/// [binary]: https://webassembly.github.io/spec/core/binary/index.html
pub fn validate(engine: &Engine, binary: &[u8]) -> Result<()> {
let mut validator = Validator::new_with_features(engine.features());
let mut functions = Vec::new();
for payload in Parser::new(0).parse_all(binary) {
let payload = payload.err2anyhow()?;
if let ValidPayload::Func(a, b) = validator.payload(&payload).err2anyhow()? {
functions.push((a, b));
}
if let wasmparser::Payload::Version { encoding, .. } = &payload {
if let wasmparser::Encoding::Component = encoding {
bail!("component passed to module validation");
}
}
}
engine
.run_maybe_parallel(functions, |(validator, body)| {
// FIXME: it would be best here to use a rayon-specific parallel
// iterator that maintains state-per-thread to share the function
// validator allocations (`Default::default` here) across multiple
// functions.
validator.into_validator(Default::default()).validate(&body)
})
.err2anyhow()?;
Ok(())
}
/// Serializes this module to a vector of bytes.
///
/// This function is similar to the [`Engine::precompile_module`] method
/// where it produces an artifact of Wasmtime which is suitable to later
/// pass into [`Module::deserialize`]. If a module is never instantiated
/// then it's recommended to use [`Engine::precompile_module`] instead of
/// this method, but if a module is both instantiated and serialized then
/// this method can be useful to get the serialized version without
/// compiling twice.
#[cfg(any(feature = "cranelift", feature = "winch"))]
pub fn serialize(&self) -> Result<Vec<u8>> {
// The current representation of compiled modules within a compiled
// component means that it cannot be serialized. The mmap returned here
// is the mmap for the entire component and while it contains all
// necessary data to deserialize this particular module it's all
// embedded within component-specific information.
//
// It's not the hardest thing in the world to support this but it's
// expected that there's not much of a use case at this time. In theory
// all that needs to be done is to edit the `.wasmtime.info` section
// to contains this module's metadata instead of the metadata for the
// whole component. The metadata itself is fairly trivially
// recreateable here it's more that there's no easy one-off API for
// editing the sections of an ELF object to use here.
//
// Overall for now this simply always returns an error in this
// situation. If you're reading this and feel that the situation should
// be different please feel free to open an issue.
if !self.inner.serializable {
bail!("cannot serialize a module exported from a component");
}
Ok(self.compiled_module().mmap().to_vec())
}
pub(crate) fn compiled_module(&self) -> &CompiledModule {
&self.inner.module
}
pub(crate) fn code_object(&self) -> &Arc<CodeObject> {
&self.inner.code
}
pub(crate) fn env_module(&self) -> &Arc<wasmtime_environ::Module> {
self.compiled_module().module()
}
pub(crate) fn types(&self) -> &ModuleTypes {
self.inner.code.module_types()
}
pub(crate) fn signatures(&self) -> &TypeCollection {
self.inner.code.signatures()
}
/// Returns identifier/name that this [`Module`] has. This name
/// is used in traps/backtrace details.
///
/// Note that most LLVM/clang/Rust-produced modules do not have a name
/// associated with them, but other wasm tooling can be used to inject or
/// add a name.
///
/// # Examples
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module $foo)")?;
/// assert_eq!(module.name(), Some("foo"));
///
/// let module = Module::new(&engine, "(module)")?;
/// assert_eq!(module.name(), None);
///
/// # Ok(())
/// # }
/// ```
pub fn name(&self) -> Option<&str> {
self.compiled_module().module().name.as_deref()
}
/// Returns the list of imports that this [`Module`] has and must be
/// satisfied.
///
/// This function returns the list of imports that the wasm module has, but
/// only the types of each import. The type of each import is used to
/// typecheck the [`Instance::new`](crate::Instance::new) method's `imports`
/// argument. The arguments to that function must match up 1-to-1 with the
/// entries in the array returned here.
///
/// The imports returned reflect the order of the imports in the wasm module
/// itself, and note that no form of deduplication happens.
///
/// # Examples
///
/// Modules with no imports return an empty list here:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module)")?;
/// assert_eq!(module.imports().len(), 0);
/// # Ok(())
/// # }
/// ```
///
/// and modules with imports will have a non-empty list:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wat = r#"
/// (module
/// (import "host" "foo" (func))
/// )
/// "#;
/// let module = Module::new(&engine, wat)?;
/// assert_eq!(module.imports().len(), 1);
/// let import = module.imports().next().unwrap();
/// assert_eq!(import.module(), "host");
/// assert_eq!(import.name(), "foo");
/// match import.ty() {
/// ExternType::Func(_) => { /* ... */ }
/// _ => panic!("unexpected import type!"),
/// }
/// # Ok(())
/// # }
/// ```
pub fn imports<'module>(
&'module self,
) -> impl ExactSizeIterator<Item = ImportType<'module>> + 'module {
let module = self.compiled_module().module();
let types = self.types();
let engine = self.engine();
module
.imports()
.map(move |(imp_mod, imp_field, mut ty)| {
ty.canonicalize_for_runtime_usage(&mut |i| {
self.signatures().shared_type(i).unwrap()
});
ImportType::new(imp_mod, imp_field, ty, types, engine)
})
.collect::<Vec<_>>()
.into_iter()
}
/// Returns the list of exports that this [`Module`] has and will be
/// available after instantiation.
