wasmtime/runtime/store.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
//! Wasmtime's "store" type
//!
//! This module, and its submodules, contain the `Store` type and various types
//! used to interact with it. At first glance this is a pretty confusing module
//! where you need to know the difference between:
//!
//! * `Store<T>`
//! * `StoreContext<T>`
//! * `StoreContextMut<T>`
//! * `AsContext`
//! * `AsContextMut`
//! * `StoreInner<T>`
//! * `StoreOpaque`
//! * `StoreData`
//!
//! There's... quite a lot going on here, and it's easy to be confused. This
//! comment is ideally going to serve the purpose of clarifying what all these
//! types are for and why they're motivated.
//!
//! First it's important to know what's "internal" and what's "external". Almost
//! everything above is defined as `pub`, but only some of the items are
//! reexported to the outside world to be usable from this crate. Otherwise all
//! items are `pub` within this `store` module, and the `store` module is
//! private to the `wasmtime` crate. Notably `Store<T>`, `StoreContext<T>`,
//! `StoreContextMut<T>`, `AsContext`, and `AsContextMut` are all public
//! interfaces to the `wasmtime` crate. You can think of these as:
//!
//! * `Store<T>` - an owned reference to a store, the "root of everything"
//! * `StoreContext<T>` - basically `&StoreInner<T>`
//! * `StoreContextMut<T>` - more-or-less `&mut StoreInner<T>` with caveats.
//! Explained later.
//! * `AsContext` - similar to `AsRef`, but produces `StoreContext<T>`
//! * `AsContextMut` - similar to `AsMut`, but produces `StoreContextMut<T>`
//!
//! Next comes the internal structure of the `Store<T>` itself. This looks like:
//!
//! * `Store<T>` - this type is just a pointer large. It's primarily just
//! intended to be consumed by the outside world. Note that the "just a
//! pointer large" is a load-bearing implementation detail in Wasmtime. This
//! enables it to store a pointer to its own trait object which doesn't need
//! to change over time.
//!
//! * `StoreInner<T>` - the first layer of the contents of a `Store<T>`, what's
//! stored inside the `Box`. This is the general Rust pattern when one struct
//! is a layer over another. The surprising part, though, is that this is
//! further subdivided. This structure only contains things which actually
//! need `T` itself. The downside of this structure is that it's always
//! generic and means that code is monomorphized into consumer crates. We
//! strive to have things be as monomorphic as possible in `wasmtime` so this
//! type is not heavily used.
//!
//! * `StoreOpaque` - this is the primary contents of the `StoreInner<T>` type.
//! Stored inline in the outer type the "opaque" here means that it's a
//! "store" but it doesn't have access to the `T`. This is the primary
//! "internal" reference that Wasmtime uses since `T` is rarely needed by the
//! internals of Wasmtime.
//!
//! * `StoreData` - this is a final helper struct stored within `StoreOpaque`.
//! All references of Wasm items into a `Store` are actually indices into a
//! table in this structure, and the `StoreData` being separate makes it a bit
//! easier to manage/define/work with. There's no real fundamental reason this
//! is split out, although sometimes it's useful to have separate borrows into
//! these tables than the `StoreOpaque`.
//!
//! A major caveat with these representations is that the internal `&mut
//! StoreInner<T>` is never handed out publicly to consumers of this crate, only
//! through a wrapper of `StoreContextMut<'_, T>`. The reason for this is that
//! we want to provide mutable, but not destructive, access to the contents of a
//! `Store`. For example if a `StoreInner<T>` were replaced with some other
//! `StoreInner<T>` then that would drop live instances, possibly those
//! currently executing beneath the current stack frame. This would not be a
//! safe operation.
//!
//! This means, though, that the `wasmtime` crate, which liberally uses `&mut
//! StoreOpaque` internally, has to be careful to never actually destroy the
//! contents of `StoreOpaque`. This is an invariant that we, as the authors of
//! `wasmtime`, must uphold for the public interface to be safe.
use crate::hash_set::HashSet;
use crate::instance::InstanceData;
use crate::linker::Definition;
use crate::module::RegisteredModuleId;
use crate::prelude::*;
use crate::runtime::vm::mpk::{self, ProtectionKey, ProtectionMask};
use crate::runtime::vm::{
Backtrace, ExportGlobal, GcRootsList, GcStore, InstanceAllocationRequest, InstanceAllocator,
InstanceHandle, ModuleRuntimeInfo, OnDemandInstanceAllocator, SignalHandler, StoreBox,
StorePtr, VMContext, VMFuncRef, VMGcRef, VMRuntimeLimits,
};
use crate::trampoline::VMHostGlobalContext;
use crate::type_registry::RegisteredType;
use crate::RootSet;
use crate::{module::ModuleRegistry, Engine, Module, Trap, Val, ValRaw};
use crate::{Global, Instance, Memory, RootScope, Table, Uninhabited};
use alloc::sync::Arc;
use core::cell::UnsafeCell;
use core::fmt;
use core::future::Future;
use core::marker;
use core::mem::{self, ManuallyDrop};
use core::num::NonZeroU64;
use core::ops::{Deref, DerefMut, Range};
use core::pin::Pin;
use core::ptr;
use core::task::{Context, Poll};
mod context;
pub use self::context::*;
mod data;
pub use self::data::*;
mod func_refs;
use func_refs::FuncRefs;
/// A [`Store`] is a collection of WebAssembly instances and host-defined state.
///
/// All WebAssembly instances and items will be attached to and refer to a
/// [`Store`]. For example instances, functions, globals, and tables are all
/// attached to a [`Store`]. Instances are created by instantiating a
/// [`Module`](crate::Module) within a [`Store`].
///
/// A [`Store`] is intended to be a short-lived object in a program. No form
/// of GC is implemented at this time so once an instance is created within a
/// [`Store`] it will not be deallocated until the [`Store`] itself is dropped.
/// This makes [`Store`] unsuitable for creating an unbounded number of
/// instances in it because [`Store`] will never release this memory. It's
/// recommended to have a [`Store`] correspond roughly to the lifetime of a
/// "main instance" that an embedding is interested in executing.
///
/// ## Type parameter `T`
///
/// Each [`Store`] has a type parameter `T` associated with it. This `T`
/// represents state defined by the host. This state will be accessible through
/// the [`Caller`](crate::Caller) type that host-defined functions get access
/// to. This `T` is suitable for storing `Store`-specific information which
/// imported functions may want access to.
///
/// The data `T` can be accessed through methods like [`Store::data`] and
/// [`Store::data_mut`].
///
/// ## Stores, contexts, oh my
///
/// Most methods in Wasmtime take something of the form
/// [`AsContext`](crate::AsContext) or [`AsContextMut`](crate::AsContextMut) as
/// the first argument. These two traits allow ergonomically passing in the
/// context you currently have to any method. The primary two sources of
/// contexts are:
///
/// * `Store<T>`
/// * `Caller<'_, T>`
///
/// corresponding to what you create and what you have access to in a host
/// function. You can also explicitly acquire a [`StoreContext`] or
/// [`StoreContextMut`] and pass that around as well.
///
/// Note that all methods on [`Store`] are mirrored onto [`StoreContext`],
/// [`StoreContextMut`], and [`Caller`](crate::Caller). This way no matter what
/// form of context you have you can call various methods, create objects, etc.
///
/// ## Stores and `Default`
///
/// You can create a store with default configuration settings using
/// `Store::default()`. This will create a brand new [`Engine`] with default
/// configuration (see [`Config`](crate::Config) for more information).
///
/// ## Cross-store usage of items
///
/// In `wasmtime` wasm items such as [`Global`] and [`Memory`] "belong" to a
/// [`Store`]. The store they belong to is the one they were created with
/// (passed in as a parameter) or instantiated with. This store is the only
/// store that can be used to interact with wasm items after they're created.
