wasmtime_environ/component/
types_builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
use crate::component::*;
use crate::prelude::*;
use crate::{
    EngineOrModuleTypeIndex, EntityType, ModuleInternedTypeIndex, ModuleTypes, ModuleTypesBuilder,
    PrimaryMap, TypeConvert, WasmHeapType, WasmValType,
};
use anyhow::{bail, Result};
use cranelift_entity::EntityRef;
use std::collections::HashMap;
use std::hash::Hash;
use std::ops::Index;
use wasmparser::component_types::{
    ComponentAnyTypeId, ComponentCoreModuleTypeId, ComponentDefinedType, ComponentDefinedTypeId,
    ComponentEntityType, ComponentFuncTypeId, ComponentInstanceTypeId, ComponentTypeId,
    ComponentValType, RecordType, ResourceId, TupleType, VariantType,
};
use wasmparser::names::KebabString;
use wasmparser::types::TypesRef;
use wasmparser::Validator;
use wasmtime_component_util::FlagsSize;

mod resources;
pub use resources::ResourcesBuilder;

/// Maximum nesting depth of a type allowed in Wasmtime.
///
/// This constant isn't chosen via any scientific means and its main purpose is
/// to enable most of Wasmtime to handle types via recursion without worrying
/// about stack overflow.
///
/// Some more information about this can be found in #4814
const MAX_TYPE_DEPTH: u32 = 100;

/// Structured used to build a [`ComponentTypes`] during translation.
///
/// This contains tables to intern any component types found as well as
/// managing building up core wasm [`ModuleTypes`] as well.
pub struct ComponentTypesBuilder {
    functions: HashMap<TypeFunc, TypeFuncIndex>,
    lists: HashMap<TypeList, TypeListIndex>,
    records: HashMap<TypeRecord, TypeRecordIndex>,
    variants: HashMap<TypeVariant, TypeVariantIndex>,
    tuples: HashMap<TypeTuple, TypeTupleIndex>,
    enums: HashMap<TypeEnum, TypeEnumIndex>,
    flags: HashMap<TypeFlags, TypeFlagsIndex>,
    options: HashMap<TypeOption, TypeOptionIndex>,
    results: HashMap<TypeResult, TypeResultIndex>,

    component_types: ComponentTypes,
    module_types: ModuleTypesBuilder,

    // Cache of what the "flat" representation of all types are which is only
    // used at compile-time and not used at runtime, hence the location here
    // as opposed to `ComponentTypes`.
    type_info: TypeInformationCache,

    resources: ResourcesBuilder,
}

impl<T> Index<T> for ComponentTypesBuilder
where
    ModuleTypes: Index<T>,
{
    type Output = <ModuleTypes as Index<T>>::Output;
    fn index(&self, idx: T) -> &Self::Output {
        self.module_types.index(idx)
    }
}

macro_rules! intern_and_fill_flat_types {
    ($me:ident, $name:ident, $val:ident) => {{
        if let Some(idx) = $me.$name.get(&$val) {
            return *idx;
        }
        let idx = $me.component_types.$name.push($val.clone());
        let mut info = TypeInformation::new();
        info.$name($me, &$val);
        let idx2 = $me.type_info.$name.push(info);
        assert_eq!(idx, idx2);
        $me.$name.insert($val, idx);
        return idx;
    }};
}

impl ComponentTypesBuilder {
    /// Construct a new `ComponentTypesBuilder` for use with the given validator.
    pub fn new(validator: &Validator) -> Self {
        Self {
            module_types: ModuleTypesBuilder::new(validator),

            functions: HashMap::default(),
            lists: HashMap::default(),
            records: HashMap::default(),
            variants: HashMap::default(),
            tuples: HashMap::default(),
            enums: HashMap::default(),
            flags: HashMap::default(),
            options: HashMap::default(),
            results: HashMap::default(),
            component_types: ComponentTypes::default(),
            type_info: TypeInformationCache::default(),
            resources: ResourcesBuilder::default(),
        }
    }

    fn export_type_def(
        &mut self,
        export_items: &PrimaryMap<ExportIndex, Export>,
        idx: ExportIndex,
    ) -> TypeDef {
        match &export_items[idx] {
            Export::LiftedFunction { ty, .. } => TypeDef::ComponentFunc(*ty),
            Export::ModuleStatic { ty, .. } | Export::ModuleImport { ty, .. } => {
                TypeDef::Module(*ty)
            }
            Export::Instance { ty, .. } => TypeDef::ComponentInstance(*ty),
            Export::Type(ty) => *ty,
        }
    }

