wasmtime/runtime/
module.rs

1use crate::prelude::*;
2#[cfg(feature = "std")]
3use crate::runtime::vm::open_file_for_mmap;
4use crate::runtime::vm::{CompiledModuleId, MmapVec, ModuleMemoryImages, VMWasmCallFunction};
5use crate::sync::OnceLock;
6use crate::{
7    Engine,
8    code::CodeObject,
9    code_memory::CodeMemory,
10    instantiate::CompiledModule,
11    resources::ResourcesRequired,
12    types::{ExportType, ExternType, ImportType},
13};
14use alloc::sync::Arc;
15use core::fmt;
16use core::ops::Range;
17use core::ptr::NonNull;
18#[cfg(feature = "std")]
19use std::{fs::File, path::Path};
20use wasmparser::{Parser, ValidPayload, Validator};
21use wasmtime_environ::{
22    CompiledModuleInfo, EntityIndex, HostPtr, ModuleTypes, ObjectKind, TypeTrace, VMOffsets,
23    VMSharedTypeIndex,
24};
25#[cfg(feature = "gc")]
26use wasmtime_unwinder::ExceptionTable;
27mod registry;
28
29pub use registry::*;
30
31/// A compiled WebAssembly module, ready to be instantiated.
32///
33/// A `Module` is a compiled in-memory representation of an input WebAssembly
34/// binary. A `Module` is then used to create an [`Instance`](crate::Instance)
35/// through an instantiation process. You cannot call functions or fetch
36/// globals, for example, on a `Module` because it's purely a code
37/// representation. Instead you'll need to create an
38/// [`Instance`](crate::Instance) to interact with the wasm module.
39///
40/// A `Module` can be created by compiling WebAssembly code through APIs such as
41/// [`Module::new`]. This would be a JIT-style use case where code is compiled
42/// just before it's used. Alternatively a `Module` can be compiled in one
43/// process and [`Module::serialize`] can be used to save it to storage. A later
44/// call to [`Module::deserialize`] will quickly load the module to execute and
45/// does not need to compile any code, representing a more AOT-style use case.
46///
47/// Currently a `Module` does not implement any form of tiering or dynamic
48/// optimization of compiled code. Creation of a `Module` via [`Module::new`] or
49/// related APIs will perform the entire compilation step synchronously. When
50/// finished no further compilation will happen at runtime or later during
51/// execution of WebAssembly instances for example.
52///
53/// Compilation of WebAssembly by default goes through Cranelift and is
54/// recommended to be done once-per-module. The same WebAssembly binary need not
55/// be compiled multiple times and can instead used an embedder-cached result of
56/// the first call.
57///
58/// `Module` is thread-safe and safe to share across threads.
59///
60/// ## Modules and `Clone`
61///
62/// Using `clone` on a `Module` is a cheap operation. It will not create an
63/// entirely new module, but rather just a new reference to the existing module.
64/// In other words it's a shallow copy, not a deep copy.
65///
66/// ## Examples
67///
68/// There are a number of ways you can create a `Module`, for example pulling
69/// the bytes from a number of locations. One example is loading a module from
70/// the filesystem:
71///
72/// ```no_run
73/// # use wasmtime::*;
74/// # fn main() -> anyhow::Result<()> {
75/// let engine = Engine::default();
76/// let module = Module::from_file(&engine, "path/to/foo.wasm")?;
77/// # Ok(())
78/// # }
79/// ```
80///
81/// You can also load the wasm text format if more convenient too:
82///
83/// ```no_run
84/// # use wasmtime::*;
85/// # fn main() -> anyhow::Result<()> {
86/// let engine = Engine::default();
87/// // Now we're using the WebAssembly text extension: `.wat`!
88/// let module = Module::from_file(&engine, "path/to/foo.wat")?;
89/// # Ok(())
90/// # }
91/// ```
92///
93/// And if you've already got the bytes in-memory you can use the
94/// [`Module::new`] constructor:
95///
96/// ```no_run
97/// # use wasmtime::*;
98/// # fn main() -> anyhow::Result<()> {
99/// let engine = Engine::default();
100/// # let wasm_bytes: Vec<u8> = Vec::new();
101/// let module = Module::new(&engine, &wasm_bytes)?;
102///
103/// // It also works with the text format!
104/// let module = Module::new(&engine, "(module (func))")?;
105/// # Ok(())
106/// # }
107/// ```
108///
109/// Serializing and deserializing a module looks like:
110///
111/// ```no_run
112/// # use wasmtime::*;
113/// # fn main() -> anyhow::Result<()> {
114/// let engine = Engine::default();
115/// # let wasm_bytes: Vec<u8> = Vec::new();
116/// let module = Module::new(&engine, &wasm_bytes)?;
117/// let module_bytes = module.serialize()?;
118///
119/// // ... can save `module_bytes` to disk or other storage ...
120///
121/// // recreate the module from the serialized bytes. For the `unsafe` bits
122/// // see the documentation of `deserialize`.
123/// let module = unsafe { Module::deserialize(&engine, &module_bytes)? };
124/// # Ok(())
125/// # }
126/// ```
127///
128/// [`Config`]: crate::Config
129#[derive(Clone)]
130pub struct Module {
131    inner: Arc<ModuleInner>,
132}
133
134struct ModuleInner {
135    engine: Engine,
136    /// The compiled artifacts for this module that will be instantiated and
137    /// executed.
138    module: CompiledModule,
139
140    /// Runtime information such as the underlying mmap, type information, etc.
141    ///
142    /// Note that this `Arc` is used to share information between compiled
143    /// modules within a component. For bare core wasm modules created with
144    /// `Module::new`, for example, this is a uniquely owned `Arc`.
145    code: Arc<CodeObject>,
146
147    /// A set of initialization images for memories, if any.
