wiggle/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
use anyhow::{bail, Result};
use std::borrow::Cow;
use std::cell::UnsafeCell;
use std::fmt;
use std::mem;
use std::ops::Range;
use std::str;

pub use wiggle_macro::{async_trait, from_witx};

pub use anyhow;
pub use wiggle_macro::wasmtime_integration;

pub use bitflags;

#[cfg(feature = "wiggle_metadata")]
pub use witx;

mod error;
mod guest_type;
mod region;

pub use tracing;

pub use error::GuestError;
pub use guest_type::{GuestErrorType, GuestType, GuestTypeTransparent};
pub use region::Region;

pub mod async_trait_crate {
    pub use async_trait::*;
}

#[cfg(feature = "wasmtime")]
pub mod wasmtime_crate {
    pub use wasmtime::*;
}

/// Representation of guest memory for `wiggle`-generated trait methods.
///
/// Guest memory is represented as an array of bytes. Memories are either
/// "unshared" or "shared". Unshared means that the host has exclusive access to
/// the entire array of memory. This allows safe borrows into wasm linear
/// memory. Shared memories can be modified at any time and are represented as
/// an array of `UnsafeCell<u8>`.
///
/// This is generated by the `wiggle` bindings macros.
pub enum GuestMemory<'a> {
    Unshared(&'a mut [u8]),
    Shared(&'a [UnsafeCell<u8>]),
}

// manual impls are needed because of the `UnsafeCell` in the `Shared` branch
// but this otherwise upholds send/sync invariants.
unsafe impl Send for GuestMemory<'_> {}
unsafe impl Sync for GuestMemory<'_> {}

impl<'a> GuestMemory<'a> {
    /// Read a value from the provided pointer.
    ///
    /// This method will delegate to `T`'s implementation of `read` which will
    /// read a value from the `ptr` provided.
    ///
    /// # Errors
    ///
    /// An error is returned if `ptr` is out of bounds, misaligned, or otherwise
    /// not valid to read from.
    pub fn read<T>(&self, ptr: GuestPtr<T>) -> Result<T, GuestError>
    where
        T: GuestType,
    {
        T::read(self, ptr)
    }

    /// Writes the `val` provided to the `ptr` provided.
    ///
    /// This commit will write a `val` into a guest's linear memory. This will
    /// delegate to `T`'s implementation of `write`.
    ///
    /// # Errors
    ///
    /// An error is returned if `ptr` is out of bounds, misaligned, or otherwise
    /// not valid to read from.
    pub fn write<T>(&mut self, ptr: GuestPtr<T>, val: T) -> Result<(), GuestError>
    where
        T: GuestType,
    {
        T::write(self, ptr, val)
    }

    /// Acquires a slice or owned copy of the memory pointed to by `ptr`.
    ///
    /// This method will attempt to borrow `ptr` directly from linear memory. If
    /// memory is shared and cannot be borrowed directly then an owned copy is
    /// returned instead.
    ///
    /// # Errors
    ///
    /// An error is returned if `ptr` is out of bounds, misaligned, or otherwise
    /// not valid to read from.
    pub fn as_cow(&self, ptr: GuestPtr<[u8]>) -> Result<Cow<'_, [u8]>, GuestError> {
        match self {
            GuestMemory::Unshared(_) => match self.as_slice(ptr)? {
                Some(slice) => Ok(Cow::Borrowed(slice)),
                None => unreachable!(),
            },
            GuestMemory::Shared(_) => Ok(Cow::Owned(self.to_vec(ptr)?)),
        }
    }

    /// Same as [`GuestMemory::as_cow`] but for strings.
    ///
    /// # Errors
    ///
    /// An error is returned if `ptr` is out of bounds, misaligned, or otherwise
    /// not valid to read from.
    pub fn as_cow_str(&self, ptr: GuestPtr<str>) -> Result<Cow<'_, str>, GuestError> {
        match self.as_cow(ptr.cast::<[u8]>())? {
            Cow::Owned(bytes) => Ok(Cow::Owned(
                String::from_utf8(bytes).map_err(|e| e.utf8_error())?,
            )),
            Cow::Borrowed(bytes) => Ok(Cow::Borrowed(std::str::from_utf8(bytes)?)),
        }
    }