    /// Finishes this list of component types and returns the finished
    /// structure and the [`TypeComponentIndex`] corresponding to top-level component
    /// with `imports` and `exports` specified.
    pub fn finish(mut self, component: &Component) -> (ComponentTypes, TypeComponentIndex) {
        let mut component_ty = TypeComponent::default();
        for (_, (name, ty)) in component.import_types.iter() {
            component_ty.imports.insert(name.clone(), *ty);
        }
        for (name, ty) in component.exports.raw_iter() {
            component_ty.exports.insert(
                name.clone(),
                self.export_type_def(&component.export_items, *ty),
            );
        }
        let ty = self.component_types.components.push(component_ty);

        self.component_types.module_types = Some(self.module_types.finish());
        (self.component_types, ty)
    }

    /// Smaller helper method to find a `ModuleInternedTypeIndex` which
    /// corresponds to the `resource.drop` intrinsic in components, namely a
    /// core wasm function type which takes one `i32` argument and has no
    /// results.
    ///
    /// This is a bit of a hack right now as ideally this find operation
    /// wouldn't be needed and instead the `ModuleInternedTypeIndex` itself
    /// would be threaded through appropriately, but that's left for a future
    /// refactoring. Try not to lean too hard on this method though.
    pub fn find_resource_drop_signature(&self) -> Option<ModuleInternedTypeIndex> {
        self.module_types
            .wasm_types()
            .find(|(_, ty)| {
                ty.as_func().map_or(false, |sig| {
                    sig.params().len() == 1
                        && sig.returns().len() == 0
                        && sig.params()[0] == WasmValType::I32
                })
            })
            .map(|(i, _)| i)
    }

    /// Returns the underlying builder used to build up core wasm module types.
    ///
    /// Note that this is shared across all modules found within a component to
    /// improve the wins from deduplicating function signatures.
    pub fn module_types_builder(&self) -> &ModuleTypesBuilder {
        &self.module_types
    }

    /// Same as `module_types_builder`, but `mut`.
    pub fn module_types_builder_mut(&mut self) -> &mut ModuleTypesBuilder {
        &mut self.module_types
    }

    /// Returns the internal reference to the in-progress `&ComponentTypes`.
    pub(super) fn component_types(&self) -> &ComponentTypes {
        &self.component_types
    }

    /// Returns the number of resource tables allocated so far, or the maximum
    /// `TypeResourceTableIndex`.
    pub fn num_resource_tables(&self) -> usize {
        self.component_types.resource_tables.len()
    }

    /// Returns a mutable reference to the underlying `ResourcesBuilder`.
    pub fn resources_mut(&mut self) -> &mut ResourcesBuilder {
        &mut self.resources
    }

    /// Work around the borrow checker to borrow two sub-fields simultaneously
    /// externally.
    pub fn resources_mut_and_types(&mut self) -> (&mut ResourcesBuilder, &ComponentTypes) {
        (&mut self.resources, &self.component_types)
    }

    /// Converts a wasmparser `ComponentFuncType` into Wasmtime's type
    /// representation.
    pub fn convert_component_func_type(
        &mut self,
        types: TypesRef<'_>,
        id: ComponentFuncTypeId,
    ) -> Result<TypeFuncIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let ty = &types[id];
        let param_names = ty.params.iter().map(|(name, _)| name.to_string()).collect();
        let params = ty
            .params
            .iter()
            .map(|(_name, ty)| self.valtype(types, ty))
            .collect::<Result<_>>()?;
        let results = ty
            .results
            .iter()
            .map(|(_name, ty)| self.valtype(types, ty))
            .collect::<Result<_>>()?;
        let ty = TypeFunc {
            param_names,
            params: self.new_tuple_type(params),
            results: self.new_tuple_type(results),
        };
        Ok(self.add_func_type(ty))
    }