///
/// The `wasmtime` crate will panic if the [`Store`] argument passed in to these
/// operations is incorrect. In other words it's considered a programmer error
/// rather than a recoverable error for the wrong [`Store`] to be used when
/// calling APIs.
pub struct Store<T> {
// for comments about `ManuallyDrop`, see `Store::into_data`
inner: ManuallyDrop<Box<StoreInner<T>>>,
}
#[derive(Copy, Clone, Debug)]
/// Passed to the argument of [`Store::call_hook`] to indicate a state transition in
/// the WebAssembly VM.
pub enum CallHook {
/// Indicates the VM is calling a WebAssembly function, from the host.
CallingWasm,
/// Indicates the VM is returning from a WebAssembly function, to the host.
ReturningFromWasm,
/// Indicates the VM is calling a host function, from WebAssembly.
CallingHost,
/// Indicates the VM is returning from a host function, to WebAssembly.
ReturningFromHost,
}
impl CallHook {
/// Indicates the VM is entering host code (exiting WebAssembly code)
pub fn entering_host(&self) -> bool {
match self {
CallHook::ReturningFromWasm | CallHook::CallingHost => true,
_ => false,
}
}
/// Indicates the VM is exiting host code (entering WebAssembly code)
pub fn exiting_host(&self) -> bool {
match self {
CallHook::ReturningFromHost | CallHook::CallingWasm => true,
_ => false,
}
}
}
/// Internal contents of a `Store<T>` that live on the heap.
///
/// The members of this struct are those that need to be generic over `T`, the
/// store's internal type storage. Otherwise all things that don't rely on `T`
/// should go into `StoreOpaque`.
pub struct StoreInner<T> {
/// Generic metadata about the store that doesn't need access to `T`.
inner: StoreOpaque,
limiter: Option<ResourceLimiterInner<T>>,
call_hook: Option<CallHookInner<T>>,
epoch_deadline_behavior:
Option<Box<dyn FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync>>,
// for comments about `ManuallyDrop`, see `Store::into_data`
data: ManuallyDrop<T>,
}
enum ResourceLimiterInner<T> {
Sync(Box<dyn FnMut(&mut T) -> &mut (dyn crate::ResourceLimiter) + Send + Sync>),
#[cfg(feature = "async")]
Async(Box<dyn FnMut(&mut T) -> &mut (dyn crate::ResourceLimiterAsync) + Send + Sync>),
}
/// An object that can take callbacks when the runtime enters or exits hostcalls.
#[cfg(all(feature = "async", feature = "call-hook"))]
#[async_trait::async_trait]
pub trait CallHookHandler<T>: Send {
/// A callback to run when wasmtime is about to enter a host call, or when about to
/// exit the hostcall.
async fn handle_call_event(&self, t: StoreContextMut<'_, T>, ch: CallHook) -> Result<()>;
}
enum CallHookInner<T> {
#[cfg(feature = "call-hook")]
Sync(Box<dyn FnMut(StoreContextMut<'_, T>, CallHook) -> Result<()> + Send + Sync>),
#[cfg(all(feature = "async", feature = "call-hook"))]
Async(Box<dyn CallHookHandler<T> + Send + Sync>),
#[allow(dead_code)]
ForceTypeParameterToBeUsed {
uninhabited: Uninhabited,
_marker: marker::PhantomData<T>,
},
}
/// What to do after returning from a callback when the engine epoch reaches
/// the deadline for a Store during execution of a function using that store.
pub enum UpdateDeadline {
/// Extend the deadline by the specified number of ticks.
Continue(u64),
/// Extend the deadline by the specified number of ticks after yielding to
/// the async executor loop. This can only be used with an async [`Store`]
/// configured via [`Config::async_support`](crate::Config::async_support).
#[cfg(feature = "async")]
Yield(u64),
}
// Forward methods on `StoreOpaque` to also being on `StoreInner<T>`
impl<T> Deref for StoreInner<T> {
type Target = StoreOpaque;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<T> DerefMut for StoreInner<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
/// Monomorphic storage for a `Store<T>`.
///
/// This structure contains the bulk of the metadata about a `Store`. This is
/// used internally in Wasmtime when dependence on the `T` of `Store<T>` isn't
/// necessary, allowing code to be monomorphic and compiled into the `wasmtime`
/// crate itself.
pub struct StoreOpaque {
// This `StoreOpaque` structure has references to itself. These aren't
// immediately evident, however, so we need to tell the compiler that it
// contains self-references. This notably suppresses `noalias` annotations
// when this shows up in compiled code because types of this structure do
// indeed alias itself. An example of this is `default_callee` holds a
// `*mut dyn Store` to the address of this `StoreOpaque` itself, indeed
// aliasing!
//
// It's somewhat unclear to me at this time if this is 100% sufficient to
// get all the right codegen in all the right places. For example does
// `Store` need to internally contain a `Pin<Box<StoreInner<T>>>`? Do the
// contexts need to contain `Pin<&mut StoreInner<T>>`? I'm not familiar
// enough with `Pin` to understand if it's appropriate here (we do, for
// example want to allow movement in and out of `data: T`, just not movement
// of most of the other members). It's also not clear if using `Pin` in a
// few places buys us much other than a bunch of `unsafe` that we already
// sort of hand-wave away.
//
// In any case this seems like a good mid-ground for now where we're at
// least telling the compiler something about all the aliasing happening
// within a `Store`.
_marker: marker::PhantomPinned,
engine: Engine,
runtime_limits: VMRuntimeLimits,
instances: Vec<StoreInstance>,
#[cfg(feature = "component-model")]
num_component_instances: usize,
signal_handler: Option<SignalHandler>,
modules: ModuleRegistry,
func_refs: FuncRefs,
host_globals: Vec<StoreBox<VMHostGlobalContext>>,
// GC-related fields.
gc_store: Option<GcStore>,
gc_roots: RootSet,
gc_roots_list: GcRootsList,
// Types for which the embedder has created an allocator for.
gc_host_alloc_types: HashSet<RegisteredType>,
// Numbers of resources instantiated in this store, and their limits
instance_count: usize,
instance_limit: usize,
memory_count: usize,
memory_limit: usize,
table_count: usize,
table_limit: usize,
#[cfg(feature = "async")]
async_state: AsyncState,
// If fuel_yield_interval is enabled, then we store the remaining fuel (that isn't in
// runtime_limits) here. The total amount of fuel is the runtime limits and reserve added
// together. Then when we run out of gas, we inject the yield amount from the reserve
// until the reserve is empty.
fuel_reserve: u64,
fuel_yield_interval: Option<NonZeroU64>,
/// Indexed data within this `Store`, used to store information about
/// globals, functions, memories, etc.
///
/// Note that this is `ManuallyDrop` because it needs to be dropped before
/// `rooted_host_funcs` below. This structure contains pointers which are
/// otherwise kept alive by the `Arc` references in `rooted_host_funcs`.
store_data: ManuallyDrop<StoreData>,
default_caller: InstanceHandle,
/// Used to optimzed wasm->host calls when the host function is defined with
/// `Func::new` to avoid allocating a new vector each time a function is
/// called.
hostcall_val_storage: Vec<Val>,
/// Same as `hostcall_val_storage`, but for the direction of the host
/// calling wasm.
wasm_val_raw_storage: Vec<ValRaw>,
/// A list of lists of definitions which have been used to instantiate
/// within this `Store`.
///
/// Note that not all instantiations end up pushing to this list. At the
/// time of this writing only the `InstancePre<T>` type will push to this
/// list. Pushes to this list are typically accompanied with
/// `HostFunc::to_func_store_rooted` to clone an `Arc` here once which
/// preserves a strong reference to the `Arc` for each `HostFunc` stored
/// within the list of `Definition`s.
