cranelift_codegen/egraph/
elaborate.rs

1//! Elaboration phase: lowers EGraph back to sequences of operations
2//! in CFG nodes.
3
4use super::Stats;
5use super::cost::Cost;
6use crate::ctxhash::NullCtx;
7use crate::dominator_tree::DominatorTree;
8use crate::hash_map::Entry as HashEntry;
9use crate::inst_predicates::is_pure_for_egraph;
10use crate::ir::{Block, Function, Inst, Value, ValueDef};
11use crate::loop_analysis::{Loop, LoopAnalysis};
12use crate::scoped_hash_map::ScopedHashMap;
13use crate::trace;
14use alloc::vec::Vec;
15use cranelift_control::ControlPlane;
16use cranelift_entity::{SecondaryMap, packed_option::ReservedValue};
17use rustc_hash::{FxHashMap, FxHashSet};
18use smallvec::{SmallVec, smallvec};
19
20pub(crate) struct Elaborator<'a> {
21    func: &'a mut Function,
22    domtree: &'a DominatorTree,
23    loop_analysis: &'a LoopAnalysis,
24    /// Map from Value that is produced by a pure Inst (and was thus
25    /// not in the side-effecting skeleton) to the value produced by
26    /// an elaborated inst (placed in the layout) to whose results we
27    /// refer in the final code.
28    ///
29    /// The first time we use some result of an instruction during
30    /// elaboration, we can place it and insert an identity map (inst
31    /// results to that same inst's results) in this scoped
32    /// map. Within that block and its dom-tree children, that mapping
33    /// is visible and we can continue to use it. This allows us to
34    /// avoid cloning the instruction. However, if we pop that scope
35    /// and use it somewhere else as well, we will need to
36    /// duplicate. We detect this case by checking, when a value that
37    /// we want is not present in this map, whether the producing inst
38    /// is already placed in the Layout. If so, we duplicate, and
39    /// insert non-identity mappings from the original inst's results
40    /// to the cloned inst's results.
41    ///
42    /// Note that as values may refer to unions that represent a subset
43    /// of a larger eclass, it's not valid to walk towards the root of a
44    /// union tree: doing so would potentially equate values that fall
45    /// on different branches of the dominator tree.
46    value_to_elaborated_value: ScopedHashMap<Value, ElaboratedValue>,
47    /// Map from Value to the best (lowest-cost) Value in its eclass
48    /// (tree of union value-nodes).
49    value_to_best_value: SecondaryMap<Value, BestEntry>,
50    /// Stack of blocks and loops in current elaboration path.
51    loop_stack: SmallVec<[LoopStackEntry; 8]>,
52    /// The current block into which we are elaborating.
53    cur_block: Block,
54    /// Values that opt rules have indicated should be rematerialized
55    /// in every block they are used (e.g., immediates or other
56    /// "cheap-to-compute" ops).
57    remat_values: &'a FxHashSet<Value>,
58    /// Explicitly-unrolled value elaboration stack.
59    elab_stack: Vec<ElabStackEntry>,
60    /// Results from the elab stack.
61    elab_result_stack: Vec<ElaboratedValue>,
62    /// Explicitly-unrolled block elaboration stack.
63    block_stack: Vec<BlockStackEntry>,
64    /// Copies of values that have been rematerialized.
65    remat_copies: FxHashMap<(Block, Value), Value>,
66    /// Stats for various events during egraph processing, to help
67    /// with optimization of this infrastructure.
68    stats: &'a mut Stats,
69    /// Chaos-mode control-plane so we can test that we still get
70    /// correct results when our heuristics make bad decisions.
71    ctrl_plane: &'a mut ControlPlane,
72}
73
74#[derive(Clone, Copy, Debug, PartialEq, Eq)]
75struct BestEntry(Cost, Value);
76
77impl PartialOrd for BestEntry {
78    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
79        Some(self.cmp(other))
80    }
81}
82
83impl Ord for BestEntry {
84    #[inline]
85    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
86        self.0.cmp(&other.0).then_with(|| {
87            // Note that this comparison is reversed. When costs are equal,
88            // prefer the value with the bigger index. This is a heuristic that
89            // prefers results of rewrites to the original value, since we
90            // expect that our rewrites are generally improvements.
