wasmtime_environ/component/
types_builder.rs

1use crate::component::*;
2use crate::prelude::*;
3use crate::{
4    EngineOrModuleTypeIndex, EntityType, ModuleInternedTypeIndex, ModuleTypes, ModuleTypesBuilder,
5    PrimaryMap, TypeConvert, WasmHeapType, WasmValType,
6};
7use anyhow::{Result, bail};
8use cranelift_entity::EntityRef;
9use std::collections::HashMap;
10use std::hash::Hash;
11use std::ops::Index;
12use wasmparser::component_types::{
13    ComponentAnyTypeId, ComponentCoreModuleTypeId, ComponentDefinedType, ComponentDefinedTypeId,
14    ComponentEntityType, ComponentFuncTypeId, ComponentInstanceTypeId, ComponentTypeId,
15    ComponentValType, RecordType, ResourceId, TupleType, VariantType,
16};
17use wasmparser::names::KebabString;
18use wasmparser::types::TypesRef;
19use wasmparser::{PrimitiveValType, Validator};
20use wasmtime_component_util::FlagsSize;
21
22mod resources;
23pub use resources::ResourcesBuilder;
24
25/// Maximum nesting depth of a type allowed in Wasmtime.
26///
27/// This constant isn't chosen via any scientific means and its main purpose is
28/// to enable most of Wasmtime to handle types via recursion without worrying
29/// about stack overflow.
30///
31/// Some more information about this can be found in #4814
32const MAX_TYPE_DEPTH: u32 = 100;
33
34/// Structure used to build a [`ComponentTypes`] during translation.
35///
36/// This contains tables to intern any component types found as well as
37/// managing building up core wasm [`ModuleTypes`] as well.
38pub struct ComponentTypesBuilder {
39    functions: HashMap<TypeFunc, TypeFuncIndex>,
40    lists: HashMap<TypeList, TypeListIndex>,
41    records: HashMap<TypeRecord, TypeRecordIndex>,
42    variants: HashMap<TypeVariant, TypeVariantIndex>,
43    tuples: HashMap<TypeTuple, TypeTupleIndex>,
44    enums: HashMap<TypeEnum, TypeEnumIndex>,
45    flags: HashMap<TypeFlags, TypeFlagsIndex>,
46    options: HashMap<TypeOption, TypeOptionIndex>,
47    results: HashMap<TypeResult, TypeResultIndex>,
48    futures: HashMap<TypeFuture, TypeFutureIndex>,
49    streams: HashMap<TypeStream, TypeStreamIndex>,
50    future_tables: HashMap<TypeFutureTable, TypeFutureTableIndex>,
51    stream_tables: HashMap<TypeStreamTable, TypeStreamTableIndex>,
52    error_context_tables: HashMap<TypeErrorContextTable, TypeComponentLocalErrorContextTableIndex>,
53
54    component_types: ComponentTypes,
55    module_types: ModuleTypesBuilder,
56
57    // Cache of what the "flat" representation of all types are which is only
58    // used at compile-time and not used at runtime, hence the location here
59    // as opposed to `ComponentTypes`.
60    type_info: TypeInformationCache,
61
62    resources: ResourcesBuilder,
63
64    // Total number of abstract resources allocated.
65    //
66    // These are only allocated within component and instance types when
67    // translating them.
68    abstract_resources: u32,
69}
70
71impl<T> Index<T> for ComponentTypesBuilder
72where
73    ModuleTypes: Index<T>,
74{
75    type Output = <ModuleTypes as Index<T>>::Output;
76    fn index(&self, idx: T) -> &Self::Output {
77        self.module_types.index(idx)
78    }
79}
80
81macro_rules! intern_and_fill_flat_types {
82    ($me:ident, $name:ident, $val:ident) => {{
83        if let Some(idx) = $me.$name.get(&$val) {
84            *idx
85        } else {
86            let idx = $me.component_types.$name.push($val.clone());
87            let mut info = TypeInformation::new();
88            info.$name($me, &$val);
89            let idx2 = $me.type_info.$name.push(info);
90            assert_eq!(idx, idx2);
91            $me.$name.insert($val, idx);
92            idx
93        }
94    }};
95}
96
97impl ComponentTypesBuilder {
98    /// Construct a new `ComponentTypesBuilder` for use with the given validator.
99    pub fn new(validator: &Validator) -> Self {
100        Self {
101            module_types: ModuleTypesBuilder::new(validator),
102
103            functions: HashMap::default(),
104            lists: HashMap::default(),
105            records: HashMap::default(),
106            variants: HashMap::default(),
107            tuples: HashMap::default(),
108            enums: HashMap::default(),
109            flags: HashMap::default(),
110            options: HashMap::default(),
111            results: HashMap::default(),
112            futures: HashMap::default(),
113            streams: HashMap::default(),
114            future_tables: HashMap::default(),
115            stream_tables: HashMap::default(),
116            error_context_tables: HashMap::default(),
117            component_types: ComponentTypes::default(),
118            type_info: TypeInformationCache::default(),
119            resources: ResourcesBuilder::default(),
120            abstract_resources: 0,
121        }
122    }
123
124    fn export_type_def(
125        &mut self,
126        export_items: &PrimaryMap<ExportIndex, Export>,
127        idx: ExportIndex,
128    ) -> TypeDef {
129        match &export_items[idx] {
130            Export::LiftedFunction { ty, .. } => TypeDef::ComponentFunc(*ty),
131            Export::ModuleStatic { ty, .. } | Export::ModuleImport { ty, .. } => {
132                TypeDef::Module(*ty)
133            }
134            Export::Instance { ty, .. } => TypeDef::ComponentInstance(*ty),
135            Export::Type(ty) => *ty,
136        }
137    }
138
139    /// Finishes this list of component types and returns the finished
140    /// structure and the [`TypeComponentIndex`] corresponding to top-level component
141    /// with `imports` and `exports` specified.
