wasmtime/runtime/
instantiate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//! Define the `instantiate` function, which takes a byte array containing an
//! encoded wasm module and returns a live wasm instance. Also, define
//! `CompiledModule` to allow compiling and instantiating to be done as separate
//! steps.

use crate::prelude::*;
use crate::runtime::vm::{CompiledModuleId, MmapVec};
use crate::{code_memory::CodeMemory, profiling_agent::ProfilingAgent};
use alloc::sync::Arc;
use core::str;
use wasmtime_environ::{
    CompiledFunctionInfo, CompiledModuleInfo, DefinedFuncIndex, FuncIndex, FunctionLoc,
    FunctionName, Metadata, Module, ModuleInternedTypeIndex, PrimaryMap, StackMapInformation,
    WasmFunctionInfo,
};

/// A compiled wasm module, ready to be instantiated.
pub struct CompiledModule {
    module: Arc<Module>,
    funcs: PrimaryMap<DefinedFuncIndex, CompiledFunctionInfo>,
    wasm_to_array_trampolines: Vec<(ModuleInternedTypeIndex, FunctionLoc)>,
    meta: Metadata,
    code_memory: Arc<CodeMemory>,
    /// A unique ID used to register this module with the engine.
    unique_id: CompiledModuleId,
    func_names: Vec<FunctionName>,
}

impl CompiledModule {
    /// Creates `CompiledModule` directly from a precompiled artifact.
    ///
    /// The `code_memory` argument is expected to be the result of a previous
    /// call to `ObjectBuilder::finish` above. This is an ELF image, at this
    /// time, which contains all necessary information to create a
    /// `CompiledModule` from a compilation.
    ///
    /// This method also takes `info`, an optionally-provided deserialization
    /// of the artifacts' compilation metadata section. If this information is
    /// not provided then the information will be
    /// deserialized from the image of the compilation artifacts. Otherwise it
    /// will be assumed to be what would otherwise happen if the section were
    /// to be deserialized.
    ///
    /// The `profiler` argument here is used to inform JIT profiling runtimes
    /// about new code that is loaded.
    pub fn from_artifacts(
        code_memory: Arc<CodeMemory>,
        info: CompiledModuleInfo,
        profiler: &dyn ProfilingAgent,
    ) -> Result<Self> {
        let mut ret = Self {
            module: Arc::new(info.module),
            funcs: info.funcs,
            wasm_to_array_trampolines: info.wasm_to_array_trampolines,
            code_memory,
            meta: info.meta,
            unique_id: CompiledModuleId::new(),
            func_names: info.func_names,
        };
        ret.register_profiling(profiler)?;

        Ok(ret)
    }

    fn register_profiling(&mut self, profiler: &dyn ProfilingAgent) -> Result<()> {
        // TODO-Bug?: "code_memory" is not exclusive for this module in the case of components,
        // so we may be registering the same code range multiple times here.
        profiler.register_module(&self.code_memory.mmap()[..], &|addr| {
            let (idx, _) = self.func_by_text_offset(addr)?;
            let idx = self.module.func_index(idx);
            let name = self.func_name(idx)?;
            let mut demangled = String::new();
            wasmtime_environ::demangle_function_name(&mut demangled, name).unwrap();
            Some(demangled)
        });
        Ok(())
    }

    /// Get this module's unique ID. It is unique with respect to a
    /// single allocator (which is ordinarily held on a Wasm engine).
    pub fn unique_id(&self) -> CompiledModuleId {
        self.unique_id
    }

    /// Returns the underlying memory which contains the compiled module's
    /// image.
    pub fn mmap(&self) -> &MmapVec {
        self.code_memory.mmap()
    }

    /// Returns the underlying owned mmap of this compiled image.
    pub fn code_memory(&self) -> &Arc<CodeMemory> {
        &self.code_memory
    }

    /// Returns the text section of the ELF image for this compiled module.
    ///
    /// This memory should have the read/execute permissions.
    #[inline]
    pub fn text(&self) -> &[u8] {
        self.code_memory.text()
    }