///
/// Note that this is `ManuallyDrop` as it must be dropped after
/// `store_data` above, where the function pointers are stored.
rooted_host_funcs: ManuallyDrop<Vec<Arc<[Definition]>>>,
/// Keep track of what protection key is being used during allocation so
/// that the right memory pages can be enabled when entering WebAssembly
/// guest code.
pkey: Option<ProtectionKey>,
/// Runtime state for components used in the handling of resources, borrow,
/// and calls. These also interact with the `ResourceAny` type and its
/// internal representation.
#[cfg(feature = "component-model")]
component_host_table: crate::runtime::vm::component::ResourceTable,
#[cfg(feature = "component-model")]
component_calls: crate::runtime::vm::component::CallContexts,
#[cfg(feature = "component-model")]
host_resource_data: crate::component::HostResourceData,
}
#[cfg(feature = "async")]
struct AsyncState {
current_suspend: UnsafeCell<*mut wasmtime_fiber::Suspend<Result<()>, (), Result<()>>>,
current_poll_cx: UnsafeCell<PollContext>,
/// The last fiber stack that was in use by this store.
last_fiber_stack: Option<wasmtime_fiber::FiberStack>,
}
#[cfg(feature = "async")]
#[derive(Clone, Copy)]
struct PollContext {
future_context: *mut Context<'static>,
guard_range_start: *mut u8,
guard_range_end: *mut u8,
}
#[cfg(feature = "async")]
impl Default for PollContext {
fn default() -> PollContext {
PollContext {
future_context: core::ptr::null_mut(),
guard_range_start: core::ptr::null_mut(),
guard_range_end: core::ptr::null_mut(),
}
}
}
// Lots of pesky unsafe cells and pointers in this structure. This means we need
// to declare explicitly that we use this in a threadsafe fashion.
#[cfg(feature = "async")]
unsafe impl Send for AsyncState {}
#[cfg(feature = "async")]
unsafe impl Sync for AsyncState {}
/// An RAII type to automatically mark a region of code as unsafe for GC.
#[doc(hidden)]
pub struct AutoAssertNoGc<'a> {
store: &'a mut StoreOpaque,
entered: bool,
}
impl<'a> AutoAssertNoGc<'a> {
#[inline]
pub fn new(store: &'a mut StoreOpaque) -> Self {
let entered = if !cfg!(feature = "gc") {
false
} else if let Some(gc_store) = store.gc_store.as_mut() {
gc_store.gc_heap.enter_no_gc_scope();
true
} else {
false
};
AutoAssertNoGc { store, entered }
}
/// Creates an `AutoAssertNoGc` value which is forcibly "not entered" and
/// disables checks for no GC happening for the duration of this value.
///
/// This is used when it is statically otherwise known that a GC doesn't
/// happen for the various types involved.
///
/// # Unsafety
///
/// This method is `unsafe` as it does not provide the same safety
/// guarantees as `AutoAssertNoGc::new`. It must be guaranteed by the
/// caller that a GC doesn't happen.
#[inline]
pub unsafe fn disabled(store: &'a mut StoreOpaque) -> Self {
if cfg!(debug_assertions) {
AutoAssertNoGc::new(store)
} else {
AutoAssertNoGc {
store,
entered: false,
}
}
}
}
impl core::ops::Deref for AutoAssertNoGc<'_> {
type Target = StoreOpaque;
#[inline]
fn deref(&self) -> &Self::Target {
&*self.store
}
}
impl core::ops::DerefMut for AutoAssertNoGc<'_> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut *self.store
}
}
impl Drop for AutoAssertNoGc<'_> {
#[inline]
fn drop(&mut self) {
if self.entered {
self.store.unwrap_gc_store_mut().gc_heap.exit_no_gc_scope();
}
}
}
/// Used to associate instances with the store.
///
/// This is needed to track if the instance was allocated explicitly with the on-demand
/// instance allocator.
struct StoreInstance {
handle: InstanceHandle,
kind: StoreInstanceKind,
}
enum StoreInstanceKind {
/// An actual, non-dummy instance.
Real {
/// The id of this instance's module inside our owning store's
/// `ModuleRegistry`.
module_id: RegisteredModuleId,
},
/// This is a dummy instance that is just an implementation detail for
/// something else. For example, host-created memories internally create a
/// dummy instance.
///
/// Regardless of the configured instance allocator for the engine, dummy
/// instances always use the on-demand allocator to deallocate the instance.
Dummy,
}
impl<T> Store<T> {
/// Creates a new [`Store`] to be associated with the given [`Engine`] and
/// `data` provided.
///
/// The created [`Store`] will place no additional limits on the size of
/// linear memories or tables at runtime. Linear memories and tables will
/// be allowed to grow to any upper limit specified in their definitions.
/// The store will limit the number of instances, linear memories, and
/// tables created to 10,000. This can be overridden with the
/// [`Store::limiter`] configuration method.
pub fn new(engine: &Engine, data: T) -> Self {
let pkey = engine.allocator().next_available_pkey();
let mut inner = Box::new(StoreInner {
inner: StoreOpaque {
_marker: marker::PhantomPinned,
engine: engine.clone(),
runtime_limits: Default::default(),
instances: Vec::new(),
#[cfg(feature = "component-model")]
num_component_instances: 0,
signal_handler: None,
gc_store: None,
gc_roots: RootSet::default(),
gc_roots_list: GcRootsList::default(),
gc_host_alloc_types: HashSet::default(),
modules: ModuleRegistry::default(),
func_refs: FuncRefs::default(),
host_globals: Vec::new(),
instance_count: 0,
instance_limit: crate::DEFAULT_INSTANCE_LIMIT,
memory_count: 0,
memory_limit: crate::DEFAULT_MEMORY_LIMIT,
table_count: 0,
table_limit: crate::DEFAULT_TABLE_LIMIT,
#[cfg(feature = "async")]
async_state: AsyncState {
current_suspend: UnsafeCell::new(ptr::null_mut()),
current_poll_cx: UnsafeCell::new(PollContext::default()),
last_fiber_stack: None,
},
fuel_reserve: 0,
fuel_yield_interval: None,
store_data: ManuallyDrop::new(StoreData::new()),
default_caller: InstanceHandle::null(),
hostcall_val_storage: Vec::new(),
wasm_val_raw_storage: Vec::new(),
rooted_host_funcs: ManuallyDrop::new(Vec::new()),
pkey,
#[cfg(feature = "component-model")]
component_host_table: Default::default(),
#[cfg(feature = "component-model")]
component_calls: Default::default(),
#[cfg(feature = "component-model")]
host_resource_data: Default::default(),
},
limiter: None,
call_hook: None,
epoch_deadline_behavior: None,
data: ManuallyDrop::new(data),
});
// Wasmtime uses the callee argument to host functions to learn about
// the original pointer to the `Store` itself, allowing it to
// reconstruct a `StoreContextMut<T>`. When we initially call a `Func`,
// however, there's no "callee" to provide. To fix this we allocate a
// single "default callee" for the entire `Store`. This is then used as
// part of `Func::call` to guarantee that the `callee: *mut VMContext`
// is never null.
inner.default_caller = {
let module = Arc::new(wasmtime_environ::Module::default());
let shim = ModuleRuntimeInfo::bare(module);
let allocator = OnDemandInstanceAllocator::default();
allocator
.validate_module(shim.env_module(), shim.offsets())
.unwrap();
let mut instance = unsafe {
allocator
.allocate_module(InstanceAllocationRequest {
host_state: Box::new(()),
imports: Default::default(),
store: StorePtr::empty(),
runtime_info: &shim,
wmemcheck: engine.config().wmemcheck,
pkey: None,
tunables: engine.tunables(),
})
.expect("failed to allocate default callee")
};
// Note the erasure of the lifetime here into `'static`, so in
// general usage of this trait object must be strictly bounded to
// the `Store` itself, and this is an invariant that we have to
// maintain throughout Wasmtime.
unsafe {
let traitobj = mem::transmute::<
*mut (dyn crate::runtime::vm::VMStore + '_),
*mut (dyn crate::runtime::vm::VMStore + 'static),
>(&mut *inner);
instance.set_store(traitobj);
instance
}
};
Self {
inner: ManuallyDrop::new(inner),
}
}
/// Access the underlying data owned by this `Store`.
