wasmtime/engine.rs
1use crate::prelude::*;
2#[cfg(feature = "runtime")]
3pub use crate::runtime::code_memory::CustomCodeMemory;
4#[cfg(feature = "runtime")]
5use crate::runtime::type_registry::TypeRegistry;
6#[cfg(feature = "runtime")]
7use crate::runtime::vm::GcRuntime;
8use crate::Config;
9use alloc::sync::Arc;
10use core::ptr::NonNull;
11#[cfg(target_has_atomic = "64")]
12use core::sync::atomic::{AtomicU64, Ordering};
13#[cfg(any(feature = "cranelift", feature = "winch"))]
14use object::write::{Object, StandardSegment};
15#[cfg(feature = "std")]
16use std::{fs::File, path::Path};
17use wasmparser::WasmFeatures;
18use wasmtime_environ::{FlagValue, ObjectKind, TripleExt, Tunables};
19
20mod serialization;
21
22/// An `Engine` which is a global context for compilation and management of wasm
23/// modules.
24///
25/// An engine can be safely shared across threads and is a cheap cloneable
26/// handle to the actual engine. The engine itself will be deallocated once all
27/// references to it have gone away.
28///
29/// Engines store global configuration preferences such as compilation settings,
30/// enabled features, etc. You'll likely only need at most one of these for a
31/// program.
32///
33/// ## Engines and `Clone`
34///
35/// Using `clone` on an `Engine` is a cheap operation. It will not create an
36/// entirely new engine, but rather just a new reference to the existing engine.
37/// In other words it's a shallow copy, not a deep copy.
38///
39/// ## Engines and `Default`
40///
41/// You can create an engine with default configuration settings using
42/// `Engine::default()`. Be sure to consult the documentation of [`Config`] for
43/// default settings.
44#[derive(Clone)]
45pub struct Engine {
46 inner: Arc<EngineInner>,
47}
48
49struct EngineInner {
50 config: Config,
51 features: WasmFeatures,
52 tunables: Tunables,
53 #[cfg(any(feature = "cranelift", feature = "winch"))]
54 compiler: Box<dyn wasmtime_environ::Compiler>,
55 #[cfg(feature = "runtime")]
56 allocator: Box<dyn crate::runtime::vm::InstanceAllocator + Send + Sync>,
57 #[cfg(feature = "runtime")]
58 gc_runtime: Option<Arc<dyn GcRuntime>>,
59 #[cfg(feature = "runtime")]
60 profiler: Box<dyn crate::profiling_agent::ProfilingAgent>,
61 #[cfg(feature = "runtime")]
62 signatures: TypeRegistry,
63 #[cfg(all(feature = "runtime", target_has_atomic = "64"))]
64 epoch: AtomicU64,
65
66 /// One-time check of whether the compiler's settings, if present, are
67 /// compatible with the native host.
68 #[cfg(any(feature = "cranelift", feature = "winch"))]
69 compatible_with_native_host: crate::sync::OnceLock<Result<(), String>>,
70}
71
72impl core::fmt::Debug for Engine {
73 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
74 f.debug_tuple("Engine")
75 .field(&Arc::as_ptr(&self.inner))
76 .finish()
77 }
78}
79
80impl Default for Engine {
81 fn default() -> Engine {
82 Engine::new(&Config::default()).unwrap()
83 }
84}
85
86impl Engine {
87 /// Creates a new [`Engine`] with the specified compilation and
88 /// configuration settings.
89 ///
90 /// # Errors
91 ///
92 /// This method can fail if the `config` is invalid or some
93 /// configurations are incompatible.
94 ///
95 /// For example, feature `reference_types` will need to set
96 /// the compiler setting `enable_safepoints` and `unwind_info`
97 /// to `true`, but explicitly disable these two compiler settings
98 /// will cause errors.
99 pub fn new(config: &Config) -> Result<Engine> {
100 let config = config.clone();
101 let (tunables, features) = config.validate()?;
102
103 #[cfg(feature = "runtime")]
104 if tunables.signals_based_traps {
105 // Ensure that crate::runtime::vm's signal handlers are
106 // configured. This is the per-program initialization required for
107 // handling traps, such as configuring signals, vectored exception
108 // handlers, etc.
