wasmtime/runtime/vm/gc/enabled/
arrayref.rs

1use super::{truncate_i32_to_i16, truncate_i32_to_i8};
2use crate::{
3    prelude::*,
4    runtime::vm::{GcHeap, GcStore, VMGcRef},
5    store::{AutoAssertNoGc, StoreOpaque},
6    vm::{FuncRefTableId, SendSyncPtr},
7    AnyRef, ExternRef, Func, HeapType, RootedGcRefImpl, StorageType, Val, ValType,
8};
9use core::fmt;
10use wasmtime_environ::{GcArrayLayout, VMGcKind};
11
12/// A `VMGcRef` that we know points to a `array`.
13///
14/// Create a `VMArrayRef` via `VMGcRef::into_arrayref` and
15/// `VMGcRef::as_arrayref`, or their untyped equivalents
16/// `VMGcRef::into_arrayref_unchecked` and `VMGcRef::as_arrayref_unchecked`.
17///
18/// Note: This is not a `TypedGcRef<_>` because each collector can have a
19/// different concrete representation of `arrayref` that they allocate inside
20/// their heaps.
21#[derive(Debug, PartialEq, Eq, Hash)]
22#[repr(transparent)]
23pub struct VMArrayRef(VMGcRef);
24
25impl fmt::Pointer for VMArrayRef {
26    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
27        fmt::Pointer::fmt(&self.0, f)
28    }
29}
30
31impl From<VMArrayRef> for VMGcRef {
32    #[inline]
33    fn from(x: VMArrayRef) -> Self {
34        x.0
35    }
36}
37
38impl VMGcRef {
39    /// Is this `VMGcRef` pointing to a `array`?
40    pub fn is_arrayref(&self, gc_heap: &(impl GcHeap + ?Sized)) -> bool {
41        if self.is_i31() {
42            return false;
43        }
44
45        let header = gc_heap.header(&self);
46        header.kind().matches(VMGcKind::ArrayRef)
47    }
48
49    /// Create a new `VMArrayRef` from the given `gc_ref`.
50    ///
51    /// If this is not a GC reference to an `arrayref`, `Err(self)` is
52    /// returned.
53    pub fn into_arrayref(self, gc_heap: &(impl GcHeap + ?Sized)) -> Result<VMArrayRef, VMGcRef> {
54        if self.is_arrayref(gc_heap) {
55            Ok(self.into_arrayref_unchecked())
56        } else {
57            Err(self)
58        }
59    }
60
61    /// Create a new `VMArrayRef` from `self` without actually checking that
62    /// `self` is an `arrayref`.
63    ///
64    /// This method does not check that `self` is actually an `arrayref`, but
65    /// it should be. Failure to uphold this invariant is memory safe but will
66    /// result in general incorrectness down the line such as panics or wrong
67    /// results.
68    #[inline]
69    pub fn into_arrayref_unchecked(self) -> VMArrayRef {
70        debug_assert!(!self.is_i31());
71        VMArrayRef(self)
72    }
73
74    /// Get this GC reference as an `arrayref` reference, if it actually is an
75    /// `arrayref` reference.
76    pub fn as_arrayref(&self, gc_heap: &(impl GcHeap + ?Sized)) -> Option<&VMArrayRef> {
77        if self.is_arrayref(gc_heap) {
78            Some(self.as_arrayref_unchecked())
79        } else {
80            None
81        }
82    }
83
84    /// Get this GC reference as an `arrayref` reference without checking if it
85    /// actually is an `arrayref` reference.
86    ///
87    /// Calling this method on a non-`arrayref` reference is memory safe, but
88    /// will lead to general incorrectness like panics and wrong results.
89    pub fn as_arrayref_unchecked(&self) -> &VMArrayRef {
90        debug_assert!(!self.is_i31());
91        let ptr = self as *const VMGcRef;
92        let ret = unsafe { &*ptr.cast() };
93        assert!(matches!(ret, VMArrayRef(VMGcRef { .. })));
94        ret
95    }
96}
97
98impl VMArrayRef {
99    /// Get the underlying `VMGcRef`.
100    pub fn as_gc_ref(&self) -> &VMGcRef {
101        &self.0
102    }
103
104    /// Clone this `VMArrayRef`, running any GC barriers as necessary.
105    pub fn clone(&self, gc_store: &mut GcStore) -> Self {
106        Self(gc_store.clone_gc_ref(&self.0))
107    }
108
109    /// Explicitly drop this `arrayref`, running GC drop barriers as necessary.
110    pub fn drop(self, gc_store: &mut GcStore) {
111        gc_store.drop_gc_ref(self.0);
112    }
113
114    /// Copy this `VMArrayRef` without running the GC's clone barriers.
115    ///
116    /// Prefer calling `clone(&mut GcStore)` instead! This is mostly an internal
117    /// escape hatch for collector implementations.
118    ///
119    /// Failure to run GC barriers when they would otherwise be necessary can
120    /// lead to leaks, panics, and wrong results. It cannot lead to memory
121    /// unsafety, however.
122    pub fn unchecked_copy(&self) -> Self {
123        Self(self.0.unchecked_copy())
124    }
125
126    /// Get the length of this array.