///
/// This function will return the type of each item that will be returned
/// from [`Instance::exports`](crate::Instance::exports). Each entry in this
/// list corresponds 1-to-1 with that list, and the entries here will
/// indicate the name of the export along with the type of the export.
///
/// # Examples
///
/// Modules might not have any exports:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module)")?;
/// assert!(module.exports().next().is_none());
/// # Ok(())
/// # }
/// ```
///
/// When the exports are not empty, you can inspect each export:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wat = r#"
/// (module
/// (func (export "foo"))
/// (memory (export "memory") 1)
/// )
/// "#;
/// let module = Module::new(&engine, wat)?;
/// assert_eq!(module.exports().len(), 2);
///
/// let mut exports = module.exports();
/// let foo = exports.next().unwrap();
/// assert_eq!(foo.name(), "foo");
/// match foo.ty() {
/// ExternType::Func(_) => { /* ... */ }
/// _ => panic!("unexpected export type!"),
/// }
///
/// let memory = exports.next().unwrap();
/// assert_eq!(memory.name(), "memory");
/// match memory.ty() {
/// ExternType::Memory(_) => { /* ... */ }
/// _ => panic!("unexpected export type!"),
/// }
/// # Ok(())
/// # }
/// ```
pub fn exports<'module>(
&'module self,
) -> impl ExactSizeIterator<Item = ExportType<'module>> + 'module {
let module = self.compiled_module().module();
let types = self.types();
let engine = self.engine();
module.exports.iter().map(move |(name, entity_index)| {
ExportType::new(name, module.type_of(*entity_index), types, engine)
})
}
/// Looks up an export in this [`Module`] by name.
///
/// This function will return the type of an export with the given name.
///
/// # Examples
///
/// There may be no export with that name:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let module = Module::new(&engine, "(module)")?;
/// assert!(module.get_export("foo").is_none());
/// # Ok(())
/// # }
/// ```
///
/// When there is an export with that name, it is returned:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let wat = r#"
/// (module
/// (func (export "foo"))
/// (memory (export "memory") 1)
/// )
/// "#;
/// let module = Module::new(&engine, wat)?;
/// let foo = module.get_export("foo");
/// assert!(foo.is_some());
///
/// let foo = foo.unwrap();
/// match foo {
/// ExternType::Func(_) => { /* ... */ }
/// _ => panic!("unexpected export type!"),
/// }
///
/// # Ok(())
/// # }
/// ```
pub fn get_export(&self, name: &str) -> Option<ExternType> {
let module = self.compiled_module().module();
let entity_index = module.exports.get(name)?;
Some(ExternType::from_wasmtime(
self.engine(),
self.types(),
&module.type_of(*entity_index),
))
}
/// Looks up an export in this [`Module`] by name to get its index.
///
/// This function will return the index of an export with the given name. This can be useful
/// to avoid the cost of looking up the export by name multiple times. Instead the
/// [`ModuleExport`] can be stored and used to look up the export on the
/// [`Instance`](crate::Instance) later.
pub fn get_export_index(&self, name: &str) -> Option<ModuleExport> {
let compiled_module = self.compiled_module();
let module = compiled_module.module();
module
.exports
.get_full(name)
.map(|(export_name_index, _, &entity)| ModuleExport {
module: self.id(),
entity,
export_name_index,
})
}
/// Returns the [`Engine`] that this [`Module`] was compiled by.
pub fn engine(&self) -> &Engine {
&self.inner.engine
}
/// Returns a summary of the resources required to instantiate this
/// [`Module`].
///
/// Potential uses of the returned information:
///
/// * Determining whether your pooling allocator configuration supports
/// instantiating this module.
///
/// * Deciding how many of which `Module` you want to instantiate within a
/// fixed amount of resources, e.g. determining whether to create 5
/// instances of module X or 10 instances of module Y.
///
/// # Example
///
/// ```
/// # fn main() -> wasmtime::Result<()> {
/// use wasmtime::{Config, Engine, Module};
///
/// let mut config = Config::new();
/// config.wasm_multi_memory(true);
/// let engine = Engine::new(&config)?;
///
/// let module = Module::new(&engine, r#"
/// (module
/// ;; Import a memory. Doesn't count towards required resources.