#[inline]
pub fn data(&self) -> &T {
self.inner.data()
}
/// Access the underlying data owned by this `Store`.
#[inline]
pub fn data_mut(&mut self) -> &mut T {
self.inner.data_mut()
}
/// Consumes this [`Store`], destroying it, and returns the underlying data.
pub fn into_data(mut self) -> T {
// This is an unsafe operation because we want to avoid having a runtime
// check or boolean for whether the data is actually contained within a
// `Store`. The data itself is stored as `ManuallyDrop` since we're
// manually managing the memory here, and there's also a `ManuallyDrop`
// around the `Box<StoreInner<T>>`. The way this works though is a bit
// tricky, so here's how things get dropped appropriately:
//
// * When a `Store<T>` is normally dropped, the custom destructor for
// `Store<T>` will drop `T`, then the `self.inner` field. The
// rustc-glue destructor runs for `Box<StoreInner<T>>` which drops
// `StoreInner<T>`. This cleans up all internal fields and doesn't
// touch `T` because it's wrapped in `ManuallyDrop`.
//
// * When calling this method we skip the top-level destructor for
// `Store<T>` with `mem::forget`. This skips both the destructor for
// `T` and the destructor for `StoreInner<T>`. We do, however, run the
// destructor for `Box<StoreInner<T>>` which, like above, will skip
// the destructor for `T` since it's `ManuallyDrop`.
//
// In both cases all the other fields of `StoreInner<T>` should all get
// dropped, and the manual management of destructors is basically
// between this method and `Drop for Store<T>`. Note that this also
// means that `Drop for StoreInner<T>` cannot access `self.data`, so
// there is a comment indicating this as well.
unsafe {
let mut inner = ManuallyDrop::take(&mut self.inner);
core::mem::forget(self);
ManuallyDrop::take(&mut inner.data)
}
}
/// Configures the [`ResourceLimiter`] used to limit resource creation
/// within this [`Store`].
///
/// Whenever resources such as linear memory, tables, or instances are
/// allocated the `limiter` specified here is invoked with the store's data
/// `T` and the returned [`ResourceLimiter`] is used to limit the operation
/// being allocated. The returned [`ResourceLimiter`] is intended to live
/// within the `T` itself, for example by storing a
/// [`StoreLimits`](crate::StoreLimits).
///
/// Note that this limiter is only used to limit the creation/growth of
/// resources in the future, this does not retroactively attempt to apply
/// limits to the [`Store`].
///
/// # Examples
///
/// ```
/// use wasmtime::*;
///
/// struct MyApplicationState {
/// my_state: u32,
/// limits: StoreLimits,
/// }
///
/// let engine = Engine::default();
/// let my_state = MyApplicationState {
/// my_state: 42,
/// limits: StoreLimitsBuilder::new()
/// .memory_size(1 << 20 /* 1 MB */)
/// .instances(2)
/// .build(),
/// };
/// let mut store = Store::new(&engine, my_state);
/// store.limiter(|state| &mut state.limits);
///
/// // Creation of smaller memories is allowed
/// Memory::new(&mut store, MemoryType::new(1, None)).unwrap();
///
/// // Creation of a larger memory, however, will exceed the 1MB limit we've
/// // configured
/// assert!(Memory::new(&mut store, MemoryType::new(1000, None)).is_err());
///
/// // The number of instances in this store is limited to 2, so the third
/// // instance here should fail.
/// let module = Module::new(&engine, "(module)").unwrap();
/// assert!(Instance::new(&mut store, &module, &[]).is_ok());
/// assert!(Instance::new(&mut store, &module, &[]).is_ok());
/// assert!(Instance::new(&mut store, &module, &[]).is_err());
/// ```
///
/// [`ResourceLimiter`]: crate::ResourceLimiter
pub fn limiter(
&mut self,
mut limiter: impl FnMut(&mut T) -> &mut (dyn crate::ResourceLimiter) + Send + Sync + 'static,
) {
// Apply the limits on instances, tables, and memory given by the limiter:
let inner = &mut self.inner;
let (instance_limit, table_limit, memory_limit) = {
let l = limiter(&mut inner.data);
(l.instances(), l.tables(), l.memories())
};
let innermost = &mut inner.inner;
innermost.instance_limit = instance_limit;
innermost.table_limit = table_limit;
innermost.memory_limit = memory_limit;
// Save the limiter accessor function:
inner.limiter = Some(ResourceLimiterInner::Sync(Box::new(limiter)));
}
/// Configures the [`ResourceLimiterAsync`](crate::ResourceLimiterAsync)
/// used to limit resource creation within this [`Store`].
///
/// This method is an asynchronous variant of the [`Store::limiter`] method
/// where the embedder can block the wasm request for more resources with
/// host `async` execution of futures.
///
/// By using a [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`)
/// with a [`Store`], you can no longer use
/// [`Memory::new`](`crate::Memory::new`),
/// [`Memory::grow`](`crate::Memory::grow`),
/// [`Table::new`](`crate::Table::new`), and
/// [`Table::grow`](`crate::Table::grow`). Instead, you must use their
/// `async` variants: [`Memory::new_async`](`crate::Memory::new_async`),
/// [`Memory::grow_async`](`crate::Memory::grow_async`),
/// [`Table::new_async`](`crate::Table::new_async`), and
/// [`Table::grow_async`](`crate::Table::grow_async`).
///
/// Note that this limiter is only used to limit the creation/growth of
/// resources in the future, this does not retroactively attempt to apply
/// limits to the [`Store`]. Additionally this must be used with an async
/// [`Store`] configured via
/// [`Config::async_support`](crate::Config::async_support).
#[cfg(feature = "async")]
pub fn limiter_async(
&mut self,
mut limiter: impl FnMut(&mut T) -> &mut (dyn crate::ResourceLimiterAsync)
+ Send
+ Sync
+ 'static,
) {
debug_assert!(self.inner.async_support());
// Apply the limits on instances, tables, and memory given by the limiter:
let inner = &mut self.inner;
let (instance_limit, table_limit, memory_limit) = {
let l = limiter(&mut inner.data);
(l.instances(), l.tables(), l.memories())
};
let innermost = &mut inner.inner;
innermost.instance_limit = instance_limit;
innermost.table_limit = table_limit;
innermost.memory_limit = memory_limit;
// Save the limiter accessor function:
inner.limiter = Some(ResourceLimiterInner::Async(Box::new(limiter)));
}
/// Configures an async function that runs on calls and returns between
/// WebAssembly and host code. For the non-async equivalent of this method,
/// see [`Store::call_hook`].
///
/// The function is passed a [`CallHook`] argument, which indicates which
/// state transition the VM is making.
///
/// This function's future may return a [`Trap`]. If a trap is returned
/// when an import was called, it is immediately raised as-if the host
/// import had returned the trap. If a trap is returned after wasm returns
/// to the host then the wasm function's result is ignored and this trap is
/// returned instead.
///
/// After this function returns a trap, it may be called for subsequent
/// returns to host or wasm code as the trap propagates to the root call.
#[cfg(all(feature = "async", feature = "call-hook"))]
pub fn call_hook_async(&mut self, hook: impl CallHookHandler<T> + Send + Sync + 'static) {
self.inner.call_hook = Some(CallHookInner::Async(Box::new(hook)));
}
/// Configure a function that runs on calls and returns between WebAssembly
/// and host code.