148    ///
149    /// Note that this is behind a `OnceCell` to lazily create this image. On
150    /// Linux where `memfd_create` may be used to create the backing memory
151    /// image this is a pretty expensive operation, so by deferring it this
152    /// improves memory usage for modules that are created but may not ever be
153    /// instantiated.
154    memory_images: OnceLock<Option<ModuleMemoryImages>>,
155
156    /// Flag indicating whether this module can be serialized or not.
157    #[cfg(any(feature = "cranelift", feature = "winch"))]
158    serializable: bool,
159
160    /// Runtime offset information for `VMContext`.
161    offsets: VMOffsets<HostPtr>,
162}
163
164impl fmt::Debug for Module {
165    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
166        f.debug_struct("Module")
167            .field("name", &self.name())
168            .finish_non_exhaustive()
169    }
170}
171
172impl fmt::Debug for ModuleInner {
173    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
174        f.debug_struct("ModuleInner")
175            .field("name", &self.module.module().name.as_ref())
176            .finish_non_exhaustive()
177    }
178}
179
180impl Module {
181    /// Creates a new WebAssembly `Module` from the given in-memory `bytes`.
182    ///
183    /// The `bytes` provided must be in one of the following formats:
184    ///
185    /// * A [binary-encoded][binary] WebAssembly module. This is always supported.
186    /// * A [text-encoded][text] instance of the WebAssembly text format.
187    ///   This is only supported when the `wat` feature of this crate is enabled.
188    ///   If this is supplied then the text format will be parsed before validation.
189    ///   Note that the `wat` feature is enabled by default.
190    ///
191    /// The data for the wasm module must be loaded in-memory if it's present
192    /// elsewhere, for example on disk. This requires that the entire binary is
193    /// loaded into memory all at once, this API does not support streaming
194    /// compilation of a module.
195    ///
196    /// The WebAssembly binary will be decoded and validated. It will also be
197    /// compiled according to the configuration of the provided `engine`.
198    ///
199    /// # Errors
200    ///
201    /// This function may fail and return an error. Errors may include
202    /// situations such as:
203    ///
204    /// * The binary provided could not be decoded because it's not a valid
205    ///   WebAssembly binary
206    /// * The WebAssembly binary may not validate (e.g. contains type errors)
207    /// * Implementation-specific limits were exceeded with a valid binary (for
208    ///   example too many locals)
209    /// * The wasm binary may use features that are not enabled in the
210    ///   configuration of `engine`
211    /// * If the `wat` feature is enabled and the input is text, then it may be
212    ///   rejected if it fails to parse.
213    ///
214    /// The error returned should contain full information about why module
215    /// creation failed if one is returned.
216    ///
217    /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
218    /// [text]: https://webassembly.github.io/spec/core/text/index.html
219    ///
220    /// # Examples
221    ///
222    /// The `new` function can be invoked with a in-memory array of bytes:
223    ///
224    /// ```no_run
225    /// # use wasmtime::*;
226    /// # fn main() -> anyhow::Result<()> {
227    /// # let engine = Engine::default();
228    /// # let wasm_bytes: Vec<u8> = Vec::new();
229    /// let module = Module::new(&engine, &wasm_bytes)?;
230    /// # Ok(())
231    /// # }
232    /// ```
233    ///
234    /// Or you can also pass in a string to be parsed as the wasm text
235    /// format:
236    ///
237    /// ```
238    /// # use wasmtime::*;
239    /// # fn main() -> anyhow::Result<()> {
240    /// # let engine = Engine::default();
241    /// let module = Module::new(&engine, "(module (func))")?;
242    /// # Ok(())
243    /// # }
244    /// ```
245    #[cfg(any(feature = "cranelift", feature = "winch"))]
246    pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
247        crate::CodeBuilder::new(engine)
248            .wasm_binary_or_text(bytes.as_ref(), None)?
249            .compile_module()
250    }
251
252    /// Creates a new WebAssembly `Module` from the contents of the given
253    /// `file` on disk.
254    ///
255    /// This is a convenience function that will read the `file` provided and
256    /// pass the bytes to the [`Module::new`] function. For more information
257    /// see [`Module::new`]
258    ///
259    /// # Examples
260    ///
261    /// ```no_run
262    /// # use wasmtime::*;
263    /// # fn main() -> anyhow::Result<()> {
264    /// let engine = Engine::default();
265    /// let module = Module::from_file(&engine, "./path/to/foo.wasm")?;
266    /// # Ok(())
267    /// # }
268    /// ```
269    ///
270    /// The `.wat` text format is also supported:
271    ///
272    /// ```no_run
273    /// # use wasmtime::*;
274    /// # fn main() -> anyhow::Result<()> {
275    /// # let engine = Engine::default();
276    /// let module = Module::from_file(&engine, "./path/to/foo.wat")?;
277    /// # Ok(())
278    /// # }
279    /// ```
280    #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
281    pub fn from_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
282        crate::CodeBuilder::new(engine)
283            .wasm_binary_or_text_file(file.as_ref())?
284            .compile_module()
285    }
286
287    /// Creates a new WebAssembly `Module` from the given in-memory `binary`
288    /// data.
289    ///
290    /// This is similar to [`Module::new`] except that it requires that the
291    /// `binary` input is a WebAssembly binary, the text format is not supported
292    /// by this function. It's generally recommended to use [`Module::new`], but
293    /// if it's required to not support the text format this function can be
294    /// used instead.
295    ///
296    /// # Examples
297    ///
298    /// ```
299    /// # use wasmtime::*;
300    /// # fn main() -> anyhow::Result<()> {
301    /// # let engine = Engine::default();
302    /// let wasm = b"\0asm\x01\0\0\0";
303    /// let module = Module::from_binary(&engine, wasm)?;
304    /// # Ok(())
305    /// # }
306    /// ```
307    ///
308    /// Note that the text format is **not** accepted by this function:
309    ///
310    /// ```
311    /// # use wasmtime::*;
312    /// # fn main() -> anyhow::Result<()> {
313    /// # let engine = Engine::default();
314    /// assert!(Module::from_binary(&engine, b"(module)").is_err());
315    /// # Ok(())
316    /// # }
317    /// ```
318    #[cfg(any(feature = "cranelift", feature = "winch"))]
319    pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result<Module> {
320        crate::CodeBuilder::new(engine)
321            .wasm_binary(binary, None)?