109 #[cfg(has_native_signals)]
110 crate::runtime::vm::init_traps(config.macos_use_mach_ports);
111 if !cfg!(miri) {
112 #[cfg(all(has_host_compiler_backend, feature = "debug-builtins"))]
113 crate::runtime::vm::debug_builtins::init();
114 }
115 }
116
117 #[cfg(any(feature = "cranelift", feature = "winch"))]
118 let (config, compiler) = config.build_compiler(&tunables, features)?;
119
120 Ok(Engine {
121 inner: Arc::new(EngineInner {
122 #[cfg(any(feature = "cranelift", feature = "winch"))]
123 compiler,
124 #[cfg(feature = "runtime")]
125 allocator: config.build_allocator(&tunables)?,
126 #[cfg(feature = "runtime")]
127 gc_runtime: config.build_gc_runtime()?,
128 #[cfg(feature = "runtime")]
129 profiler: config.build_profiler()?,
130 #[cfg(feature = "runtime")]
131 signatures: TypeRegistry::new(),
132 #[cfg(all(feature = "runtime", target_has_atomic = "64"))]
133 epoch: AtomicU64::new(0),
134 #[cfg(any(feature = "cranelift", feature = "winch"))]
135 compatible_with_native_host: Default::default(),
136 config,
137 tunables,
138 features,
139 }),
140 })
141 }
142
143 /// Returns the configuration settings that this engine is using.
144 #[inline]
145 pub fn config(&self) -> &Config {
146 &self.inner.config
147 }
148
149 #[inline]
150 pub(crate) fn features(&self) -> WasmFeatures {
151 self.inner.features
152 }
153
154 pub(crate) fn run_maybe_parallel<
155 A: Send,
156 B: Send,
157 E: Send,
158 F: Fn(A) -> Result<B, E> + Send + Sync,
159 >(
160 &self,
161 input: Vec<A>,
162 f: F,
163 ) -> Result<Vec<B>, E> {
164 if self.config().parallel_compilation {
165 #[cfg(feature = "parallel-compilation")]
166 {
167 use rayon::prelude::*;
168 // If we collect into Result<Vec<B>, E> directly, the returned error is not
169 // deterministic, because any error could be returned early. So we first materialize
170 // all results in order and then return the first error deterministically, or Ok(_).
171 return input
172 .into_par_iter()
173 .map(|a| f(a))
174 .collect::<Vec<Result<B, E>>>()
175 .into_iter()
176 .collect::<Result<Vec<B>, E>>();
177 }
178 }
179
180 // In case the parallel-compilation feature is disabled or the parallel_compilation config
181 // was turned off dynamically fallback to the non-parallel version.
182 input
183 .into_iter()
184 .map(|a| f(a))
185 .collect::<Result<Vec<B>, E>>()
186 }
187
188 /// Take a weak reference to this engine.
189 pub fn weak(&self) -> EngineWeak {
190 EngineWeak {
191 inner: Arc::downgrade(&self.inner),
192 }
193 }
194
195 #[inline]
196 pub(crate) fn tunables(&self) -> &Tunables {
197 &self.inner.tunables
198 }
199
200 /// Returns whether the engine `a` and `b` refer to the same configuration.
201 #[inline]
202 pub fn same(a: &Engine, b: &Engine) -> bool {
203 Arc::ptr_eq(&a.inner, &b.inner)
204 }
205
206 /// Returns whether the engine is configured to support async functions.
207 #[cfg(feature = "async")]
208 #[inline]
209 pub fn is_async(&self) -> bool {
210 self.config().async_support
211 }
212
213 /// Detects whether the bytes provided are a precompiled object produced by
214 /// Wasmtime.
215 ///
216 /// This function will inspect the header of `bytes` to determine if it
217 /// looks like a precompiled core wasm module or a precompiled component.
218 /// This does not validate the full structure or guarantee that
219 /// deserialization will succeed, instead it helps higher-levels of the
220 /// stack make a decision about what to do next when presented with the
221 /// `bytes` as an input module.
222 ///
223 /// If the `bytes` looks like a precompiled object previously produced by
224 /// [`Module::serialize`](crate::Module::serialize),
225 /// [`Component::serialize`](crate::component::Component::serialize),
226 /// [`Engine::precompile_module`], or [`Engine::precompile_component`], then
227 /// this will return `Some(...)` indicating so. Otherwise `None` is
228 /// returned.
229 pub fn detect_precompiled(&self, bytes: &[u8]) -> Option<Precompiled> {
230 serialization::detect_precompiled_bytes(bytes)
231 }
232
233 /// Like [`Engine::detect_precompiled`], but performs the detection on a file.