    /// Converts a wasmparser `ComponentEntityType` into Wasmtime's type
    /// representation.
    pub fn convert_component_entity_type(
        &mut self,
        types: TypesRef<'_>,
        ty: ComponentEntityType,
    ) -> Result<TypeDef> {
        assert_eq!(types.id(), self.module_types.validator_id());
        Ok(match ty {
            ComponentEntityType::Module(id) => TypeDef::Module(self.convert_module(types, id)?),
            ComponentEntityType::Component(id) => {
                TypeDef::Component(self.convert_component(types, id)?)
            }
            ComponentEntityType::Instance(id) => {
                TypeDef::ComponentInstance(self.convert_instance(types, id)?)
            }
            ComponentEntityType::Func(id) => {
                TypeDef::ComponentFunc(self.convert_component_func_type(types, id)?)
            }
            ComponentEntityType::Type { created, .. } => match created {
                ComponentAnyTypeId::Defined(id) => {
                    TypeDef::Interface(self.defined_type(types, id)?)
                }
                ComponentAnyTypeId::Resource(id) => {
                    TypeDef::Resource(self.resource_id(id.resource()))
                }
                _ => bail!("unsupported type export"),
            },
            ComponentEntityType::Value(_) => bail!("values not supported"),
        })
    }

    /// Converts a wasmparser `Type` into Wasmtime's type representation.
    pub fn convert_type(&mut self, types: TypesRef<'_>, id: ComponentAnyTypeId) -> Result<TypeDef> {
        assert_eq!(types.id(), self.module_types.validator_id());
        Ok(match id {
            ComponentAnyTypeId::Defined(id) => TypeDef::Interface(self.defined_type(types, id)?),
            ComponentAnyTypeId::Component(id) => {
                TypeDef::Component(self.convert_component(types, id)?)
            }
            ComponentAnyTypeId::Instance(id) => {
                TypeDef::ComponentInstance(self.convert_instance(types, id)?)
            }
            ComponentAnyTypeId::Func(id) => {
                TypeDef::ComponentFunc(self.convert_component_func_type(types, id)?)
            }
            ComponentAnyTypeId::Resource(id) => TypeDef::Resource(self.resource_id(id.resource())),
        })
    }

    fn convert_component(
        &mut self,
        types: TypesRef<'_>,
        id: ComponentTypeId,
    ) -> Result<TypeComponentIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let ty = &types[id];
        let mut result = TypeComponent::default();
        for (name, ty) in ty.imports.iter() {
            result.imports.insert(
                name.clone(),
                self.convert_component_entity_type(types, *ty)?,
            );
        }
        for (name, ty) in ty.exports.iter() {
            result.exports.insert(
                name.clone(),
                self.convert_component_entity_type(types, *ty)?,
            );
        }
        Ok(self.component_types.components.push(result))
    }

    pub(crate) fn convert_instance(
        &mut self,
        types: TypesRef<'_>,
        id: ComponentInstanceTypeId,
    ) -> Result<TypeComponentInstanceIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let ty = &types[id];
        let mut result = TypeComponentInstance::default();
        for (name, ty) in ty.exports.iter() {
            result.exports.insert(
                name.clone(),
                self.convert_component_entity_type(types, *ty)?,
            );
        }
        Ok(self.component_types.component_instances.push(result))
    }

    pub(crate) fn convert_module(
        &mut self,
        types: TypesRef<'_>,
        id: ComponentCoreModuleTypeId,
    ) -> Result<TypeModuleIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let ty = &types[id];
        let mut result = TypeModule::default();
        for ((module, field), ty) in ty.imports.iter() {
            result.imports.insert(
                (module.clone(), field.clone()),
                self.entity_type(types, ty)?,
            );
        }
        for (name, ty) in ty.exports.iter() {
            result
                .exports
                .insert(name.clone(), self.entity_type(types, ty)?);
        }
        Ok(self.component_types.modules.push(result))
    }

    fn entity_type(
        &mut self,
        types: TypesRef<'_>,
        ty: &wasmparser::types::EntityType,
    ) -> Result<EntityType> {
        use wasmparser::types::EntityType::*;

        assert_eq!(types.id(), self.module_types.validator_id());
        Ok(match ty {
            Func(id) => EntityType::Function({
                self.module_types_builder_mut()
                    .intern_type(types, *id)?
                    .into()
            }),
            Table(ty) => EntityType::Table(self.convert_table_type(ty)?),
            Memory(ty) => EntityType::Memory((*ty).into()),
            Global(ty) => EntityType::Global(self.convert_global_type(ty)),
            Tag(_) => bail!("exceptions proposal not implemented"),
        })
    }