322            .compile_module()
323    }
324
325    /// Creates a new WebAssembly `Module` from the contents of the given `file`
326    /// on disk, but with assumptions that the file is from a trusted source.
327    /// The file should be a binary- or text-format WebAssembly module, or a
328    /// precompiled artifact generated by the same version of Wasmtime.
329    ///
330    /// # Unsafety
331    ///
332    /// All of the reasons that [`deserialize`] is `unsafe` apply to this
333    /// function as well. Arbitrary data loaded from a file may trick Wasmtime
334    /// into arbitrary code execution since the contents of the file are not
335    /// validated to be a valid precompiled module.
336    ///
337    /// [`deserialize`]: Module::deserialize
338    ///
339    /// Additionally though this function is also `unsafe` because the file
340    /// referenced must remain unchanged and a valid precompiled module for the
341    /// entire lifetime of the [`Module`] returned. Any changes to the file on
342    /// disk may change future instantiations of the module to be incorrect.
343    /// This is because the file is mapped into memory and lazily loaded pages
344    /// reflect the current state of the file, not necessarily the original
345    /// state of the file.
346    #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
347    pub unsafe fn from_trusted_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Module> {
348        let open_file = open_file_for_mmap(file.as_ref())?;
349        let mmap = crate::runtime::vm::MmapVec::from_file(open_file)?;
350        if &mmap[0..4] == b"\x7fELF" {
351            let code = engine.load_code(mmap, ObjectKind::Module)?;
352            return Module::from_parts(engine, code, None);
353        }
354
355        crate::CodeBuilder::new(engine)
356            .wasm_binary_or_text(&mmap[..], Some(file.as_ref()))?
357            .compile_module()
358    }
359
360    /// Deserializes an in-memory compiled module previously created with
361    /// [`Module::serialize`] or [`Engine::precompile_module`].
362    ///
363    /// This function will deserialize the binary blobs emitted by
364    /// [`Module::serialize`] and [`Engine::precompile_module`] back into an
365    /// in-memory [`Module`] that's ready to be instantiated.
366    ///
367    /// Note that the [`Module::deserialize_file`] method is more optimized than
368    /// this function, so if the serialized module is already present in a file
369    /// it's recommended to use that method instead.
370    ///
371    /// # Unsafety
372    ///
373    /// This function is marked as `unsafe` because if fed invalid input or used
374    /// improperly this could lead to memory safety vulnerabilities. This method
375    /// should not, for example, be exposed to arbitrary user input.
376    ///
377    /// The structure of the binary blob read here is only lightly validated
378    /// internally in `wasmtime`. This is intended to be an efficient
379    /// "rehydration" for a [`Module`] which has very few runtime checks beyond
380    /// deserialization. Arbitrary input could, for example, replace valid
381    /// compiled code with any other valid compiled code, meaning that this can
382    /// trivially be used to execute arbitrary code otherwise.
383    ///
384    /// For these reasons this function is `unsafe`. This function is only
385    /// designed to receive the previous input from [`Module::serialize`] and
386    /// [`Engine::precompile_module`]. If the exact output of those functions
387    /// (unmodified) is passed to this function then calls to this function can
388    /// be considered safe. It is the caller's responsibility to provide the
389    /// guarantee that only previously-serialized bytes are being passed in
390    /// here.
391    ///
392    /// Note that this function is designed to be safe receiving output from
393    /// *any* compiled version of `wasmtime` itself. This means that it is safe
394    /// to feed output from older versions of Wasmtime into this function, in
395    /// addition to newer versions of wasmtime (from the future!). These inputs
396    /// will deterministically and safely produce an `Err`. This function only
397    /// successfully accepts inputs from the same version of `wasmtime`, but the
398    /// safety guarantee only applies to externally-defined blobs of bytes, not
399    /// those defined by any version of wasmtime. (this means that if you cache
400    /// blobs across versions of wasmtime you can be safely guaranteed that
401    /// future versions of wasmtime will reject old cache entries).
402    pub unsafe fn deserialize(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Module> {
403        let code = engine.load_code_bytes(bytes.as_ref(), ObjectKind::Module)?;
404        Module::from_parts(engine, code, None)
405    }
406
407    /// In-place deserialization of an in-memory compiled module previously
408    /// created with [`Module::serialize`] or [`Engine::precompile_module`].
409    ///
410    /// See [`Self::deserialize`] for additional information; this method
411    /// works identically except that it will not create a copy of the provided
412    /// memory but will use it directly.
413    ///
414    /// # Unsafety
415    ///
416    /// All of the safety notes from [`Self::deserialize`] apply here as well
417    /// with the additional constraint that the code memory provide by `memory`
418    /// lives for as long as the module and is nevery externally modified for
419    /// the lifetime of the deserialized module.
420    pub unsafe fn deserialize_raw(engine: &Engine, memory: NonNull<[u8]>) -> Result<Module> {
421        // SAFETY: the contract required by `load_code_raw` is the same as this
422        // function.
423        let code = unsafe { engine.load_code_raw(memory, ObjectKind::Module)? };
424        Module::from_parts(engine, code, None)
425    }
426
427    /// Same as [`deserialize`], except that the contents of `path` are read to
428    /// deserialize into a [`Module`].
429    ///
430    /// This method is provided because it can be faster than [`deserialize`]
431    /// since the data doesn't need to be copied around, but rather the module
432    /// can be used directly from an mmap'd view of the file provided.
433    ///
434    /// [`deserialize`]: Module::deserialize
435    ///
436    /// # Unsafety
437    ///
438    /// All of the reasons that [`deserialize`] is `unsafe` applies to this
439    /// function as well. Arbitrary data loaded from a file may trick Wasmtime
440    /// into arbitrary code execution since the contents of the file are not
441    /// validated to be a valid precompiled module.