127    pub fn len(&self, store: &StoreOpaque) -> u32 {
128        store.unwrap_gc_store().array_len(self)
129    }
130
131    /// Read an element of the given `StorageType` into a `Val`.
132    ///
133    /// `i8` and `i16` fields are zero-extended into `Val::I32(_)`s.
134    ///
135    /// Does not check that this array's elements are actually of type
136    /// `ty`. That is the caller's responsibility. Failure to do so is memory
137    /// safe, but will lead to general incorrectness such as panics and wrong
138    /// results.
139    ///
140    /// Panics on out-of-bounds accesses.
141    pub fn read_elem(
142        &self,
143        store: &mut AutoAssertNoGc,
144        layout: &GcArrayLayout,
145        ty: &StorageType,
146        index: u32,
147    ) -> Val {
148        let offset = layout.elem_offset(index);
149        let data = store.unwrap_gc_store_mut().gc_object_data(self.as_gc_ref());
150        match ty {
151            StorageType::I8 => Val::I32(data.read_u8(offset).into()),
152            StorageType::I16 => Val::I32(data.read_u16(offset).into()),
153            StorageType::ValType(ValType::I32) => Val::I32(data.read_i32(offset)),
154            StorageType::ValType(ValType::I64) => Val::I64(data.read_i64(offset)),
155            StorageType::ValType(ValType::F32) => Val::F32(data.read_u32(offset)),
156            StorageType::ValType(ValType::F64) => Val::F64(data.read_u64(offset)),
157            StorageType::ValType(ValType::V128) => Val::V128(data.read_v128(offset)),
158            StorageType::ValType(ValType::Ref(r)) => match r.heap_type().top() {
159                HeapType::Extern => {
160                    let raw = data.read_u32(offset);
161                    Val::ExternRef(ExternRef::_from_raw(store, raw))
162                }
163                HeapType::Any => {
164                    let raw = data.read_u32(offset);
165                    Val::AnyRef(AnyRef::_from_raw(store, raw))
166                }
167                HeapType::Func => {
168                    let func_ref_id = data.read_u32(offset);
169                    let func_ref_id = FuncRefTableId::from_raw(func_ref_id);
170                    let func_ref = store
171                        .unwrap_gc_store()
172                        .func_ref_table
173                        .get_untyped(func_ref_id);
174                    Val::FuncRef(unsafe {
175                        func_ref.map(|p| Func::from_vm_func_ref(store, p.as_non_null()))
176                    })
177                }
178                otherwise => unreachable!("not a top type: {otherwise:?}"),
179            },
180        }
181    }
182
183    /// Write the given value into this array at the given offset.
184    ///
185    /// Returns an error if `val` is a GC reference that has since been
186    /// unrooted.
187    ///
188    /// Does not check that `val` matches `ty`, nor that the field is actually
189    /// of type `ty`. Checking those things is the caller's responsibility.
190    /// Failure to do so is memory safe, but will lead to general incorrectness
191    /// such as panics and wrong results.
192    ///
193    /// Panics on out-of-bounds accesses.
194    pub fn write_elem(
195        &self,
196        store: &mut AutoAssertNoGc,
197        layout: &GcArrayLayout,
198        ty: &StorageType,
199        index: u32,
200        val: Val,
201    ) -> Result<()> {
202        debug_assert!(val._matches_ty(&store, &ty.unpack())?);
203
204        let offset = layout.elem_offset(index);
205        let mut data = store.unwrap_gc_store_mut().gc_object_data(self.as_gc_ref());
206        match val {
207            Val::I32(i) if ty.is_i8() => data.write_i8(offset, truncate_i32_to_i8(i)),
208            Val::I32(i) if ty.is_i16() => data.write_i16(offset, truncate_i32_to_i16(i)),
209            Val::I32(i) => data.write_i32(offset, i),
210            Val::I64(i) => data.write_i64(offset, i),
211            Val::F32(f) => data.write_u32(offset, f),
212            Val::F64(f) => data.write_u64(offset, f),
213            Val::V128(v) => data.write_v128(offset, v),
214
215            // For GC-managed references, we need to take care to run the
216            // appropriate barriers, even when we are writing null references
217            // into the array.
218            //
219            // POD-read the old value into a local copy, run the GC write
220            // barrier on that local copy, and then POD-write the updated
221            // value back into the array. This avoids transmuting the inner
222            // data, which would probably be fine, but this approach is
223            // Obviously Correct and should get us by for now. If LLVM isn't
224            // able to elide some of these unnecessary copies, and this
225            // method is ever hot enough, we can always come back and clean
226            // it up in the future.