    fn defined_type(
        &mut self,
        types: TypesRef<'_>,
        id: ComponentDefinedTypeId,
    ) -> Result<InterfaceType> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let ret = match &types[id] {
            ComponentDefinedType::Primitive(ty) => ty.into(),
            ComponentDefinedType::Record(e) => InterfaceType::Record(self.record_type(types, e)?),
            ComponentDefinedType::Variant(e) => {
                InterfaceType::Variant(self.variant_type(types, e)?)
            }
            ComponentDefinedType::List(e) => InterfaceType::List(self.list_type(types, e)?),
            ComponentDefinedType::Tuple(e) => InterfaceType::Tuple(self.tuple_type(types, e)?),
            ComponentDefinedType::Flags(e) => InterfaceType::Flags(self.flags_type(e)),
            ComponentDefinedType::Enum(e) => InterfaceType::Enum(self.enum_type(e)),
            ComponentDefinedType::Option(e) => InterfaceType::Option(self.option_type(types, e)?),
            ComponentDefinedType::Result { ok, err } => {
                InterfaceType::Result(self.result_type(types, ok, err)?)
            }
            ComponentDefinedType::Own(r) => InterfaceType::Own(self.resource_id(r.resource())),
            ComponentDefinedType::Borrow(r) => {
                InterfaceType::Borrow(self.resource_id(r.resource()))
            }
            ComponentDefinedType::Future(_)
            | ComponentDefinedType::Stream(_)
            | ComponentDefinedType::ErrorContext => bail!("unsupported async type"),
        };
        let info = self.type_information(&ret);
        if info.depth > MAX_TYPE_DEPTH {
            bail!("type nesting is too deep");
        }
        Ok(ret)
    }

    fn valtype(&mut self, types: TypesRef<'_>, ty: &ComponentValType) -> Result<InterfaceType> {
        assert_eq!(types.id(), self.module_types.validator_id());
        match ty {
            ComponentValType::Primitive(p) => Ok(p.into()),
            ComponentValType::Type(id) => self.defined_type(types, *id),
        }
    }

    fn record_type(&mut self, types: TypesRef<'_>, ty: &RecordType) -> Result<TypeRecordIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let fields = ty
            .fields
            .iter()
            .map(|(name, ty)| {
                Ok(RecordField {
                    name: name.to_string(),
                    ty: self.valtype(types, ty)?,
                })
            })
            .collect::<Result<Box<[_]>>>()?;
        let abi = CanonicalAbiInfo::record(
            fields
                .iter()
                .map(|field| self.component_types.canonical_abi(&field.ty)),
        );
        Ok(self.add_record_type(TypeRecord { fields, abi }))
    }

    fn variant_type(&mut self, types: TypesRef<'_>, ty: &VariantType) -> Result<TypeVariantIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let cases = ty
            .cases
            .iter()
            .map(|(name, case)| {
                // FIXME: need to implement `refines`, not sure what that
                // is at this time.
                if case.refines.is_some() {
                    bail!("refines is not supported at this time");
                }
                Ok((
                    name.to_string(),
                    match &case.ty.as_ref() {
                        Some(ty) => Some(self.valtype(types, ty)?),
                        None => None,
                    },
                ))
            })
            .collect::<Result<IndexMap<_, _>>>()?;
        let (info, abi) = VariantInfo::new(
            cases
                .iter()
                .map(|(_, c)| c.as_ref().map(|ty| self.component_types.canonical_abi(ty))),
        );
        Ok(self.add_variant_type(TypeVariant { cases, abi, info }))
    }

    fn tuple_type(&mut self, types: TypesRef<'_>, ty: &TupleType) -> Result<TypeTupleIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let types = ty
            .types
            .iter()
            .map(|ty| self.valtype(types, ty))
            .collect::<Result<Box<[_]>>>()?;
        Ok(self.new_tuple_type(types))
    }

    fn new_tuple_type(&mut self, types: Box<[InterfaceType]>) -> TypeTupleIndex {
        let abi = CanonicalAbiInfo::record(
            types
                .iter()
                .map(|ty| self.component_types.canonical_abi(ty)),
        );
        self.add_tuple_type(TypeTuple { types, abi })
    }