442    ///
443    /// Additionally though this function is also `unsafe` because the file
444    /// referenced must remain unchanged and a valid precompiled module for the
445    /// entire lifetime of the [`Module`] returned. Any changes to the file on
446    /// disk may change future instantiations of the module to be incorrect.
447    /// This is because the file is mapped into memory and lazily loaded pages
448    /// reflect the current state of the file, not necessarily the original
449    /// state of the file.
450    #[cfg(feature = "std")]
451    pub unsafe fn deserialize_file(engine: &Engine, path: impl AsRef<Path>) -> Result<Module> {
452        let file = open_file_for_mmap(path.as_ref())?;
453        // SAFETY: the contract of `deserialize_open_file` is the samea s this
454        // function.
455        unsafe {
456            Self::deserialize_open_file(engine, file)
457                .with_context(|| format!("failed deserialization for: {}", path.as_ref().display()))
458        }
459    }
460
461    /// Same as [`deserialize_file`], except that it takes an open `File`
462    /// instead of a path.
463    ///
464    /// This method is provided because it can be used instead of
465    /// [`deserialize_file`] in situations where `wasmtime` is running with
466    /// limited file system permissions. In that case a process
467    /// with file system access can pass already opened files to `wasmtime`.
468    ///
469    /// [`deserialize_file`]: Module::deserialize_file
470    ///
471    /// Note that the corresponding will be mapped as private writeable
472    /// (copy-on-write) and executable. For `windows` this means the file needs
473    /// to be opened with at least `FILE_GENERIC_READ | FILE_GENERIC_EXECUTE`
474    /// [`access_mode`].
475    ///
476    /// [`access_mode`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.access_mode
477    ///
478    /// # Unsafety
479    ///
480    /// All of the reasons that [`deserialize_file`] is `unsafe` applies to this
481    /// function as well.
482    #[cfg(feature = "std")]
483    pub unsafe fn deserialize_open_file(engine: &Engine, file: File) -> Result<Module> {
484        let code = engine.load_code_file(file, ObjectKind::Module)?;
485        Module::from_parts(engine, code, None)
486    }
487
488    /// Entrypoint for creating a `Module` for all above functions, both
489    /// of the AOT and jit-compiled categories.
490    ///
491    /// In all cases the compilation artifact, `code_memory`, is provided here.
492    /// The `info_and_types` argument is `None` when a module is being
493    /// deserialized from a precompiled artifact or it's `Some` if it was just
494    /// compiled and the values are already available.
495    pub(crate) fn from_parts(
496        engine: &Engine,
497        code_memory: Arc<CodeMemory>,
498        info_and_types: Option<(CompiledModuleInfo, ModuleTypes)>,
499    ) -> Result<Self> {
500        // Acquire this module's metadata and type information, deserializing
501        // it from the provided artifact if it wasn't otherwise provided
502        // already.
503        let (mut info, mut types) = match info_and_types {
504            Some((info, types)) => (info, types),
505            None => postcard::from_bytes(code_memory.wasmtime_info())?,
506        };
507
508        // Register function type signatures into the engine for the lifetime
509        // of the `Module` that will be returned. This notably also builds up
510        // maps for trampolines to be used for this module when inserted into
511        // stores.
512        //
513        // Note that the unsafety here should be ok since the `trampolines`
514        // field should only point to valid trampoline function pointers
515        // within the text section.
516        let signatures =
517            engine.register_and_canonicalize_types(&mut types, core::iter::once(&mut info.module));
518
519        // Package up all our data into a `CodeObject` and delegate to the final
520        // step of module compilation.
521        let code = Arc::new(CodeObject::new(code_memory, signatures, types.into()));
522        Module::from_parts_raw(engine, code, info, true)
523    }
524
525    pub(crate) fn from_parts_raw(
526        engine: &Engine,
527        code: Arc<CodeObject>,
528        info: CompiledModuleInfo,
529        serializable: bool,
530    ) -> Result<Self> {
531        let module =
532            CompiledModule::from_artifacts(code.code_memory().clone(), info, engine.profiler())?;
533
534        // Validate the module can be used with the current instance allocator.
535        let offsets = VMOffsets::new(HostPtr, module.module());
536        engine
537            .allocator()
538            .validate_module(module.module(), &offsets)?;
539
540        let _ = serializable;
541
542        Ok(Self {
543            inner: Arc::new(ModuleInner {
544                engine: engine.clone(),
545                code,
546                memory_images: OnceLock::new(),
547                module,
548                #[cfg(any(feature = "cranelift", feature = "winch"))]
549                serializable,
550                offsets,
551            }),
552        })
553    }
554
555    /// Validates `binary` input data as a WebAssembly binary given the
556    /// configuration in `engine`.
557    ///
558    /// This function will perform a speedy validation of the `binary` input
559    /// WebAssembly module (which is in [binary form][binary], the text format
560    /// is not accepted by this function) and return either `Ok` or `Err`
561    /// depending on the results of validation. The `engine` argument indicates
562    /// configuration for WebAssembly features, for example, which are used to
563    /// indicate what should be valid and what shouldn't be.
564    ///
565    /// Validation automatically happens as part of [`Module::new`].
566    ///
567    /// # Errors
568    ///
569    /// If validation fails for any reason (type check error, usage of a feature
570    /// that wasn't enabled, etc) then an error with a description of the
571    /// validation issue will be returned.