234 #[cfg(feature = "std")]
235 pub fn detect_precompiled_file(&self, path: impl AsRef<Path>) -> Result<Option<Precompiled>> {
236 serialization::detect_precompiled_file(path)
237 }
238
239 /// Returns the target triple which this engine is compiling code for
240 /// and/or running code for.
241 pub(crate) fn target(&self) -> target_lexicon::Triple {
242 return self.config().compiler_target();
243 }
244
245 /// Verify that this engine's configuration is compatible with loading
246 /// modules onto the native host platform.
247 ///
248 /// This method is used as part of `Module::new` to ensure that this
249 /// engine can indeed load modules for the configured compiler (if any).
250 /// Note that if cranelift is disabled this trivially returns `Ok` because
251 /// loaded serialized modules are checked separately.
252 #[cfg(any(feature = "cranelift", feature = "winch"))]
253 pub(crate) fn check_compatible_with_native_host(&self) -> Result<()> {
254 self.inner
255 .compatible_with_native_host
256 .get_or_init(|| self._check_compatible_with_native_host())
257 .clone()
258 .map_err(anyhow::Error::msg)
259 }
260
261 #[cfg(any(feature = "cranelift", feature = "winch"))]
262 fn _check_compatible_with_native_host(&self) -> Result<(), String> {
263 use target_lexicon::Triple;
264
265 let compiler = self.compiler();
266
267 let target = compiler.triple();
268 let host = Triple::host();
269 let target_matches_host = || {
270 // If the host target and target triple match, then it's valid
271 // to run results of compilation on this host.
272 if host == *target {
273 return true;
274 }
275
276 // If there's a mismatch and the target is a compatible pulley
277 // target, then that's also ok to run.
278 if cfg!(feature = "pulley")
279 && target.is_pulley()
280 && target.pointer_width() == host.pointer_width()
281 && target.endianness() == host.endianness()
282 {
283 return true;
284 }
285
286 // ... otherwise everything else is considered not a match.
287 false
288 };
289
290 if !target_matches_host() {
291 return Err(format!(
292 "target '{target}' specified in the configuration does not match the host"
293 ));
294 }
295
296 // Also double-check all compiler settings
297 for (key, value) in compiler.flags().iter() {
298 self.check_compatible_with_shared_flag(key, value)?;
299 }
300 for (key, value) in compiler.isa_flags().iter() {
301 self.check_compatible_with_isa_flag(key, value)?;
302 }
303
304 // Double-check that this configuration isn't requesting capabilities
305 // that this build of Wasmtime doesn't support.
306 if !cfg!(has_native_signals) && self.tunables().signals_based_traps {
307 return Err("signals-based-traps disabled at compile time -- cannot be enabled".into());
308 }
309 if !cfg!(has_virtual_memory) && self.tunables().memory_init_cow {
310 return Err("virtual memory disabled at compile time -- cannot enable CoW".into());
311 }
312 if !cfg!(target_has_atomic = "64") && self.tunables().epoch_interruption {
313 return Err("epochs currently require 64-bit atomics".into());
314 }
315 Ok(())
316 }
317
318 /// Checks to see whether the "shared flag", something enabled for
319 /// individual compilers, is compatible with the native host platform.
320 ///
321 /// This is used both when validating an engine's compilation settings are
322 /// compatible with the host as well as when deserializing modules from
323 /// disk to ensure they're compatible with the current host.
324 ///
325 /// Note that most of the settings here are not configured by users that
326 /// often. While theoretically possible via `Config` methods the more
327 /// interesting flags are the ISA ones below. Typically the values here
328 /// represent global configuration for wasm features. Settings here
329 /// currently rely on the compiler informing us of all settings, including
330 /// those disabled. Settings then fall in a few buckets:
331 ///
332 /// * Some settings must be enabled, such as `preserve_frame_pointers`.
333 /// * Some settings must have a particular value, such as
334 /// `libcall_call_conv`.
335 /// * Some settings do not matter as to their value, such as `opt_level`.
336 pub(crate) fn check_compatible_with_shared_flag(
337 &self,
338 flag: &str,
339 value: &FlagValue,
340 ) -> Result<(), String> {
341 let target = self.target();
342 let ok = match flag {
343 // These settings must all have be enabled, since their value
344 // can affect the way the generated code performs or behaves at
345 // runtime.
346 "libcall_call_conv" => *value == FlagValue::Enum("isa_default".into()),
347 "preserve_frame_pointers" => *value == FlagValue::Bool(true),
348 "enable_probestack" => *value == FlagValue::Bool(true),
349 "probestack_strategy" => *value == FlagValue::Enum("inline".into()),
350 "enable_multi_ret_implicit_sret" => *value == FlagValue::Bool(true),
351
352 // Features wasmtime doesn't use should all be disabled, since
353 // otherwise if they are enabled it could change the behavior of
354 // generated code.