142    pub fn finish(mut self, component: &Component) -> (ComponentTypes, TypeComponentIndex) {
143        let mut component_ty = TypeComponent::default();
144        for (_, (name, ty)) in component.import_types.iter() {
145            component_ty.imports.insert(name.clone(), *ty);
146        }
147        for (name, ty) in component.exports.raw_iter() {
148            component_ty.exports.insert(
149                name.clone(),
150                self.export_type_def(&component.export_items, *ty),
151            );
152        }
153        let ty = self.component_types.components.push(component_ty);
154
155        self.component_types.module_types = Some(self.module_types.finish());
156        (self.component_types, ty)
157    }
158
159    /// Smaller helper method to find a `ModuleInternedTypeIndex` which
160    /// corresponds to the `resource.drop` intrinsic in components, namely a
161    /// core wasm function type which takes one `i32` argument and has no
162    /// results.
163    ///
164    /// This is a bit of a hack right now as ideally this find operation
165    /// wouldn't be needed and instead the `ModuleInternedTypeIndex` itself
166    /// would be threaded through appropriately, but that's left for a future
167    /// refactoring. Try not to lean too hard on this method though.
168    pub fn find_resource_drop_signature(&self) -> Option<ModuleInternedTypeIndex> {
169        self.module_types
170            .wasm_types()
171            .find(|(_, ty)| {
172                ty.as_func().map_or(false, |sig| {
173                    sig.params().len() == 1
174                        && sig.returns().len() == 0
175                        && sig.params()[0] == WasmValType::I32
176                })
177            })
178            .map(|(i, _)| i)
179    }
180
181    /// Returns the underlying builder used to build up core wasm module types.
182    ///
183    /// Note that this is shared across all modules found within a component to
184    /// improve the wins from deduplicating function signatures.
185    pub fn module_types_builder(&self) -> &ModuleTypesBuilder {
186        &self.module_types
187    }
188
189    /// Same as `module_types_builder`, but `mut`.
190    pub fn module_types_builder_mut(&mut self) -> &mut ModuleTypesBuilder {
191        &mut self.module_types
192    }
193
194    /// Returns the internal reference to the in-progress `&ComponentTypes`.
195    pub(super) fn component_types(&self) -> &ComponentTypes {
196        &self.component_types
197    }
198
199    /// Returns the number of resource tables allocated so far, or the maximum
200    /// `TypeResourceTableIndex`.
201    pub fn num_resource_tables(&self) -> usize {
202        self.component_types.resource_tables.len()
203    }
204
205    /// Returns the number of future tables allocated so far, or the maximum
206    /// `TypeFutureTableIndex`.
207    pub fn num_future_tables(&self) -> usize {
208        self.component_types.future_tables.len()
209    }
210
211    /// Returns the number of stream tables allocated so far, or the maximum
212    /// `TypeStreamTableIndex`.
213    pub fn num_stream_tables(&self) -> usize {
214        self.component_types.stream_tables.len()
215    }
216
217    /// Returns the number of error-context tables allocated so far, or the maximum
218    /// `TypeComponentLocalErrorContextTableIndex`.
219    pub fn num_error_context_tables(&self) -> usize {
220        self.component_types.error_context_tables.len()
221    }
222
223    /// Returns a mutable reference to the underlying `ResourcesBuilder`.
224    pub fn resources_mut(&mut self) -> &mut ResourcesBuilder {
225        &mut self.resources
226    }
227
228    /// Work around the borrow checker to borrow two sub-fields simultaneously
229    /// externally.
230    pub fn resources_mut_and_types(&mut self) -> (&mut ResourcesBuilder, &ComponentTypes) {
231        (&mut self.resources, &self.component_types)
232    }
233
234    /// Converts a wasmparser `ComponentFuncType` into Wasmtime's type
235    /// representation.
236    pub fn convert_component_func_type(
237        &mut self,
238        types: TypesRef<'_>,
239        id: ComponentFuncTypeId,
240    ) -> Result<TypeFuncIndex> {
241        assert_eq!(types.id(), self.module_types.validator_id());
242        let ty = &types[id];
243        let param_names = ty.params.iter().map(|(name, _)| name.to_string()).collect();
244        let params = ty
245            .params
246            .iter()
247            .map(|(_name, ty)| self.valtype(types, ty))
248            .collect::<Result<_>>()?;
249        let results = ty
250            .result
251            .iter()
252            .map(|ty| self.valtype(types, ty))
253            .collect::<Result<_>>()?;
254        let params = self.new_tuple_type(params);
255        let results = self.new_tuple_type(results);
256        let ty = TypeFunc {
257            param_names,
258            params,
259            results,
260        };
261        Ok(self.add_func_type(ty))
262    }
263
264    /// Converts a wasmparser `ComponentEntityType` into Wasmtime's type
265    /// representation.