///
/// The function is passed a [`CallHook`] argument, which indicates which
/// state transition the VM is making.
///
/// This function may return a [`Trap`]. If a trap is returned when an
/// import was called, it is immediately raised as-if the host import had
/// returned the trap. If a trap is returned after wasm returns to the host
/// then the wasm function's result is ignored and this trap is returned
/// instead.
///
/// After this function returns a trap, it may be called for subsequent returns
/// to host or wasm code as the trap propagates to the root call.
#[cfg(feature = "call-hook")]
pub fn call_hook(
&mut self,
hook: impl FnMut(StoreContextMut<'_, T>, CallHook) -> Result<()> + Send + Sync + 'static,
) {
self.inner.call_hook = Some(CallHookInner::Sync(Box::new(hook)));
}
/// Returns the [`Engine`] that this store is associated with.
pub fn engine(&self) -> &Engine {
self.inner.engine()
}
/// Perform garbage collection.
///
/// Note that it is not required to actively call this function. GC will
/// automatically happen according to various internal heuristics. This is
/// provided if fine-grained control over the GC is desired.
///
/// This method is only available when the `gc` Cargo feature is enabled.
#[cfg(feature = "gc")]
pub fn gc(&mut self) {
self.inner.gc()
}
/// Perform garbage collection asynchronously.
///
/// Note that it is not required to actively call this function. GC will
/// automatically happen according to various internal heuristics. This is
/// provided if fine-grained control over the GC is desired.
///
/// This method is only available when the `gc` Cargo feature is enabled.
#[cfg(all(feature = "async", feature = "gc"))]
pub async fn gc_async(&mut self)
where
T: Send,
{
self.inner.gc_async().await;
}
/// Returns the amount fuel in this [`Store`]. When fuel is enabled, it must
/// be configured via [`Store::set_fuel`].
///
/// # Errors
///
/// This function will return an error if fuel consumption is not enabled
/// via [`Config::consume_fuel`](crate::Config::consume_fuel).
pub fn get_fuel(&self) -> Result<u64> {
self.inner.get_fuel()
}
/// Set the fuel to this [`Store`] for wasm to consume while executing.
///
/// For this method to work fuel consumption must be enabled via
/// [`Config::consume_fuel`](crate::Config::consume_fuel). By default a
/// [`Store`] starts with 0 fuel for wasm to execute with (meaning it will
/// immediately trap). This function must be called for the store to have
/// some fuel to allow WebAssembly to execute.
///
/// Most WebAssembly instructions consume 1 unit of fuel. Some
/// instructions, such as `nop`, `drop`, `block`, and `loop`, consume 0
/// units, as any execution cost associated with them involves other
/// instructions which do consume fuel.
///
/// Note that when fuel is entirely consumed it will cause wasm to trap.
///
/// # Errors
///
/// This function will return an error if fuel consumption is not enabled via
/// [`Config::consume_fuel`](crate::Config::consume_fuel).
pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
self.inner.set_fuel(fuel)
}
/// Configures a [`Store`] to yield execution of async WebAssembly code
/// periodically.
///
/// When a [`Store`] is configured to consume fuel with
/// [`Config::consume_fuel`](crate::Config::consume_fuel) this method will
/// configure WebAssembly to be suspended and control will be yielded back to the
/// caller every `interval` units of fuel consumed. This is only suitable with use of
/// a store associated with an [async config](crate::Config::async_support) because
/// only then are futures used and yields are possible.
///
/// The purpose of this behavior is to ensure that futures which represent
/// execution of WebAssembly do not execute too long inside their
/// `Future::poll` method. This allows for some form of cooperative
/// multitasking where WebAssembly will voluntarily yield control
/// periodically (based on fuel consumption) back to the running thread.
///
/// Note that futures returned by this crate will automatically flag
/// themselves to get re-polled if a yield happens. This means that
/// WebAssembly will continue to execute, just after giving the host an
/// opportunity to do something else.
///
/// The `interval` parameter indicates how much fuel should be
/// consumed between yields of an async future. When fuel runs out wasm will trap.
///
/// # Error
///
/// This method will error if it is not called on a store associated with an [async
/// config](crate::Config::async_support).
pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
self.inner.fuel_async_yield_interval(interval)
}
/// Sets the epoch deadline to a certain number of ticks in the future.
///
/// When the Wasm guest code is compiled with epoch-interruption
/// instrumentation
/// ([`Config::epoch_interruption()`](crate::Config::epoch_interruption)),
/// and when the `Engine`'s epoch is incremented
/// ([`Engine::increment_epoch()`](crate::Engine::increment_epoch))
/// past a deadline, execution can be configured to either trap or
/// yield and then continue.
///
/// This deadline is always set relative to the current epoch:
/// `ticks_beyond_current` ticks in the future. The deadline can
/// be set explicitly via this method, or refilled automatically
/// on a yield if configured via
/// [`epoch_deadline_async_yield_and_update()`](Store::epoch_deadline_async_yield_and_update). After
/// this method is invoked, the deadline is reached when
/// [`Engine::increment_epoch()`] has been invoked at least
/// `ticks_beyond_current` times.
///
/// By default a store will trap immediately with an epoch deadline of 0
/// (which has always "elapsed"). This method is required to be configured
/// for stores with epochs enabled to some future epoch deadline.
///
/// See documentation on
/// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
/// for an introduction to epoch-based interruption.
pub fn set_epoch_deadline(&mut self, ticks_beyond_current: u64) {
self.inner.set_epoch_deadline(ticks_beyond_current);
}
/// Configures epoch-deadline expiration to trap.
///
/// When epoch-interruption-instrumented code is executed on this
/// store and the epoch deadline is reached before completion,
/// with the store configured in this way, execution will
/// terminate with a trap as soon as an epoch check in the
/// instrumented code is reached.
///
/// This behavior is the default if the store is not otherwise
/// configured via
/// [`epoch_deadline_trap()`](Store::epoch_deadline_trap),
/// [`epoch_deadline_callback()`](Store::epoch_deadline_callback) or
/// [`epoch_deadline_async_yield_and_update()`](Store::epoch_deadline_async_yield_and_update).
///
/// This setting is intended to allow for coarse-grained
/// interruption, but not a deterministic deadline of a fixed,
/// finite interval. For deterministic interruption, see the
/// "fuel" mechanism instead.
///
/// Note that when this is used it's required to call
/// [`Store::set_epoch_deadline`] or otherwise wasm will always immediately
/// trap.
///
/// See documentation on
/// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
/// for an introduction to epoch-based interruption.
pub fn epoch_deadline_trap(&mut self) {
self.inner.epoch_deadline_trap();
}
/// Configures epoch-deadline expiration to invoke a custom callback
/// function.
///
/// When epoch-interruption-instrumented code is executed on this
/// store and the epoch deadline is reached before completion, the
/// provided callback function is invoked.
///
/// This callback should either return an [`UpdateDeadline`], or
/// return an error, which will terminate execution with a trap.
///
/// The [`UpdateDeadline`] is a positive number of ticks to
/// add to the epoch deadline, as well as indicating what
/// to do after the callback returns. If the [`Store`] is
/// configured with async support, then the callback may return
/// [`UpdateDeadline::Yield`] to yield to the async executor before
/// updating the epoch deadline. Alternatively, the callback may
/// return [`UpdateDeadline::Continue`] to update the epoch deadline
/// immediately.
///
/// This setting is intended to allow for coarse-grained
/// interruption, but not a deterministic deadline of a fixed,
/// finite interval. For deterministic interruption, see the
/// "fuel" mechanism instead.