    /// Attempts to borrow a raw guest slice of memory pointed to by `ptr`.
    ///
    /// This method will attempt to return a raw pointer into guest memory. This
    /// can only be done for `Unshared` memories. A `Shared` memory will return
    /// `Ok(None)` here.
    ///
    /// # Errors
    ///
    /// An error is returned if `ptr` is out of bounds, misaligned, or otherwise
    /// not valid to read from.
    pub fn as_slice(&self, ptr: GuestPtr<[u8]>) -> Result<Option<&[u8]>, GuestError> {
        let range = self.validate_range::<u8>(ptr.pointer.0, ptr.pointer.1)?;
        match self {
            GuestMemory::Unshared(slice) => Ok(Some(&slice[range])),
            GuestMemory::Shared(_) => Ok(None),
        }
    }

    /// Same as [`GuestMemory::as_slice`] but for strings.
    pub fn as_str(&self, ptr: GuestPtr<str>) -> Result<Option<&str>, GuestError> {
        match self.as_slice(ptr.cast())? {
            Some(bytes) => Ok(Some(std::str::from_utf8(bytes)?)),
            None => Ok(None),
        }
    }

    /// Attempts return `ptr` as a raw slice of mutable bytes in wasm linear
    /// memory.
    ///
    /// Like [`GuestMemory::as_slice`] this only works for `Unshared` memories
    /// and will not work for `Shared` memories.
    pub fn as_slice_mut(&mut self, ptr: GuestPtr<[u8]>) -> Result<Option<&mut [u8]>, GuestError> {
        let range = self.validate_range::<u8>(ptr.pointer.0, ptr.pointer.1)?;
        match self {
            GuestMemory::Unshared(slice) => Ok(Some(&mut slice[range])),
            GuestMemory::Shared(_) => Ok(None),
        }
    }

    /// Copies the data in the guest region into a [`Vec`].
    ///
    /// This is useful when one cannot use [`GuestMemory::as_slice`], e.g., when
    /// pointing to a region of WebAssembly shared memory.
    pub fn to_vec<T>(&self, ptr: GuestPtr<[T]>) -> Result<Vec<T>, GuestError>
    where
        T: GuestTypeTransparent + Copy,
    {
        let guest = self.validate_size_align::<T>(ptr.pointer.0, ptr.pointer.1)?;
        let mut host = Vec::with_capacity(guest.len());

        // SAFETY: The `guest_slice` variable is already a valid pointer into
        // the guest's memory, and it may or may not be a pointer into shared
        // memory. We can't naively use `.to_vec(..)` which could introduce data
        // races but all that needs to happen is to copy data into our local
        // `vec` as all the data is `Copy` and transparent anyway. For this
        // purpose the `ptr::copy` function should be sufficient for copying
        // over all the data.
        //
        // TODO: audit that this use of `std::ptr::copy` is safe with shared
        // memory (https://github.com/bytecodealliance/wasmtime/issues/4203)
        unsafe {
            std::ptr::copy(guest.as_ptr().cast(), host.as_mut_ptr(), guest.len());
            host.set_len(guest.len());
        }
        Ok(host)
    }

    /// Copies the data pointed to by `slice` into this guest region.
    ///
    /// This method is a *safe* method to copy data from the host to the guest.
    /// This requires that `self` and `slice` have the same length. The pointee
    /// type `T` requires the [`GuestTypeTransparent`] trait which is an
    /// assertion that the representation on the host and on the guest is the
    /// same.
    ///
    /// # Errors
    ///
    /// Returns an error if this guest pointer is out of bounds or if the length
    /// of this guest pointer is not equal to the length of the slice provided.
    pub fn copy_from_slice<T>(&mut self, slice: &[T], ptr: GuestPtr<[T]>) -> Result<(), GuestError>
    where
        T: GuestTypeTransparent + Copy,
    {
        if usize::try_from(ptr.len())? != slice.len() {
            return Err(GuestError::SliceLengthsDiffer);
        }
        if slice.is_empty() {
            return Ok(());
        }

        let guest = self.validate_size_align::<T>(ptr.pointer.0, ptr.pointer.1)?;

