wasmtime/runtime/gc/enabled/arrayref.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
//! Working with GC `array` objects.
use crate::runtime::vm::VMGcRef;
use crate::store::StoreId;
use crate::vm::{VMArrayRef, VMGcHeader};
use crate::{
prelude::*,
store::{AutoAssertNoGc, StoreContextMut, StoreOpaque},
ArrayType, AsContext, AsContextMut, EqRef, GcHeapOutOfMemory, GcRefImpl, GcRootIndex, HeapType,
ManuallyRooted, RefType, Rooted, Val, ValRaw, ValType, WasmTy,
};
use crate::{AnyRef, FieldType};
use core::mem::{self, MaybeUninit};
use wasmtime_environ::{GcArrayLayout, GcLayout, VMGcKind, VMSharedTypeIndex};
/// An allocator for a particular Wasm GC array type.
///
/// Every `ArrayRefPre` is associated with a particular [`Store`][crate::Store]
/// and a particular [`ArrayType`][crate::ArrayType].
///
/// Reusing an allocator across many allocations amortizes some per-type runtime
/// overheads inside Wasmtime. An `ArrayRefPre` is to `ArrayRef`s as an
/// `InstancePre` is to `Instance`s.
///
/// # Example
///
/// ```
/// use wasmtime::*;
///
/// # fn foo() -> Result<()> {
/// let mut config = Config::new();
/// config.wasm_function_references(true);
/// config.wasm_gc(true);
///
/// let engine = Engine::new(&config)?;
/// let mut store = Store::new(&engine, ());
///
/// // Define an array type.
/// let array_ty = ArrayType::new(
/// store.engine(),
/// FieldType::new(Mutability::Var, ValType::I32.into()),
/// );
///
/// // Create an allocator for the array type.
/// let allocator = ArrayRefPre::new(&mut store, array_ty);
///
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // Allocate a bunch of instances of our array type using the same
/// // allocator! This is faster than creating a new allocator for each
/// // instance we want to allocate.
/// for i in 0..10 {
/// let len = 42;
/// let elem = Val::I32(36);
/// ArrayRef::new(&mut scope, &allocator, &elem, len)?;
/// }
/// }
/// # Ok(())
/// # }
/// # foo().unwrap();
/// ```
pub struct ArrayRefPre {
store_id: StoreId,
ty: ArrayType,
}
impl ArrayRefPre {
/// Create a new `ArrayRefPre` that is associated with the given store
/// and type.
pub fn new(mut store: impl AsContextMut, ty: ArrayType) -> Self {
Self::_new(store.as_context_mut().0, ty)
}
pub(crate) fn _new(store: &mut StoreOpaque, ty: ArrayType) -> Self {
store.insert_gc_host_alloc_type(ty.registered_type().clone());
let store_id = store.id();
ArrayRefPre { store_id, ty }
}
pub(crate) fn layout(&self) -> &GcArrayLayout {
self.ty
.registered_type()
.layout()
.expect("array types have a layout")
.unwrap_array()
}
pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
self.ty.registered_type().index()
}
}
/// A reference to a GC-managed `array` instance.
///
/// WebAssembly `array`s are a sequence of elements of some homogeneous
/// type. The elements length is determined at allocation time — two instances
/// of the same array type may have different lengths — but, once allocated, an
/// array's length can never be resized. An array's elements are mutable or
/// constant, depending on the array's type. This determines whether any array
/// element can be assigned a new value or not. Each element is either an
/// unpacked [`Val`][crate::Val] or a packed 8-/16-bit integer. Array elements
/// are dynamically accessed via indexing; out-of-bounds accesses result in
/// traps.
///
/// Like all WebAssembly references, these are opaque and unforgeable to Wasm:
/// they cannot be faked and Wasm cannot, for example, cast the integer
/// `0x12345678` into a reference, pretend it is a valid `arrayref`, and trick
/// the host into dereferencing it and segfaulting or worse.
///
/// Note that you can also use `Rooted<ArrayRef>` and `ManuallyRooted<ArrayRef>`
/// as a type parameter with [`Func::typed`][crate::Func::typed]- and
/// [`Func::wrap`][crate::Func::wrap]-style APIs.
///
/// # Example
///
/// ```
/// use wasmtime::*;
///
/// # fn foo() -> Result<()> {
/// let mut config = Config::new();
/// config.wasm_function_references(true);
/// config.wasm_gc(true);
///
/// let engine = Engine::new(&config)?;
/// let mut store = Store::new(&engine, ());
///
/// // Define the type for an array of `i32`s.