355 "enable_llvm_abi_extensions" => *value == FlagValue::Bool(false),
356 "enable_pinned_reg" => *value == FlagValue::Bool(false),
357 "use_colocated_libcalls" => *value == FlagValue::Bool(false),
358 "use_pinned_reg_as_heap_base" => *value == FlagValue::Bool(false),
359
360 // If reference types (or anything that depends on reference types,
361 // like typed function references and GC) are enabled this must be
362 // enabled, otherwise this setting can have any value.
363 "enable_safepoints" => {
364 if self.features().contains(WasmFeatures::REFERENCE_TYPES) {
365 *value == FlagValue::Bool(true)
366 } else {
367 return Ok(())
368 }
369 }
370
371 // Windows requires unwind info as part of its ABI.
372 "unwind_info" => {
373 if target.operating_system == target_lexicon::OperatingSystem::Windows {
374 *value == FlagValue::Bool(true)
375 } else {
376 return Ok(())
377 }
378 }
379
380 // These settings don't affect the interface or functionality of
381 // the module itself, so their configuration values shouldn't
382 // matter.
383 "enable_heap_access_spectre_mitigation"
384 | "enable_table_access_spectre_mitigation"
385 | "enable_nan_canonicalization"
386 | "enable_jump_tables"
387 | "enable_float"
388 | "enable_verifier"
389 | "enable_pcc"
390 | "regalloc_checker"
391 | "regalloc_verbose_logs"
392 | "regalloc_algorithm"
393 | "is_pic"
394 | "bb_padding_log2_minus_one"
395 | "machine_code_cfg_info"
396 | "tls_model" // wasmtime doesn't use tls right now
397 | "stack_switch_model" // wasmtime doesn't use stack switching right now
398 | "opt_level" // opt level doesn't change semantics
399 | "enable_alias_analysis" // alias analysis-based opts don't change semantics
400 | "probestack_size_log2" // probestack above asserted disabled
401 | "regalloc" // shouldn't change semantics
402 | "enable_incremental_compilation_cache_checks" // shouldn't change semantics
403 | "enable_atomics" => return Ok(()),
404
405 // Everything else is unknown and needs to be added somewhere to
406 // this list if encountered.
407 _ => {
408 return Err(format!("unknown shared setting {flag:?} configured to {value:?}"))
409 }
410 };
411
412 if !ok {
413 return Err(format!(
414 "setting {flag:?} is configured to {value:?} which is not supported",
415 ));
416 }
417 Ok(())
418 }
419
420 /// Same as `check_compatible_with_native_host` except used for ISA-specific
421 /// flags. This is used to test whether a configured ISA flag is indeed
422 /// available on the host platform itself.
423 pub(crate) fn check_compatible_with_isa_flag(
424 &self,
425 flag: &str,
426 value: &FlagValue,
427 ) -> Result<(), String> {
428 match value {
429 // ISA flags are used for things like CPU features, so if they're
430 // disabled then it's compatible with the native host.
431 FlagValue::Bool(false) => return Ok(()),
432
433 // Fall through below where we test at runtime that features are
434 // available.
435 FlagValue::Bool(true) => {}
436
437 // Pulley's pointer_width must match the host.
438 FlagValue::Enum("pointer32") => {
439 return if cfg!(target_pointer_width = "32") {
440 Ok(())
441 } else {
442 Err("wrong host pointer width".to_string())
443 }
444 }
445 FlagValue::Enum("pointer64") => {
446 return if cfg!(target_pointer_width = "64") {
447 Ok(())
448 } else {
449 Err("wrong host pointer width".to_string())
450 }
451 }
452
453 // Only `bool` values are supported right now, other settings would
454 // need more support here.
455 _ => {
456 return Err(format!(
457 "isa-specific feature {flag:?} configured to unknown value {value:?}"
458 ))
459 }
460 }
461
462 let host_feature = match flag {
463 // aarch64 features to detect
464 "has_lse" => "lse",
465 "has_pauth" => "paca",
466 "has_fp16" => "fp16",
467
468 // aarch64 features which don't need detection
469 // No effect on its own.
470 "sign_return_address_all" => return Ok(()),
471 // The pointer authentication instructions act as a `NOP` when
472 // unsupported, so it is safe to enable them.
