wasmtime/engine.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
use crate::prelude::*;
#[cfg(feature = "runtime")]
use crate::runtime::type_registry::TypeRegistry;
#[cfg(feature = "runtime")]
use crate::runtime::vm::GcRuntime;
use crate::sync::OnceLock;
use crate::Config;
use alloc::sync::Arc;
use core::sync::atomic::{AtomicU64, Ordering};
#[cfg(any(feature = "cranelift", feature = "winch"))]
use object::write::{Object, StandardSegment};
use object::SectionKind;
#[cfg(feature = "std")]
use std::{fs::File, path::Path};
use wasmparser::WasmFeatures;
use wasmtime_environ::obj;
use wasmtime_environ::{FlagValue, ObjectKind, Tunables};
mod serialization;
/// An `Engine` which is a global context for compilation and management of wasm
/// modules.
///
/// An engine can be safely shared across threads and is a cheap cloneable
/// handle to the actual engine. The engine itself will be deallocated once all
/// references to it have gone away.
///
/// Engines store global configuration preferences such as compilation settings,
/// enabled features, etc. You'll likely only need at most one of these for a
/// program.
///
/// ## Engines and `Clone`
///
/// Using `clone` on an `Engine` is a cheap operation. It will not create an
/// entirely new engine, but rather just a new reference to the existing engine.
/// In other words it's a shallow copy, not a deep copy.
///
/// ## Engines and `Default`
///
/// You can create an engine with default configuration settings using
/// `Engine::default()`. Be sure to consult the documentation of [`Config`] for
/// default settings.
#[derive(Clone)]
pub struct Engine {
inner: Arc<EngineInner>,
}
struct EngineInner {
config: Config,
features: WasmFeatures,
tunables: Tunables,
#[cfg(any(feature = "cranelift", feature = "winch"))]
compiler: Box<dyn wasmtime_environ::Compiler>,
#[cfg(feature = "runtime")]
allocator: Box<dyn crate::runtime::vm::InstanceAllocator + Send + Sync>,
#[cfg(feature = "runtime")]
gc_runtime: Option<Arc<dyn GcRuntime>>,
#[cfg(feature = "runtime")]
profiler: Box<dyn crate::profiling_agent::ProfilingAgent>,
#[cfg(feature = "runtime")]
signatures: TypeRegistry,
#[cfg(feature = "runtime")]
epoch: AtomicU64,
/// One-time check of whether the compiler's settings, if present, are
/// compatible with the native host.
#[cfg(any(feature = "cranelift", feature = "winch"))]
compatible_with_native_host: OnceLock<Result<(), String>>,
}
impl Default for Engine {
fn default() -> Engine {
Engine::new(&Config::default()).unwrap()
}
}
impl Engine {
/// Creates a new [`Engine`] with the specified compilation and
/// configuration settings.
///
/// # Errors
///
/// This method can fail if the `config` is invalid or some
/// configurations are incompatible.
///
/// For example, feature `reference_types` will need to set
/// the compiler setting `enable_safepoints` and `unwind_info`
/// to `true`, but explicitly disable these two compiler settings
/// will cause errors.
pub fn new(config: &Config) -> Result<Engine> {
let config = config.clone();
let (tunables, features) = config.validate()?;
#[cfg(feature = "runtime")]
if tunables.signals_based_traps {
// Ensure that crate::runtime::vm's signal handlers are
// configured. This is the per-program initialization required for
// handling traps, such as configuring signals, vectored exception
// handlers, etc.