/// let array_ty = ArrayType::new(
/// store.engine(),
/// FieldType::new(Mutability::Var, ValType::I32.into()),
/// );
///
/// // Create an allocator for the array type.
/// let allocator = ArrayRefPre::new(&mut store, array_ty);
///
/// {
/// let mut scope = RootScope::new(&mut store);
///
/// // Allocate an instance of the array type.
/// let len = 36;
/// let elem = Val::I32(42);
/// let my_array = match ArrayRef::new(&mut scope, &allocator, &elem, len) {
/// Ok(s) => s,
///
/// // If the heap is out of memory, then do a GC to free up some space
/// // and try again.
/// Err(e) if e.is::<GcHeapOutOfMemory<()>>() => {
/// // Do a GC! Note: in an async context, you'd want to do
/// // `scope.as_context_mut().gc_async().await`.
/// scope.as_context_mut().gc();
///
/// // Try again. If the GC heap is still out of memory, then we
/// // weren't able to free up resources for this allocation, so
/// // propagate the error.
/// ArrayRef::new(&mut scope, &allocator, &elem, len)?
/// }
///
/// // Propagate any other kind of error.
/// Err(e) => return Err(e),
/// };
///
/// // That instance's elements should have the initial value.
/// for i in 0..len {
/// let val = my_array.get(&mut scope, i)?.unwrap_i32();
/// assert_eq!(val, 42);
/// }
///
/// // We can set an element to a new value because the type was defined with
/// // mutable elements (as opposed to const).
/// my_array.set(&mut scope, 3, Val::I32(1234))?;
/// let new_val = my_array.get(&mut scope, 3)?.unwrap_i32();
/// assert_eq!(new_val, 1234);
/// }
/// # Ok(())
/// # }
/// # foo().unwrap();
/// ```
#[derive(Debug)]
#[repr(transparent)]
pub struct ArrayRef {
pub(super) inner: GcRootIndex,
}
unsafe impl GcRefImpl for ArrayRef {
#[allow(private_interfaces)]
fn transmute_ref(index: &GcRootIndex) -> &Self {
// Safety: `ArrayRef` is a newtype of a `GcRootIndex`.
let me: &Self = unsafe { mem::transmute(index) };
// Assert we really are just a newtype of a `GcRootIndex`.
assert!(matches!(
me,
Self {
inner: GcRootIndex { .. },
}
));
me
}
}
impl Rooted<ArrayRef> {
/// Upcast this `arrayref` into an `anyref`.
#[inline]
pub fn to_anyref(self) -> Rooted<AnyRef> {
self.unchecked_cast()
}
/// Upcast this `arrayref` into an `eqref`.
#[inline]
pub fn to_eqref(self) -> Rooted<EqRef> {
self.unchecked_cast()
}
}
impl ManuallyRooted<ArrayRef> {
/// Upcast this `arrayref` into an `anyref`.
#[inline]
pub fn to_anyref(self) -> ManuallyRooted<AnyRef> {
self.unchecked_cast()
}
/// Upcast this `arrayref` into an `eqref`.
#[inline]
pub fn to_eqref(self) -> ManuallyRooted<EqRef> {
self.unchecked_cast()
}
}
impl ArrayRef {
/// Allocate a new `array` of the given length, with every element
/// initialized to `elem`.
///
/// For example, `ArrayRef::new(ctx, pre, &Val::I64(9), 3)` allocates the
/// array `[9, 9, 9]`.
///
/// This is similar to the `array.new` instruction.
///
/// # Errors
///
/// If the given `elem` value's type does not match the `allocator`'s array
/// type's element type, an error is returned.
///
/// If the allocation cannot be satisfied because the GC heap is currently
/// out of memory, but performing a garbage collection might free up space
/// such that retrying the allocation afterwards might succeed, then a
/// [`GcHeapOutOfMemory<()>`][crate::GcHeapOutOfMemory] error is returned.