91            self.1.cmp(&other.1).reverse()
92        })
93    }
94}
95
96#[derive(Clone, Copy, Debug)]
97struct ElaboratedValue {
98    in_block: Block,
99    value: Value,
100}
101
102#[derive(Clone, Debug)]
103struct LoopStackEntry {
104    /// The loop identifier.
105    lp: Loop,
106    /// The hoist point: a block that immediately dominates this
107    /// loop. May not be an immediate predecessor, but will be a valid
108    /// point to place all loop-invariant ops: they must depend only
109    /// on inputs that dominate the loop, so are available at (the end
110    /// of) this block.
111    hoist_block: Block,
112    /// The depth in the scope map.
113    scope_depth: u32,
114}
115
116#[derive(Clone, Debug)]
117enum ElabStackEntry {
118    /// Next action is to resolve this value into an elaborated inst
119    /// (placed into the layout) that produces the value, and
120    /// recursively elaborate the insts that produce its args.
121    ///
122    /// Any inserted ops should be inserted before `before`, which is
123    /// the instruction demanding this value.
124    Start { value: Value, before: Inst },
125    /// Args have been pushed; waiting for results.
126    PendingInst {
127        inst: Inst,
128        result_idx: usize,
129        num_args: usize,
130        before: Inst,
131    },
132}
133
134#[derive(Clone, Debug)]
135enum BlockStackEntry {
136    Elaborate { block: Block, idom: Option<Block> },
137    Pop,
138}
139
140impl<'a> Elaborator<'a> {
141    pub(crate) fn new(
142        func: &'a mut Function,
143        domtree: &'a DominatorTree,
144        loop_analysis: &'a LoopAnalysis,
145        remat_values: &'a FxHashSet<Value>,
146        stats: &'a mut Stats,
147        ctrl_plane: &'a mut ControlPlane,
148    ) -> Self {
149        let num_values = func.dfg.num_values();
150        let mut value_to_best_value =
151            SecondaryMap::with_default(BestEntry(Cost::infinity(), Value::reserved_value()));
152        value_to_best_value.resize(num_values);
153        Self {
154            func,
155            domtree,
156            loop_analysis,
157            value_to_elaborated_value: ScopedHashMap::with_capacity(num_values),
158            value_to_best_value,
159            loop_stack: smallvec![],
160            cur_block: Block::reserved_value(),
161            remat_values,
162            elab_stack: vec![],
163            elab_result_stack: vec![],
164            block_stack: vec![],
165            remat_copies: FxHashMap::default(),
166            stats,
167            ctrl_plane,
168        }
169    }
170
171    fn start_block(&mut self, idom: Option<Block>, block: Block) {
172        trace!(
173            "start_block: block {:?} with idom {:?} at loop depth {:?} scope depth {}",
174            block,
175            idom,
176            self.loop_stack.len(),
177            self.value_to_elaborated_value.depth()
178        );
179
180        // Pop any loop levels we're no longer in.
181        while let Some(inner_loop) = self.loop_stack.last() {
182            if self.loop_analysis.is_in_loop(block, inner_loop.lp) {
183                break;
184            }
185            self.loop_stack.pop();
186        }
187
188        // Note that if the *entry* block is a loop header, we will
189        // not make note of the loop here because it will not have an
190        // immediate dominator. We must disallow this case because we
191        // will skip adding the `LoopStackEntry` here but our
192        // `LoopAnalysis` will otherwise still make note of this loop
193        // and loop depths will not match.
194        if let Some(idom) = idom {
195            if let Some(lp) = self.loop_analysis.is_loop_header(block) {
196                self.loop_stack.push(LoopStackEntry {
197                    lp,
198                    // Any code hoisted out of this loop will have code
199                    // placed in `idom`, and will have def mappings
200                    // inserted in to the scoped hashmap at that block's
201                    // level.