        // SAFETY: in the shared memory case, we copy and accept that
        // the guest data may be concurrently modified. TODO: audit that
        // this use of `std::ptr::copy` is safe with shared memory
        // (https://github.com/bytecodealliance/wasmtime/issues/4203)
        //
        // Also note that the validity of `guest_slice` has already been
        // determined by the `as_unsafe_slice_mut` call above.
        assert_eq!(guest.len(), slice.len());
        unsafe {
            let guest: &[UnsafeCell<T>] = guest;
            let guest: *const UnsafeCell<T> = guest.as_ptr();
            let guest = guest.cast_mut().cast::<T>();
            std::ptr::copy(slice.as_ptr(), guest, slice.len());
        }
        Ok(())
    }

    /// Validates a guest-relative pointer given various attributes, and returns
    /// the corresponding host pointer.
    ///
    /// * `mem` - this is the guest memory being accessed.
    /// * `offset` - this is the guest-relative pointer, an offset from the
    ///   base.
    /// * `len` - this is the number of length, in units of `T`, to return
    ///   in the resulting slice.
    ///
    /// If the parameters are valid then this function will return a slice into
    /// `mem` for units of `T`, assuming everything is in-bounds and properly
    /// aligned. Additionally the byte-based `Region` is returned, used for borrows
    /// later on.
    fn validate_size_align<T>(&self, offset: u32, len: u32) -> Result<&[UnsafeCell<T>], GuestError>
    where
        T: GuestTypeTransparent,
    {
        let range = self.validate_range::<T>(offset, len)?;
        let cells = match self {
            GuestMemory::Unshared(s) => {
                let s: &[u8] = s;
                unsafe { &*(s as *const [u8] as *const [UnsafeCell<u8>]) }
            }
            GuestMemory::Shared(s) => s,
        };
        let memory = &cells[range.clone()];

        // ... and then align it to `T`, failing if either the head or tail slices
        // are nonzero in length. This `unsafe` here is from the standard library
        // and should be ok since the input slice is `UnsafeCell<u8>` and the output
        // slice is `UnsafeCell<T>`, meaning the only guarantee of the output is
        // that it's valid addressable memory, still unsafe to actually access.
        assert!(mem::align_of::<T>() <= T::guest_align());
        let (start, mid, end) = unsafe { memory.align_to() };
        if start.len() > 0 || end.len() > 0 {
            let region = Region {
                start: range.start as u32,
                len: range.len() as u32,
            };
            return Err(GuestError::PtrNotAligned(region, T::guest_align() as u32));
        }
        Ok(mid)
    }

    fn validate_range<T>(&self, offset: u32, len: u32) -> Result<Range<usize>, GuestError>
    where
        T: GuestTypeTransparent,
    {
        let byte_len = len
            .checked_mul(T::guest_size())
            .ok_or(GuestError::PtrOverflow)?;
        let region = Region {
            start: offset,
            len: byte_len,
        };
        let offset = usize::try_from(offset)?;
        let byte_len = usize::try_from(byte_len)?;

        let range = offset..offset + byte_len;
        let oob = match self {
            GuestMemory::Unshared(b) => b.get(range.clone()).is_none(),
            GuestMemory::Shared(b) => b.get(range.clone()).is_none(),
        };
        if oob {
            Err(GuestError::PtrOutOfBounds(region))
        } else {
            Ok(range)
        }
    }

    /// Returns whether this is a shared memory or not.
    pub fn is_shared_memory(&self) -> bool {
        match self {
            GuestMemory::Shared(_) => true,
            GuestMemory::Unshared(_) => false,
        }
    }
}