///
/// # Panics
///
/// Panics if either the allocator or the `elem` value is not associated
/// with the given store.
pub fn new(
mut store: impl AsContextMut,
allocator: &ArrayRefPre,
elem: &Val,
len: u32,
) -> Result<Rooted<ArrayRef>> {
Self::_new(store.as_context_mut().0, allocator, elem, len)
}
pub(crate) fn _new(
store: &mut StoreOpaque,
allocator: &ArrayRefPre,
elem: &Val,
len: u32,
) -> Result<Rooted<ArrayRef>> {
assert_eq!(
store.id(),
allocator.store_id,
"attempted to use a `ArrayRefPre` with the wrong store"
);
// Type check the initial element value against the element type.
elem.ensure_matches_ty(store, allocator.ty.element_type().unpack())
.context("element type mismatch")?;
return Self::_new_unchecked(store, allocator, RepeatN(elem, len));
// NB: Can't use `iter::repeat(elem).take(len)` above because that
// doesn't implement `ExactSizeIterator`.
struct RepeatN<'a>(&'a Val, u32);
impl<'a> Iterator for RepeatN<'a> {
type Item = &'a Val;
fn next(&mut self) -> Option<Self::Item> {
if self.1 == 0 {
None
} else {
self.1 -= 1;
Some(self.0)
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl ExactSizeIterator for RepeatN<'_> {
fn len(&self) -> usize {
usize::try_from(self.1).unwrap()
}
}
}
/// Allocate a new array of the given elements, without checking that the
/// elements' types match the array's element type.
fn _new_unchecked<'a>(
store: &mut StoreOpaque,
allocator: &ArrayRefPre,
elems: impl ExactSizeIterator<Item = &'a Val>,
) -> Result<Rooted<ArrayRef>> {
let len = u32::try_from(elems.len()).unwrap();
// Allocate the array and write each field value into the appropriate
// offset.
let arrayref = store
.gc_store_mut()?
.alloc_uninit_array(allocator.type_index(), len, allocator.layout())
.err2anyhow()
.context("unrecoverable error when allocating new `arrayref`")?
.ok_or_else(|| GcHeapOutOfMemory::new(()))
.err2anyhow()?;
// From this point on, if we get any errors, then the array is not
// fully initialized, so we need to eagerly deallocate it before the
// next GC where the collector might try to interpret one of the
// uninitialized fields as a GC reference.
let mut store = AutoAssertNoGc::new(store);
match (|| {
let elem_ty = allocator.ty.element_type();
for (i, elem) in elems.enumerate() {
let i = u32::try_from(i).unwrap();
debug_assert!(i < len);
arrayref.initialize_elem(&mut store, allocator.layout(), &elem_ty, i, *elem)?;
}
Ok(())
})() {
Ok(()) => Ok(Rooted::new(&mut store, arrayref.into())),
Err(e) => {
store.gc_store_mut()?.dealloc_uninit_array(arrayref);
Err(e)
}
}
}
/// Allocate a new `array` containing the given elements.
///
/// For example, `ArrayRef::new_fixed(ctx, pre, &[Val::I64(4), Val::I64(5),
/// Val::I64(6)])` allocates the array `[4, 5, 6]`.
///
/// This is similar to the `array.new_fixed` instruction.
///
/// # Errors
///
/// If any of the `elems` values' type does not match the `allocator`'s
/// array type's element type, an error is returned.
///
/// If the allocation cannot be satisfied because the GC heap is currently
/// out of memory, but performing a garbage collection might free up space
/// such that retrying the allocation afterwards might succeed, then a
/// [`GcHeapOutOfMemory<()>`][crate::GcHeapOutOfMemory] error is returned.
///
/// # Panics
///
/// Panics if the allocator or any of the `elems` values are not associated
/// with the given store.
pub fn new_fixed(
mut store: impl AsContextMut,
allocator: &ArrayRefPre,
elems: &[Val],
) -> Result<Rooted<ArrayRef>> {
Self::_new_fixed(store.as_context_mut().0, allocator, elems)
}
pub(crate) fn _new_fixed(
store: &mut StoreOpaque,
allocator: &ArrayRefPre,
elems: &[Val],
) -> Result<Rooted<ArrayRef>> {
assert_eq!(
store.id(),
allocator.store_id,
"attempted to use a `ArrayRefPre` with the wrong store"
);
// Type check the elements against the element type.
for elem in elems {
elem.ensure_matches_ty(store, allocator.ty.element_type().unpack())
.context("element type mismatch")?;
}
return Self::_new_unchecked(store, allocator, elems.iter());
}
#[inline]
pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
self.inner.comes_from_same_store(store)
}
/// Get this `arrayref`'s type.
///
/// # Errors
///
/// Return an error if this reference has been unrooted.