227            Val::ExternRef(e) => {
228                let raw = data.read_u32(offset);
229                let mut gc_ref = VMGcRef::from_raw_u32(raw);
230                let e = match e {
231                    Some(e) => Some(e.try_gc_ref(store)?.unchecked_copy()),
232                    None => None,
233                };
234                store.gc_store_mut()?.write_gc_ref(&mut gc_ref, e.as_ref());
235                let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
236                data.write_u32(offset, gc_ref.map_or(0, |r| r.as_raw_u32()));
237            }
238            Val::AnyRef(a) => {
239                let raw = data.read_u32(offset);
240                let mut gc_ref = VMGcRef::from_raw_u32(raw);
241                let a = match a {
242                    Some(a) => Some(a.try_gc_ref(store)?.unchecked_copy()),
243                    None => None,
244                };
245                store.gc_store_mut()?.write_gc_ref(&mut gc_ref, a.as_ref());
246                let mut data = store.gc_store_mut()?.gc_object_data(self.as_gc_ref());
247                data.write_u32(offset, gc_ref.map_or(0, |r| r.as_raw_u32()));
248            }
249
250            Val::FuncRef(f) => {
251                let func_ref = match f {
252                    Some(f) => Some(SendSyncPtr::new(f.vm_func_ref(store))),
253                    None => None,
254                };
255                let id = unsafe { store.gc_store_mut()?.func_ref_table.intern(func_ref) };
256                store
257                    .gc_store_mut()?
258                    .gc_object_data(self.as_gc_ref())
259                    .write_u32(offset, id.into_raw());
260            }
261        }
262        Ok(())
263    }
264
265    /// Initialize an element in this arrayref that is currently uninitialized.
266    ///
267    /// The difference between this method and `write_elem` is that GC barriers
268    /// are handled differently. When overwriting an initialized element (aka
269    /// `write_elem`) we need to call the full write GC write barrier, which
270    /// logically drops the old GC reference and clones the new GC
271    /// reference. When we are initializing an element for the first time, there
272    /// is no old GC reference that is being overwritten and which we need to
273    /// drop, so we only need to clone the new GC reference.
274    ///
275    /// Calling this method on a arrayref that has already had the associated
276    /// element initialized will result in GC bugs. These are memory safe but
277    /// will lead to generally incorrect behavior such as panics, leaks, and
278    /// incorrect results.
279    ///
280    /// Does not check that `val` matches `ty`, nor that the field is actually
281    /// of type `ty`. Checking those things is the caller's responsibility.
282    /// Failure to do so is memory safe, but will lead to general incorrectness
283    /// such as panics and wrong results.
284    ///
285    /// Returns an error if `val` is a GC reference that has since been
286    /// unrooted.
287    ///
288    /// Panics on out-of-bounds accesses.
289    pub fn initialize_elem(
290        &self,
291        store: &mut AutoAssertNoGc,
292        layout: &GcArrayLayout,
293        ty: &StorageType,
294        index: u32,
295        val: Val,
296    ) -> Result<()> {
297        debug_assert!(val._matches_ty(&store, &ty.unpack())?);
298        let offset = layout.elem_offset(index);
299        match val {
300            Val::I32(i) if ty.is_i8() => store
301                .gc_store_mut()?
302                .gc_object_data(self.as_gc_ref())
303                .write_i8(offset, truncate_i32_to_i8(i)),
304            Val::I32(i) if ty.is_i16() => store
305                .gc_store_mut()?
306                .gc_object_data(self.as_gc_ref())
307                .write_i16(offset, truncate_i32_to_i16(i)),
308            Val::I32(i) => store
309                .gc_store_mut()?
310                .gc_object_data(self.as_gc_ref())
311                .write_i32(offset, i),
312            Val::I64(i) => store
313                .gc_store_mut()?
314                .gc_object_data(self.as_gc_ref())
315                .write_i64(offset, i),
316            Val::F32(f) => store
317                .gc_store_mut()?
318                .gc_object_data(self.as_gc_ref())
319                .write_u32(offset, f),
320            Val::F64(f) => store
321                .gc_store_mut()?
322                .gc_object_data(self.as_gc_ref())
323                .write_u64(offset, f),
324            Val::V128(v) => store
325                .gc_store_mut()?
326                .gc_object_data(self.as_gc_ref())
327                .write_v128(offset, v),
328
329            // NB: We don't need to do a write barrier when initializing a
330            // field, because there is nothing being overwritten. Therefore, we
331            // just the clone barrier.
332            Val::ExternRef(x) => {
333                let x = match x {
334                    None => 0,
335                    Some(x) => x.try_clone_gc_ref(store)?.as_raw_u32(),
336                };
337                store
338                    .gc_store_mut()?
339                    .gc_object_data(self.as_gc_ref())
340                    .write_u32(offset, x);
341            }
342            Val::AnyRef(x) => {
343                let x = match x {
344                    None => 0,
345                    Some(x) => x.try_clone_gc_ref(store)?.as_raw_u32(),
346                };
347                store
348                    .gc_store_mut()?
349                    .gc_object_data(self.as_gc_ref())
350                    .write_u32(offset, x);
351            }
352
353            Val::FuncRef(f) => {
354                let func_ref = match f {
355                    Some(f) => Some(SendSyncPtr::new(f.vm_func_ref(store))),
356                    None => None,
357                };
358                let id = unsafe { store.gc_store_mut()?.func_ref_table.intern(func_ref) };
359                store
360                    .gc_store_mut()?
361                    .gc_object_data(self.as_gc_ref())
362                    .write_u32(offset, id.into_raw());
363            }
364        }
365        Ok(())
366    }
367}