#[cfg(all(feature = "signals-based-traps", not(miri)))]
crate::runtime::vm::init_traps(config.macos_use_mach_ports);
#[cfg(feature = "debug-builtins")]
crate::runtime::vm::debug_builtins::ensure_exported();
}
#[cfg(any(feature = "cranelift", feature = "winch"))]
let (config, compiler) = config.build_compiler(&tunables, features)?;
Ok(Engine {
inner: Arc::new(EngineInner {
#[cfg(any(feature = "cranelift", feature = "winch"))]
compiler,
#[cfg(feature = "runtime")]
allocator: config.build_allocator(&tunables)?,
#[cfg(feature = "runtime")]
gc_runtime: config.build_gc_runtime()?,
#[cfg(feature = "runtime")]
profiler: config.build_profiler()?,
#[cfg(feature = "runtime")]
signatures: TypeRegistry::new(),
#[cfg(feature = "runtime")]
epoch: AtomicU64::new(0),
#[cfg(any(feature = "cranelift", feature = "winch"))]
compatible_with_native_host: OnceLock::new(),
config,
tunables,
features,
}),
})
}
/// Returns the configuration settings that this engine is using.
#[inline]
pub fn config(&self) -> &Config {
&self.inner.config
}
#[inline]
pub(crate) fn features(&self) -> WasmFeatures {
self.inner.features
}
pub(crate) fn run_maybe_parallel<
A: Send,
B: Send,
E: Send,
F: Fn(A) -> Result<B, E> + Send + Sync,
>(
&self,
input: Vec<A>,
f: F,
) -> Result<Vec<B>, E> {
if self.config().parallel_compilation {
#[cfg(feature = "parallel-compilation")]
{
use rayon::prelude::*;
return input
.into_par_iter()
.map(|a| f(a))
.collect::<Result<Vec<B>, E>>();
}
}
// In case the parallel-compilation feature is disabled or the parallel_compilation config
// was turned off dynamically fallback to the non-parallel version.
input
.into_iter()
.map(|a| f(a))
.collect::<Result<Vec<B>, E>>()
}
/// Take a weak reference to this engine.
pub fn weak(&self) -> EngineWeak {
EngineWeak {
inner: Arc::downgrade(&self.inner),
}
}
#[inline]
pub(crate) fn tunables(&self) -> &Tunables {
&self.inner.tunables
}
/// Returns whether the engine `a` and `b` refer to the same configuration.
#[inline]
pub fn same(a: &Engine, b: &Engine) -> bool {
Arc::ptr_eq(&a.inner, &b.inner)
}
/// Returns whether the engine is configured to support async functions.
#[cfg(feature = "async")]
#[inline]
pub fn is_async(&self) -> bool {
self.config().async_support
}
/// Detects whether the bytes provided are a precompiled object produced by
/// Wasmtime.
///
/// This function will inspect the header of `bytes` to determine if it
/// looks like a precompiled core wasm module or a precompiled component.
/// This does not validate the full structure or guarantee that
/// deserialization will succeed, instead it helps higher-levels of the
/// stack make a decision about what to do next when presented with the
/// `bytes` as an input module.
///
/// If the `bytes` looks like a precompiled object previously produced by
/// [`Module::serialize`](crate::Module::serialize),
/// [`Component::serialize`](crate::component::Component::serialize),
/// [`Engine::precompile_module`], or [`Engine::precompile_component`], then
/// this will return `Some(...)` indicating so. Otherwise `None` is
/// returned.
pub fn detect_precompiled(&self, bytes: &[u8]) -> Option<Precompiled> {
serialization::detect_precompiled_bytes(bytes)
}
/// Like [`Engine::detect_precompiled`], but performs the detection on a file.
#[cfg(feature = "std")]
pub fn detect_precompiled_file(&self, path: impl AsRef<Path>) -> Result<Option<Precompiled>> {
serialization::detect_precompiled_file(path)
}
/// Returns the target triple which this engine is compiling code for
/// and/or running code for.
pub(crate) fn target(&self) -> target_lexicon::Triple {
// If a compiler is configured, use that target.
#[cfg(any(feature = "cranelift", feature = "winch"))]
return self.compiler().triple().clone();
// ... otherwise it's the native target
#[cfg(not(any(feature = "cranelift", feature = "winch")))]
return target_lexicon::Triple::host();
}
/// Verify that this engine's configuration is compatible with loading
/// modules onto the native host platform.
///
/// This method is used as part of `Module::new` to ensure that this
/// engine can indeed load modules for the configured compiler (if any).