///
/// # Panics
///
/// Panics if this reference is associated with a different store.
pub fn ty(&self, store: impl AsContext) -> Result<ArrayType> {
self._ty(store.as_context().0)
}
pub(crate) fn _ty(&self, store: &StoreOpaque) -> Result<ArrayType> {
assert!(self.comes_from_same_store(store));
let index = self.type_index(store)?;
Ok(ArrayType::from_shared_type_index(store.engine(), index))
}
/// Does this `arrayref` match the given type?
///
/// That is, is this array's type a subtype of the given type?
///
/// # Errors
///
/// Return an error if this reference has been unrooted.
///
/// # Panics
///
/// Panics if this reference is associated with a different store or if the
/// type is not associated with the store's engine.
pub fn matches_ty(&self, store: impl AsContext, ty: &ArrayType) -> Result<bool> {
self._matches_ty(store.as_context().0, ty)
}
pub(crate) fn _matches_ty(&self, store: &StoreOpaque, ty: &ArrayType) -> Result<bool> {
assert!(self.comes_from_same_store(store));
Ok(self._ty(store)?.matches(ty))
}
pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, ty: &ArrayType) -> Result<()> {
if !self.comes_from_same_store(store) {
bail!("function used with wrong store");
}
if self._matches_ty(store, ty)? {
Ok(())
} else {
let actual_ty = self._ty(store)?;
bail!("type mismatch: expected `(ref {ty})`, found `(ref {actual_ty})`")
}
}
/// Get the length of this array.
///
/// # Errors
///
/// Return an error if this reference has been unrooted.
///
/// # Panics
///
/// Panics if this reference is associated with a different store.
pub fn len(&self, store: impl AsContext) -> Result<u32> {
self._len(store.as_context().0)
}
pub(crate) fn _len(&self, store: &StoreOpaque) -> Result<u32> {
assert!(self.comes_from_same_store(store));
let gc_ref = self.inner.try_gc_ref(store)?;
debug_assert!({
let header = store.gc_store()?.header(gc_ref);
header.kind().matches(VMGcKind::ArrayRef)
});
let arrayref = gc_ref.as_arrayref_unchecked();
Ok(arrayref.len(store))
}
/// Get the values of this array's elements.
///
/// Note that `i8` and `i16` field values are zero-extended into
/// `Val::I32(_)`s.
///
/// # Errors
///
/// Return an error if this reference has been unrooted.
///
/// # Panics
///
/// Panics if this reference is associated with a different store.
pub fn elems<'a, T: 'a>(
&'a self,
store: impl Into<StoreContextMut<'a, T>>,
) -> Result<impl ExactSizeIterator<Item = Val> + 'a> {
self._elems(store.into().0)
}
pub(crate) fn _elems<'a>(
&'a self,
store: &'a mut StoreOpaque,
) -> Result<impl ExactSizeIterator<Item = Val> + 'a> {
assert!(self.comes_from_same_store(store));
let store = AutoAssertNoGc::new(store);
let gc_ref = self.inner.try_gc_ref(&store)?;
let header = store.gc_store()?.header(gc_ref);
debug_assert!(header.kind().matches(VMGcKind::ArrayRef));
let len = self._len(&store)?;
return Ok(Elems {
arrayref: self,
store,
index: 0,
len,
});
struct Elems<'a, 'b> {
arrayref: &'a ArrayRef,
store: AutoAssertNoGc<'b>,
index: u32,
len: u32,
}
impl Iterator for Elems<'_, '_> {
type Item = Val;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let i = self.index;
debug_assert!(i <= self.len);
if i >= self.len {
return None;
}
self.index += 1;
Some(self.arrayref._get(&mut self.store, i).unwrap())
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len - self.index;
let len = usize::try_from(len).unwrap();
(len, Some(len))
}
}
impl ExactSizeIterator for Elems<'_, '_> {
#[inline]
fn len(&self) -> usize {
let len = self.len - self.index;
usize::try_from(len).unwrap()
}
}
}
fn header<'a>(&self, store: &'a AutoAssertNoGc<'_>) -> Result<&'a VMGcHeader> {
assert!(self.comes_from_same_store(&store));
let gc_ref = self.inner.try_gc_ref(store)?;
Ok(store.gc_store()?.header(gc_ref))
}
fn arrayref<'a>(&self, store: &'a AutoAssertNoGc<'_>) -> Result<&'a VMArrayRef> {
assert!(self.comes_from_same_store(&store));
let gc_ref = self.inner.try_gc_ref(store)?;
debug_assert!(self.header(store)?.kind().matches(VMGcKind::ArrayRef));
Ok(gc_ref.as_arrayref_unchecked())
}
pub(crate) fn layout(&self, store: &AutoAssertNoGc<'_>) -> Result<GcArrayLayout> {
assert!(self.comes_from_same_store(&store));
let type_index = self.type_index(store)?;
let layout = store
.engine()
.signatures()
.layout(type_index)
.expect("array types should have GC layouts");
match layout {
GcLayout::Array(a) => Ok(a),
GcLayout::Struct(_) => unreachable!(),
}
}
fn field_ty(&self, store: &StoreOpaque) -> Result<FieldType> {
let ty = self._ty(store)?;
Ok(ty.field_type())
}
/// Get this array's `index`th element.