///
/// See documentation on
/// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
/// for an introduction to epoch-based interruption.
pub fn epoch_deadline_callback(
&mut self,
callback: impl FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync + 'static,
) {
self.inner.epoch_deadline_callback(Box::new(callback));
}
/// Configures epoch-deadline expiration to yield to the async
/// caller and the update the deadline.
///
/// When epoch-interruption-instrumented code is executed on this
/// store and the epoch deadline is reached before completion,
/// with the store configured in this way, execution will yield
/// (the future will return `Pending` but re-awake itself for
/// later execution) and, upon resuming, the store will be
/// configured with an epoch deadline equal to the current epoch
/// plus `delta` ticks.
///
/// This setting is intended to allow for cooperative timeslicing
/// of multiple CPU-bound Wasm guests in different stores, all
/// executing under the control of an async executor. To drive
/// this, stores should be configured to "yield and update"
/// automatically with this function, and some external driver (a
/// thread that wakes up periodically, or a timer
/// signal/interrupt) should call
/// [`Engine::increment_epoch()`](crate::Engine::increment_epoch).
///
/// See documentation on
/// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
/// for an introduction to epoch-based interruption.
#[cfg(feature = "async")]
pub fn epoch_deadline_async_yield_and_update(&mut self, delta: u64) {
self.inner.epoch_deadline_async_yield_and_update(delta);
}
}
impl<'a, T> StoreContext<'a, T> {
pub(crate) fn async_support(&self) -> bool {
self.0.async_support()
}
/// Returns the underlying [`Engine`] this store is connected to.
pub fn engine(&self) -> &Engine {
self.0.engine()
}
/// Access the underlying data owned by this `Store`.
///
/// Same as [`Store::data`].
pub fn data(&self) -> &'a T {
self.0.data()
}
/// Returns the remaining fuel in this store.
///
/// For more information see [`Store::get_fuel`].
pub fn get_fuel(&self) -> Result<u64> {
self.0.get_fuel()
}
}
impl<'a, T> StoreContextMut<'a, T> {
/// Access the underlying data owned by this `Store`.
///
/// Same as [`Store::data`].
pub fn data(&self) -> &T {
self.0.data()
}
/// Access the underlying data owned by this `Store`.
///
/// Same as [`Store::data_mut`].
pub fn data_mut(&mut self) -> &mut T {
self.0.data_mut()
}
/// Returns the underlying [`Engine`] this store is connected to.
pub fn engine(&self) -> &Engine {
self.0.engine()
}
/// Perform garbage collection of `ExternRef`s.
///
/// Same as [`Store::gc`].
///
/// This method is only available when the `gc` Cargo feature is enabled.
#[cfg(feature = "gc")]
pub fn gc(&mut self) {
self.0.gc()
}
/// Perform garbage collection of `ExternRef`s.
///
/// Same as [`Store::gc`].
///
/// This method is only available when the `gc` Cargo feature is enabled.
#[cfg(all(feature = "async", feature = "gc"))]
pub async fn gc_async(&mut self)
where
T: Send,
{
self.0.gc_async().await;
}
/// Returns remaining fuel in this store.
///
/// For more information see [`Store::get_fuel`]
pub fn get_fuel(&self) -> Result<u64> {
self.0.get_fuel()
}
/// Set the amount of fuel in this store.
///
/// For more information see [`Store::set_fuel`]
pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
self.0.set_fuel(fuel)
}
/// Configures this `Store` to periodically yield while executing futures.
///
/// For more information see [`Store::fuel_async_yield_interval`]
pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
self.0.fuel_async_yield_interval(interval)
}
/// Sets the epoch deadline to a certain number of ticks in the future.
///
/// For more information see [`Store::set_epoch_deadline`].
pub fn set_epoch_deadline(&mut self, ticks_beyond_current: u64) {
self.0.set_epoch_deadline(ticks_beyond_current);
}
/// Configures epoch-deadline expiration to trap.
///
/// For more information see [`Store::epoch_deadline_trap`].
pub fn epoch_deadline_trap(&mut self) {
self.0.epoch_deadline_trap();
}
/// Configures epoch-deadline expiration to yield to the async
/// caller and the update the deadline.
///
/// For more information see
/// [`Store::epoch_deadline_async_yield_and_update`].
#[cfg(feature = "async")]
pub fn epoch_deadline_async_yield_and_update(&mut self, delta: u64) {
self.0.epoch_deadline_async_yield_and_update(delta);
}
}
impl<T> StoreInner<T> {
#[inline]
fn data(&self) -> &T {
&self.data
}
#[inline]
fn data_mut(&mut self) -> &mut T {
&mut self.data
}
#[inline]
pub fn call_hook(&mut self, s: CallHook) -> Result<()> {
if self.inner.pkey.is_none() && self.call_hook.is_none() {
Ok(())
} else {
self.call_hook_slow_path(s)
}
}
fn call_hook_slow_path(&mut self, s: CallHook) -> Result<()> {
if let Some(pkey) = &self.inner.pkey {
let allocator = self.engine().allocator();
match s {
CallHook::CallingWasm | CallHook::ReturningFromHost => {
allocator.restrict_to_pkey(*pkey)
}
CallHook::ReturningFromWasm | CallHook::CallingHost => allocator.allow_all_pkeys(),
}
}
// Temporarily take the configured behavior to avoid mutably borrowing
// multiple times.
#[cfg_attr(not(feature = "call-hook"), allow(unreachable_patterns))]
if let Some(mut call_hook) = self.call_hook.take() {
let result = self.invoke_call_hook(&mut call_hook, s);
self.call_hook = Some(call_hook);
return result;
}
Ok(())
}
fn invoke_call_hook(&mut self, call_hook: &mut CallHookInner<T>, s: CallHook) -> Result<()> {
match call_hook {
#[cfg(feature = "call-hook")]
CallHookInner::Sync(hook) => hook((&mut *self).as_context_mut(), s),
#[cfg(all(feature = "async", feature = "call-hook"))]
CallHookInner::Async(handler) => unsafe {
self.inner
.async_cx()
.ok_or_else(|| anyhow!("couldn't grab async_cx for call hook"))?
.block_on(
handler
.handle_call_event((&mut *self).as_context_mut(), s)
.as_mut(),
)?
},
CallHookInner::ForceTypeParameterToBeUsed { uninhabited, .. } => {
let _ = s;
match *uninhabited {}
}
}
}
}
fn get_fuel(injected_fuel: i64, fuel_reserve: u64) -> u64 {
fuel_reserve.saturating_add_signed(-injected_fuel)
}
// Add remaining fuel from the reserve into the active fuel if there is any left.
fn refuel(
injected_fuel: &mut i64,
fuel_reserve: &mut u64,
yield_interval: Option<NonZeroU64>,
) -> bool {
let fuel = get_fuel(*injected_fuel, *fuel_reserve);
if fuel > 0 {
set_fuel(injected_fuel, fuel_reserve, yield_interval, fuel);
true
} else {
false
}
}
fn set_fuel(
injected_fuel: &mut i64,
fuel_reserve: &mut u64,
yield_interval: Option<NonZeroU64>,
new_fuel_amount: u64,
) {
let interval = yield_interval.unwrap_or(NonZeroU64::MAX).get();
// If we're yielding periodically we only store the "active" amount of fuel into consumed_ptr
// for the VM to use.
let injected = core::cmp::min(interval, new_fuel_amount);
// Fuel in the VM is stored as an i64, so we have to cap the amount of fuel we inject into the
// VM at once to be i64 range.
let injected = core::cmp::min(injected, i64::MAX as u64);
// Add whatever is left over after injection to the reserve for later use.
*fuel_reserve = new_fuel_amount - injected;
// Within the VM we increment to count fuel, so inject a negative amount. The VM will halt when
// this counter is positive.