572    ///
573    /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
574    pub fn validate(engine: &Engine, binary: &[u8]) -> Result<()> {
575        let mut validator = Validator::new_with_features(engine.features());
576
577        let mut functions = Vec::new();
578        for payload in Parser::new(0).parse_all(binary) {
579            let payload = payload?;
580            if let ValidPayload::Func(a, b) = validator.payload(&payload)? {
581                functions.push((a, b));
582            }
583            if let wasmparser::Payload::Version { encoding, .. } = &payload {
584                if let wasmparser::Encoding::Component = encoding {
585                    bail!("component passed to module validation");
586                }
587            }
588        }
589
590        engine.run_maybe_parallel(functions, |(validator, body)| {
591            // FIXME: it would be best here to use a rayon-specific parallel
592            // iterator that maintains state-per-thread to share the function
593            // validator allocations (`Default::default` here) across multiple
594            // functions.
595            validator.into_validator(Default::default()).validate(&body)
596        })?;
597        Ok(())
598    }
599
600    /// Serializes this module to a vector of bytes.
601    ///
602    /// This function is similar to the [`Engine::precompile_module`] method
603    /// where it produces an artifact of Wasmtime which is suitable to later
604    /// pass into [`Module::deserialize`]. If a module is never instantiated
605    /// then it's recommended to use [`Engine::precompile_module`] instead of
606    /// this method, but if a module is both instantiated and serialized then
607    /// this method can be useful to get the serialized version without
608    /// compiling twice.
609    #[cfg(any(feature = "cranelift", feature = "winch"))]
610    pub fn serialize(&self) -> Result<Vec<u8>> {
611        // The current representation of compiled modules within a compiled
612        // component means that it cannot be serialized. The mmap returned here
613        // is the mmap for the entire component and while it contains all
614        // necessary data to deserialize this particular module it's all
615        // embedded within component-specific information.
616        //
617        // It's not the hardest thing in the world to support this but it's
618        // expected that there's not much of a use case at this time. In theory
619        // all that needs to be done is to edit the `.wasmtime.info` section
620        // to contains this module's metadata instead of the metadata for the
621        // whole component. The metadata itself is fairly trivially
622        // recreateable here it's more that there's no easy one-off API for
623        // editing the sections of an ELF object to use here.
624        //
625        // Overall for now this simply always returns an error in this
626        // situation. If you're reading this and feel that the situation should
627        // be different please feel free to open an issue.
628        if !self.inner.serializable {
629            bail!("cannot serialize a module exported from a component");
630        }
631        Ok(self.compiled_module().mmap().to_vec())
632    }
633
634    pub(crate) fn compiled_module(&self) -> &CompiledModule {
635        &self.inner.module
636    }
637
638    pub(crate) fn code_object(&self) -> &Arc<CodeObject> {
639        &self.inner.code
640    }
641
642    pub(crate) fn env_module(&self) -> &Arc<wasmtime_environ::Module> {
643        self.compiled_module().module()
644    }
645
646    pub(crate) fn types(&self) -> &ModuleTypes {
647        self.inner.code.module_types()
648    }
649
650    #[cfg(any(feature = "component-model", feature = "gc-drc"))]
651    pub(crate) fn signatures(&self) -> &crate::type_registry::TypeCollection {
652        self.inner.code.signatures()
653    }
654
655    /// Returns identifier/name that this [`Module`] has. This name
656    /// is used in traps/backtrace details.
657    ///
658    /// Note that most LLVM/clang/Rust-produced modules do not have a name
659    /// associated with them, but other wasm tooling can be used to inject or
660    /// add a name.
661    ///
662    /// # Examples
663    ///
664    /// ```
665    /// # use wasmtime::*;
666    /// # fn main() -> anyhow::Result<()> {
667    /// # let engine = Engine::default();
668    /// let module = Module::new(&engine, "(module $foo)")?;
669    /// assert_eq!(module.name(), Some("foo"));
670    ///
671    /// let module = Module::new(&engine, "(module)")?;
672    /// assert_eq!(module.name(), None);
673    ///
674    /// # Ok(())
675    /// # }
676    /// ```
677    pub fn name(&self) -> Option<&str> {
678        self.compiled_module().module().name.as_deref()
679    }
680
681    /// Returns the list of imports that this [`Module`] has and must be
682    /// satisfied.
683    ///
684    /// This function returns the list of imports that the wasm module has, but
685    /// only the types of each import. The type of each import is used to
686    /// typecheck the [`Instance::new`](crate::Instance::new) method's `imports`
687    /// argument. The arguments to that function must match up 1-to-1 with the
688    /// entries in the array returned here.
689    ///
690    /// The imports returned reflect the order of the imports in the wasm module
691    /// itself, and note that no form of deduplication happens.
692    ///
693    /// # Examples
694    ///
695    /// Modules with no imports return an empty list here:
696    ///
697    /// ```
698    /// # use wasmtime::*;
699    /// # fn main() -> anyhow::Result<()> {
700    /// # let engine = Engine::default();
701    /// let module = Module::new(&engine, "(module)")?;
702    /// assert_eq!(module.imports().len(), 0);
703    /// # Ok(())
704    /// # }
705    /// ```
706    ///
707    /// and modules with imports will have a non-empty list:
708    ///
709    /// ```
710    /// # use wasmtime::*;
711    /// # fn main() -> anyhow::Result<()> {
712    /// # let engine = Engine::default();
713    /// let wat = r#"
714    ///     (module
715    ///         (import "host" "foo" (func))
716    ///     )
717    /// "#;
718    /// let module = Module::new(&engine, wat)?;
719    /// assert_eq!(module.imports().len(), 1);
720    /// let import = module.imports().next().unwrap();
721    /// assert_eq!(import.module(), "host");
722    /// assert_eq!(import.name(), "foo");
723    /// match import.ty() {
724    ///     ExternType::Func(_) => { /* ... */ }
725    ///     _ => panic!("unexpected import type!"),
726    /// }
727    /// # Ok(())
728    /// # }
729    /// ```
730    pub fn imports<'module>(
731        &'module self,
732    ) -> impl ExactSizeIterator<Item = ImportType<'module>> + 'module {
733        let module = self.compiled_module().module();
734        let types = self.types();
735        let engine = self.engine();
736        module
737            .imports()
738            .map(move |(imp_mod, imp_field, ty)| {
739                debug_assert!(ty.is_canonicalized_for_runtime_usage());
740                ImportType::new(imp_mod, imp_field, ty, types, engine)
741            })
742            .collect::<Vec<_>>()
743            .into_iter()
744    }
745
746    /// Returns the list of exports that this [`Module`] has and will be
747    /// available after instantiation.