    /// Return a reference-counting pointer to a module.
    pub fn module(&self) -> &Arc<Module> {
        &self.module
    }

    /// Looks up the `name` section name for the function index `idx`, if one
    /// was specified in the original wasm module.
    pub fn func_name(&self, idx: FuncIndex) -> Option<&str> {
        // Find entry for `idx`, if present.
        let i = self.func_names.binary_search_by_key(&idx, |n| n.idx).ok()?;
        let name = &self.func_names[i];

        // Here we `unwrap` the `from_utf8` but this can theoretically be a
        // `from_utf8_unchecked` if we really wanted since this section is
        // guaranteed to only have valid utf-8 data. Until it's a problem it's
        // probably best to double-check this though.
        let data = self.code_memory().func_name_data();
        Some(str::from_utf8(&data[name.offset as usize..][..name.len as usize]).unwrap())
    }

    /// Return a reference to a mutable module (if possible).
    pub fn module_mut(&mut self) -> Option<&mut Module> {
        Arc::get_mut(&mut self.module)
    }

    /// Returns an iterator over all functions defined within this module with
    /// their index and their body in memory.
    #[inline]
    pub fn finished_functions(
        &self,
    ) -> impl ExactSizeIterator<Item = (DefinedFuncIndex, &[u8])> + '_ {
        self.funcs
            .iter()
            .map(move |(i, _)| (i, self.finished_function(i)))
    }

    /// Returns the body of the function that `index` points to.
    #[inline]
    pub fn finished_function(&self, index: DefinedFuncIndex) -> &[u8] {
        let loc = self.funcs[index].wasm_func_loc;
        &self.text()[loc.start as usize..][..loc.length as usize]
    }

    /// Get the array-to-Wasm trampoline for the function `index` points to.
    ///
    /// If the function `index` points to does not escape, then `None` is
    /// returned.
    ///
    /// These trampolines are used for array callers (e.g. `Func::new`)
    /// calling Wasm callees.
    pub fn array_to_wasm_trampoline(&self, index: DefinedFuncIndex) -> Option<&[u8]> {
        let loc = self.funcs[index].array_to_wasm_trampoline?;
        Some(&self.text()[loc.start as usize..][..loc.length as usize])
    }

    /// Get the Wasm-to-array trampoline for the given signature.
    ///
    /// These trampolines are used for filling in
    /// `VMFuncRef::wasm_call` for `Func::wrap`-style host funcrefs
    /// that don't have access to a compiler when created.
    pub fn wasm_to_array_trampoline(&self, signature: ModuleInternedTypeIndex) -> &[u8] {
        let idx = match self
            .wasm_to_array_trampolines
            .binary_search_by_key(&signature, |entry| entry.0)
        {
            Ok(idx) => idx,
            Err(_) => panic!("missing trampoline for {signature:?}"),
        };

        let (_, loc) = self.wasm_to_array_trampolines[idx];
        &self.text()[loc.start as usize..][..loc.length as usize]
    }

    /// Returns the stack map information for all functions defined in this
    /// module.
    ///
    /// The iterator returned iterates over the span of the compiled function in
    /// memory with the stack maps associated with those bytes.
    pub fn stack_maps(&self) -> impl Iterator<Item = (&[u8], &[StackMapInformation])> {
        self.finished_functions().map(|(_, f)| f).zip(
            self.funcs
                .values()
                .map(|f| &f.wasm_func_info.stack_maps[..]),
        )
    }

    /// Lookups a defined function by a program counter value.
    ///
    /// Returns the defined function index and the relative address of
    /// `text_offset` within the function itself.
    pub fn func_by_text_offset(&self, text_offset: usize) -> Option<(DefinedFuncIndex, u32)> {
        let text_offset = u32::try_from(text_offset).unwrap();

        let index = match self.funcs.binary_search_values_by_key(&text_offset, |e| {
            debug_assert!(e.wasm_func_loc.length > 0);
            // Return the inclusive "end" of the function
            e.wasm_func_loc.start + e.wasm_func_loc.length - 1
        }) {
            Ok(k) => {
                // Exact match, pc is at the end of this function
                k
            }
            Err(k) => {
                // Not an exact match, k is where `pc` would be "inserted"
                // Since we key based on the end, function `k` might contain `pc`,
                // so we'll validate on the range check below
                k
            }
        };