202                    hoist_block: idom,
203                    scope_depth: (self.value_to_elaborated_value.depth() - 1) as u32,
204                });
205                trace!(
206                    " -> loop header, pushing; depth now {}",
207                    self.loop_stack.len()
208                );
209            }
210        } else {
211            debug_assert!(
212                self.loop_analysis.is_loop_header(block).is_none(),
213                "Entry block (domtree root) cannot be a loop header!"
214            );
215        }
216
217        trace!("block {}: loop stack is {:?}", block, self.loop_stack);
218
219        self.cur_block = block;
220    }
221
222    fn compute_best_values(&mut self) {
223        let best = &mut self.value_to_best_value;
224
225        // We can't make random decisions inside the fixpoint loop below because
226        // that could cause values to change on every iteration of the loop,
227        // which would make the loop never terminate. So in chaos testing
228        // mode we need a form of making suboptimal decisions that is fully
229        // deterministic. We choose to simply make the worst decision we know
230        // how to do instead of the best.
231        let use_worst = self.ctrl_plane.get_decision();
232
233        // Do a fixpoint loop to compute the best value for each eclass.
234        //
235        // The maximum number of iterations is the length of the longest chain
236        // of `vNN -> vMM` edges in the dataflow graph where `NN < MM`, so this
237        // is *technically* quadratic, but `cranelift-frontend` won't construct
238        // any such edges. NaN canonicalization will introduce some of these
239        // edges, but they are chains of only two or three edges. So in
240        // practice, we *never* do more than a handful of iterations here unless
241        // (a) we parsed the CLIF from text and the text was funkily numbered,
242        // which we don't really care about, or (b) the CLIF producer did
243        // something weird, in which case it is their responsibility to stop
244        // doing that.
245        trace!(
246            "Entering fixpoint loop to compute the {} values for each eclass",
247            if use_worst {
248                "worst (chaos mode)"
249            } else {
250                "best"
251            }
252        );
253        let mut keep_going = true;
254        while keep_going {
255            keep_going = false;
256            trace!(
257                "fixpoint iteration {}",
258                self.stats.elaborate_best_cost_fixpoint_iters
259            );
260            self.stats.elaborate_best_cost_fixpoint_iters += 1;
261
262            for (value, def) in self.func.dfg.values_and_defs() {
263                trace!("computing best for value {:?} def {:?}", value, def);
264                let orig_best_value = best[value];
265
266                match def {
267                    ValueDef::Union(x, y) => {
268                        // Pick the best of the two options based on
269                        // min-cost. This works because each element of `best`
270                        // is a `(cost, value)` tuple; `cost` comes first so
271                        // the natural comparison works based on cost, and
272                        // breaks ties based on value number.
273                        best[value] = if use_worst {
274                            if best[x].1.is_reserved_value() {
275                                best[y]
276                            } else if best[y].1.is_reserved_value() {
277                                best[x]
278                            } else {
279                                std::cmp::max(best[x], best[y])
280                            }
281                        } else {
282                            std::cmp::min(best[x], best[y])
283                        };
284                        trace!(
285                            " -> best of union({:?}, {:?}) = {:?}",
286                            best[x], best[y], best[value]
287                        );
288                    }
289                    ValueDef::Param(_, _) => {
290                        best[value] = BestEntry(Cost::zero(), value);
291                    }
292                    // If the Inst is inserted into the layout (which is,
293                    // at this point, only the side-effecting skeleton),
294                    // then it must be computed and thus we give it zero
295                    // cost.
296                    ValueDef::Result(inst, _) => {
297                        if let Some(_) = self.func.layout.inst_block(inst) {
298                            best[value] = BestEntry(Cost::zero(), value);
299                        } else {
300                            let inst_data = &self.func.dfg.insts[inst];
301                            // N.B.: at this point we know that the opcode is
302                            // pure, so `pure_op_cost`'s precondition is
303                            // satisfied.