/// A *guest* pointer.
///
/// This type represents a pointer from the guest that points into host memory.
/// Internally a `GuestPtr` the offset into the memory that the pointer is
/// pointing at. At this time this is always a 32-bit offset so this is not
/// suitable for bindings where wasm has 64-bit addresses.
///
/// Presence of a [`GuestPtr`] does not imply any form of validity. Pointers can
/// be out-of-bounds, misaligned, etc. It is safe to construct a `GuestPtr` with
/// any offset at any time. Consider a `GuestPtr<T>` roughly equivalent to `*mut
/// T`.
///
/// ## Slices and Strings
///
/// Note that the type parameter does not need to implement the `Sized` trait,
/// so you can implement types such as this:
///
/// * `GuestPtr<str>` - a pointer to a guest string.
/// * `GuestPtr<[T]>` - a pointer to a guest array.
///
/// Note that generated bindings won't use these types so you'll have to
/// otherwise construct the types with `.cast()` or `.as_array()`. Unsized types
/// track both the pointer and length in guest memory.
///
/// ## Type parameter and pointee
///
/// The `T` type parameter is largely intended for more static safety in Rust as
/// well as having a better handle on what we're pointing to. A `GuestPtr<T>`,
/// however, does not necessarily literally imply a guest pointer pointing to
/// type `T`. Instead the [`GuestType`] trait is a layer of abstraction where
/// `GuestPtr<T>` may actually be a pointer to `U` in guest memory, but you can
/// construct a `T` from a `U`.
///
/// For example `GuestPtr<GuestPtr<T>>` is a valid type, but this is actually
/// more equivalent to `GuestPtr<u32>` because guest pointers are always
/// 32-bits. That being said you can create a `GuestPtr<T>` from a `u32`.
///
/// Additionally `GuestPtr<MyEnum>` will actually delegate, typically, to and
/// implementation which loads the underlying data as `GuestPtr<u8>` (or
/// similar) and then the bytes loaded are validated to fit within the
/// definition of `MyEnum` before `MyEnum` is returned.
///
/// For more information see the [`GuestMemory::read`] and
/// [`GuestMemory::write`] methods. In general though be extremely careful about
/// writing `unsafe` code when working with a `GuestPtr` if you're not using one
/// of the already-attached helper methods.
#[repr(transparent)]
pub struct GuestPtr<T: ?Sized + Pointee> {
    pointer: T::Pointer,
}

impl<T: ?Sized + Pointee> GuestPtr<T> {
    /// Creates a new `GuestPtr` from the given `mem` and `pointer` values.
    ///
    /// Note that for sized types like `u32`, `GuestPtr<T>`, etc, the `pointer`
    /// value is a `u32` offset into guest memory. For slices and strings,
    /// `pointer` is a `(u32, u32)` offset/length pair.
    pub fn new(pointer: T::Pointer) -> GuestPtr<T> {
        GuestPtr { pointer }
    }

    /// Returns the offset of this pointer in guest memory.
    ///
    /// Note that for sized types this returns a `u32`, but for slices and
    /// strings it returns a `(u32, u32)` pointer/length pair.
    pub fn offset(&self) -> T::Pointer {
        self.pointer
    }

    /// Casts this `GuestPtr` type to a different type.
    ///
    /// This is a safe method which is useful for simply reinterpreting the type
    /// parameter on this `GuestPtr`. Note that this is a safe method, where
    /// again there's no guarantees about alignment, validity, in-bounds-ness,
    /// etc of the returned pointer.
    pub fn cast<U>(&self) -> GuestPtr<U>
    where
        U: Pointee<Pointer = T::Pointer> + ?Sized,
    {
        GuestPtr::new(self.pointer)
    }

    /// Performs pointer arithmetic on this pointer, moving the pointer forward
    /// `amt` slots.
    ///
    /// This will either return the resulting pointer or `Err` if the pointer
    /// arithmetic calculation would overflow around the end of the address
    /// space.
    pub fn add(&self, amt: u32) -> Result<GuestPtr<T>, GuestError>
    where
        T: GuestType + Pointee<Pointer = u32>,
    {
        let offset = amt
            .checked_mul(T::guest_size())
            .and_then(|o| self.pointer.checked_add(o));
        let offset = match offset {
            Some(o) => o,
            None => return Err(GuestError::PtrOverflow),
        };
        Ok(GuestPtr::new(offset))
    }

    /// Returns a `GuestPtr` for an array of `T`s using this pointer as the
    /// base.
    pub fn as_array(&self, elems: u32) -> GuestPtr<[T]>
    where
        T: GuestType + Pointee<Pointer = u32>,
    {
        GuestPtr::new((self.pointer, elems))
    }
}

impl<T> GuestPtr<[T]> {
    /// For slices, specifically returns the relative pointer to the base of the
    /// array.
    ///
    /// This is similar to `<[T]>::as_ptr()`
    pub fn offset_base(&self) -> u32 {
        self.pointer.0
    }

    /// For slices, returns the length of the slice, in elements.
    pub fn len(&self) -> u32 {
        self.pointer.1
    }

    /// Returns an iterator over interior pointers.
    ///
    /// Each item is a `Result` indicating whether it overflowed past the end of
    /// the address space or not.
    pub fn iter(&self) -> impl ExactSizeIterator<Item = Result<GuestPtr<T>, GuestError>> + '_
    where
        T: GuestType,
    {
        let base = self.as_ptr();
        (0..self.len()).map(move |i| base.add(i))
    }