266    pub fn convert_component_entity_type(
267        &mut self,
268        types: TypesRef<'_>,
269        ty: ComponentEntityType,
270    ) -> Result<TypeDef> {
271        assert_eq!(types.id(), self.module_types.validator_id());
272        Ok(match ty {
273            ComponentEntityType::Module(id) => TypeDef::Module(self.convert_module(types, id)?),
274            ComponentEntityType::Component(id) => {
275                TypeDef::Component(self.convert_component(types, id)?)
276            }
277            ComponentEntityType::Instance(id) => {
278                TypeDef::ComponentInstance(self.convert_instance(types, id)?)
279            }
280            ComponentEntityType::Func(id) => {
281                TypeDef::ComponentFunc(self.convert_component_func_type(types, id)?)
282            }
283            ComponentEntityType::Type { created, .. } => match created {
284                ComponentAnyTypeId::Defined(id) => {
285                    TypeDef::Interface(self.defined_type(types, id)?)
286                }
287                ComponentAnyTypeId::Resource(id) => {
288                    TypeDef::Resource(self.resource_id(id.resource()))
289                }
290                _ => bail!("unsupported type export"),
291            },
292            ComponentEntityType::Value(_) => bail!("values not supported"),
293        })
294    }
295
296    /// Converts a wasmparser `Type` into Wasmtime's type representation.
297    pub fn convert_type(&mut self, types: TypesRef<'_>, id: ComponentAnyTypeId) -> Result<TypeDef> {
298        assert_eq!(types.id(), self.module_types.validator_id());
299        Ok(match id {
300            ComponentAnyTypeId::Defined(id) => TypeDef::Interface(self.defined_type(types, id)?),
301            ComponentAnyTypeId::Component(id) => {
302                TypeDef::Component(self.convert_component(types, id)?)
303            }
304            ComponentAnyTypeId::Instance(id) => {
305                TypeDef::ComponentInstance(self.convert_instance(types, id)?)
306            }
307            ComponentAnyTypeId::Func(id) => {
308                TypeDef::ComponentFunc(self.convert_component_func_type(types, id)?)
309            }
310            ComponentAnyTypeId::Resource(id) => TypeDef::Resource(self.resource_id(id.resource())),
311        })
312    }
313
314    fn convert_component(
315        &mut self,
316        types: TypesRef<'_>,
317        id: ComponentTypeId,
318    ) -> Result<TypeComponentIndex> {
319        assert_eq!(types.id(), self.module_types.validator_id());
320        let ty = &types[id];
321        let mut result = TypeComponent::default();
322        for (name, ty) in ty.imports.iter() {
323            self.register_abstract_component_entity_type(types, *ty);
324            result.imports.insert(
325                name.clone(),
326                self.convert_component_entity_type(types, *ty)?,
327            );
328        }
329        for (name, ty) in ty.exports.iter() {
330            self.register_abstract_component_entity_type(types, *ty);
331            result.exports.insert(
332                name.clone(),
333                self.convert_component_entity_type(types, *ty)?,
334            );
335        }
336        Ok(self.component_types.components.push(result))
337    }
338
339    pub(crate) fn convert_instance(
340        &mut self,
341        types: TypesRef<'_>,
342        id: ComponentInstanceTypeId,
343    ) -> Result<TypeComponentInstanceIndex> {
344        assert_eq!(types.id(), self.module_types.validator_id());
345        let ty = &types[id];
346        let mut result = TypeComponentInstance::default();
347        for (name, ty) in ty.exports.iter() {
348            self.register_abstract_component_entity_type(types, *ty);
349            result.exports.insert(
350                name.clone(),
351                self.convert_component_entity_type(types, *ty)?,
352            );
353        }
354        Ok(self.component_types.component_instances.push(result))
355    }
356
357    fn register_abstract_component_entity_type(
358        &mut self,
359        types: TypesRef<'_>,
360        ty: ComponentEntityType,
361    ) {
362        let mut path = Vec::new();
363        self.resources.register_abstract_component_entity_type(
364            &types,
365            ty,
366            &mut path,
367            &mut |_path| {
368                self.abstract_resources += 1;
369                AbstractResourceIndex::from_u32(self.abstract_resources)
370            },
371        );
372    }
373
374    pub(crate) fn convert_module(
375        &mut self,
376        types: TypesRef<'_>,
377        id: ComponentCoreModuleTypeId,
378    ) -> Result<TypeModuleIndex> {
379        assert_eq!(types.id(), self.module_types.validator_id());
380        let ty = &types[id];
381        let mut result = TypeModule::default();
382        for ((module, field), ty) in ty.imports.iter() {
383            result.imports.insert(
384                (module.clone(), field.clone()),
385                self.entity_type(types, ty)?,
386            );
387        }
388        for (name, ty) in ty.exports.iter() {
389            result
390                .exports
391                .insert(name.clone(), self.entity_type(types, ty)?);
392        }
393        Ok(self.component_types.modules.push(result))
394    }
395
396    fn entity_type(
397        &mut self,
398        types: TypesRef<'_>,
399        ty: &wasmparser::types::EntityType,
400    ) -> Result<EntityType> {
401        use wasmparser::types::EntityType::*;
402
403        assert_eq!(types.id(), self.module_types.validator_id());
404        Ok(match ty {
405            Func(id) => EntityType::Function({
406                self.module_types_builder_mut()
407                    .intern_type(types, *id)?
408                    .into()
409            }),
410            Table(ty) => EntityType::Table(self.convert_table_type(ty)?),
411            Memory(ty) => EntityType::Memory((*ty).into()),
412            Global(ty) => EntityType::Global(self.convert_global_type(ty)?),
413            Tag(_) => bail!("exceptions proposal not implemented"),
414        })
415    }
416
417    /// Convert a wasmparser `ComponentDefinedTypeId` into Wasmtime's type representation.