304                            let cost = Cost::of_pure_op(
305                                inst_data.opcode(),
306                                self.func.dfg.inst_values(inst).map(|value| best[value].0),
307                            );
308                            best[value] = BestEntry(cost, value);
309                            trace!(" -> cost of value {} = {:?}", value, cost);
310                        }
311                    }
312                };
313
314                // Keep on iterating the fixpoint loop while we are finding new
315                // best values.
316                keep_going |= orig_best_value != best[value];
317            }
318        }
319
320        if cfg!(any(feature = "trace-log", debug_assertions)) {
321            trace!("finished fixpoint loop to compute best value for each eclass");
322            for value in self.func.dfg.values() {
323                trace!("-> best for eclass {:?}: {:?}", value, best[value]);
324                debug_assert_ne!(best[value].1, Value::reserved_value());
325                // You might additionally be expecting an assert that the best
326                // cost is not infinity, however infinite cost *can* happen in
327                // practice. First, note that our cost function doesn't know
328                // about any shared structure in the dataflow graph, it only
329                // sums operand costs. (And trying to avoid that by deduping a
330                // single operation's operands is a losing game because you can
331                // always just add one indirection and go from `add(x, x)` to
332                // `add(foo(x), bar(x))` to hide the shared structure.) Given
333                // that blindness to sharing, we can make cost grow
334                // exponentially with a linear sequence of operations:
335                //
336                //     v0 = iconst.i32 1    ;; cost = 1
337                //     v1 = iadd v0, v0     ;; cost = 3 + 1 + 1
338                //     v2 = iadd v1, v1     ;; cost = 3 + 5 + 5
339                //     v3 = iadd v2, v2     ;; cost = 3 + 13 + 13
340                //     v4 = iadd v3, v3     ;; cost = 3 + 29 + 29
341                //     v5 = iadd v4, v4     ;; cost = 3 + 61 + 61
342                //     v6 = iadd v5, v5     ;; cost = 3 + 125 + 125
343                //     ;; etc...
344                //
345                // Such a chain can cause cost to saturate to infinity. How do
346                // we choose which e-node is best when there are multiple that
347                // have saturated to infinity? It doesn't matter. As long as
348                // invariant (2) for optimization rules is upheld by our rule
349                // set (see `cranelift/codegen/src/opts/README.md`) it is safe
350                // to choose *any* e-node in the e-class. At worst we will
351                // produce suboptimal code, but never an incorrectness.
352            }
353        }
354    }
355
356    /// Elaborate use of an eclass, inserting any needed new
357    /// instructions before the given inst `before`. Should only be
358    /// given values corresponding to results of instructions or
359    /// blockparams.
360    fn elaborate_eclass_use(&mut self, value: Value, before: Inst) -> ElaboratedValue {
361        debug_assert_ne!(value, Value::reserved_value());
362
363        // Kick off the process by requesting this result
364        // value.
365        self.elab_stack
366            .push(ElabStackEntry::Start { value, before });
367
368        // Now run the explicit-stack recursion until we reach
369        // the root.
370        self.process_elab_stack();
371        debug_assert_eq!(self.elab_result_stack.len(), 1);
372        self.elab_result_stack.pop().unwrap()
373    }
374
375    /// Possibly rematerialize the instruction producing the value in
376    /// `arg` and rewrite `arg` to refer to it, if needed. Returns
377    /// `true` if a rewrite occurred.
378    fn maybe_remat_arg(
379        remat_values: &FxHashSet<Value>,
380        func: &mut Function,
381        remat_copies: &mut FxHashMap<(Block, Value), Value>,
382        insert_block: Block,
383        before: Inst,
384        arg: &mut ElaboratedValue,
385        stats: &mut Stats,
386    ) -> bool {
387        // TODO (#7313): we may want to consider recursive
388        // rematerialization as well. We could process the arguments of
389        // the rematerialized instruction up to a certain depth. This
390        // would affect, e.g., adds-with-one-constant-arg, which are
391        // currently rematerialized. Right now we don't do this, to
392        // avoid the need for another fixpoint loop here.