473 "sign_return_address" => return Ok(()),
474 // No effect on its own.
475 "sign_return_address_with_bkey" => return Ok(()),
476 // The `BTI` instruction acts as a `NOP` when unsupported, so it
477 // is safe to enable it regardless of whether the host supports it
478 // or not.
479 "use_bti" => return Ok(()),
480
481 // s390x features to detect
482 "has_vxrs_ext2" => "vxrs_ext2",
483 "has_mie2" => "mie2",
484
485 // x64 features to detect
486 "has_cmpxchg16b" => "cmpxchg16b",
487 "has_sse3" => "sse3",
488 "has_ssse3" => "ssse3",
489 "has_sse41" => "sse4.1",
490 "has_sse42" => "sse4.2",
491 "has_popcnt" => "popcnt",
492 "has_avx" => "avx",
493 "has_avx2" => "avx2",
494 "has_fma" => "fma",
495 "has_bmi1" => "bmi1",
496 "has_bmi2" => "bmi2",
497 "has_avx512bitalg" => "avx512bitalg",
498 "has_avx512dq" => "avx512dq",
499 "has_avx512f" => "avx512f",
500 "has_avx512vl" => "avx512vl",
501 "has_avx512vbmi" => "avx512vbmi",
502 "has_lzcnt" => "lzcnt",
503
504 // pulley features
505 "big_endian" if cfg!(target_endian = "big") => return Ok(()),
506 "big_endian" if cfg!(target_endian = "little") => {
507 return Err("wrong host endianness".to_string())
508 }
509
510 _ => {
511 // FIXME: should enumerate risc-v features and plumb them
512 // through to the `detect_host_feature` function.
513 if cfg!(target_arch = "riscv64") && flag != "not_a_flag" {
514 return Ok(());
515 }
516 return Err(format!(
517 "don't know how to test for target-specific flag {flag:?} at runtime"
518 ));
519 }
520 };
521
522 let detect = match self.config().detect_host_feature {
523 Some(detect) => detect,
524 None => {
525 return Err(format!(
526 "cannot determine if host feature {host_feature:?} is \
527 available at runtime, configure a probing function with \
528 `Config::detect_host_feature`"
529 ))
530 }
531 };
532
533 match detect(host_feature) {
534 Some(true) => Ok(()),
535 Some(false) => Err(format!(
536 "compilation setting {flag:?} is enabled, but not \
537 available on the host",
538 )),
539 None => Err(format!(
540 "failed to detect if target-specific flag {flag:?} is \
541 available at runtime"
542 )),
543 }
544 }
545
546 /// Returns whether this [`Engine`] is configured to execute with Pulley,
547 /// Wasmtime's interpreter.
548 ///
549 /// Note that Pulley is the default for host platforms that do not have a
550 /// Cranelift backend to support them. For example at the time of this
551 /// writing 32-bit x86 is not supported in Cranelift so the
552 /// `i686-unknown-linux-gnu` target would by default return `true` here.
553 pub fn is_pulley(&self) -> bool {
554 self.target().is_pulley()
555 }
556}
557
558#[cfg(any(feature = "cranelift", feature = "winch"))]
559impl Engine {
560 pub(crate) fn compiler(&self) -> &dyn wasmtime_environ::Compiler {
561 &*self.inner.compiler
562 }
563
564 /// Ahead-of-time (AOT) compiles a WebAssembly module.
565 ///
566 /// The `bytes` provided must be in one of two formats:
567 ///
568 /// * A [binary-encoded][binary] WebAssembly module. This is always supported.
569 /// * A [text-encoded][text] instance of the WebAssembly text format.
570 /// This is only supported when the `wat` feature of this crate is enabled.
571 /// If this is supplied then the text format will be parsed before validation.
572 /// Note that the `wat` feature is enabled by default.
573 ///
574 /// This method may be used to compile a module for use with a different target
575 /// host. The output of this method may be used with
576 /// [`Module::deserialize`](crate::Module::deserialize) on hosts compatible
577 /// with the [`Config`](crate::Config) associated with this [`Engine`].
578 ///
579 /// The output of this method is safe to send to another host machine for later
580 /// execution. As the output is already a compiled module, translation and code
581 /// generation will be skipped and this will improve the performance of constructing
582 /// a [`Module`](crate::Module) from the output of this method.
583 ///
584 /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
585 /// [text]: https://webassembly.github.io/spec/core/text/index.html
586 pub fn precompile_module(&self, bytes: &[u8]) -> Result<Vec<u8>> {
587 crate::CodeBuilder::new(self)
588 .wasm_binary_or_text(bytes, None)?