    fn flags_type(&mut self, flags: &IndexSet<KebabString>) -> TypeFlagsIndex {
        let flags = TypeFlags {
            names: flags.iter().map(|s| s.to_string()).collect(),
            abi: CanonicalAbiInfo::flags(flags.len()),
        };
        self.add_flags_type(flags)
    }

    fn enum_type(&mut self, variants: &IndexSet<KebabString>) -> TypeEnumIndex {
        let names = variants
            .iter()
            .map(|s| s.to_string())
            .collect::<IndexSet<_>>();
        let (info, abi) = VariantInfo::new(names.iter().map(|_| None));
        self.add_enum_type(TypeEnum { names, abi, info })
    }

    fn option_type(
        &mut self,
        types: TypesRef<'_>,
        ty: &ComponentValType,
    ) -> Result<TypeOptionIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let ty = self.valtype(types, ty)?;
        let (info, abi) = VariantInfo::new([None, Some(self.component_types.canonical_abi(&ty))]);
        Ok(self.add_option_type(TypeOption { ty, abi, info }))
    }

    fn result_type(
        &mut self,
        types: TypesRef<'_>,
        ok: &Option<ComponentValType>,
        err: &Option<ComponentValType>,
    ) -> Result<TypeResultIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let ok = match ok {
            Some(ty) => Some(self.valtype(types, ty)?),
            None => None,
        };
        let err = match err {
            Some(ty) => Some(self.valtype(types, ty)?),
            None => None,
        };
        let (info, abi) = VariantInfo::new([
            ok.as_ref().map(|t| self.component_types.canonical_abi(t)),
            err.as_ref().map(|t| self.component_types.canonical_abi(t)),
        ]);
        Ok(self.add_result_type(TypeResult { ok, err, abi, info }))
    }

    fn list_type(&mut self, types: TypesRef<'_>, ty: &ComponentValType) -> Result<TypeListIndex> {
        assert_eq!(types.id(), self.module_types.validator_id());
        let element = self.valtype(types, ty)?;
        Ok(self.add_list_type(TypeList { element }))
    }

    /// Converts a wasmparser `id`, which must point to a resource, to its
    /// corresponding `TypeResourceTableIndex`.
    pub fn resource_id(&mut self, id: ResourceId) -> TypeResourceTableIndex {
        self.resources.convert(id, &mut self.component_types)
    }

    /// Interns a new function type within this type information.
    pub fn add_func_type(&mut self, ty: TypeFunc) -> TypeFuncIndex {
        intern(&mut self.functions, &mut self.component_types.functions, ty)
    }

    /// Interns a new record type within this type information.
    pub fn add_record_type(&mut self, ty: TypeRecord) -> TypeRecordIndex {
        intern_and_fill_flat_types!(self, records, ty)
    }

    /// Interns a new flags type within this type information.
    pub fn add_flags_type(&mut self, ty: TypeFlags) -> TypeFlagsIndex {
        intern_and_fill_flat_types!(self, flags, ty)
    }

    /// Interns a new tuple type within this type information.
    pub fn add_tuple_type(&mut self, ty: TypeTuple) -> TypeTupleIndex {
        intern_and_fill_flat_types!(self, tuples, ty)
    }

    /// Interns a new variant type within this type information.
    pub fn add_variant_type(&mut self, ty: TypeVariant) -> TypeVariantIndex {
        intern_and_fill_flat_types!(self, variants, ty)
    }

    /// Interns a new enum type within this type information.
    pub fn add_enum_type(&mut self, ty: TypeEnum) -> TypeEnumIndex {
        intern_and_fill_flat_types!(self, enums, ty)
    }

    /// Interns a new option type within this type information.
    pub fn add_option_type(&mut self, ty: TypeOption) -> TypeOptionIndex {
        intern_and_fill_flat_types!(self, options, ty)
    }

    /// Interns a new result type within this type information.
    pub fn add_result_type(&mut self, ty: TypeResult) -> TypeResultIndex {
        intern_and_fill_flat_types!(self, results, ty)
    }

    /// Interns a new type within this type information.
    pub fn add_list_type(&mut self, ty: TypeList) -> TypeListIndex {
        intern_and_fill_flat_types!(self, lists, ty)
    }