393        if arg.in_block != insert_block && remat_values.contains(&arg.value) {
394            let new_value = match remat_copies.entry((insert_block, arg.value)) {
395                HashEntry::Occupied(o) => *o.get(),
396                HashEntry::Vacant(v) => {
397                    let inst = func.dfg.value_def(arg.value).inst().unwrap();
398                    debug_assert_eq!(func.dfg.inst_results(inst).len(), 1);
399                    let new_inst = func.dfg.clone_inst(inst);
400                    func.layout.insert_inst(new_inst, before);
401                    let new_result = func.dfg.inst_results(new_inst)[0];
402                    *v.insert(new_result)
403                }
404            };
405            trace!("rematerialized {} as {}", arg.value, new_value);
406            arg.value = new_value;
407            stats.elaborate_remat += 1;
408            true
409        } else {
410            false
411        }
412    }
413
414    fn process_elab_stack(&mut self) {
415        while let Some(entry) = self.elab_stack.pop() {
416            match entry {
417                ElabStackEntry::Start { value, before } => {
418                    debug_assert!(self.func.dfg.value_is_real(value));
419
420                    self.stats.elaborate_visit_node += 1;
421
422                    // Get the best option; we use `value` (latest
423                    // value) here so we have a full view of the
424                    // eclass.
425                    trace!("looking up best value for {}", value);
426                    let BestEntry(_, best_value) = self.value_to_best_value[value];
427                    trace!("elaborate: value {} -> best {}", value, best_value);
428                    debug_assert_ne!(best_value, Value::reserved_value());
429
430                    if let Some(elab_val) =
431                        self.value_to_elaborated_value.get(&NullCtx, &best_value)
432                    {
433                        // Value is available; use it.
434                        trace!("elaborate: value {} -> {:?}", value, elab_val);
435                        self.stats.elaborate_memoize_hit += 1;
436                        self.elab_result_stack.push(*elab_val);
437                        continue;
438                    }
439
440                    self.stats.elaborate_memoize_miss += 1;
441
442                    // Now resolve the value to its definition to see
443                    // how we can compute it.
444                    let (inst, result_idx) = match self.func.dfg.value_def(best_value) {
445                        ValueDef::Result(inst, result_idx) => {
446                            trace!(
447                                " -> value {} is result {} of {}",
448                                best_value, result_idx, inst
449                            );
450                            (inst, result_idx)
451                        }
452                        ValueDef::Param(in_block, _) => {
453                            // We don't need to do anything to compute
454                            // this value; just push its result on the
455                            // result stack (blockparams are already
456                            // available).
457                            trace!(" -> value {} is a blockparam", best_value);
458                            self.elab_result_stack.push(ElaboratedValue {
459                                in_block,
460                                value: best_value,
461                            });
462                            continue;
463                        }
464                        ValueDef::Union(_, _) => {
465                            panic!("Should never have a Union value as the best value");
466                        }
467                    };
468
469                    trace!(
470                        " -> result {} of inst {:?}",
471                        result_idx, self.func.dfg.insts[inst]
472                    );
473
474                    // We're going to need to use this instruction
475                    // result, placing the instruction into the
476                    // layout. First, enqueue all args to be
477                    // elaborated. Push state to receive the results
478                    // and later elab this inst.
479                    let num_args = self.func.dfg.inst_values(inst).count();
480                    self.elab_stack.push(ElabStackEntry::PendingInst {
481                        inst,
482                        result_idx,
483                        num_args,
484                        before,
485                    });
486
487                    // Push args in reverse order so we process the
488                    // first arg first.
489                    for arg in self.func.dfg.inst_values(inst).rev() {
490                        debug_assert_ne!(arg, Value::reserved_value());
491                        self.elab_stack
492                            .push(ElabStackEntry::Start { value: arg, before });
493                    }
494                }
495
496                ElabStackEntry::PendingInst {
497                    inst,
498                    result_idx,
499                    num_args,
500                    before,
501                } => {
502                    trace!(
503                        "PendingInst: {} result {} args {} before {}",
504                        inst, result_idx, num_args, before
505                    );
506
507                    // We should have all args resolved at this
508                    // point. Grab them and drain them out, removing
509                    // them.