589 .compile_module_serialized()
590 }
591
592 /// Same as [`Engine::precompile_module`] except for a
593 /// [`Component`](crate::component::Component)
594 #[cfg(feature = "component-model")]
595 pub fn precompile_component(&self, bytes: &[u8]) -> Result<Vec<u8>> {
596 crate::CodeBuilder::new(self)
597 .wasm_binary_or_text(bytes, None)?
598 .compile_component_serialized()
599 }
600
601 /// Produces a blob of bytes by serializing the `engine`'s configuration data to
602 /// be checked, perhaps in a different process, with the `check_compatible`
603 /// method below.
604 ///
605 /// The blob of bytes is inserted into the object file specified to become part
606 /// of the final compiled artifact.
607 pub(crate) fn append_compiler_info(&self, obj: &mut Object<'_>) {
608 serialization::append_compiler_info(self, obj, &serialization::Metadata::new(&self))
609 }
610
611 #[cfg(any(feature = "cranelift", feature = "winch"))]
612 pub(crate) fn append_bti(&self, obj: &mut Object<'_>) {
613 let section = obj.add_section(
614 obj.segment_name(StandardSegment::Data).to_vec(),
615 wasmtime_environ::obj::ELF_WASM_BTI.as_bytes().to_vec(),
616 object::SectionKind::ReadOnlyData,
617 );
618 let contents = if self.compiler().is_branch_protection_enabled() {
619 1
620 } else {
621 0
622 };
623 obj.append_section_data(section, &[contents], 1);
624 }
625}
626
627/// Return value from the [`Engine::detect_precompiled`] API.
628#[derive(PartialEq, Eq, Copy, Clone, Debug)]
629pub enum Precompiled {
630 /// The input bytes look like a precompiled core wasm module.
631 Module,
632 /// The input bytes look like a precompiled wasm component.
633 Component,
634}
635
636#[cfg(feature = "runtime")]
637impl Engine {
638 /// Eagerly initialize thread-local functionality shared by all [`Engine`]s.
639 ///
640 /// Wasmtime's implementation on some platforms may involve per-thread
641 /// setup that needs to happen whenever WebAssembly is invoked. This setup
642 /// can take on the order of a few hundred microseconds, whereas the
643 /// overhead of calling WebAssembly is otherwise on the order of a few
644 /// nanoseconds. This setup cost is paid once per-OS-thread. If your
645 /// application is sensitive to the latencies of WebAssembly function
646 /// calls, even those that happen first on a thread, then this function
647 /// can be used to improve the consistency of each call into WebAssembly
648 /// by explicitly frontloading the cost of the one-time setup per-thread.
649 ///
650 /// Note that this function is not required to be called in any embedding.
651 /// Wasmtime will automatically initialize thread-local-state as necessary
652 /// on calls into WebAssembly. This is provided for use cases where the
653 /// latency of WebAssembly calls are extra-important, which is not
654 /// necessarily true of all embeddings.
655 pub fn tls_eager_initialize() {
656 crate::runtime::vm::tls_eager_initialize();
657 }
658
659 pub(crate) fn allocator(&self) -> &dyn crate::runtime::vm::InstanceAllocator {
660 self.inner.allocator.as_ref()
661 }
662
663 pub(crate) fn gc_runtime(&self) -> Result<&Arc<dyn GcRuntime>> {
664 if let Some(rt) = &self.inner.gc_runtime {
665 Ok(rt)
666 } else {
667 bail!("no GC runtime: GC disabled at compile time or configuration time")
668 }
669 }
670
671 pub(crate) fn profiler(&self) -> &dyn crate::profiling_agent::ProfilingAgent {
672 self.inner.profiler.as_ref()
673 }
674
675 #[cfg(all(feature = "cache", any(feature = "cranelift", feature = "winch")))]
676 pub(crate) fn cache_config(&self) -> &wasmtime_cache::CacheConfig {
677 &self.config().cache_config
678 }
679
680 pub(crate) fn signatures(&self) -> &TypeRegistry {
681 &self.inner.signatures
682 }
683
684 #[cfg(feature = "runtime")]
685 pub(crate) fn custom_code_memory(&self) -> Option<&Arc<dyn CustomCodeMemory>> {
686 self.config().custom_code_memory.as_ref()
687 }
688
689 #[cfg(target_has_atomic = "64")]
690 pub(crate) fn epoch_counter(&self) -> &AtomicU64 {
691 &self.inner.epoch
692 }
693
694 #[cfg(target_has_atomic = "64")]
695 pub(crate) fn current_epoch(&self) -> u64 {
696 self.epoch_counter().load(Ordering::Relaxed)
697 }
698
699 /// Increments the epoch.