*injected_fuel = -(injected as i64);
}
#[doc(hidden)]
impl StoreOpaque {
pub fn id(&self) -> StoreId {
self.store_data.id()
}
pub fn bump_resource_counts(&mut self, module: &Module) -> Result<()> {
fn bump(slot: &mut usize, max: usize, amt: usize, desc: &str) -> Result<()> {
let new = slot.saturating_add(amt);
if new > max {
bail!(
"resource limit exceeded: {} count too high at {}",
desc,
new
);
}
*slot = new;
Ok(())
}
let module = module.env_module();
let memories = module.num_defined_memories();
let tables = module.num_defined_tables();
bump(&mut self.instance_count, self.instance_limit, 1, "instance")?;
bump(
&mut self.memory_count,
self.memory_limit,
memories,
"memory",
)?;
bump(&mut self.table_count, self.table_limit, tables, "table")?;
Ok(())
}
#[inline]
pub fn async_support(&self) -> bool {
cfg!(feature = "async") && self.engine().config().async_support
}
#[inline]
pub fn engine(&self) -> &Engine {
&self.engine
}
#[inline]
pub fn store_data(&self) -> &StoreData {
&self.store_data
}
#[inline]
pub fn store_data_mut(&mut self) -> &mut StoreData {
&mut self.store_data
}
#[inline]
pub(crate) fn modules(&self) -> &ModuleRegistry {
&self.modules
}
#[inline]
pub(crate) fn modules_mut(&mut self) -> &mut ModuleRegistry {
&mut self.modules
}
pub(crate) fn func_refs(&mut self) -> &mut FuncRefs {
&mut self.func_refs
}
pub(crate) fn fill_func_refs(&mut self) {
self.func_refs.fill(&self.modules);
}
pub(crate) fn push_instance_pre_func_refs(&mut self, func_refs: Arc<[VMFuncRef]>) {
self.func_refs.push_instance_pre_func_refs(func_refs);
}
pub(crate) fn host_globals(&mut self) -> &mut Vec<StoreBox<VMHostGlobalContext>> {
&mut self.host_globals
}
pub fn module_for_instance(&self, instance: InstanceId) -> Option<&'_ Module> {
match self.instances[instance.0].kind {
StoreInstanceKind::Dummy => None,
StoreInstanceKind::Real { module_id } => {
let module = self
.modules()
.lookup_module_by_id(module_id)
.expect("should always have a registered module for real instances");
Some(module)
}
}
}
pub unsafe fn add_instance(
&mut self,
handle: InstanceHandle,
module_id: RegisteredModuleId,
) -> InstanceId {
self.instances.push(StoreInstance {
handle: handle.clone(),
kind: StoreInstanceKind::Real { module_id },
});
InstanceId(self.instances.len() - 1)
}
/// Add a dummy instance that to the store.
///
/// These are instances that are just implementation details of something
/// else (e.g. host-created memories that are not actually defined in any
/// Wasm module) and therefore shouldn't show up in things like core dumps.
pub unsafe fn add_dummy_instance(&mut self, handle: InstanceHandle) -> InstanceId {
self.instances.push(StoreInstance {
handle: handle.clone(),
kind: StoreInstanceKind::Dummy,
});
InstanceId(self.instances.len() - 1)
}
pub fn instance(&self, id: InstanceId) -> &InstanceHandle {
&self.instances[id.0].handle
}
pub fn instance_mut(&mut self, id: InstanceId) -> &mut InstanceHandle {
&mut self.instances[id.0].handle
}
/// Get all instances (ignoring dummy instances) within this store.
pub fn all_instances<'a>(&'a mut self) -> impl ExactSizeIterator<Item = Instance> + 'a {
let instances = self
.instances
.iter()
.enumerate()
.filter_map(|(idx, inst)| {
let id = InstanceId::from_index(idx);
if let StoreInstanceKind::Dummy = inst.kind {
None
} else {
Some(InstanceData::from_id(id))
}
})
.collect::<Vec<_>>();
instances
.into_iter()
.map(|i| Instance::from_wasmtime(i, self))
}
/// Get all memories (host- or Wasm-defined) within this store.
pub fn all_memories<'a>(&'a mut self) -> impl Iterator<Item = Memory> + 'a {
// NB: Host-created memories have dummy instances. Therefore, we can get
// all memories in the store by iterating over all instances (including
// dummy instances) and getting each of their defined memories.
let mems = self
.instances
.iter_mut()
.flat_map(|instance| instance.handle.defined_memories())
.collect::<Vec<_>>();
mems.into_iter()
.map(|memory| unsafe { Memory::from_wasmtime_memory(memory, self) })
}
/// Iterate over all tables (host- or Wasm-defined) within this store.
pub fn for_each_table(&mut self, mut f: impl FnMut(&mut Self, Table)) {
// NB: Host-created tables have dummy instances. Therefore, we can get
// all memories in the store by iterating over all instances (including
// dummy instances) and getting each of their defined memories.
struct TempTakeInstances<'a> {
instances: Vec<StoreInstance>,
store: &'a mut StoreOpaque,
}
impl<'a> TempTakeInstances<'a> {
fn new(store: &'a mut StoreOpaque) -> Self {
let instances = mem::take(&mut store.instances);
Self { instances, store }
}
}
impl Drop for TempTakeInstances<'_> {
fn drop(&mut self) {
assert!(self.store.instances.is_empty());
self.store.instances = mem::take(&mut self.instances);
}
}
let mut temp = TempTakeInstances::new(self);
for instance in temp.instances.iter_mut() {
for table in instance.handle.defined_tables() {
let table = unsafe { Table::from_wasmtime_table(table, temp.store) };
f(temp.store, table);
}
}
}
/// Iterate over all globals (host- or Wasm-defined) within this store.
pub fn for_each_global(&mut self, mut f: impl FnMut(&mut Self, Global)) {
struct TempTakeHostGlobalsAndInstances<'a> {
host_globals: Vec<StoreBox<VMHostGlobalContext>>,
instances: Vec<StoreInstance>,
store: &'a mut StoreOpaque,
}
impl<'a> TempTakeHostGlobalsAndInstances<'a> {
fn new(store: &'a mut StoreOpaque) -> Self {
let host_globals = mem::take(&mut store.host_globals);
let instances = mem::take(&mut store.instances);
Self {
host_globals,
instances,
store,
}
}
}
impl Drop for TempTakeHostGlobalsAndInstances<'_> {
fn drop(&mut self) {
assert!(self.store.host_globals.is_empty());
self.store.host_globals = mem::take(&mut self.host_globals);
assert!(self.store.instances.is_empty());
self.store.instances = mem::take(&mut self.instances);
}
}
let mut temp = TempTakeHostGlobalsAndInstances::new(self);
unsafe {
// First enumerate all the host-created globals.
for global in temp.host_globals.iter() {
let export = ExportGlobal {
definition: &mut (*global.get()).global as *mut _,
vmctx: core::ptr::null_mut(),
global: (*global.get()).ty.to_wasm_type(),
};
let global = Global::from_wasmtime_global(export, temp.store);
f(temp.store, global);
}
// Then enumerate all instances' defined globals.