510                    let arg_idx = self.elab_result_stack.len() - num_args;
511                    let arg_values = &mut self.elab_result_stack[arg_idx..];
512
513                    // Compute max loop depth.
514                    //
515                    // Note that if there are no arguments then this instruction
516                    // is allowed to get hoisted up one loop. This is not
517                    // usually used since no-argument values are things like
518                    // constants which are typically rematerialized, but for the
519                    // `vconst` instruction 128-bit constants aren't as easily
520                    // rematerialized. They're hoisted out of inner loops but
521                    // not to the function entry which may run the risk of
522                    // placing too much register pressure on the entire
523                    // function. This is modeled with the `.saturating_sub(1)`
524                    // as the default if there's otherwise no maximum.
525                    let loop_hoist_level = arg_values
526                        .iter()
527                        .map(|&value| {
528                            // Find the outermost loop level at which
529                            // the value's defining block *is not* a
530                            // member. This is the loop-nest level
531                            // whose hoist-block we hoist to.
532                            let hoist_level = self
533                                .loop_stack
534                                .iter()
535                                .position(|loop_entry| {
536                                    !self.loop_analysis.is_in_loop(value.in_block, loop_entry.lp)
537                                })
538                                .unwrap_or(self.loop_stack.len());
539                            trace!(
540                                " -> arg: elab_value {:?} hoist level {:?}",
541                                value, hoist_level
542                            );
543                            hoist_level
544                        })
545                        .max()
546                        .unwrap_or(self.loop_stack.len().saturating_sub(1));
547                    trace!(
548                        " -> loop hoist level: {:?}; cur loop depth: {:?}, loop_stack: {:?}",
549                        loop_hoist_level,
550                        self.loop_stack.len(),
551                        self.loop_stack,
552                    );
553
554                    // We know that this is a pure inst, because
555                    // non-pure roots have already been placed in the
556                    // value-to-elab'd-value map, so they will not
557                    // reach this stage of processing.
558                    //
559                    // We now must determine the location at which we
560                    // place the instruction. This is the current
561                    // block *unless* we hoist above a loop when all
562                    // args are loop-invariant (and this op is pure).
563                    let (scope_depth, before, insert_block) = if loop_hoist_level
564                        == self.loop_stack.len()
565                    {
566                        // Depends on some value at the current
567                        // loop depth, or remat forces it here:
568                        // place it at the current location.
569                        (
570                            self.value_to_elaborated_value.depth(),
571                            before,
572                            self.func.layout.inst_block(before).unwrap(),
573                        )
574                    } else {
575                        // Does not depend on any args at current
576                        // loop depth: hoist out of loop.
577                        self.stats.elaborate_licm_hoist += 1;
578                        let data = &self.loop_stack[loop_hoist_level];
579                        // `data.hoist_block` should dominate `before`'s block.
580                        let before_block = self.func.layout.inst_block(before).unwrap();
581                        debug_assert!(self.domtree.block_dominates(data.hoist_block, before_block));
582                        // Determine the instruction at which we
583                        // insert in `data.hoist_block`.
584                        let before = self.func.layout.last_inst(data.hoist_block).unwrap();
585                        (data.scope_depth as usize, before, data.hoist_block)
586                    };
587
588                    trace!(
589                        " -> decided to place: before {} insert_block {}",
590                        before, insert_block
591                    );
592
593                    // Now that we have the location for the
594                    // instruction, check if any of its args are remat
595                    // values. If so, and if we don't have a copy of
596                    // the rematerializing instruction for this block
597                    // yet, create one.