700 ///
701 /// When using epoch-based interruption, currently-executing Wasm
702 /// code within this engine will trap or yield "soon" when the
703 /// epoch deadline is reached or exceeded. (The configuration, and
704 /// the deadline, are set on the `Store`.) The intent of the
705 /// design is for this method to be called by the embedder at some
706 /// regular cadence, for example by a thread that wakes up at some
707 /// interval, or by a signal handler.
708 ///
709 /// See [`Config::epoch_interruption`](crate::Config::epoch_interruption)
710 /// for an introduction to epoch-based interruption and pointers
711 /// to the other relevant methods.
712 ///
713 /// When performing `increment_epoch` in a separate thread, consider using
714 /// [`Engine::weak`] to hold an [`EngineWeak`](crate::EngineWeak) and
715 /// performing [`EngineWeak::upgrade`](crate::EngineWeak::upgrade) on each
716 /// tick, so that the epoch ticking thread does not keep an [`Engine`] alive
717 /// longer than any of its consumers.
718 ///
719 /// ## Signal Safety
720 ///
721 /// This method is signal-safe: it does not make any syscalls, and
722 /// performs only an atomic increment to the epoch value in
723 /// memory.
724 #[cfg(target_has_atomic = "64")]
725 pub fn increment_epoch(&self) {
726 self.inner.epoch.fetch_add(1, Ordering::Relaxed);
727 }
728
729 /// Returns a [`std::hash::Hash`] that can be used to check precompiled WebAssembly compatibility.
730 ///
731 /// The outputs of [`Engine::precompile_module`] and [`Engine::precompile_component`]
732 /// are compatible with a different [`Engine`] instance only if the two engines use
733 /// compatible [`Config`]s. If this Hash matches between two [`Engine`]s then binaries
734 /// from one are guaranteed to deserialize in the other.
735 #[cfg(any(feature = "cranelift", feature = "winch"))]
736 pub fn precompile_compatibility_hash(&self) -> impl std::hash::Hash + '_ {
737 crate::compile::HashedEngineCompileEnv(self)
738 }
739
740 /// Executes `f1` and `f2` in parallel if parallel compilation is enabled at
741 /// both runtime and compile time, otherwise runs them synchronously.
742 #[allow(dead_code)] // only used for the component-model feature right now
743 pub(crate) fn join_maybe_parallel<T, U>(
744 &self,
745 f1: impl FnOnce() -> T + Send,
746 f2: impl FnOnce() -> U + Send,
747 ) -> (T, U)
748 where
749 T: Send,
750 U: Send,
751 {
752 if self.config().parallel_compilation {
753 #[cfg(feature = "parallel-compilation")]
754 return rayon::join(f1, f2);
755 }
756 (f1(), f2())
757 }
758
759 /// Returns the required alignment for a code image, if we
760 /// allocate in a way that is not a system `mmap()` that naturally
761 /// aligns it.
762 fn required_code_alignment(&self) -> usize {
763 self.custom_code_memory()
764 .map(|c| c.required_alignment())
765 .unwrap_or(1)
766 }
767
768 /// Loads a `CodeMemory` from the specified in-memory slice, copying it to a
769 /// uniquely owned mmap.
770 ///
771 /// The `expected` marker here is whether the bytes are expected to be a
772 /// precompiled module or a component.
773 pub(crate) fn load_code_bytes(
774 &self,
775 bytes: &[u8],
776 expected: ObjectKind,
777 ) -> Result<Arc<crate::CodeMemory>> {
778 self.load_code(
779 crate::runtime::vm::MmapVec::from_slice_with_alignment(
780 bytes,
781 self.required_code_alignment(),
782 )?,
783 expected,
784 )
785 }
786
787 /// Loads a `CodeMemory` from the specified memory region without copying
788 ///
789 /// The `expected` marker here is whether the bytes are expected to be
790 /// a precompiled module or a component. The `memory` provided is expected
791 /// to be a serialized module (.cwasm) generated by `[Module::serialize]`
792 /// or [`Engine::precompile_module] or their `Component` counterparts
793 /// [`Component::serialize`] or `[Engine::precompile_component]`.
