cranelift_codegen/egraph/cost.rs
1//! Cost functions for egraph representation.
2
3use crate::ir::Opcode;
4
5/// A cost of computing some value in the program.
6///
7/// Costs are measured in an arbitrary union that we represent in a
8/// `u32`. The ordering is meant to be meaningful, but the value of a
9/// single unit is arbitrary (and "not to scale"). We use a collection
10/// of heuristics to try to make this approximation at least usable.
11///
12/// We start by defining costs for each opcode (see `pure_op_cost`
13/// below). The cost of computing some value, initially, is the cost
14/// of its opcode, plus the cost of computing its inputs.
15///
16/// We then adjust the cost according to loop nests: for each
17/// loop-nest level, we multiply by 1024. Because we only have 32
18/// bits, we limit this scaling to a loop-level of two (i.e., multiply
19/// by 2^20 ~= 1M).
20///
21/// Arithmetic on costs is always saturating: we don't want to wrap
22/// around and return to a tiny cost when adding the costs of two very
23/// expensive operations. It is better to approximate and lose some
24/// precision than to lose the ordering by wrapping.
25///
26/// Finally, we reserve the highest value, `u32::MAX`, as a sentinel
27/// that means "infinite". This is separate from the finite costs and
28/// not reachable by doing arithmetic on them (even when overflowing)
29/// -- we saturate just *below* infinity. (This is done by the
30/// `finite()` method.) An infinite cost is used to represent a value
31/// that cannot be computed, or otherwise serve as a sentinel when
32/// performing search for the lowest-cost representation of a value.
33#[derive(Clone, Copy, PartialEq, Eq)]
34pub(crate) struct Cost(u32);
35
36impl core::fmt::Debug for Cost {
37 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
38 if *self == Cost::infinity() {
39 write!(f, "Cost::Infinite")
40 } else {
41 f.debug_struct("Cost::Finite")
42 .field("op_cost", &self.op_cost())
43 .field("depth", &self.depth())
44 .finish()
45 }
46 }
47}
48
49impl Ord for Cost {
50 #[inline]
51 fn cmp(&self, other: &Self) -> std::cmp::Ordering {
52 // We make sure that the high bits are the op cost and the low bits are
53 // the depth. This means that we can use normal integer comparison to
54 // order by op cost and then depth.
55 //
56 // We want to break op cost ties with depth (rather than the other way
57 // around). When the op cost is the same, we prefer shallow and wide
58 // expressions to narrow and deep expressions and breaking ties with
59 // `depth` gives us that. For example, `(a + b) + (c + d)` is preferred
60 // to `((a + b) + c) + d`. This is beneficial because it exposes more
61 // instruction-level parallelism and shortens live ranges.
62 self.0.cmp(&other.0)
63 }
64}
65
66impl PartialOrd for Cost {
67 #[inline]
68 fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
69 Some(self.cmp(other))
70 }
71}
72
73impl Cost {
74 const DEPTH_BITS: u8 = 8;
75 const DEPTH_MASK: u32 = (1 << Self::DEPTH_BITS) - 1;
76 const OP_COST_MASK: u32 = !Self::DEPTH_MASK;
77 const MAX_OP_COST: u32 = Self::OP_COST_MASK >> Self::DEPTH_BITS;
78
79 pub(crate) fn infinity() -> Cost {
80 // 2^32 - 1 is, uh, pretty close to infinite... (we use `Cost`
81 // only for heuristics and always saturate so this suffices!)
82 Cost(u32::MAX)
83 }
84
85 pub(crate) fn zero() -> Cost {
86 Cost(0)
87 }
88
89 /// Construct a new `Cost` from the given parts.
90 ///
91 /// If the opcode cost is greater than or equal to the maximum representable
92 /// opcode cost, then the resulting `Cost` saturates to infinity.
93 fn new(opcode_cost: u32, depth: u8) -> Cost {
94 if opcode_cost >= Self::MAX_OP_COST {
95 Self::infinity()
96 } else {
97 Cost(opcode_cost << Self::DEPTH_BITS | u32::from(depth))
98 }
99 }
100
101 fn depth(&self) -> u8 {
102 let depth = self.0 & Self::DEPTH_MASK;
103 u8::try_from(depth).unwrap()
104 }
105
106 fn op_cost(&self) -> u32 {
107 (self.0 & Self::OP_COST_MASK) >> Self::DEPTH_BITS
108 }
109
110 /// Return the cost of an opcode.