748    ///
749    /// This function will return the type of each item that will be returned
750    /// from [`Instance::exports`](crate::Instance::exports). Each entry in this
751    /// list corresponds 1-to-1 with that list, and the entries here will
752    /// indicate the name of the export along with the type of the export.
753    ///
754    /// # Examples
755    ///
756    /// Modules might not have any exports:
757    ///
758    /// ```
759    /// # use wasmtime::*;
760    /// # fn main() -> anyhow::Result<()> {
761    /// # let engine = Engine::default();
762    /// let module = Module::new(&engine, "(module)")?;
763    /// assert!(module.exports().next().is_none());
764    /// # Ok(())
765    /// # }
766    /// ```
767    ///
768    /// When the exports are not empty, you can inspect each export:
769    ///
770    /// ```
771    /// # use wasmtime::*;
772    /// # fn main() -> anyhow::Result<()> {
773    /// # let engine = Engine::default();
774    /// let wat = r#"
775    ///     (module
776    ///         (func (export "foo"))
777    ///         (memory (export "memory") 1)
778    ///     )
779    /// "#;
780    /// let module = Module::new(&engine, wat)?;
781    /// assert_eq!(module.exports().len(), 2);
782    ///
783    /// let mut exports = module.exports();
784    /// let foo = exports.next().unwrap();
785    /// assert_eq!(foo.name(), "foo");
786    /// match foo.ty() {
787    ///     ExternType::Func(_) => { /* ... */ }
788    ///     _ => panic!("unexpected export type!"),
789    /// }
790    ///
791    /// let memory = exports.next().unwrap();
792    /// assert_eq!(memory.name(), "memory");
793    /// match memory.ty() {
794    ///     ExternType::Memory(_) => { /* ... */ }
795    ///     _ => panic!("unexpected export type!"),
796    /// }
797    /// # Ok(())
798    /// # }
799    /// ```
800    pub fn exports<'module>(
801        &'module self,
802    ) -> impl ExactSizeIterator<Item = ExportType<'module>> + 'module {
803        let module = self.compiled_module().module();
804        let types = self.types();
805        let engine = self.engine();
806        module.exports.iter().map(move |(name, entity_index)| {
807            ExportType::new(name, module.type_of(*entity_index), types, engine)
808        })
809    }
810
811    /// Looks up an export in this [`Module`] by name.
812    ///
813    /// This function will return the type of an export with the given name.
814    ///
815    /// # Examples
816    ///
817    /// There may be no export with that name:
818    ///
819    /// ```
820    /// # use wasmtime::*;
821    /// # fn main() -> anyhow::Result<()> {
822    /// # let engine = Engine::default();
823    /// let module = Module::new(&engine, "(module)")?;
824    /// assert!(module.get_export("foo").is_none());
825    /// # Ok(())
826    /// # }
827    /// ```
828    ///
829    /// When there is an export with that name, it is returned:
830    ///
831    /// ```
832    /// # use wasmtime::*;
833    /// # fn main() -> anyhow::Result<()> {
834    /// # let engine = Engine::default();
835    /// let wat = r#"
836    ///     (module
837    ///         (func (export "foo"))
838    ///         (memory (export "memory") 1)
839    ///     )
840    /// "#;
841    /// let module = Module::new(&engine, wat)?;
842    /// let foo = module.get_export("foo");
843    /// assert!(foo.is_some());
844    ///
845    /// let foo = foo.unwrap();
846    /// match foo {
847    ///     ExternType::Func(_) => { /* ... */ }
848    ///     _ => panic!("unexpected export type!"),
849    /// }
850    ///
851    /// # Ok(())
852    /// # }
853    /// ```
854    pub fn get_export(&self, name: &str) -> Option<ExternType> {
855        let module = self.compiled_module().module();
856        let entity_index = module.exports.get(name)?;
857        Some(ExternType::from_wasmtime(
858            self.engine(),
859            self.types(),
860            &module.type_of(*entity_index),
861        ))
862    }
863
864    /// Looks up an export in this [`Module`] by name to get its index.
865    ///
866    /// This function will return the index of an export with the given name. This can be useful
867    /// to avoid the cost of looking up the export by name multiple times. Instead the
868    /// [`ModuleExport`] can be stored and used to look up the export on the
869    /// [`Instance`](crate::Instance) later.
870    pub fn get_export_index(&self, name: &str) -> Option<ModuleExport> {
871        let compiled_module = self.compiled_module();
872        let module = compiled_module.module();
873        let entity = *module.exports.get(name)?;
874        Some(ModuleExport {
875            module: self.id(),
876            entity,
877        })
878    }
879
880    /// Returns the [`Engine`] that this [`Module`] was compiled by.
881    pub fn engine(&self) -> &Engine {
882        &self.inner.engine
883    }
884
885    /// Returns a summary of the resources required to instantiate this
886    /// [`Module`].
887    ///
888    /// Potential uses of the returned information:
889    ///
890    /// * Determining whether your pooling allocator configuration supports
891    ///   instantiating this module.
892    ///
893    /// * Deciding how many of which `Module` you want to instantiate within a
894    ///   fixed amount of resources, e.g. determining whether to create 5
895    ///   instances of module X or 10 instances of module Y.
896    ///
897    /// # Example
898    ///
899    /// ```
900    /// # fn main() -> wasmtime::Result<()> {
901    /// use wasmtime::{Config, Engine, Module};
902    ///
903    /// let mut config = Config::new();
904    /// config.wasm_multi_memory(true);
905    /// let engine = Engine::new(&config)?;
906    ///
907    /// let module = Module::new(&engine, r#"
908    ///     (module
909    ///         ;; Import a memory. Doesn't count towards required resources.