        let CompiledFunctionInfo { wasm_func_loc, .. } = self.funcs.get(index)?;
        let start = wasm_func_loc.start;
        let end = wasm_func_loc.start + wasm_func_loc.length;

        if text_offset < start || end < text_offset {
            return None;
        }

        Some((index, text_offset - wasm_func_loc.start))
    }

    /// Gets the function location information for a given function index.
    pub fn func_loc(&self, index: DefinedFuncIndex) -> &FunctionLoc {
        &self
            .funcs
            .get(index)
            .expect("defined function should be present")
            .wasm_func_loc
    }

    /// Gets the function information for a given function index.
    pub fn wasm_func_info(&self, index: DefinedFuncIndex) -> &WasmFunctionInfo {
        &self
            .funcs
            .get(index)
            .expect("defined function should be present")
            .wasm_func_info
    }

    /// Creates a new symbolication context which can be used to further
    /// symbolicate stack traces.
    ///
    /// Basically this makes a thing which parses debuginfo and can tell you
    /// what filename and line number a wasm pc comes from.
    #[cfg(feature = "addr2line")]
    pub fn symbolize_context(&self) -> Result<Option<SymbolizeContext<'_>>> {
        use gimli::EndianSlice;
        if !self.meta.has_wasm_debuginfo {
            return Ok(None);
        }
        let dwarf = gimli::Dwarf::load(|id| -> Result<_> {
            // Lookup the `id` in the `dwarf` array prepared for this module
            // during module serialization where it's sorted by the `id` key. If
            // found this is a range within the general module's concatenated
            // dwarf section which is extracted here, otherwise it's just an
            // empty list to represent that it's not present.
            let data = self
                .meta
                .dwarf
                .binary_search_by_key(&(id as u8), |(id, _)| *id)
                .ok()
                .and_then(|i| {
                    let (_, range) = &self.meta.dwarf[i];
                    let start = range.start.try_into().ok()?;
                    let end = range.end.try_into().ok()?;
                    self.code_memory().wasm_dwarf().get(start..end)
                })
                .unwrap_or(&[]);
            Ok(EndianSlice::new(data, gimli::LittleEndian))
        })?;
        let cx = addr2line::Context::from_dwarf(dwarf)
            .context("failed to create addr2line dwarf mapping context")?;
        Ok(Some(SymbolizeContext {
            inner: cx,
            code_section_offset: self.meta.code_section_offset,
        }))
    }

    /// Returns whether the original wasm module had unparsed debug information
    /// based on the tunables configuration.
    pub fn has_unparsed_debuginfo(&self) -> bool {
        self.meta.has_unparsed_debuginfo
    }

    /// Indicates whether this module came with n address map such that lookups
    /// via `wasmtime_environ::lookup_file_pos` will succeed.
    ///
    /// If this function returns `false` then `lookup_file_pos` will always
    /// return `None`.
    pub fn has_address_map(&self) -> bool {
        !self.code_memory.address_map_data().is_empty()
    }
}

#[cfg(feature = "addr2line")]
type Addr2LineContext<'a> = addr2line::Context<gimli::EndianSlice<'a, gimli::LittleEndian>>;

/// A context which contains dwarf debug information to translate program
/// counters back to filenames and line numbers.
#[cfg(feature = "addr2line")]
pub struct SymbolizeContext<'a> {
    inner: Addr2LineContext<'a>,
    code_section_offset: u64,
}

#[cfg(feature = "addr2line")]
impl<'a> SymbolizeContext<'a> {
    /// Returns access to the [`addr2line::Context`] which can be used to query
    /// frame information with.
    pub fn addr2line(&self) -> &Addr2LineContext<'a> {
        &self.inner
    }

    /// Returns the offset of the code section in the original wasm file, used
    /// to calculate lookup values into the DWARF.
    pub fn code_section_offset(&self) -> u64 {
        self.code_section_offset
    }
}