111 fn of_opcode(op: Opcode) -> Cost {
112 match op {
113 // Constants.
114 Opcode::Iconst | Opcode::F32const | Opcode::F64const => Cost::new(1, 0),
115
116 // Extends/reduces.
117 Opcode::Uextend
118 | Opcode::Sextend
119 | Opcode::Ireduce
120 | Opcode::Iconcat
121 | Opcode::Isplit => Cost::new(1, 0),
122
123 // "Simple" arithmetic.
124 Opcode::Iadd
125 | Opcode::Isub
126 | Opcode::Band
127 | Opcode::Bor
128 | Opcode::Bxor
129 | Opcode::Bnot
130 | Opcode::Ishl
131 | Opcode::Ushr
132 | Opcode::Sshr => Cost::new(3, 0),
133
134 // Everything else.
135 _ => {
136 let mut c = Cost::new(4, 0);
137 if op.can_trap() || op.other_side_effects() {
138 c = c + Cost::new(5, 0);
139 }
140 if op.can_load() {
141 c = c + Cost::new(10, 0);
142 }
143 if op.can_store() {
144 c = c + Cost::new(20, 0);
145 }
146 c
147 }
148 }
149 }
150
151 /// Compute the cost of the operation and its given operands.
152 ///
153 /// Caller is responsible for checking that the opcode came from an instruction
154 /// that satisfies `inst_predicates::is_pure_for_egraph()`.
155 pub(crate) fn of_pure_op(op: Opcode, operand_costs: impl IntoIterator<Item = Self>) -> Self {
156 let c = Self::of_opcode(op) + operand_costs.into_iter().sum();
157 Cost::new(c.op_cost(), c.depth().saturating_add(1))
158 }
159
160 /// Compute the cost of an operation in the side-effectful skeleton.
161 pub(crate) fn of_skeleton_op(op: Opcode, arity: usize) -> Self {
162 Cost::of_opcode(op) + Cost::new(u32::try_from(arity).unwrap(), (arity != 0) as _)
163 }
164}
165
166impl std::iter::Sum<Cost> for Cost {
167 fn sum<I: Iterator<Item = Cost>>(iter: I) -> Self {
168 iter.fold(Self::zero(), |a, b| a + b)
169 }
170}
171
172impl std::default::Default for Cost {
173 fn default() -> Cost {
174 Cost::zero()
175 }
176}
177
178impl std::ops::Add<Cost> for Cost {
179 type Output = Cost;
180
181 fn add(self, other: Cost) -> Cost {
182 let op_cost = self.op_cost().saturating_add(other.op_cost());
183 let depth = std::cmp::max(self.depth(), other.depth());
184 Cost::new(op_cost, depth)
185 }
186}
187
188#[cfg(test)]
189mod tests {
190 use super::*;
191
192 #[test]
193 fn add_cost() {
194 let a = Cost::new(5, 2);
195 let b = Cost::new(37, 3);
196 assert_eq!(a + b, Cost::new(42, 3));
197 assert_eq!(b + a, Cost::new(42, 3));
198 }
199
200 #[test]
201 fn add_infinity() {
202 let a = Cost::new(5, 2);
203 let b = Cost::infinity();
204 assert_eq!(a + b, Cost::infinity());
205 assert_eq!(b + a, Cost::infinity());
206 }
207
208 #[test]
209 fn op_cost_saturates_to_infinity() {
210 let a = Cost::new(Cost::MAX_OP_COST - 10, 2);
211 let b = Cost::new(11, 2);
212 assert_eq!(a + b, Cost::infinity());
213 assert_eq!(b + a, Cost::infinity());
214 }
215
216 #[test]
217 fn depth_saturates_to_max_depth() {
218 let a = Cost::new(10, u8::MAX);
219 let b = Cost::new(10, 1);
220 assert_eq!(
221 Cost::of_pure_op(Opcode::Iconst, [a, b]),
222 Cost::new(21, u8::MAX)
223 );
224 assert_eq!(
225 Cost::of_pure_op(Opcode::Iconst, [b, a]),
226 Cost::new(21, u8::MAX)
227 );
228 }
229}