910    ///         (import "a" "b" (memory 10))
911    ///         ;; Define two local memories. These count towards the required
912    ///         ;; resources.
913    ///         (memory 1)
914    ///         (memory 6)
915    ///     )
916    /// "#)?;
917    ///
918    /// let resources = module.resources_required();
919    ///
920    /// // Instantiating the module will require allocating two memories, and
921    /// // the maximum initial memory size is six Wasm pages.
922    /// assert_eq!(resources.num_memories, 2);
923    /// assert_eq!(resources.max_initial_memory_size, Some(6));
924    ///
925    /// // The module doesn't need any tables.
926    /// assert_eq!(resources.num_tables, 0);
927    /// assert_eq!(resources.max_initial_table_size, None);
928    /// # Ok(()) }
929    /// ```
930    pub fn resources_required(&self) -> ResourcesRequired {
931        let em = self.env_module();
932        let num_memories = u32::try_from(em.num_defined_memories()).unwrap();
933        let max_initial_memory_size = em
934            .memories
935            .values()
936            .skip(em.num_imported_memories)
937            .map(|memory| memory.limits.min)
938            .max();
939        let num_tables = u32::try_from(em.num_defined_tables()).unwrap();
940        let max_initial_table_size = em
941            .tables
942            .values()
943            .skip(em.num_imported_tables)
944            .map(|table| table.limits.min)
945            .max();
946        ResourcesRequired {
947            num_memories,
948            max_initial_memory_size,
949            num_tables,
950            max_initial_table_size,
951        }
952    }
953
954    /// Returns the range of bytes in memory where this module's compilation
955    /// image resides.
956    ///
957    /// The compilation image for a module contains executable code, data, debug
958    /// information, etc. This is roughly the same as the `Module::serialize`
959    /// but not the exact same.
960    ///
961    /// The range of memory reported here is exposed to allow low-level
962    /// manipulation of the memory in platform-specific manners such as using
963    /// `mlock` to force the contents to be paged in immediately or keep them
964    /// paged in after they're loaded.
965    ///
966    /// It is not safe to modify the memory in this range, nor is it safe to
967    /// modify the protections of memory in this range.
968    pub fn image_range(&self) -> Range<*const u8> {
969        self.compiled_module().mmap().image_range()
970    }
971
972    /// Force initialization of copy-on-write images to happen here-and-now
973    /// instead of when they're requested during first instantiation.
974    ///
975    /// When [copy-on-write memory
976    /// initialization](crate::Config::memory_init_cow) is enabled then Wasmtime
977    /// will lazily create the initialization image for a module. This method
978    /// can be used to explicitly dictate when this initialization happens.
979    ///
980    /// Note that this largely only matters on Linux when memfd is used.
981    /// Otherwise the copy-on-write image typically comes from disk and in that
982    /// situation the creation of the image is trivial as the image is always
983    /// sourced from disk. On Linux, though, when memfd is used a memfd is
984    /// created and the initialization image is written to it.
985    ///
986    /// Also note that this method is not required to be called, it's available
987    /// as a performance optimization if required but is otherwise handled
988    /// automatically.
989    pub fn initialize_copy_on_write_image(&self) -> Result<()> {
990        self.memory_images()?;
991        Ok(())
992    }
993
994    /// Get the map from `.text` section offsets to Wasm binary offsets for this
995    /// module.
996    ///
997    /// Each entry is a (`.text` section offset, Wasm binary offset) pair.
998    ///
999    /// Entries are yielded in order of `.text` section offset.
1000    ///
1001    /// Some entries are missing a Wasm binary offset. This is for code that is
1002    /// not associated with any single location in the Wasm binary, or for when
1003    /// source information was optimized away.
1004    ///
1005    /// Not every module has an address map, since address map generation can be
1006    /// turned off on `Config`.
1007    ///
1008    /// There is not an entry for every `.text` section offset. Every offset
1009    /// after an entry's offset, but before the next entry's offset, is
1010    /// considered to map to the same Wasm binary offset as the original
1011    /// entry. For example, the address map will not contain the following
1012    /// sequence of entries:
1013    ///
1014    /// ```ignore
1015    /// [
1016    ///     // ...
1017    ///     (10, Some(42)),
1018    ///     (11, Some(42)),
1019    ///     (12, Some(42)),
1020    ///     (13, Some(43)),
1021    ///     // ...
1022    /// ]
1023    /// ```
1024    ///
1025    /// Instead, it will drop the entries for offsets `11` and `12` since they
1026    /// are the same as the entry for offset `10`:
1027    ///
1028    /// ```ignore
1029    /// [
1030    ///     // ...
1031    ///     (10, Some(42)),
1032    ///     (13, Some(43)),
1033    ///     // ...
1034    /// ]
1035    /// ```
1036    pub fn address_map<'a>(&'a self) -> Option<impl Iterator<Item = (usize, Option<u32>)> + 'a> {
1037        Some(
1038            wasmtime_environ::iterate_address_map(
1039                self.code_object().code_memory().address_map_data(),
1040            )?
1041            .map(|(offset, file_pos)| (offset as usize, file_pos.file_offset())),
1042        )
1043    }
1044
1045    /// Get this module's code object's `.text` section, containing its compiled
1046    /// executable code.
1047    pub fn text(&self) -> &[u8] {
1048        self.code_object().code_memory().text()
1049    }
1050
1051    /// Get information about functions in this module's `.text` section: their
1052    /// index, name, and offset+length.
1053    ///
1054    /// Results are yielded in a ModuleFunction struct.