418    pub fn defined_type(
419        &mut self,
420        types: TypesRef<'_>,
421        id: ComponentDefinedTypeId,
422    ) -> Result<InterfaceType> {
423        assert_eq!(types.id(), self.module_types.validator_id());
424        let ret = match &types[id] {
425            ComponentDefinedType::Primitive(ty) => self.primitive_type(ty)?,
426            ComponentDefinedType::Record(e) => InterfaceType::Record(self.record_type(types, e)?),
427            ComponentDefinedType::Variant(e) => {
428                InterfaceType::Variant(self.variant_type(types, e)?)
429            }
430            ComponentDefinedType::List(e) => InterfaceType::List(self.list_type(types, e)?),
431            ComponentDefinedType::Tuple(e) => InterfaceType::Tuple(self.tuple_type(types, e)?),
432            ComponentDefinedType::Flags(e) => InterfaceType::Flags(self.flags_type(e)),
433            ComponentDefinedType::Enum(e) => InterfaceType::Enum(self.enum_type(e)),
434            ComponentDefinedType::Option(e) => InterfaceType::Option(self.option_type(types, e)?),
435            ComponentDefinedType::Result { ok, err } => {
436                InterfaceType::Result(self.result_type(types, ok, err)?)
437            }
438            ComponentDefinedType::Own(r) => InterfaceType::Own(self.resource_id(r.resource())),
439            ComponentDefinedType::Borrow(r) => {
440                InterfaceType::Borrow(self.resource_id(r.resource()))
441            }
442            ComponentDefinedType::Future(ty) => {
443                InterfaceType::Future(self.future_table_type(types, ty)?)
444            }
445            ComponentDefinedType::Stream(ty) => {
446                InterfaceType::Stream(self.stream_table_type(types, ty)?)
447            }
448            ComponentDefinedType::FixedSizeList(..) => {
449                bail!("support not implemented for fixed-size-lists");
450            }
451        };
452        let info = self.type_information(&ret);
453        if info.depth > MAX_TYPE_DEPTH {
454            bail!("type nesting is too deep");
455        }
456        Ok(ret)
457    }
458
459    /// Retrieve Wasmtime's type representation of the `error-context` type.
460    pub fn error_context_type(&mut self) -> Result<TypeComponentLocalErrorContextTableIndex> {
461        self.error_context_table_type()
462    }
463
464    pub(crate) fn valtype(
465        &mut self,
466        types: TypesRef<'_>,
467        ty: &ComponentValType,
468    ) -> Result<InterfaceType> {
469        assert_eq!(types.id(), self.module_types.validator_id());
470        match ty {
471            ComponentValType::Primitive(p) => self.primitive_type(p),
472            ComponentValType::Type(id) => self.defined_type(types, *id),
473        }
474    }
475
476    fn primitive_type(&mut self, ty: &PrimitiveValType) -> Result<InterfaceType> {
477        match ty {
478            wasmparser::PrimitiveValType::Bool => Ok(InterfaceType::Bool),
479            wasmparser::PrimitiveValType::S8 => Ok(InterfaceType::S8),
480            wasmparser::PrimitiveValType::U8 => Ok(InterfaceType::U8),
481            wasmparser::PrimitiveValType::S16 => Ok(InterfaceType::S16),
482            wasmparser::PrimitiveValType::U16 => Ok(InterfaceType::U16),
483            wasmparser::PrimitiveValType::S32 => Ok(InterfaceType::S32),
484            wasmparser::PrimitiveValType::U32 => Ok(InterfaceType::U32),
485            wasmparser::PrimitiveValType::S64 => Ok(InterfaceType::S64),
486            wasmparser::PrimitiveValType::U64 => Ok(InterfaceType::U64),
487            wasmparser::PrimitiveValType::F32 => Ok(InterfaceType::Float32),
488            wasmparser::PrimitiveValType::F64 => Ok(InterfaceType::Float64),
489            wasmparser::PrimitiveValType::Char => Ok(InterfaceType::Char),
490            wasmparser::PrimitiveValType::String => Ok(InterfaceType::String),
491            wasmparser::PrimitiveValType::ErrorContext => Ok(InterfaceType::ErrorContext(
492                self.error_context_table_type()?,
493            )),
494        }
495    }
496
497    fn record_type(&mut self, types: TypesRef<'_>, ty: &RecordType) -> Result<TypeRecordIndex> {
498        assert_eq!(types.id(), self.module_types.validator_id());
499        let fields = ty
500            .fields
501            .iter()
502            .map(|(name, ty)| {
503                Ok(RecordField {
504                    name: name.to_string(),
505                    ty: self.valtype(types, ty)?,
506                })
507            })
508            .collect::<Result<Box<[_]>>>()?;
509        let abi = CanonicalAbiInfo::record(
510            fields
511                .iter()
512                .map(|field| self.component_types.canonical_abi(&field.ty)),
513        );
514        Ok(self.add_record_type(TypeRecord { fields, abi }))
515    }
516
517    fn variant_type(&mut self, types: TypesRef<'_>, ty: &VariantType) -> Result<TypeVariantIndex> {
518        assert_eq!(types.id(), self.module_types.validator_id());
519        let cases = ty
520            .cases
521            .iter()
522            .map(|(name, case)| {
523                // FIXME: need to implement `refines`, not sure what that
524                // is at this time.
