wiggle/guest_type.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
use crate::{GuestError, GuestMemory, GuestPtr};
use std::cell::UnsafeCell;
use std::mem;
use std::sync::atomic::{
AtomicI16, AtomicI32, AtomicI64, AtomicI8, AtomicU16, AtomicU32, AtomicU64, AtomicU8, Ordering,
};
/// A trait for types which are used to report errors. Each type used in the
/// first result position of an interface function is used, by convention, to
/// indicate whether the function was successful and subsequent results are valid,
/// or whether an error occurred. This trait allows wiggle to return the correct
/// value when the interface function's idiomatic Rust method returns
/// `Ok(<rest of return values>)`.
pub trait GuestErrorType {
fn success() -> Self;
}
/// A trait for types that are intended to be pointees in `GuestPtr<T>`.
///
/// This trait abstracts how to read/write information from the guest memory, as
/// well as how to offset elements in an array of guest memory. This layer of
/// abstraction allows the guest representation of a type to be different from
/// the host representation of a type, if necessary. It also allows for
/// validation when reading/writing.
pub trait GuestType: Sized {
/// Returns the size, in bytes, of this type in the guest memory.
fn guest_size() -> u32;
/// Returns the required alignment of this type, in bytes, for both guest
/// and host memory.
fn guest_align() -> usize;
/// Reads this value from the provided `ptr`.
///
/// Must internally perform any safety checks necessary and is allowed to
/// fail if the bytes pointed to are also invalid.
///
/// Typically if you're implementing this by hand you'll want to delegate to
/// other safe implementations of this trait (e.g. for primitive types like
/// `u32`) rather than writing lots of raw code yourself.
fn read(mem: &GuestMemory, ptr: GuestPtr<Self>) -> Result<Self, GuestError>;
/// Writes a value to `ptr` after verifying that `ptr` is indeed valid to
/// store `val`.
///
/// Similar to `read`, you'll probably want to implement this in terms of
/// other primitives.
fn write(mem: &mut GuestMemory, ptr: GuestPtr<Self>, val: Self) -> Result<(), GuestError>;
}
/// A trait for `GuestType`s that have the same representation in guest memory
/// as in Rust. These types can be used with the `GuestPtr::as_slice` method to
/// view as a slice.
///
/// Unsafe trait because a correct `GuestTypeTransparent` implementation ensures
/// that the `GuestPtr::as_slice` methods are safe, notably that the
/// representation on the host matches the guest and all bit patterns are
/// valid. This trait should only ever be implemented by
/// wiggle_generate-produced code.
pub unsafe trait GuestTypeTransparent: GuestType {}
macro_rules! integer_primitives {
($([$ty:ident, $ty_atomic:ident],)*) => ($(
impl GuestType for $ty {
#[inline]
fn guest_size() -> u32 { mem::size_of::<Self>() as u32 }
#[inline]
fn guest_align() -> usize { mem::align_of::<Self>() }
#[inline]
fn read(mem: &GuestMemory, ptr: GuestPtr<Self>) -> Result<Self, GuestError> {
// Use `validate_size_align` to validate offset and alignment
// internally. The `host_ptr` type will be `&UnsafeCell<Self>`
// indicating that the memory is valid, and next safety checks
// are required to access it.
let offset = ptr.offset();
let host_ptr = mem.validate_size_align::<Self>(offset, 1)?;
// If the accessed memory is shared, we need to load the bytes
// with the correct memory consistency. We could check if the
// memory is shared each time, but we expect little performance
// difference between an additional branch and a relaxed memory
// access and thus always do the relaxed access here.
let host_ptr: &$ty_atomic = unsafe {
let host_ptr: &UnsafeCell<Self> = &host_ptr[0];
&*((host_ptr as *const UnsafeCell<Self>).cast::<$ty_atomic>())
};
let val = host_ptr.load(Ordering::Relaxed);
// And as a final operation convert from the little-endian wasm
// value to a native-endian value for the host.
Ok($ty::from_le(val))
}
#[inline]
fn write(mem: &mut GuestMemory, ptr: GuestPtr<Self>, val: Self) -> Result<(), GuestError> {
// See `read` above for various checks here.
let val = val.to_le();
let offset = ptr.offset();
let host_ptr = mem.validate_size_align::<Self>(offset, 1)?;
let host_ptr = &host_ptr[0];
let atomic_value_ref: &$ty_atomic =
unsafe { &*(host_ptr.get().cast::<$ty_atomic>()) };
atomic_value_ref.store(val, Ordering::Relaxed);
Ok(())
}
}
unsafe impl GuestTypeTransparent for $ty {}
)*)
}
macro_rules! float_primitives {
($([$ty:ident, $ty_unsigned:ident, $ty_atomic:ident],)*) => ($(
impl GuestType for $ty {
#[inline]
fn guest_size() -> u32 { mem::size_of::<Self>() as u32 }
#[inline]
fn guest_align() -> usize { mem::align_of::<Self>() }
#[inline]
fn read(mem: &GuestMemory, ptr: GuestPtr<Self>) -> Result<Self, GuestError> {
<$ty_unsigned as GuestType>::read(mem, ptr.cast()).map($ty::from_bits)
}
#[inline]
fn write(mem:&mut GuestMemory, ptr: GuestPtr<Self>, val: Self) -> Result<(), GuestError> {
<$ty_unsigned as GuestType>::write(mem, ptr.cast(), val.to_bits())
}
}
unsafe impl GuestTypeTransparent for $ty {}
)*)
}
integer_primitives! {
// signed
[i8, AtomicI8], [i16, AtomicI16], [i32, AtomicI32], [i64, AtomicI64],
// unsigned
[u8, AtomicU8], [u16, AtomicU16], [u32, AtomicU32], [u64, AtomicU64],
}
float_primitives! {
[f32, u32, AtomicU32], [f64, u64, AtomicU64],
}
// Support pointers-to-pointers where pointers are always 32-bits in wasm land
impl<T> GuestType for GuestPtr<T> {
#[inline]
fn guest_size() -> u32 {
u32::guest_size()
}
#[inline]
fn guest_align() -> usize {
u32::guest_align()
}
fn read(mem: &GuestMemory, ptr: GuestPtr<Self>) -> Result<Self, GuestError> {
let offset = u32::read(mem, ptr.cast())?;
Ok(GuestPtr::new(offset))
}
fn write(mem: &mut GuestMemory, ptr: GuestPtr<Self>, val: Self) -> Result<(), GuestError> {
u32::write(mem, ptr.cast(), val.offset())
}
}
// Support pointers-to-arrays where pointers are always 32-bits in wasm land
impl<T> GuestType for GuestPtr<[T]>
where
T: GuestType,
{
#[inline]
fn guest_size() -> u32 {
u32::guest_size() * 2
}
#[inline]
fn guest_align() -> usize {
u32::guest_align()
}
fn read(mem: &GuestMemory, ptr: GuestPtr<Self>) -> Result<Self, GuestError> {
let ptr = ptr.cast::<u32>();
let offset = u32::read(mem, ptr)?;
let len = u32::read(mem, ptr.add(1)?)?;
Ok(GuestPtr::new(offset).as_array(len))
}
fn write(mem: &mut GuestMemory, ptr: GuestPtr<Self>, val: Self) -> Result<(), GuestError> {
let (offset, len) = val.offset();
let ptr = ptr.cast::<u32>();
u32::write(mem, ptr, offset)?;
u32::write(mem, ptr.add(1)?, len)?;
Ok(())
}
}