    /// Returns a `GuestPtr` pointing to the base of the array for the interior
    /// type `T`.
    pub fn as_ptr(&self) -> GuestPtr<T> {
        GuestPtr::new(self.offset_base())
    }

    pub fn get(&self, index: u32) -> Option<GuestPtr<T>>
    where
        T: GuestType,
    {
        if index < self.len() {
            Some(
                self.as_ptr()
                    .add(index)
                    .expect("just performed bounds check"),
            )
        } else {
            None
        }
    }

    pub fn get_range(&self, r: std::ops::Range<u32>) -> Option<GuestPtr<[T]>>
    where
        T: GuestType,
    {
        if r.end < r.start {
            return None;
        }
        let range_length = r.end - r.start;
        if r.start <= self.len() && r.end <= self.len() {
            Some(
                self.as_ptr()
                    .add(r.start)
                    .expect("just performed bounds check")
                    .as_array(range_length),
            )
        } else {
            None
        }
    }
}

impl GuestPtr<str> {
    /// For strings, returns the relative pointer to the base of the string
    /// allocation.
    pub fn offset_base(&self) -> u32 {
        self.pointer.0
    }

    /// Returns the length, in bytes, of the string.
    pub fn len(&self) -> u32 {
        self.pointer.1
    }

    /// Returns a raw pointer for the underlying slice of bytes that this
    /// pointer points to.
    pub fn as_bytes(&self) -> GuestPtr<[u8]> {
        GuestPtr::new(self.pointer)
    }
}

impl<T: ?Sized + Pointee> Clone for GuestPtr<T> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<T: ?Sized + Pointee> Copy for GuestPtr<T> {}

impl<T: ?Sized + Pointee> fmt::Debug for GuestPtr<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        T::debug(self.pointer, f)
    }
}

impl<T: ?Sized + Pointee> PartialEq for GuestPtr<T> {
    fn eq(&self, other: &Self) -> bool {
        self.pointer == other.pointer
    }
}

mod private {
    pub trait Sealed {}
    impl<T> Sealed for T {}
    impl<T> Sealed for [T] {}
    impl Sealed for str {}
}

/// Types that can be pointed to by `GuestPtr<T>`.
///
/// In essence everything can, and the only special-case is unsized types like
/// `str` and `[T]` which have special implementations.
pub trait Pointee: private::Sealed {
    #[doc(hidden)]
    type Pointer: Copy + PartialEq;
    #[doc(hidden)]
    fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result;
}

impl<T> Pointee for T {
    type Pointer = u32;
    fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "*guest {pointer:#x}")
    }
}

impl<T> Pointee for [T] {
    type Pointer = (u32, u32);
    fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "*guest {:#x}/{}", pointer.0, pointer.1)
    }
}

impl Pointee for str {
    type Pointer = (u32, u32);
    fn debug(pointer: Self::Pointer, f: &mut fmt::Formatter) -> fmt::Result {
        <[u8]>::debug(pointer, f)
    }
}

pub fn run_in_dummy_executor<F: std::future::Future>(future: F) -> Result<F::Output> {
    use std::pin::Pin;
    use std::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};

    let mut f = Pin::from(Box::new(future));
    let waker = dummy_waker();
    let mut cx = Context::from_waker(&waker);
    match f.as_mut().poll(&mut cx) {
        Poll::Ready(val) => return Ok(val),
        Poll::Pending =>
            bail!("Cannot wait on pending future: must enable wiggle \"async\" future and execute on an async Store"),
    }

    fn dummy_waker() -> Waker {
        return unsafe { Waker::from_raw(clone(5 as *const _)) };

        unsafe fn clone(ptr: *const ()) -> RawWaker {
            assert_eq!(ptr as usize, 5);
            const VTABLE: RawWakerVTable = RawWakerVTable::new(clone, wake, wake_by_ref, drop);
            RawWaker::new(ptr, &VTABLE)
        }

        unsafe fn wake(ptr: *const ()) {
            assert_eq!(ptr as usize, 5);
        }

        unsafe fn wake_by_ref(ptr: *const ()) {
            assert_eq!(ptr as usize, 5);
        }

        unsafe fn drop(ptr: *const ()) {
            assert_eq!(ptr as usize, 5);
        }
    }
}