/// (import "a" "b" (memory 10))
/// ;; Define two local memories. These count towards the required
/// ;; resources.
/// (memory 1)
/// (memory 6)
/// )
/// "#)?;
///
/// let resources = module.resources_required();
///
/// // Instantiating the module will require allocating two memories, and
/// // the maximum initial memory size is six Wasm pages.
/// assert_eq!(resources.num_memories, 2);
/// assert_eq!(resources.max_initial_memory_size, Some(6));
///
/// // The module doesn't need any tables.
/// assert_eq!(resources.num_tables, 0);
/// assert_eq!(resources.max_initial_table_size, None);
/// # Ok(()) }
/// ```
pub fn resources_required(&self) -> ResourcesRequired {
let em = self.env_module();
let num_memories = u32::try_from(em.num_defined_memories()).unwrap();
let max_initial_memory_size = em
.memories
.values()
.skip(em.num_imported_memories)
.map(|memory| memory.limits.min)
.max();
let num_tables = u32::try_from(em.num_defined_tables()).unwrap();
let max_initial_table_size = em
.tables
.values()
.skip(em.num_imported_tables)
.map(|table| table.limits.min)
.max();
ResourcesRequired {
num_memories,
max_initial_memory_size,
num_tables,
max_initial_table_size,
}
}
/// Returns the range of bytes in memory where this module's compilation
/// image resides.
///
/// The compilation image for a module contains executable code, data, debug
/// information, etc. This is roughly the same as the `Module::serialize`
/// but not the exact same.
///
/// The range of memory reported here is exposed to allow low-level
/// manipulation of the memory in platform-specific manners such as using
/// `mlock` to force the contents to be paged in immediately or keep them
/// paged in after they're loaded.
///
/// It is not safe to modify the memory in this range, nor is it safe to
/// modify the protections of memory in this range.
pub fn image_range(&self) -> Range<*const u8> {
self.compiled_module().mmap().image_range()
}
/// Force initialization of copy-on-write images to happen here-and-now
/// instead of when they're requested during first instantiation.
///
/// When [copy-on-write memory
/// initialization](crate::Config::memory_init_cow) is enabled then Wasmtime
/// will lazily create the initialization image for a module. This method
/// can be used to explicitly dictate when this initialization happens.
///
/// Note that this largely only matters on Linux when memfd is used.
/// Otherwise the copy-on-write image typically comes from disk and in that
/// situation the creation of the image is trivial as the image is always
/// sourced from disk. On Linux, though, when memfd is used a memfd is
/// created and the initialization image is written to it.
///
/// Also note that this method is not required to be called, it's available
/// as a performance optimization if required but is otherwise handled
/// automatically.
pub fn initialize_copy_on_write_image(&self) -> Result<()> {
self.memory_images()?;
Ok(())
}
/// Get the map from `.text` section offsets to Wasm binary offsets for this
/// module.
///
/// Each entry is a (`.text` section offset, Wasm binary offset) pair.
///
/// Entries are yielded in order of `.text` section offset.
///
/// Some entries are missing a Wasm binary offset. This is for code that is
/// not associated with any single location in the Wasm binary, or for when
/// source information was optimized away.
///
/// Not every module has an address map, since address map generation can be
/// turned off on `Config`.
///
/// There is not an entry for every `.text` section offset. Every offset
/// after an entry's offset, but before the next entry's offset, is
/// considered to map to the same Wasm binary offset as the original
/// entry. For example, the address map will not contain the following
/// sequence of entries:
///
/// ```ignore
/// [
/// // ...
/// (10, Some(42)),
/// (11, Some(42)),
/// (12, Some(42)),
/// (13, Some(43)),
/// // ...
/// ]
/// ```
///
/// Instead, it will drop the entries for offsets `11` and `12` since they
/// are the same as the entry for offset `10`:
///
/// ```ignore
/// [
/// // ...
/// (10, Some(42)),
/// (13, Some(43)),
/// // ...
/// ]
/// ```
pub fn address_map<'a>(&'a self) -> Option<impl Iterator<Item = (usize, Option<u32>)> + 'a> {
Some(
wasmtime_environ::iterate_address_map(
self.code_object().code_memory().address_map_data(),
)?
.map(|(offset, file_pos)| (offset as usize, file_pos.file_offset())),
)
}
/// Get this module's code object's `.text` section, containing its compiled
/// executable code.
pub fn text(&self) -> &[u8] {
self.code_object().code_memory().text()
}
/// Get information about functions in this module's `.text` section: their
/// index, name, and offset+length.