525                if case.refines.is_some() {
526                    bail!("refines is not supported at this time");
527                }
528                Ok((
529                    name.to_string(),
530                    match &case.ty.as_ref() {
531                        Some(ty) => Some(self.valtype(types, ty)?),
532                        None => None,
533                    },
534                ))
535            })
536            .collect::<Result<IndexMap<_, _>>>()?;
537        let (info, abi) = VariantInfo::new(
538            cases
539                .iter()
540                .map(|(_, c)| c.as_ref().map(|ty| self.component_types.canonical_abi(ty))),
541        );
542        Ok(self.add_variant_type(TypeVariant { cases, abi, info }))
543    }
544
545    fn tuple_type(&mut self, types: TypesRef<'_>, ty: &TupleType) -> Result<TypeTupleIndex> {
546        assert_eq!(types.id(), self.module_types.validator_id());
547        let types = ty
548            .types
549            .iter()
550            .map(|ty| self.valtype(types, ty))
551            .collect::<Result<Box<[_]>>>()?;
552        Ok(self.new_tuple_type(types))
553    }
554
555    pub(crate) fn new_tuple_type(&mut self, types: Box<[InterfaceType]>) -> TypeTupleIndex {
556        let abi = CanonicalAbiInfo::record(
557            types
558                .iter()
559                .map(|ty| self.component_types.canonical_abi(ty)),
560        );
561        self.add_tuple_type(TypeTuple { types, abi })
562    }
563
564    fn flags_type(&mut self, flags: &IndexSet<KebabString>) -> TypeFlagsIndex {
565        let flags = TypeFlags {
566            names: flags.iter().map(|s| s.to_string()).collect(),
567            abi: CanonicalAbiInfo::flags(flags.len()),
568        };
569        self.add_flags_type(flags)
570    }
571
572    fn enum_type(&mut self, variants: &IndexSet<KebabString>) -> TypeEnumIndex {
573        let names = variants
574            .iter()
575            .map(|s| s.to_string())
576            .collect::<IndexSet<_>>();
577        let (info, abi) = VariantInfo::new(names.iter().map(|_| None));
578        self.add_enum_type(TypeEnum { names, abi, info })
579    }
580
581    fn option_type(
582        &mut self,
583        types: TypesRef<'_>,
584        ty: &ComponentValType,
585    ) -> Result<TypeOptionIndex> {
586        assert_eq!(types.id(), self.module_types.validator_id());
587        let ty = self.valtype(types, ty)?;
588        let (info, abi) = VariantInfo::new([None, Some(self.component_types.canonical_abi(&ty))]);
589        Ok(self.add_option_type(TypeOption { ty, abi, info }))
590    }
591
592    fn result_type(
593        &mut self,
594        types: TypesRef<'_>,
595        ok: &Option<ComponentValType>,
596        err: &Option<ComponentValType>,
597    ) -> Result<TypeResultIndex> {
598        assert_eq!(types.id(), self.module_types.validator_id());
599        let ok = match ok {
600            Some(ty) => Some(self.valtype(types, ty)?),
601            None => None,
602        };
603        let err = match err {
604            Some(ty) => Some(self.valtype(types, ty)?),
605            None => None,
606        };
607        let (info, abi) = VariantInfo::new([
608            ok.as_ref().map(|t| self.component_types.canonical_abi(t)),
609            err.as_ref().map(|t| self.component_types.canonical_abi(t)),
610        ]);
611        Ok(self.add_result_type(TypeResult { ok, err, abi, info }))
612    }
613
614    fn future_table_type(
615        &mut self,
616        types: TypesRef<'_>,
617        ty: &Option<ComponentValType>,
618    ) -> Result<TypeFutureTableIndex> {
619        let payload = ty.as_ref().map(|ty| self.valtype(types, ty)).transpose()?;
620        let ty = self.add_future_type(TypeFuture { payload });
621        Ok(self.add_future_table_type(TypeFutureTable {
622            ty,
623            instance: self.resources.get_current_instance().unwrap(),
624        }))
625    }
626
627    fn stream_table_type(
628        &mut self,
629        types: TypesRef<'_>,
630        ty: &Option<ComponentValType>,
631    ) -> Result<TypeStreamTableIndex> {
632        let payload = ty.as_ref().map(|ty| self.valtype(types, ty)).transpose()?;
633        let ty = self.add_stream_type(TypeStream { payload });
634        Ok(self.add_stream_table_type(TypeStreamTable {
635            ty,
636            instance: self.resources.get_current_instance().unwrap(),
637        }))
638    }
639
640    /// Retrieve Wasmtime's type representation of the `error-context` type from
641    /// the point of view of the current component instance.
642    pub fn error_context_table_type(&mut self) -> Result<TypeComponentLocalErrorContextTableIndex> {
643        Ok(self.add_error_context_table_type(TypeErrorContextTable {
644            instance: self.resources.get_current_instance().unwrap(),
645        }))
646    }
647
648    fn list_type(&mut self, types: TypesRef<'_>, ty: &ComponentValType) -> Result<TypeListIndex> {
649        assert_eq!(types.id(), self.module_types.validator_id());
650        let element = self.valtype(types, ty)?;
651        Ok(self.add_list_type(TypeList { element }))
652    }
653
654    /// Converts a wasmparser `id`, which must point to a resource, to its
655    /// corresponding `TypeResourceTableIndex`.
656    pub fn resource_id(&mut self, id: ResourceId) -> TypeResourceTableIndex {
657        self.resources.convert(id, &mut self.component_types)
658    }
659
660    /// Interns a new function type within this type information.
661    pub fn add_func_type(&mut self, ty: TypeFunc) -> TypeFuncIndex {
662        intern(&mut self.functions, &mut self.component_types.functions, ty)
663    }
664
665    /// Interns a new record type within this type information.
666    pub fn add_record_type(&mut self, ty: TypeRecord) -> TypeRecordIndex {
667        intern_and_fill_flat_types!(self, records, ty)
668    }
669
670    /// Interns a new flags type within this type information.
671    pub fn add_flags_type(&mut self, ty: TypeFlags) -> TypeFlagsIndex {
672        intern_and_fill_flat_types!(self, flags, ty)
673    }
674
675    /// Interns a new tuple type within this type information.