///
/// Note that `i8` and `i16` field values are zero-extended into
/// `Val::I32(_)`s.
///
/// # Errors
///
/// Returns an `Err(_)` if the index is out of bounds or this reference has
/// been unrooted.
///
/// # Panics
///
/// Panics if this reference is associated with a different store.
pub fn get(&self, mut store: impl AsContextMut, index: u32) -> Result<Val> {
let mut store = AutoAssertNoGc::new(store.as_context_mut().0);
self._get(&mut store, index)
}
pub(crate) fn _get(&self, store: &mut AutoAssertNoGc<'_>, index: u32) -> Result<Val> {
assert!(
self.comes_from_same_store(store),
"attempted to use an array with the wrong store",
);
let arrayref = self.arrayref(store)?.unchecked_copy();
let field_ty = self.field_ty(store)?;
let layout = self.layout(store)?;
let len = arrayref.len(store);
ensure!(
index < len,
"index out of bounds: the length is {len} but the index is {index}"
);
Ok(arrayref.read_elem(store, &layout, field_ty.element_type(), index))
}
/// Set this array's `index`th element.
///
/// # Errors
///
/// Returns an error in the following scenarios:
///
/// * When given a value of the wrong type, such as trying to write an `f32`
/// value into an array of `i64` elements.
///
/// * When the array elements are not mutable.
///
/// * When `index` is not within the range `0..self.len(ctx)`.
///
/// * When `value` is a GC reference that has since been unrooted.
///
/// # Panics
///
/// Panics if either this reference or the given `value` is associated with
/// a different store.
pub fn set(&self, mut store: impl AsContextMut, index: u32, value: Val) -> Result<()> {
self._set(store.as_context_mut().0, index, value)
}
pub(crate) fn _set(&self, store: &mut StoreOpaque, index: u32, value: Val) -> Result<()> {
assert!(
self.comes_from_same_store(store),
"attempted to use an array with the wrong store",
);
assert!(
value.comes_from_same_store(store),
"attempted to use a value with the wrong store",
);
let mut store = AutoAssertNoGc::new(store);
let field_ty = self.field_ty(&store)?;
ensure!(
field_ty.mutability().is_var(),
"cannot set element {index}: array elements are not mutable"
);
value
.ensure_matches_ty(&store, &field_ty.element_type().unpack())
.with_context(|| format!("cannot set element {index}: type mismatch"))?;
let layout = self.layout(&store)?;
let arrayref = self.arrayref(&store)?.unchecked_copy();
let len = arrayref.len(&store);
ensure!(
index < len,
"index out of bounds: the length is {len} but the index is {index}"
);
arrayref.write_elem(&mut store, &layout, field_ty.element_type(), index, value)
}
pub(crate) fn type_index(&self, store: &StoreOpaque) -> Result<VMSharedTypeIndex> {
let gc_ref = self.inner.try_gc_ref(store)?;
let header = store.gc_store()?.header(gc_ref);
debug_assert!(header.kind().matches(VMGcKind::ArrayRef));
Ok(header.ty().expect("arrayrefs should have concrete types"))
}
/// Create a new `Rooted<ArrayRef>` from the given GC reference.
///
/// `gc_ref` should point to a valid `arrayref` and should belong to the
/// store's GC heap. Failure to uphold these invariants is memory safe but
/// will lead to general incorrectness such as panics or wrong results.