    /// Returns the canonical ABI information about the specified type.
    pub fn canonical_abi(&self, ty: &InterfaceType) -> &CanonicalAbiInfo {
        self.component_types.canonical_abi(ty)
    }

    /// Returns the "flat types" for the given interface type used in the
    /// canonical ABI.
    ///
    /// Returns `None` if the type is too large to be represented via flat types
    /// in the canonical abi.
    pub fn flat_types(&self, ty: &InterfaceType) -> Option<FlatTypes<'_>> {
        self.type_information(ty).flat.as_flat_types()
    }

    /// Returns whether the type specified contains any borrowed resources
    /// within it.
    pub fn ty_contains_borrow_resource(&self, ty: &InterfaceType) -> bool {
        self.type_information(ty).has_borrow
    }

    fn type_information(&self, ty: &InterfaceType) -> &TypeInformation {
        match ty {
            InterfaceType::U8
            | InterfaceType::S8
            | InterfaceType::Bool
            | InterfaceType::U16
            | InterfaceType::S16
            | InterfaceType::U32
            | InterfaceType::S32
            | InterfaceType::Char
            | InterfaceType::Own(_) => {
                static INFO: TypeInformation = TypeInformation::primitive(FlatType::I32);
                &INFO
            }
            InterfaceType::Borrow(_) => {
                static INFO: TypeInformation = {
                    let mut info = TypeInformation::primitive(FlatType::I32);
                    info.has_borrow = true;
                    info
                };
                &INFO
            }
            InterfaceType::U64 | InterfaceType::S64 => {
                static INFO: TypeInformation = TypeInformation::primitive(FlatType::I64);
                &INFO
            }
            InterfaceType::Float32 => {
                static INFO: TypeInformation = TypeInformation::primitive(FlatType::F32);
                &INFO
            }
            InterfaceType::Float64 => {
                static INFO: TypeInformation = TypeInformation::primitive(FlatType::F64);
                &INFO
            }
            InterfaceType::String => {
                static INFO: TypeInformation = TypeInformation::string();
                &INFO
            }

            InterfaceType::List(i) => &self.type_info.lists[*i],
            InterfaceType::Record(i) => &self.type_info.records[*i],
            InterfaceType::Variant(i) => &self.type_info.variants[*i],
            InterfaceType::Tuple(i) => &self.type_info.tuples[*i],
            InterfaceType::Flags(i) => &self.type_info.flags[*i],
            InterfaceType::Enum(i) => &self.type_info.enums[*i],
            InterfaceType::Option(i) => &self.type_info.options[*i],
            InterfaceType::Result(i) => &self.type_info.results[*i],
        }
    }
}

impl TypeConvert for ComponentTypesBuilder {
    fn lookup_heap_type(&self, _index: wasmparser::UnpackedIndex) -> WasmHeapType {
        panic!("heap types are not supported yet")
    }

    fn lookup_type_index(&self, _index: wasmparser::UnpackedIndex) -> EngineOrModuleTypeIndex {
        panic!("typed references are not supported yet")
    }
}

fn intern<T, U>(map: &mut HashMap<T, U>, list: &mut PrimaryMap<U, T>, item: T) -> U
where
    T: Hash + Clone + Eq,
    U: Copy + EntityRef,
{
    if let Some(idx) = map.get(&item) {
        return *idx;
    }
    let idx = list.push(item.clone());
    map.insert(item, idx);
    return idx;
}

struct FlatTypesStorage {
    // This could be represented as `Vec<FlatType>` but on 64-bit architectures
    // that's 24 bytes. Otherwise `FlatType` is 1 byte large and
    // `MAX_FLAT_TYPES` is 16, so it should ideally be more space-efficient to
    // use a flat array instead of a heap-based vector.
    memory32: [FlatType; MAX_FLAT_TYPES],
    memory64: [FlatType; MAX_FLAT_TYPES],