/// Note that if cranelift is disabled this trivially returns `Ok` because
/// loaded serialized modules are checked separately.
pub(crate) fn check_compatible_with_native_host(&self) -> Result<()> {
#[cfg(any(feature = "cranelift", feature = "winch"))]
{
self.inner
.compatible_with_native_host
.get_or_init(|| self._check_compatible_with_native_host())
.clone()
.map_err(anyhow::Error::msg)
}
#[cfg(not(any(feature = "cranelift", feature = "winch")))]
{
Ok(())
}
}
fn _check_compatible_with_native_host(&self) -> Result<(), String> {
#[cfg(any(feature = "cranelift", feature = "winch"))]
{
use target_lexicon::{Architecture, PointerWidth, Triple};
let compiler = self.compiler();
let target = compiler.triple();
let host = Triple::host();
let target_matches_host = || {
// If the host target and target triple match, then it's valid
// to run results of compilation on this host.
if host == *target {
return true;
}
// Otherwise if there's a mismatch the only allowed
// configuration at this time is that any target can run Pulley,
// Wasmtime's interpreter. This only works though if the
// pointer-width of pulley matches the pointer-width of the
// host, so check that here.
match host.pointer_width() {
Ok(PointerWidth::U32) => target.architecture == Architecture::Pulley32,
Ok(PointerWidth::U64) => target.architecture == Architecture::Pulley64,
_ => false,
}
};
if !target_matches_host() {
return Err(format!(
"target '{target}' specified in the configuration does not match the host"
));
}
// Also double-check all compiler settings
for (key, value) in compiler.flags().iter() {
self.check_compatible_with_shared_flag(key, value)?;
}
for (key, value) in compiler.isa_flags().iter() {
self.check_compatible_with_isa_flag(key, value)?;
}
}
Ok(())
}
/// Checks to see whether the "shared flag", something enabled for
/// individual compilers, is compatible with the native host platform.
///
/// This is used both when validating an engine's compilation settings are
/// compatible with the host as well as when deserializing modules from
/// disk to ensure they're compatible with the current host.
///
/// Note that most of the settings here are not configured by users that
/// often. While theoretically possible via `Config` methods the more
/// interesting flags are the ISA ones below. Typically the values here
/// represent global configuration for wasm features. Settings here
/// currently rely on the compiler informing us of all settings, including
/// those disabled. Settings then fall in a few buckets:
///
/// * Some settings must be enabled, such as `preserve_frame_pointers`.
/// * Some settings must have a particular value, such as
/// `libcall_call_conv`.
/// * Some settings do not matter as to their value, such as `opt_level`.
pub(crate) fn check_compatible_with_shared_flag(
&self,
flag: &str,
value: &FlagValue,
) -> Result<(), String> {
let target = self.target();
let ok = match flag {
// These settings must all have be enabled, since their value
// can affect the way the generated code performs or behaves at
// runtime.
"libcall_call_conv" => *value == FlagValue::Enum("isa_default".into()),
"preserve_frame_pointers" => *value == FlagValue::Bool(true),
"enable_probestack" => *value == FlagValue::Bool(true),
"probestack_strategy" => *value == FlagValue::Enum("inline".into()),
"enable_multi_ret_implicit_sret" => *value == FlagValue::Bool(true),
// Features wasmtime doesn't use should all be disabled, since
// otherwise if they are enabled it could change the behavior of
// generated code.
"enable_llvm_abi_extensions" => *value == FlagValue::Bool(false),
"enable_pinned_reg" => *value == FlagValue::Bool(false),
"use_colocated_libcalls" => *value == FlagValue::Bool(false),
"use_pinned_reg_as_heap_base" => *value == FlagValue::Bool(false),
// If reference types (or anything that depends on reference types,
// like typed function references and GC) are enabled this must be
// enabled, otherwise this setting can have any value.
"enable_safepoints" => {
if self.features().contains(WasmFeatures::REFERENCE_TYPES) {
*value == FlagValue::Bool(true)
} else {
return Ok(())
}
}
// Windows requires unwind info as part of its ABI.