794 ///
795 /// The memory provided is guaranteed to only be immutably by the runtime.
796 ///
797 /// # Safety
798 ///
799 /// As there is no copy here, the runtime will be making direct readonly use
800 /// of the provided memory. As such, outside writes to this memory region
801 /// will result in undefined and likely very undesirable behavior.
802 pub(crate) unsafe fn load_code_raw(
803 &self,
804 memory: NonNull<[u8]>,
805 expected: ObjectKind,
806 ) -> Result<Arc<crate::CodeMemory>> {
807 self.load_code(crate::runtime::vm::MmapVec::from_raw(memory)?, expected)
808 }
809
810 /// Like `load_code_bytes`, but creates a mmap from a file on disk.
811 #[cfg(feature = "std")]
812 pub(crate) fn load_code_file(
813 &self,
814 file: File,
815 expected: ObjectKind,
816 ) -> Result<Arc<crate::CodeMemory>> {
817 self.load_code(
818 crate::runtime::vm::MmapVec::from_file(file)
819 .with_context(|| "Failed to create file mapping".to_string())?,
820 expected,
821 )
822 }
823
824 pub(crate) fn load_code(
825 &self,
826 mmap: crate::runtime::vm::MmapVec,
827 expected: ObjectKind,
828 ) -> Result<Arc<crate::CodeMemory>> {
829 serialization::check_compatible(self, &mmap, expected)?;
830 let mut code = crate::CodeMemory::new(self, mmap)?;
831 code.publish()?;
832 Ok(Arc::new(code))
833 }
834
835 /// Unload process-related trap/signal handlers and destroy this engine.
836 ///
837 /// This method is not safe and is not widely applicable. It is not required
838 /// to be called and is intended for use cases such as unloading a dynamic
839 /// library from a process. It is difficult to invoke this method correctly
840 /// and it requires careful coordination to do so.
841 ///
842 /// # Panics
843 ///
844 /// This method will panic if this `Engine` handle is not the last remaining
845 /// engine handle.
846 ///
847 /// # Aborts
848 ///
849 /// This method will abort the process on some platforms in some situations
850 /// where unloading the handler cannot be performed and an unrecoverable
851 /// state is reached. For example on Unix platforms with signal handling
852 /// the process will be aborted if the current signal handlers are not
853 /// Wasmtime's.
854 ///
855 /// # Unsafety
856 ///
857 /// This method is not generally safe to call and has a number of
858 /// preconditions that must be met to even possibly be safe. Even with these
859 /// known preconditions met there may be other unknown invariants to uphold
860 /// as well.
861 ///
862 /// * There must be no other instances of `Engine` elsewhere in the process.
863 /// Note that this isn't just copies of this `Engine` but it's any other
864 /// `Engine` at all. This unloads global state that is used by all
865 /// `Engine`s so this instance must be the last.
866 ///
867 /// * On Unix platforms no other signal handlers could have been installed
868 /// for signals that Wasmtime catches. In this situation Wasmtime won't
869 /// know how to restore signal handlers that Wasmtime possibly overwrote
870 /// when Wasmtime was initially loaded. If possible initialize other
871 /// libraries first and then initialize Wasmtime last (e.g. defer creating
872 /// an `Engine`).
873 ///
874 /// * All existing threads which have used this DLL or copy of Wasmtime may
875 /// no longer use this copy of Wasmtime. Per-thread state is not iterated
876 /// and destroyed. Only future threads may use future instances of this
877 /// Wasmtime itself.
878 ///
879 /// If other crashes are seen from using this method please feel free to
880 /// file an issue to update the documentation here with more preconditions
881 /// that must be met.
882 #[cfg(has_native_signals)]
883 pub unsafe fn unload_process_handlers(self) {
884 assert_eq!(Arc::weak_count(&self.inner), 0);
885 assert_eq!(Arc::strong_count(&self.inner), 1);
886
887 #[cfg(not(miri))]
888 crate::runtime::vm::deinit_traps();
889 }
890}
891
892/// A weak reference to an [`Engine`].
893#[derive(Clone)]
894pub struct EngineWeak {
895 inner: alloc::sync::Weak<EngineInner>,
896}
897
898impl EngineWeak {
899 /// Upgrade this weak reference into an [`Engine`]. Returns `None` if
900 /// strong references (the [`Engine`] type itself) no longer exist.
901 pub fn upgrade(&self) -> Option<Engine> {
902 alloc::sync::Weak::upgrade(&self.inner).map(|inner| Engine { inner })
903 }
904}