676    pub fn add_tuple_type(&mut self, ty: TypeTuple) -> TypeTupleIndex {
677        intern_and_fill_flat_types!(self, tuples, ty)
678    }
679
680    /// Interns a new variant type within this type information.
681    pub fn add_variant_type(&mut self, ty: TypeVariant) -> TypeVariantIndex {
682        intern_and_fill_flat_types!(self, variants, ty)
683    }
684
685    /// Interns a new enum type within this type information.
686    pub fn add_enum_type(&mut self, ty: TypeEnum) -> TypeEnumIndex {
687        intern_and_fill_flat_types!(self, enums, ty)
688    }
689
690    /// Interns a new option type within this type information.
691    pub fn add_option_type(&mut self, ty: TypeOption) -> TypeOptionIndex {
692        intern_and_fill_flat_types!(self, options, ty)
693    }
694
695    /// Interns a new result type within this type information.
696    pub fn add_result_type(&mut self, ty: TypeResult) -> TypeResultIndex {
697        intern_and_fill_flat_types!(self, results, ty)
698    }
699
700    /// Interns a new list type within this type information.
701    pub fn add_list_type(&mut self, ty: TypeList) -> TypeListIndex {
702        intern_and_fill_flat_types!(self, lists, ty)
703    }
704
705    /// Interns a new future type within this type information.
706    pub fn add_future_type(&mut self, ty: TypeFuture) -> TypeFutureIndex {
707        intern(&mut self.futures, &mut self.component_types.futures, ty)
708    }
709
710    /// Interns a new future table type within this type information.
711    pub fn add_future_table_type(&mut self, ty: TypeFutureTable) -> TypeFutureTableIndex {
712        intern(
713            &mut self.future_tables,
714            &mut self.component_types.future_tables,
715            ty,
716        )
717    }
718
719    /// Interns a new stream type within this type information.
720    pub fn add_stream_type(&mut self, ty: TypeStream) -> TypeStreamIndex {
721        intern(&mut self.streams, &mut self.component_types.streams, ty)
722    }
723
724    /// Interns a new stream table type within this type information.
725    pub fn add_stream_table_type(&mut self, ty: TypeStreamTable) -> TypeStreamTableIndex {
726        intern(
727            &mut self.stream_tables,
728            &mut self.component_types.stream_tables,
729            ty,
730        )
731    }
732
733    /// Interns a new error context table type within this type information.
734    pub fn add_error_context_table_type(
735        &mut self,
736        ty: TypeErrorContextTable,
737    ) -> TypeComponentLocalErrorContextTableIndex {
738        intern(
739            &mut self.error_context_tables,
740            &mut self.component_types.error_context_tables,
741            ty,
742        )
743    }
744
745    /// Returns the canonical ABI information about the specified type.
746    pub fn canonical_abi(&self, ty: &InterfaceType) -> &CanonicalAbiInfo {
747        self.component_types.canonical_abi(ty)
748    }
749
750    /// Returns the "flat types" for the given interface type used in the
751    /// canonical ABI.
752    ///
753    /// Returns `None` if the type is too large to be represented via flat types
754    /// in the canonical abi.
755    pub fn flat_types(&self, ty: &InterfaceType) -> Option<FlatTypes<'_>> {
756        self.type_information(ty).flat.as_flat_types()
757    }
758
759    /// Returns whether the type specified contains any borrowed resources
760    /// within it.
761    pub fn ty_contains_borrow_resource(&self, ty: &InterfaceType) -> bool {
762        self.type_information(ty).has_borrow
763    }
764
765    fn type_information(&self, ty: &InterfaceType) -> &TypeInformation {
766        match ty {
767            InterfaceType::U8
768            | InterfaceType::S8
769            | InterfaceType::Bool
770            | InterfaceType::U16
771            | InterfaceType::S16
772            | InterfaceType::U32
773            | InterfaceType::S32
774            | InterfaceType::Char
775            | InterfaceType::Own(_)
776            | InterfaceType::Future(_)
777            | InterfaceType::Stream(_)
778            | InterfaceType::ErrorContext(_) => {
779                static INFO: TypeInformation = TypeInformation::primitive(FlatType::I32);
780                &INFO
781            }
782            InterfaceType::Borrow(_) => {
783                static INFO: TypeInformation = {
784                    let mut info = TypeInformation::primitive(FlatType::I32);
785                    info.has_borrow = true;
786                    info
787                };
788                &INFO
789            }
790            InterfaceType::U64 | InterfaceType::S64 => {
791                static INFO: TypeInformation = TypeInformation::primitive(FlatType::I64);
792                &INFO
793            }
794            InterfaceType::Float32 => {
795                static INFO: TypeInformation = TypeInformation::primitive(FlatType::F32);
796                &INFO
797            }
798            InterfaceType::Float64 => {
799                static INFO: TypeInformation = TypeInformation::primitive(FlatType::F64);
800                &INFO
801            }
802            InterfaceType::String => {
803                static INFO: TypeInformation = TypeInformation::string();
804                &INFO
805            }
806
807            InterfaceType::List(i) => &self.type_info.lists[*i],
808            InterfaceType::Record(i) => &self.type_info.records[*i],
809            InterfaceType::Variant(i) => &self.type_info.variants[*i],
810            InterfaceType::Tuple(i) => &self.type_info.tuples[*i],
811            InterfaceType::Flags(i) => &self.type_info.flags[*i],
812            InterfaceType::Enum(i) => &self.type_info.enums[*i],
813            InterfaceType::Option(i) => &self.type_info.options[*i],
814            InterfaceType::Result(i) => &self.type_info.results[*i],
815        }
816    }
817}
818
819impl TypeConvert for ComponentTypesBuilder {
820    fn lookup_heap_type(&self, _index: wasmparser::UnpackedIndex) -> WasmHeapType {
821        panic!("heap types are not supported yet")
822    }
823
824    fn lookup_type_index(&self, _index: wasmparser::UnpackedIndex) -> EngineOrModuleTypeIndex {
825        panic!("typed references are not supported yet")
826    }
827}
828
829fn intern<T, U>(map: &mut HashMap<T, U>, list: &mut PrimaryMap<U, T>, item: T) -> U
830where
831    T: Hash + Clone + Eq,
832    U: Copy + EntityRef,
833{
834    if let Some(idx) = map.get(&item) {
835        return *idx;
836    }
837    let idx = list.push(item.clone());
838    map.insert(item, idx);
839    return idx;
840}
841
842struct FlatTypesStorage {
843    // This could be represented as `Vec<FlatType>` but on 64-bit architectures
844    // that's 24 bytes. Otherwise `FlatType` is 1 byte large and
845    // `MAX_FLAT_TYPES` is 16, so it should ideally be more space-efficient to
846    // use a flat array instead of a heap-based vector.