"unwind_info" => {
if target.operating_system == target_lexicon::OperatingSystem::Windows {
*value == FlagValue::Bool(true)
} else {
return Ok(())
}
}
// These settings don't affect the interface or functionality of
// the module itself, so their configuration values shouldn't
// matter.
"enable_heap_access_spectre_mitigation"
| "enable_table_access_spectre_mitigation"
| "enable_nan_canonicalization"
| "enable_jump_tables"
| "enable_float"
| "enable_verifier"
| "enable_pcc"
| "regalloc_checker"
| "regalloc_verbose_logs"
| "regalloc_algorithm"
| "is_pic"
| "bb_padding_log2_minus_one"
| "machine_code_cfg_info"
| "tls_model" // wasmtime doesn't use tls right now
| "stack_switch_model" // wasmtime doesn't use stack switching right now
| "opt_level" // opt level doesn't change semantics
| "enable_alias_analysis" // alias analysis-based opts don't change semantics
| "probestack_size_log2" // probestack above asserted disabled
| "regalloc" // shouldn't change semantics
| "enable_incremental_compilation_cache_checks" // shouldn't change semantics
| "enable_atomics" => return Ok(()),
// Everything else is unknown and needs to be added somewhere to
// this list if encountered.
_ => {
return Err(format!("unknown shared setting {flag:?} configured to {value:?}"))
}
};
if !ok {
return Err(format!(
"setting {flag:?} is configured to {value:?} which is not supported",
));
}
Ok(())
}
/// Same as `check_compatible_with_native_host` except used for ISA-specific
/// flags. This is used to test whether a configured ISA flag is indeed
/// available on the host platform itself.
pub(crate) fn check_compatible_with_isa_flag(
&self,
flag: &str,
value: &FlagValue,
) -> Result<(), String> {
match value {
// ISA flags are used for things like CPU features, so if they're
// disabled then it's compatible with the native host.
FlagValue::Bool(false) => return Ok(()),
// Fall through below where we test at runtime that features are
// available.
FlagValue::Bool(true) => {}
// Pulley's pointer_width must match the host.
FlagValue::Enum("pointer32") => {
return if cfg!(target_pointer_width = "32") {
Ok(())
} else {
Err("wrong host pointer width".to_string())
}
}
FlagValue::Enum("pointer64") => {
return if cfg!(target_pointer_width = "64") {
Ok(())
} else {
Err("wrong host pointer width".to_string())
}
}
// Only `bool` values are supported right now, other settings would
// need more support here.
_ => {
return Err(format!(
"isa-specific feature {flag:?} configured to unknown value {value:?}"
))
}
}
let host_feature = match flag {
// aarch64 features to detect
"has_lse" => "lse",
"has_pauth" => "paca",
"has_fp16" => "fp16",
// aarch64 features which don't need detection
// No effect on its own.
"sign_return_address_all" => return Ok(()),
// The pointer authentication instructions act as a `NOP` when
// unsupported, so it is safe to enable them.
"sign_return_address" => return Ok(()),
// No effect on its own.
"sign_return_address_with_bkey" => return Ok(()),
// The `BTI` instruction acts as a `NOP` when unsupported, so it
// is safe to enable it regardless of whether the host supports it
// or not.
"use_bti" => return Ok(()),
// s390x features to detect
"has_vxrs_ext2" => "vxrs_ext2",
"has_mie2" => "mie2",
// x64 features to detect
"has_cmpxchg16b" => "cmpxchg16b",
"has_sse3" => "sse3",
"has_ssse3" => "ssse3",
"has_sse41" => "sse4.1",
"has_sse42" => "sse4.2",
"has_popcnt" => "popcnt",
"has_avx" => "avx",
"has_avx2" => "avx2",
"has_fma" => "fma",
"has_bmi1" => "bmi1",
"has_bmi2" => "bmi2",
"has_avx512bitalg" => "avx512bitalg",
"has_avx512dq" => "avx512dq",
"has_avx512f" => "avx512f",
"has_avx512vl" => "avx512vl",
"has_avx512vbmi" => "avx512vbmi",
"has_lzcnt" => "lzcnt",
_ => {
// FIXME: should enumerate risc-v features and plumb them
// through to the `detect_host_feature` function.