///
/// Results are yielded in a ModuleFunction struct.
pub fn functions<'a>(&'a self) -> impl ExactSizeIterator<Item = ModuleFunction> + 'a {
let module = self.compiled_module();
module.finished_functions().map(|(idx, _)| {
let loc = module.func_loc(idx);
let idx = module.module().func_index(idx);
ModuleFunction {
index: idx,
name: module.func_name(idx).map(|n| n.to_string()),
offset: loc.start as usize,
len: loc.length as usize,
}
})
}
pub(crate) fn id(&self) -> CompiledModuleId {
self.inner.module.unique_id()
}
pub(crate) fn offsets(&self) -> &VMOffsets<HostPtr> {
&self.inner.offsets
}
/// Return the address, in memory, of the trampoline that allows Wasm to
/// call a array function of the given signature.
pub(crate) fn wasm_to_array_trampoline(
&self,
signature: VMSharedTypeIndex,
) -> Option<NonNull<VMWasmCallFunction>> {
log::trace!("Looking up trampoline for {signature:?}");
let trampoline_shared_ty = self.inner.engine.signatures().trampoline_type(signature);
let trampoline_module_ty = self
.inner
.code
.signatures()
.trampoline_type(trampoline_shared_ty)?;
debug_assert!(self
.inner
.engine
.signatures()
.borrow(
self.inner
.code
.signatures()
.shared_type(trampoline_module_ty)
.unwrap()
)
.unwrap()
.unwrap_func()
.is_trampoline_type());
let ptr = self
.compiled_module()
.wasm_to_array_trampoline(trampoline_module_ty)
.as_ptr()
.cast::<VMWasmCallFunction>()
.cast_mut();
Some(NonNull::new(ptr).unwrap())
}
pub(crate) fn memory_images(&self) -> Result<Option<&ModuleMemoryImages>> {
let images = self
.inner
.memory_images
.get_or_try_init(|| memory_images(&self.inner.engine, &self.inner.module))?
.as_ref();
Ok(images)
}
/// Lookup the stack map at a program counter value.
pub(crate) fn lookup_stack_map(&self, pc: usize) -> Option<&wasmtime_environ::StackMap> {
let text_offset = pc - self.inner.module.text().as_ptr() as usize;
let (index, func_offset) = self.inner.module.func_by_text_offset(text_offset)?;
let info = self.inner.module.wasm_func_info(index);
// Do a binary search to find the stack map for the given offset.
let index = match info
.stack_maps
.binary_search_by_key(&func_offset, |i| i.code_offset)
{
// Found it.
Ok(i) => i,
// No stack map associated with this PC.
//
// Because we know we are in Wasm code, and we must be at some kind
// of call/safepoint, then the Cranelift backend must have avoided
// emitting a stack map for this location because no refs were live.
Err(_) => return None,
};
Some(&info.stack_maps[index].stack_map)
}
}
/// Describes a function for a given module.
pub struct ModuleFunction {
pub index: wasmtime_environ::FuncIndex,
pub name: Option<String>,
pub offset: usize,
pub len: usize,
}
impl Drop for ModuleInner {
fn drop(&mut self) {
// When a `Module` is being dropped that means that it's no longer
// present in any `Store` and it's additionally not longer held by any
// embedder. Take this opportunity to purge any lingering instantiations
// within a pooling instance allocator, if applicable.
self.engine
.allocator()
.purge_module(self.module.unique_id());
}
}
/// Describes the location of an export in a module.
#[derive(Copy, Clone)]
pub struct ModuleExport {
/// The module that this export is defined in.
pub(crate) module: CompiledModuleId,
/// A raw index into the wasm module.
pub(crate) entity: EntityIndex,
/// The index of the export name.
pub(crate) export_name_index: usize,
}
fn _assert_send_sync() {
fn _assert<T: Send + Sync>() {}
_assert::<Module>();
}
/// Helper method to construct a `ModuleMemoryImages` for an associated
/// `CompiledModule`.
fn memory_images(engine: &Engine, module: &CompiledModule) -> Result<Option<ModuleMemoryImages>> {
// If initialization via copy-on-write is explicitly disabled in
// configuration then this path is skipped entirely.
if !engine.tunables().memory_init_cow {
return Ok(None);
}
// ... otherwise logic is delegated to the `ModuleMemoryImages::new`
// constructor.
let mmap = if engine.config().force_memory_init_memfd {
None
} else {
Some(module.mmap())
};
ModuleMemoryImages::new(module.module(), module.code_memory().wasm_data(), mmap)
}
#[cfg(test)]
mod tests {
use crate::{Engine, Module};
use wasmtime_environ::MemoryInitialization;
#[test]
fn cow_on_by_default() {
let engine = Engine::default();
let module = Module::new(
&engine,
r#"
(module
(memory 1)
(data (i32.const 100) "abcd")
)
"#,
)
.unwrap();
let init = &module.env_module().memory_initialization;
assert!(matches!(init, MemoryInitialization::Static { .. }));
}
}