847    memory32: [FlatType; MAX_FLAT_TYPES],
848    memory64: [FlatType; MAX_FLAT_TYPES],
849
850    // Tracks the number of flat types pushed into this storage. If this is
851    // `MAX_FLAT_TYPES + 1` then this storage represents an un-reprsentable
852    // type in flat types.
853    len: u8,
854}
855
856impl FlatTypesStorage {
857    const fn new() -> FlatTypesStorage {
858        FlatTypesStorage {
859            memory32: [FlatType::I32; MAX_FLAT_TYPES],
860            memory64: [FlatType::I32; MAX_FLAT_TYPES],
861            len: 0,
862        }
863    }
864
865    fn as_flat_types(&self) -> Option<FlatTypes<'_>> {
866        let len = usize::from(self.len);
867        if len > MAX_FLAT_TYPES {
868            assert_eq!(len, MAX_FLAT_TYPES + 1);
869            None
870        } else {
871            Some(FlatTypes {
872                memory32: &self.memory32[..len],
873                memory64: &self.memory64[..len],
874            })
875        }
876    }
877
878    /// Pushes a new flat type into this list using `t32` for 32-bit memories
879    /// and `t64` for 64-bit memories.
880    ///
881    /// Returns whether the type was actually pushed or whether this list of
882    /// flat types just exceeded the maximum meaning that it is now
883    /// unrepresentable with a flat list of types.
884    fn push(&mut self, t32: FlatType, t64: FlatType) -> bool {
885        let len = usize::from(self.len);
886        if len < MAX_FLAT_TYPES {
887            self.memory32[len] = t32;
888            self.memory64[len] = t64;
889            self.len += 1;
890            true
891        } else {
892            // If this was the first one to go over then flag the length as
893            // being incompatible with a flat representation.
894            if len == MAX_FLAT_TYPES {
895                self.len += 1;
896            }
897            false
898        }
899    }
900}
901
902impl FlatType {
903    fn join(&mut self, other: FlatType) {
904        if *self == other {
905            return;
906        }
907        *self = match (*self, other) {
908            (FlatType::I32, FlatType::F32) | (FlatType::F32, FlatType::I32) => FlatType::I32,
909            _ => FlatType::I64,
910        };
911    }
912}
913
914#[derive(Default)]
915struct TypeInformationCache {
916    records: PrimaryMap<TypeRecordIndex, TypeInformation>,
917    variants: PrimaryMap<TypeVariantIndex, TypeInformation>,
918    tuples: PrimaryMap<TypeTupleIndex, TypeInformation>,
919    enums: PrimaryMap<TypeEnumIndex, TypeInformation>,
920    flags: PrimaryMap<TypeFlagsIndex, TypeInformation>,
921    options: PrimaryMap<TypeOptionIndex, TypeInformation>,
922    results: PrimaryMap<TypeResultIndex, TypeInformation>,
923    lists: PrimaryMap<TypeListIndex, TypeInformation>,
924}
925
926struct TypeInformation {
927    depth: u32,
928    flat: FlatTypesStorage,
929    has_borrow: bool,
930}
931
932impl TypeInformation {
933    const fn new() -> TypeInformation {
934        TypeInformation {
935            depth: 0,
936            flat: FlatTypesStorage::new(),
937            has_borrow: false,
938        }
939    }
940
941    const fn primitive(flat: FlatType) -> TypeInformation {
942        let mut info = TypeInformation::new();
943        info.depth = 1;
944        info.flat.memory32[0] = flat;
945        info.flat.memory64[0] = flat;
946        info.flat.len = 1;
947        info
948    }
949
950    const fn string() -> TypeInformation {
951        let mut info = TypeInformation::new();
952        info.depth = 1;
953        info.flat.memory32[0] = FlatType::I32;
954        info.flat.memory32[1] = FlatType::I32;
955        info.flat.memory64[0] = FlatType::I64;
956        info.flat.memory64[1] = FlatType::I64;
957        info.flat.len = 2;
958        info
959    }
960
961    /// Builds up all flat types internally using the specified representation
962    /// for all of the component fields of the record.