    // Tracks the number of flat types pushed into this storage. If this is
    // `MAX_FLAT_TYPES + 1` then this storage represents an un-reprsentable
    // type in flat types.
    len: u8,
}

impl FlatTypesStorage {
    const fn new() -> FlatTypesStorage {
        FlatTypesStorage {
            memory32: [FlatType::I32; MAX_FLAT_TYPES],
            memory64: [FlatType::I32; MAX_FLAT_TYPES],
            len: 0,
        }
    }

    fn as_flat_types(&self) -> Option<FlatTypes<'_>> {
        let len = usize::from(self.len);
        if len > MAX_FLAT_TYPES {
            assert_eq!(len, MAX_FLAT_TYPES + 1);
            None
        } else {
            Some(FlatTypes {
                memory32: &self.memory32[..len],
                memory64: &self.memory64[..len],
            })
        }
    }

    /// Pushes a new flat type into this list using `t32` for 32-bit memories
    /// and `t64` for 64-bit memories.
    ///
    /// Returns whether the type was actually pushed or whether this list of
    /// flat types just exceeded the maximum meaning that it is now
    /// unrepresentable with a flat list of types.
    fn push(&mut self, t32: FlatType, t64: FlatType) -> bool {
        let len = usize::from(self.len);
        if len < MAX_FLAT_TYPES {
            self.memory32[len] = t32;
            self.memory64[len] = t64;
            self.len += 1;
            true
        } else {
            // If this was the first one to go over then flag the length as
            // being incompatible with a flat representation.
            if len == MAX_FLAT_TYPES {
                self.len += 1;
            }
            false
        }
    }
}

impl FlatType {
    fn join(&mut self, other: FlatType) {
        if *self == other {
            return;
        }
        *self = match (*self, other) {
            (FlatType::I32, FlatType::F32) | (FlatType::F32, FlatType::I32) => FlatType::I32,
            _ => FlatType::I64,
        };
    }
}

#[derive(Default)]
struct TypeInformationCache {
    records: PrimaryMap<TypeRecordIndex, TypeInformation>,
    variants: PrimaryMap<TypeVariantIndex, TypeInformation>,
    tuples: PrimaryMap<TypeTupleIndex, TypeInformation>,
    enums: PrimaryMap<TypeEnumIndex, TypeInformation>,
    flags: PrimaryMap<TypeFlagsIndex, TypeInformation>,
    options: PrimaryMap<TypeOptionIndex, TypeInformation>,
    results: PrimaryMap<TypeResultIndex, TypeInformation>,
    lists: PrimaryMap<TypeListIndex, TypeInformation>,
}

struct TypeInformation {
    depth: u32,
    flat: FlatTypesStorage,
    has_borrow: bool,
}

impl TypeInformation {
    const fn new() -> TypeInformation {
        TypeInformation {
            depth: 0,
            flat: FlatTypesStorage::new(),
            has_borrow: false,
        }
    }

    const fn primitive(flat: FlatType) -> TypeInformation {
        let mut info = TypeInformation::new();
        info.depth = 1;
        info.flat.memory32[0] = flat;
        info.flat.memory64[0] = flat;
        info.flat.len = 1;
        info
    }

    const fn string() -> TypeInformation {
        let mut info = TypeInformation::new();
        info.depth = 1;
        info.flat.memory32[0] = FlatType::I32;
        info.flat.memory32[1] = FlatType::I32;
        info.flat.memory64[0] = FlatType::I64;
        info.flat.memory64[1] = FlatType::I64;
        info.flat.len = 2;
        info
    }

    /// Builds up all flat types internally using the specified representation
    /// for all of the component fields of the record.
    fn build_record<'a>(&mut self, types: impl Iterator<Item = &'a TypeInformation>) {
        self.depth = 1;
        for info in types {
            self.depth = self.depth.max(1 + info.depth);
            self.has_borrow = self.has_borrow || info.has_borrow;
            match info.flat.as_flat_types() {
                Some(types) => {
                    for (t32, t64) in types.memory32.iter().zip(types.memory64) {
                        if !self.flat.push(*t32, *t64) {
                            break;
                        }
                    }
                }
                None => {
                    self.flat.len = u8::try_from(MAX_FLAT_TYPES + 1).unwrap();
                }
            }
        }
    }