1055    pub fn functions<'a>(&'a self) -> impl ExactSizeIterator<Item = ModuleFunction> + 'a {
1056        let module = self.compiled_module();
1057        module.finished_functions().map(|(idx, _)| {
1058            let loc = module.func_loc(idx);
1059            let idx = module.module().func_index(idx);
1060            ModuleFunction {
1061                index: idx,
1062                name: module.func_name(idx).map(|n| n.to_string()),
1063                offset: loc.start as usize,
1064                len: loc.length as usize,
1065            }
1066        })
1067    }
1068
1069    pub(crate) fn id(&self) -> CompiledModuleId {
1070        self.inner.module.unique_id()
1071    }
1072
1073    pub(crate) fn offsets(&self) -> &VMOffsets<HostPtr> {
1074        &self.inner.offsets
1075    }
1076
1077    /// Return the address, in memory, of the trampoline that allows Wasm to
1078    /// call a array function of the given signature.
1079    pub(crate) fn wasm_to_array_trampoline(
1080        &self,
1081        signature: VMSharedTypeIndex,
1082    ) -> Option<NonNull<VMWasmCallFunction>> {
1083        log::trace!("Looking up trampoline for {signature:?}");
1084        let trampoline_shared_ty = self.inner.engine.signatures().trampoline_type(signature);
1085        let trampoline_module_ty = self
1086            .inner
1087            .code
1088            .signatures()
1089            .trampoline_type(trampoline_shared_ty)?;
1090        debug_assert!(
1091            self.inner
1092                .engine
1093                .signatures()
1094                .borrow(
1095                    self.inner
1096                        .code
1097                        .signatures()
1098                        .shared_type(trampoline_module_ty)
1099                        .unwrap()
1100                )
1101                .unwrap()
1102                .unwrap_func()
1103                .is_trampoline_type()
1104        );
1105
1106        let ptr = self
1107            .compiled_module()
1108            .wasm_to_array_trampoline(trampoline_module_ty)
1109            .as_ptr()
1110            .cast::<VMWasmCallFunction>()
1111            .cast_mut();
1112        Some(NonNull::new(ptr).unwrap())
1113    }
1114
1115    pub(crate) fn memory_images(&self) -> Result<Option<&ModuleMemoryImages>> {
1116        let images = self
1117            .inner
1118            .memory_images
1119            .get_or_try_init(|| memory_images(&self.inner))?
1120            .as_ref();
1121        Ok(images)
1122    }
1123
1124    /// Lookup the stack map at a program counter value.
1125    #[cfg(feature = "gc")]
1126    pub(crate) fn lookup_stack_map(&self, pc: usize) -> Option<wasmtime_environ::StackMap<'_>> {
1127        let text_offset = u32::try_from(pc - self.inner.module.text().as_ptr() as usize).unwrap();
1128        let info = self.inner.code.code_memory().stack_map_data();
1129        wasmtime_environ::StackMap::lookup(text_offset, info)
1130    }
1131
1132    /// Obtain an exception-table parser on this module's exception metadata.
1133    #[cfg(feature = "gc")]
1134    pub(crate) fn exception_table<'a>(&'a self) -> ExceptionTable<'a> {
1135        ExceptionTable::parse(self.inner.code.code_memory().exception_tables())
1136            .expect("Exception tables were validated on module load")
1137    }
1138}
1139
1140/// Describes a function for a given module.
1141pub struct ModuleFunction {
1142    pub index: wasmtime_environ::FuncIndex,
1143    pub name: Option<String>,
1144    pub offset: usize,
1145    pub len: usize,
1146}
1147
1148impl Drop for ModuleInner {
1149    fn drop(&mut self) {
1150        // When a `Module` is being dropped that means that it's no longer
1151        // present in any `Store` and it's additionally not longer held by any
1152        // embedder. Take this opportunity to purge any lingering instantiations
1153        // within a pooling instance allocator, if applicable.
1154        self.engine
1155            .allocator()
1156            .purge_module(self.module.unique_id());
1157    }
1158}
1159
1160/// Describes the location of an export in a module.
1161#[derive(Copy, Clone)]
1162pub struct ModuleExport {
1163    /// The module that this export is defined in.
1164    pub(crate) module: CompiledModuleId,
1165    /// A raw index into the wasm module.
1166    pub(crate) entity: EntityIndex,
1167}
1168
1169fn _assert_send_sync() {
1170    fn _assert<T: Send + Sync>() {}
1171    _assert::<Module>();
1172}
1173
1174/// Helper method to construct a `ModuleMemoryImages` for an associated
1175/// `CompiledModule`.
1176fn memory_images(inner: &Arc<ModuleInner>) -> Result<Option<ModuleMemoryImages>> {
1177    // If initialization via copy-on-write is explicitly disabled in
1178    // configuration then this path is skipped entirely.
1179    if !inner.engine.tunables().memory_init_cow {
1180        return Ok(None);
1181    }
1182
1183    // ... otherwise logic is delegated to the `ModuleMemoryImages::new`
1184    // constructor.
1185    ModuleMemoryImages::new(
1186        &inner.engine,
1187        inner.module.module(),
1188        inner.code.code_memory(),
1189    )
1190}
1191
1192impl crate::vm::ModuleMemoryImageSource for CodeMemory {
1193    fn wasm_data(&self) -> &[u8] {
1194        <Self>::wasm_data(self)
1195    }
1196
1197    fn mmap(&self) -> Option<&MmapVec> {
1198        Some(<Self>::mmap(self))
1199    }
1200}
1201
1202#[cfg(test)]
1203mod tests {
1204    use crate::{Engine, Module};
1205    use wasmtime_environ::MemoryInitialization;
1206
1207    #[test]
1208    fn cow_on_by_default() {
1209        let engine = Engine::default();
1210        let module = Module::new(
1211            &engine,
1212            r#"
1213                (module
1214                    (memory 1)
1215                    (data (i32.const 100) "abcd")
1216                )
1217            "#,
1218        )
1219        .unwrap();
1220
1221        let init = &module.env_module().memory_initialization;
1222        assert!(matches!(init, MemoryInitialization::Static { .. }));
1223    }
1224}