963    fn build_record<'a>(&mut self, types: impl Iterator<Item = &'a TypeInformation>) {
964        self.depth = 1;
965        for info in types {
966            self.depth = self.depth.max(1 + info.depth);
967            self.has_borrow = self.has_borrow || info.has_borrow;
968            match info.flat.as_flat_types() {
969                Some(types) => {
970                    for (t32, t64) in types.memory32.iter().zip(types.memory64) {
971                        if !self.flat.push(*t32, *t64) {
972                            break;
973                        }
974                    }
975                }
976                None => {
977                    self.flat.len = u8::try_from(MAX_FLAT_TYPES + 1).unwrap();
978                }
979            }
980        }
981    }
982
983    /// Builds up the flat types used to represent a `variant` which notably
984    /// handles "join"ing types together so each case is representable as a
985    /// single flat list of types.
986    ///
987    /// The iterator item is:
988    ///
989    /// * `None` - no payload for this case
990    /// * `Some(None)` - this case has a payload but can't be represented with
991    ///   flat types
992    /// * `Some(Some(types))` - this case has a payload and is represented with
993    ///   the types specified in the flat representation.
994    fn build_variant<'a, I>(&mut self, cases: I)
995    where
996        I: IntoIterator<Item = Option<&'a TypeInformation>>,
997    {
998        let cases = cases.into_iter();
999        self.flat.push(FlatType::I32, FlatType::I32);
1000        self.depth = 1;
1001
1002        for info in cases {
1003            let info = match info {
1004                Some(info) => info,
1005                // If this case doesn't have a payload then it doesn't change
1006                // the depth/flat representation
1007                None => continue,
1008            };
1009            self.depth = self.depth.max(1 + info.depth);
1010            self.has_borrow = self.has_borrow || info.has_borrow;
1011
1012            // If this variant is already unrepresentable in a flat
1013            // representation then this can be skipped.
1014            if usize::from(self.flat.len) > MAX_FLAT_TYPES {
1015                continue;
1016            }
1017
1018            let types = match info.flat.as_flat_types() {
1019                Some(types) => types,
1020                // If this case isn't representable with a flat list of types
1021                // then this variant also isn't representable.
1022                None => {
1023                    self.flat.len = u8::try_from(MAX_FLAT_TYPES + 1).unwrap();
1024                    continue;
1025                }
1026            };
1027            // If the case used all of the flat types then the discriminant
1028            // added for this variant means that this variant is no longer
1029            // representable.
1030            if types.memory32.len() >= MAX_FLAT_TYPES {
1031                self.flat.len = u8::try_from(MAX_FLAT_TYPES + 1).unwrap();
1032                continue;
1033            }
1034            let dst = self
1035                .flat
1036                .memory32
1037                .iter_mut()
1038                .zip(&mut self.flat.memory64)
1039                .skip(1);
1040            for (i, ((t32, t64), (dst32, dst64))) in types
1041                .memory32
1042                .iter()
1043                .zip(types.memory64)
1044                .zip(dst)
1045                .enumerate()
1046            {
1047                if i + 1 < usize::from(self.flat.len) {
1048                    // If this index hs already been set by some previous case
1049                    // then the types are joined together.
1050                    dst32.join(*t32);
1051                    dst64.join(*t64);
1052                } else {
1053                    // Otherwise if this is the first time that the
1054                    // representation has gotten this large then the destination
1055                    // is simply whatever the type is. The length is also
1056                    // increased here to indicate this.
1057                    self.flat.len += 1;
1058                    *dst32 = *t32;
1059                    *dst64 = *t64;
1060                }
1061            }
1062        }
1063    }
1064
1065    fn records(&mut self, types: &ComponentTypesBuilder, ty: &TypeRecord) {
1066        self.build_record(ty.fields.iter().map(|f| types.type_information(&f.ty)));
1067    }
1068
1069    fn tuples(&mut self, types: &ComponentTypesBuilder, ty: &TypeTuple) {
1070        self.build_record(ty.types.iter().map(|t| types.type_information(t)));
1071    }
1072
1073    fn enums(&mut self, _types: &ComponentTypesBuilder, _ty: &TypeEnum) {
1074        self.depth = 1;
1075        self.flat.push(FlatType::I32, FlatType::I32);
1076    }
1077
1078    fn flags(&mut self, _types: &ComponentTypesBuilder, ty: &TypeFlags) {
1079        self.depth = 1;
1080        match FlagsSize::from_count(ty.names.len()) {
1081            FlagsSize::Size0 => {}
1082            FlagsSize::Size1 | FlagsSize::Size2 => {
1083                self.flat.push(FlatType::I32, FlatType::I32);
1084            }
1085            FlagsSize::Size4Plus(n) => {
1086                for _ in 0..n {
1087                    self.flat.push(FlatType::I32, FlatType::I32);
1088                }
1089            }
1090        }
1091    }
1092
1093    fn variants(&mut self, types: &ComponentTypesBuilder, ty: &TypeVariant) {
1094        self.build_variant(
1095            ty.cases
1096                .iter()
1097                .map(|(_, c)| c.as_ref().map(|ty| types.type_information(ty))),
1098        )
1099    }
1100
1101    fn results(&mut self, types: &ComponentTypesBuilder, ty: &TypeResult) {
1102        self.build_variant([
1103            ty.ok.as_ref().map(|ty| types.type_information(ty)),
1104            ty.err.as_ref().map(|ty| types.type_information(ty)),
1105        ])
1106    }
1107
1108    fn options(&mut self, types: &ComponentTypesBuilder, ty: &TypeOption) {
1109        self.build_variant([None, Some(types.type_information(&ty.ty))]);
1110    }
1111
1112    fn lists(&mut self, types: &ComponentTypesBuilder, ty: &TypeList) {
1113        *self = TypeInformation::string();
1114        let info = types.type_information(&ty.element);
1115        self.depth += info.depth;
1116        self.has_borrow = info.has_borrow;
1117    }
1118}