if cfg!(target_arch = "riscv64") && flag != "not_a_flag" {
return Ok(());
}
return Err(format!(
"don't know how to test for target-specific flag {flag:?} at runtime"
));
}
};
let detect = match self.config().detect_host_feature {
Some(detect) => detect,
None => {
return Err(format!(
"cannot determine if host feature {host_feature:?} is \
available at runtime, configure a probing function with \
`Config::detect_host_feature`"
))
}
};
match detect(host_feature) {
Some(true) => Ok(()),
Some(false) => Err(format!(
"compilation setting {flag:?} is enabled, but not \
available on the host",
)),
None => Err(format!(
"failed to detect if target-specific flag {flag:?} is \
available at runtime"
)),
}
}
}
#[cfg(any(feature = "cranelift", feature = "winch"))]
impl Engine {
pub(crate) fn compiler(&self) -> &dyn wasmtime_environ::Compiler {
&*self.inner.compiler
}
/// Ahead-of-time (AOT) compiles a WebAssembly module.
///
/// The `bytes` provided must be in one of two formats:
///
/// * A [binary-encoded][binary] WebAssembly module. This is always supported.
/// * A [text-encoded][text] instance of the WebAssembly text format.
/// This is only supported when the `wat` feature of this crate is enabled.
/// If this is supplied then the text format will be parsed before validation.
/// Note that the `wat` feature is enabled by default.
///
/// This method may be used to compile a module for use with a different target
/// host. The output of this method may be used with
/// [`Module::deserialize`](crate::Module::deserialize) on hosts compatible
/// with the [`Config`](crate::Config) associated with this [`Engine`].
///
/// The output of this method is safe to send to another host machine for later
/// execution. As the output is already a compiled module, translation and code
/// generation will be skipped and this will improve the performance of constructing
/// a [`Module`](crate::Module) from the output of this method.
///
/// [binary]: https://webassembly.github.io/spec/core/binary/index.html
/// [text]: https://webassembly.github.io/spec/core/text/index.html
pub fn precompile_module(&self, bytes: &[u8]) -> Result<Vec<u8>> {
crate::CodeBuilder::new(self)
.wasm_binary_or_text(bytes, None)?
.compile_module_serialized()
}
/// Same as [`Engine::precompile_module`] except for a
/// [`Component`](crate::component::Component)
#[cfg(feature = "component-model")]
pub fn precompile_component(&self, bytes: &[u8]) -> Result<Vec<u8>> {
crate::CodeBuilder::new(self)
.wasm_binary_or_text(bytes, None)?
.compile_component_serialized()
}
/// Produces a blob of bytes by serializing the `engine`'s configuration data to
/// be checked, perhaps in a different process, with the `check_compatible`
/// method below.
///
/// The blob of bytes is inserted into the object file specified to become part
/// of the final compiled artifact.
pub(crate) fn append_compiler_info(&self, obj: &mut Object<'_>) {
serialization::append_compiler_info(self, obj, &serialization::Metadata::new(&self))
}
#[cfg(any(feature = "cranelift", feature = "winch"))]
pub(crate) fn append_bti(&self, obj: &mut Object<'_>) {
let section = obj.add_section(
obj.segment_name(StandardSegment::Data).to_vec(),
obj::ELF_WASM_BTI.as_bytes().to_vec(),
SectionKind::ReadOnlyData,
);
let contents = if self.compiler().is_branch_protection_enabled() {
1
} else {
0
};
obj.append_section_data(section, &[contents], 1);
}
}
/// Return value from the [`Engine::detect_precompiled`] API.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum Precompiled {
/// The input bytes look like a precompiled core wasm module.
Module,
/// The input bytes look like a precompiled wasm component.
Component,
}
#[cfg(feature = "runtime")]
impl Engine {
/// Eagerly initialize thread-local functionality shared by all [`Engine`]s.