pub(crate) fn from_cloned_gc_ref(
store: &mut AutoAssertNoGc<'_>,
gc_ref: VMGcRef,
) -> Rooted<Self> {
debug_assert!(gc_ref.is_arrayref(&*store.unwrap_gc_store().gc_heap));
Rooted::new(store, gc_ref)
}
}
unsafe impl WasmTy for Rooted<ArrayRef> {
#[inline]
fn valtype() -> ValType {
ValType::Ref(RefType::new(false, HeapType::Array))
}
#[inline]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
self.comes_from_same_store(store)
}
#[inline]
fn dynamic_concrete_type_check(
&self,
store: &StoreOpaque,
_nullable: bool,
ty: &HeapType,
) -> Result<()> {
match ty {
HeapType::Any | HeapType::Eq | HeapType::Array => Ok(()),
HeapType::ConcreteArray(ty) => self.ensure_matches_ty(store, ty),
HeapType::Extern
| HeapType::NoExtern
| HeapType::Func
| HeapType::ConcreteFunc(_)
| HeapType::NoFunc
| HeapType::I31
| HeapType::Struct
| HeapType::ConcreteStruct(_)
| HeapType::None => bail!(
"type mismatch: expected `(ref {ty})`, got `(ref {})`",
self._ty(store)?,
),
}
}
fn store(self, store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
self.wasm_ty_store(store, ptr, ValRaw::anyref)
}
unsafe fn load(store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
Self::wasm_ty_load(store, ptr.get_anyref(), ArrayRef::from_cloned_gc_ref)
}
}
unsafe impl WasmTy for Option<Rooted<ArrayRef>> {
#[inline]
fn valtype() -> ValType {
ValType::ARRAYREF
}
#[inline]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
self.map_or(true, |x| x.comes_from_same_store(store))
}
#[inline]
fn dynamic_concrete_type_check(
&self,
store: &StoreOpaque,
nullable: bool,
ty: &HeapType,
) -> Result<()> {
match self {
Some(s) => Rooted::<ArrayRef>::dynamic_concrete_type_check(s, store, nullable, ty),
None => {
ensure!(
nullable,
"expected a non-null reference, but found a null reference"
);
Ok(())
}
}
}
#[inline]
fn is_vmgcref_and_points_to_object(&self) -> bool {
self.is_some()
}
fn store(self, store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
<Rooted<ArrayRef>>::wasm_ty_option_store(self, store, ptr, ValRaw::anyref)
}
unsafe fn load(store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
<Rooted<ArrayRef>>::wasm_ty_option_load(
store,
ptr.get_anyref(),
ArrayRef::from_cloned_gc_ref,
)
}
}
unsafe impl WasmTy for ManuallyRooted<ArrayRef> {
#[inline]
fn valtype() -> ValType {
ValType::Ref(RefType::new(false, HeapType::Array))
}
#[inline]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
self.comes_from_same_store(store)
}
#[inline]
fn dynamic_concrete_type_check(
&self,
store: &StoreOpaque,
_: bool,
ty: &HeapType,
) -> Result<()> {
match ty {
HeapType::Any | HeapType::Eq | HeapType::Array => Ok(()),
HeapType::ConcreteArray(ty) => self.ensure_matches_ty(store, ty),
HeapType::Extern
| HeapType::NoExtern
| HeapType::Func
| HeapType::ConcreteFunc(_)
| HeapType::NoFunc
| HeapType::I31
| HeapType::Struct
| HeapType::ConcreteStruct(_)
| HeapType::None => bail!(
"type mismatch: expected `(ref {ty})`, got `(ref {})`",
self._ty(store)?,
),
}
}
fn store(self, store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
self.wasm_ty_store(store, ptr, ValRaw::anyref)
}
unsafe fn load(store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
Self::wasm_ty_load(store, ptr.get_anyref(), ArrayRef::from_cloned_gc_ref)
}
}
unsafe impl WasmTy for Option<ManuallyRooted<ArrayRef>> {
#[inline]
fn valtype() -> ValType {
ValType::ARRAYREF
}
#[inline]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
self.as_ref()
.map_or(true, |x| x.comes_from_same_store(store))
}
#[inline]
fn dynamic_concrete_type_check(
&self,
store: &StoreOpaque,
nullable: bool,
ty: &HeapType,
) -> Result<()> {
match self {
Some(s) => {
ManuallyRooted::<ArrayRef>::dynamic_concrete_type_check(s, store, nullable, ty)
}
None => {
ensure!(
nullable,
"expected a non-null reference, but found a null reference"
);
Ok(())
}
}
}
#[inline]
fn is_vmgcref_and_points_to_object(&self) -> bool {
self.is_some()
}
fn store(self, store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
<ManuallyRooted<ArrayRef>>::wasm_ty_option_store(self, store, ptr, ValRaw::anyref)
}
unsafe fn load(store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
<ManuallyRooted<ArrayRef>>::wasm_ty_option_load(
store,
ptr.get_anyref(),
ArrayRef::from_cloned_gc_ref,
)
}
}