598                    let mut remat_arg = false;
599                    for arg_value in arg_values.iter_mut() {
600                        if Self::maybe_remat_arg(
601                            &self.remat_values,
602                            &mut self.func,
603                            &mut self.remat_copies,
604                            insert_block,
605                            before,
606                            arg_value,
607                            &mut self.stats,
608                        ) {
609                            remat_arg = true;
610                        }
611                    }
612
613                    // Now we need to place `inst` at the computed
614                    // location (just before `before`). Note that
615                    // `inst` may already have been placed somewhere
616                    // else, because a pure node may be elaborated at
617                    // more than one place. In this case, we need to
618                    // duplicate the instruction (and return the
619                    // `Value`s for that duplicated instance instead).
620                    //
621                    // Also clone if we rematerialized, because we
622                    // don't want to rewrite the args in the original
623                    // copy.
624                    trace!("need inst {} before {}", inst, before);
625                    let inst = if self.func.layout.inst_block(inst).is_some() || remat_arg {
626                        // Clone the inst!
627                        let new_inst = self.func.dfg.clone_inst(inst);
628                        trace!(
629                            " -> inst {} already has a location; cloned to {}",
630                            inst, new_inst
631                        );
632                        // Create mappings in the
633                        // value-to-elab'd-value map from original
634                        // results to cloned results.
635                        for (&result, &new_result) in self
636                            .func
637                            .dfg
638                            .inst_results(inst)
639                            .iter()
640                            .zip(self.func.dfg.inst_results(new_inst).iter())
641                        {
642                            let elab_value = ElaboratedValue {
643                                value: new_result,
644                                in_block: insert_block,
645                            };
646                            let best_result = self.value_to_best_value[result];
647                            self.value_to_elaborated_value.insert_if_absent_with_depth(
648                                &NullCtx,
649                                best_result.1,
650                                elab_value,
651                                scope_depth,
652                            );
653
654                            self.value_to_best_value[new_result] = best_result;
655
656                            trace!(
657                                " -> cloned inst has new result {} for orig {}",
658                                new_result, result
659                            );
660                        }
661                        new_inst
662                    } else {
663                        trace!(" -> no location; using original inst");
664                        // Create identity mappings from result values
665                        // to themselves in this scope, since we're
666                        // using the original inst.
667                        for &result in self.func.dfg.inst_results(inst) {
668                            let elab_value = ElaboratedValue {
669                                value: result,
670                                in_block: insert_block,
671                            };
672                            let best_result = self.value_to_best_value[result];
673                            self.value_to_elaborated_value.insert_if_absent_with_depth(
674                                &NullCtx,
675                                best_result.1,
676                                elab_value,
677                                scope_depth,
678                            );
679                            trace!(" -> inserting identity mapping for {}", result);
680                        }
681                        inst
682                    };
683
684                    // Place the inst just before `before`.
685                    assert!(
686                        is_pure_for_egraph(self.func, inst),
687                        "something has gone very wrong if we are elaborating effectful \
688                         instructions, they should have remained in the skeleton"
689                    );
690                    self.func.layout.insert_inst(inst, before);
691
692                    // Update the inst's arguments.
693                    self.func
694                        .dfg
695                        .overwrite_inst_values(inst, arg_values.into_iter().map(|ev| ev.value));
696
697                    // Now that we've consumed the arg values, pop
698                    // them off the stack.
699                    self.elab_result_stack.truncate(arg_idx);
700
701                    // Push the requested result index of the
702                    // instruction onto the elab-results stack.
703                    self.elab_result_stack.push(ElaboratedValue {
704                        in_block: insert_block,
705                        value: self.func.dfg.inst_results(inst)[result_idx],
706                    });
707                }
708            }
709        }
710    }
711
712    fn elaborate_block(&mut self, elab_values: &mut Vec<Value>, idom: Option<Block>, block: Block) {
713        trace!("elaborate_block: block {}", block);
714        self.start_block(idom, block);
715
716        // Iterate over the side-effecting skeleton using the linked
717        // list in Layout. We will insert instructions that are
718        // elaborated *before* `inst`, so we can always use its
719        // next-link to continue the iteration.