///
/// Wasmtime's implementation on some platforms may involve per-thread
/// setup that needs to happen whenever WebAssembly is invoked. This setup
/// can take on the order of a few hundred microseconds, whereas the
/// overhead of calling WebAssembly is otherwise on the order of a few
/// nanoseconds. This setup cost is paid once per-OS-thread. If your
/// application is sensitive to the latencies of WebAssembly function
/// calls, even those that happen first on a thread, then this function
/// can be used to improve the consistency of each call into WebAssembly
/// by explicitly frontloading the cost of the one-time setup per-thread.
///
/// Note that this function is not required to be called in any embedding.
/// Wasmtime will automatically initialize thread-local-state as necessary
/// on calls into WebAssembly. This is provided for use cases where the
/// latency of WebAssembly calls are extra-important, which is not
/// necessarily true of all embeddings.
pub fn tls_eager_initialize() {
crate::runtime::vm::tls_eager_initialize();
}
pub(crate) fn allocator(&self) -> &dyn crate::runtime::vm::InstanceAllocator {
self.inner.allocator.as_ref()
}
pub(crate) fn gc_runtime(&self) -> Result<&Arc<dyn GcRuntime>> {
if let Some(rt) = &self.inner.gc_runtime {
Ok(rt)
} else {
bail!("no GC runtime: GC disabled at compile time or configuration time")
}
}
pub(crate) fn profiler(&self) -> &dyn crate::profiling_agent::ProfilingAgent {
self.inner.profiler.as_ref()
}
#[cfg(feature = "cache")]
pub(crate) fn cache_config(&self) -> &wasmtime_cache::CacheConfig {
&self.config().cache_config
}
pub(crate) fn signatures(&self) -> &TypeRegistry {
&self.inner.signatures
}
pub(crate) fn epoch_counter(&self) -> &AtomicU64 {
&self.inner.epoch
}
pub(crate) fn current_epoch(&self) -> u64 {
self.epoch_counter().load(Ordering::Relaxed)
}
/// Increments the epoch.
///
/// When using epoch-based interruption, currently-executing Wasm
/// code within this engine will trap or yield "soon" when the
/// epoch deadline is reached or exceeded. (The configuration, and
/// the deadline, are set on the `Store`.) The intent of the
/// design is for this method to be called by the embedder at some
/// regular cadence, for example by a thread that wakes up at some
/// interval, or by a signal handler.
///
/// See [`Config::epoch_interruption`](crate::Config::epoch_interruption)
/// for an introduction to epoch-based interruption and pointers
/// to the other relevant methods.
///
/// When performing `increment_epoch` in a separate thread, consider using
/// [`Engine::weak`] to hold an [`EngineWeak`](crate::EngineWeak) and
/// performing [`EngineWeak::upgrade`](crate::EngineWeak::upgrade) on each
/// tick, so that the epoch ticking thread does not keep an [`Engine`] alive
/// longer than any of its consumers.
///
/// ## Signal Safety
///
/// This method is signal-safe: it does not make any syscalls, and
/// performs only an atomic increment to the epoch value in
/// memory.
pub fn increment_epoch(&self) {
self.inner.epoch.fetch_add(1, Ordering::Relaxed);
}
/// Returns a [`std::hash::Hash`] that can be used to check precompiled WebAssembly compatibility.
///
/// The outputs of [`Engine::precompile_module`] and [`Engine::precompile_component`]
/// are compatible with a different [`Engine`] instance only if the two engines use
/// compatible [`Config`]s. If this Hash matches between two [`Engine`]s then binaries
/// from one are guaranteed to deserialize in the other.
#[cfg(any(feature = "cranelift", feature = "winch"))]
pub fn precompile_compatibility_hash(&self) -> impl std::hash::Hash + '_ {
crate::compile::HashedEngineCompileEnv(self)
}
/// Executes `f1` and `f2` in parallel if parallel compilation is enabled at
/// both runtime and compile time, otherwise runs them synchronously.