    /// Builds up the flat types used to represent a `variant` which notably
    /// handles "join"ing types together so each case is representable as a
    /// single flat list of types.
    ///
    /// The iterator item is:
    ///
    /// * `None` - no payload for this case
    /// * `Some(None)` - this case has a payload but can't be represented with
    ///   flat types
    /// * `Some(Some(types))` - this case has a payload and is represented with
    ///   the types specified in the flat representation.
    fn build_variant<'a, I>(&mut self, cases: I)
    where
        I: IntoIterator<Item = Option<&'a TypeInformation>>,
    {
        let cases = cases.into_iter();
        self.flat.push(FlatType::I32, FlatType::I32);
        self.depth = 1;

        for info in cases {
            let info = match info {
                Some(info) => info,
                // If this case doesn't have a payload then it doesn't change
                // the depth/flat representation
                None => continue,
            };
            self.depth = self.depth.max(1 + info.depth);
            self.has_borrow = self.has_borrow || info.has_borrow;

            // If this variant is already unrepresentable in a flat
            // representation then this can be skipped.
            if usize::from(self.flat.len) > MAX_FLAT_TYPES {
                continue;
            }

            let types = match info.flat.as_flat_types() {
                Some(types) => types,
                // If this case isn't representable with a flat list of types
                // then this variant also isn't representable.
                None => {
                    self.flat.len = u8::try_from(MAX_FLAT_TYPES + 1).unwrap();
                    continue;
                }
            };
            // If the case used all of the flat types then the discriminant
            // added for this variant means that this variant is no longer
            // representable.
            if types.memory32.len() >= MAX_FLAT_TYPES {
                self.flat.len = u8::try_from(MAX_FLAT_TYPES + 1).unwrap();
                continue;
            }
            let dst = self
                .flat
                .memory32
                .iter_mut()
                .zip(&mut self.flat.memory64)
                .skip(1);
            for (i, ((t32, t64), (dst32, dst64))) in types
                .memory32
                .iter()
                .zip(types.memory64)
                .zip(dst)
                .enumerate()
            {
                if i + 1 < usize::from(self.flat.len) {
                    // If this index hs already been set by some previous case
                    // then the types are joined together.
                    dst32.join(*t32);
                    dst64.join(*t64);
                } else {
                    // Otherwise if this is the first time that the
                    // representation has gotten this large then the destination
                    // is simply whatever the type is. The length is also
                    // increased here to indicate this.
                    self.flat.len += 1;
                    *dst32 = *t32;
                    *dst64 = *t64;
                }
            }
        }
    }

    fn records(&mut self, types: &ComponentTypesBuilder, ty: &TypeRecord) {
        self.build_record(ty.fields.iter().map(|f| types.type_information(&f.ty)));
    }

    fn tuples(&mut self, types: &ComponentTypesBuilder, ty: &TypeTuple) {
        self.build_record(ty.types.iter().map(|t| types.type_information(t)));
    }

    fn enums(&mut self, _types: &ComponentTypesBuilder, _ty: &TypeEnum) {
        self.depth = 1;
        self.flat.push(FlatType::I32, FlatType::I32);
    }

    fn flags(&mut self, _types: &ComponentTypesBuilder, ty: &TypeFlags) {
        self.depth = 1;
        match FlagsSize::from_count(ty.names.len()) {
            FlagsSize::Size0 => {}
            FlagsSize::Size1 | FlagsSize::Size2 => {
                self.flat.push(FlatType::I32, FlatType::I32);
            }
            FlagsSize::Size4Plus(n) => {
                for _ in 0..n {
                    self.flat.push(FlatType::I32, FlatType::I32);
                }
            }
        }
    }

    fn variants(&mut self, types: &ComponentTypesBuilder, ty: &TypeVariant) {
        self.build_variant(
            ty.cases
                .iter()
                .map(|(_, c)| c.as_ref().map(|ty| types.type_information(ty))),
        )
    }

    fn results(&mut self, types: &ComponentTypesBuilder, ty: &TypeResult) {
        self.build_variant([
            ty.ok.as_ref().map(|ty| types.type_information(ty)),
            ty.err.as_ref().map(|ty| types.type_information(ty)),
        ])
    }

    fn options(&mut self, types: &ComponentTypesBuilder, ty: &TypeOption) {
        self.build_variant([None, Some(types.type_information(&ty.ty))]);
    }

    fn lists(&mut self, types: &ComponentTypesBuilder, ty: &TypeList) {
        *self = TypeInformation::string();
        let info = types.type_information(&ty.element);
        self.depth += info.depth;
        self.has_borrow = info.has_borrow;
    }
}