720        let mut next_inst = self.func.layout.first_inst(block);
721        let mut first_branch = None;
722        while let Some(inst) = next_inst {
723            trace!(
724                "elaborating inst {} with results {:?}",
725                inst,
726                self.func.dfg.inst_results(inst)
727            );
728            // Record the first branch we see in the block; all
729            // elaboration for args of *any* branch must be inserted
730            // before the *first* branch, because the branch group
731            // must remain contiguous at the end of the block.
732            if self.func.dfg.insts[inst].opcode().is_branch() && first_branch == None {
733                first_branch = Some(inst);
734            }
735
736            // Determine where elaboration inserts insts.
737            let before = first_branch.unwrap_or(inst);
738            trace!(" -> inserting before {}", before);
739
740            elab_values.extend(self.func.dfg.inst_values(inst));
741            for arg in elab_values.iter_mut() {
742                trace!(" -> arg {}", *arg);
743                // Elaborate the arg, placing any newly-inserted insts
744                // before `before`. Get the updated value, which may
745                // be different than the original.
746                let mut new_arg = self.elaborate_eclass_use(*arg, before);
747                Self::maybe_remat_arg(
748                    &self.remat_values,
749                    &mut self.func,
750                    &mut self.remat_copies,
751                    block,
752                    inst,
753                    &mut new_arg,
754                    &mut self.stats,
755                );
756                trace!("   -> rewrote arg to {:?}", new_arg);
757                *arg = new_arg.value;
758            }
759            self.func
760                .dfg
761                .overwrite_inst_values(inst, elab_values.drain(..));
762
763            // We need to put the results of this instruction in the
764            // map now.
765            for &result in self.func.dfg.inst_results(inst) {
766                trace!(" -> result {}", result);
767                let best_result = self.value_to_best_value[result];
768                self.value_to_elaborated_value.insert_if_absent(
769                    &NullCtx,
770                    best_result.1,
771                    ElaboratedValue {
772                        in_block: block,
773                        value: result,
774                    },
775                );
776            }
777
778            next_inst = self.func.layout.next_inst(inst);
779        }
780    }
781
782    fn elaborate_domtree(&mut self, domtree: &DominatorTree) {
783        self.block_stack.push(BlockStackEntry::Elaborate {
784            block: self.func.layout.entry_block().unwrap(),
785            idom: None,
786        });
787
788        // A temporary workspace for elaborate_block, allocated here to maximize the use of the
789        // allocation.
790        let mut elab_values = Vec::new();
791
792        while let Some(top) = self.block_stack.pop() {
793            match top {
794                BlockStackEntry::Elaborate { block, idom } => {
795                    self.block_stack.push(BlockStackEntry::Pop);
796                    self.value_to_elaborated_value.increment_depth();
797
798                    self.elaborate_block(&mut elab_values, idom, block);
799
800                    // Push children. We are doing a preorder
801                    // traversal so we do this after processing this
802                    // block above.
803                    let block_stack_end = self.block_stack.len();
804                    for child in self.ctrl_plane.shuffled(domtree.children(block)) {
805                        self.block_stack.push(BlockStackEntry::Elaborate {
806                            block: child,
807                            idom: Some(block),
808                        });
809                    }
810                    // Reverse what we just pushed so we elaborate in
811                    // original block order. (The domtree iter is a
812                    // single-ended iter over a singly-linked list so
813                    // we can't `.rev()` above.)
814                    self.block_stack[block_stack_end..].reverse();
815                }
816                BlockStackEntry::Pop => {
817                    self.value_to_elaborated_value.decrement_depth();
818                }
819            }
820        }
821    }
822
823    pub(crate) fn elaborate(&mut self) {
824        self.stats.elaborate_func += 1;
825        self.stats.elaborate_func_pre_insts += self.func.dfg.num_insts() as u64;
826        self.compute_best_values();
827        self.elaborate_domtree(&self.domtree);
828        self.stats.elaborate_func_post_insts += self.func.dfg.num_insts() as u64;
829    }
830}