#[allow(dead_code)] // only used for the component-model feature right now
pub(crate) fn join_maybe_parallel<T, U>(
&self,
f1: impl FnOnce() -> T + Send,
f2: impl FnOnce() -> U + Send,
) -> (T, U)
where
T: Send,
U: Send,
{
if self.config().parallel_compilation {
#[cfg(feature = "parallel-compilation")]
return rayon::join(f1, f2);
}
(f1(), f2())
}
/// Loads a `CodeMemory` from the specified in-memory slice, copying it to a
/// uniquely owned mmap.
///
/// The `expected` marker here is whether the bytes are expected to be a
/// precompiled module or a component.
pub(crate) fn load_code_bytes(
&self,
bytes: &[u8],
expected: ObjectKind,
) -> Result<Arc<crate::CodeMemory>> {
self.load_code(crate::runtime::vm::MmapVec::from_slice(bytes)?, expected)
}
/// Like `load_code_bytes`, but creates a mmap from a file on disk.
#[cfg(feature = "std")]
pub(crate) fn load_code_file(
&self,
file: File,
expected: ObjectKind,
) -> Result<Arc<crate::CodeMemory>> {
self.load_code(
crate::runtime::vm::MmapVec::from_file(file)
.with_context(|| "Failed to create file mapping".to_string())?,
expected,
)
}
pub(crate) fn load_code(
&self,
mmap: crate::runtime::vm::MmapVec,
expected: ObjectKind,
) -> Result<Arc<crate::CodeMemory>> {
serialization::check_compatible(self, &mmap, expected)?;
let mut code = crate::CodeMemory::new(mmap)?;
code.publish()?;
Ok(Arc::new(code))
}
/// Unload process-related trap/signal handlers and destroy this engine.
///
/// This method is not safe and is not widely applicable. It is not required
/// to be called and is intended for use cases such as unloading a dynamic
/// library from a process. It is difficult to invoke this method correctly
/// and it requires careful coordination to do so.
///
/// # Panics
///
/// This method will panic if this `Engine` handle is not the last remaining
/// engine handle.
///
/// # Aborts
///
/// This method will abort the process on some platforms in some situations
/// where unloading the handler cannot be performed and an unrecoverable
/// state is reached. For example on Unix platforms with signal handling
/// the process will be aborted if the current signal handlers are not
/// Wasmtime's.
///
/// # Unsafety
///
/// This method is not generally safe to call and has a number of
/// preconditions that must be met to even possibly be safe. Even with these
/// known preconditions met there may be other unknown invariants to uphold
/// as well.
///
/// * There must be no other instances of `Engine` elsewhere in the process.
/// Note that this isn't just copies of this `Engine` but it's any other
/// `Engine` at all. This unloads global state that is used by all
/// `Engine`s so this instance must be the last.
///
/// * On Unix platforms no other signal handlers could have been installed
/// for signals that Wasmtime catches. In this situation Wasmtime won't
/// know how to restore signal handlers that Wasmtime possibly overwrote
/// when Wasmtime was initially loaded. If possible initialize other
/// libraries first and then initialize Wasmtime last (e.g. defer creating
/// an `Engine`).
///
/// * All existing threads which have used this DLL or copy of Wasmtime may
/// no longer use this copy of Wasmtime. Per-thread state is not iterated
/// and destroyed. Only future threads may use future instances of this
/// Wasmtime itself.
///
/// If other crashes are seen from using this method please feel free to
/// file an issue to update the documentation here with more preconditions
/// that must be met.
#[cfg(feature = "signals-based-traps")]
pub unsafe fn unload_process_handlers(self) {
assert_eq!(Arc::weak_count(&self.inner), 0);
assert_eq!(Arc::strong_count(&self.inner), 1);
#[cfg(not(miri))]
crate::runtime::vm::deinit_traps();
}
}
/// A weak reference to an [`Engine`].
#[derive(Clone)]
pub struct EngineWeak {
inner: alloc::sync::Weak<EngineInner>,
}
impl EngineWeak {
/// Upgrade this weak reference into an [`Engine`]. Returns `None` if
/// strong references (the [`Engine`] type itself) no longer exist.
pub fn upgrade(&self) -> Option<Engine> {
alloc::sync::Weak::upgrade(&self.inner).map(|inner| Engine { inner })
}
}