for instance in temp.instances.iter_mut() {
for (_, export) in instance.handle.defined_globals() {
let global = Global::from_wasmtime_global(export, temp.store);
f(temp.store, global);
}
}
}
}
#[cfg_attr(not(target_os = "linux"), allow(dead_code))] // not used on all platforms
pub fn set_signal_handler(&mut self, handler: Option<SignalHandler>) {
self.signal_handler = handler;
}
#[inline]
pub fn runtime_limits(&self) -> &VMRuntimeLimits {
&self.runtime_limits
}
#[inline(never)]
pub(crate) fn allocate_gc_heap(&mut self) -> Result<()> {
assert!(self.gc_store.is_none());
let gc_store = allocate_gc_store(self.engine())?;
self.gc_store = Some(gc_store);
return Ok(());
#[cfg(feature = "gc")]
fn allocate_gc_store(engine: &Engine) -> Result<GcStore> {
ensure!(
engine.features().gc_types(),
"cannot allocate a GC store when GC is disabled at configuration time"
);
let (index, heap) = engine
.allocator()
.allocate_gc_heap(&**engine.gc_runtime()?)?;
Ok(GcStore::new(index, heap))
}
#[cfg(not(feature = "gc"))]
fn allocate_gc_store(_engine: &Engine) -> Result<GcStore> {
bail!("cannot allocate a GC store: the `gc` feature was disabled at compile time")
}
}
#[inline]
#[cfg(feature = "gc")]
pub(crate) fn gc_store(&self) -> Result<&GcStore> {
match &self.gc_store {
Some(gc_store) => Ok(gc_store),
None => bail!("GC heap not initialized yet"),
}
}
#[inline]
pub(crate) fn gc_store_mut(&mut self) -> Result<&mut GcStore> {
if self.gc_store.is_none() {
self.allocate_gc_heap()?;
}
Ok(self.unwrap_gc_store_mut())
}
/// If this store is configured with a GC heap, return a mutable reference
/// to it. Otherwise, return `None`.
#[inline]
pub(crate) fn optional_gc_store_mut(&mut self) -> Result<Option<&mut GcStore>> {
if cfg!(not(feature = "gc")) || !self.engine.features().gc_types() {
Ok(None)
} else {
Ok(Some(self.gc_store_mut()?))
}
}
#[inline]
#[cfg(feature = "gc")]
pub(crate) fn unwrap_gc_store(&self) -> &GcStore {
self.gc_store
.as_ref()
.expect("attempted to access the store's GC heap before it has been allocated")
}
#[inline]
pub(crate) fn unwrap_gc_store_mut(&mut self) -> &mut GcStore {
self.gc_store
.as_mut()
.expect("attempted to access the store's GC heap before it has been allocated")
}
#[inline]
pub(crate) fn gc_roots(&self) -> &RootSet {
&self.gc_roots
}
#[inline]
pub(crate) fn gc_roots_mut(&mut self) -> &mut RootSet {
&mut self.gc_roots
}
#[inline]
pub(crate) fn exit_gc_lifo_scope(&mut self, scope: usize) {
self.gc_roots.exit_lifo_scope(self.gc_store.as_mut(), scope);
}
#[cfg(feature = "gc")]
pub fn gc(&mut self) {
// If the GC heap hasn't been initialized, there is nothing to collect.
if self.gc_store.is_none() {
return;
}
log::trace!("============ Begin GC ===========");
// Take the GC roots out of `self` so we can borrow it mutably but still
// call mutable methods on `self`.
let mut roots = core::mem::take(&mut self.gc_roots_list);
self.trace_roots(&mut roots);
self.unwrap_gc_store_mut().gc(unsafe { roots.iter() });
// Restore the GC roots for the next GC.
roots.clear();
self.gc_roots_list = roots;
log::trace!("============ End GC ===========");
}
#[inline]
#[cfg(not(feature = "gc"))]
pub fn gc(&mut self) {
// Nothing to collect.
//
// Note that this is *not* a public method, this is just defined for the
// crate-internal `StoreOpaque` type. This is a convenience so that we
// don't have to `cfg` every call site.
}
#[cfg(feature = "gc")]
fn trace_roots(&mut self, gc_roots_list: &mut GcRootsList) {
log::trace!("Begin trace GC roots");
// We shouldn't have any leftover, stale GC roots.
assert!(gc_roots_list.is_empty());
self.trace_wasm_stack_roots(gc_roots_list);
self.trace_vmctx_roots(gc_roots_list);
self.trace_user_roots(gc_roots_list);
log::trace!("End trace GC roots")
}
#[cfg(all(feature = "async", feature = "gc"))]
pub async fn gc_async(&mut self) {
assert!(
self.async_support(),
"cannot use `gc_async` without enabling async support in the config",
);
// If the GC heap hasn't been initialized, there is nothing to collect.
if self.gc_store.is_none() {
return;
}
log::trace!("============ Begin Async GC ===========");
// Take the GC roots out of `self` so we can borrow it mutably but still
// call mutable methods on `self`.
let mut roots = std::mem::take(&mut self.gc_roots_list);
self.trace_roots_async(&mut roots).await;
self.unwrap_gc_store_mut()
.gc_async(unsafe { roots.iter() })
.await;
// Restore the GC roots for the next GC.
roots.clear();
self.gc_roots_list = roots;
log::trace!("============ End Async GC ===========");
}
#[inline]
#[cfg(all(feature = "async", not(feature = "gc")))]
pub async fn gc_async(&mut self) {
// Nothing to collect.
//
// Note that this is *not* a public method, this is just defined for the
// crate-internal `StoreOpaque` type. This is a convenience so that we
// don't have to `cfg` every call site.
}
#[cfg(all(feature = "async", feature = "gc"))]
async fn trace_roots_async(&mut self, gc_roots_list: &mut GcRootsList) {
use crate::runtime::vm::Yield;
log::trace!("Begin trace GC roots");
// We shouldn't have any leftover, stale GC roots.
assert!(gc_roots_list.is_empty());
self.trace_wasm_stack_roots(gc_roots_list);
Yield::new().await;
self.trace_vmctx_roots(gc_roots_list);
Yield::new().await;
self.trace_user_roots(gc_roots_list);
log::trace!("End trace GC roots")
}
#[cfg(feature = "gc")]
fn trace_wasm_stack_roots(&mut self, gc_roots_list: &mut GcRootsList) {
use crate::runtime::vm::SendSyncPtr;
use core::ptr::NonNull;
log::trace!("Begin trace GC roots :: Wasm stack");
Backtrace::trace(self.vmruntime_limits().cast_const(), |frame| {
let pc = frame.pc();
debug_assert!(pc != 0, "we should always get a valid PC for Wasm frames");
let fp = frame.fp() as *mut usize;
debug_assert!(
!fp.is_null(),
"we should always get a valid frame pointer for Wasm frames"
);
let module_info = self
.modules()
.lookup_module_by_pc(pc)
.expect("should have module info for Wasm frame");
let stack_map = match module_info.lookup_stack_map(pc) {
Some(sm) => sm,
None => {
log::trace!("No stack map for this Wasm frame");
return core::ops::ControlFlow::Continue(());
}
};
log::trace!(
"We have a stack map that maps {} bytes in this Wasm frame",
stack_map.frame_size()
);
let sp = unsafe { stack_map.sp(fp) };
for stack_slot in unsafe { stack_map.live_gc_refs(sp) } {
let raw: u32 = unsafe { core::ptr::read(stack_slot) };
log::trace!("Stack slot @ {stack_slot:p} = {raw:#x}");
let gc_ref = VMGcRef::from_raw_u32(raw);
if gc_ref.is_some() {
unsafe {
gc_roots_list.add_wasm_stack_root(SendSyncPtr::new(
NonNull::new(stack_slot).unwrap(),
));
}
}
}
core::ops::ControlFlow::Continue(())
});
log::trace!("End trace GC roots :: Wasm stack");
}
#[cfg(feature = "gc")]
fn trace_vmctx_roots(&mut self, gc_roots_list: &mut GcRootsList) {
log::trace!("Begin trace GC roots :: vmctx");
self.for_each_global(|store, global| global.trace_root(store, gc_roots_list));
self.for_each_table(|store, table| table.trace_roots(store, gc_roots_list));
log::trace!("End trace GC roots :: vmctx");
}
#[cfg(feature = "gc")]
fn trace_user_roots(&mut self, gc_roots_list: &mut GcRootsList) {
log::trace!("Begin trace GC roots :: user");
self.gc_roots.trace_roots(gc_roots_list);
log::trace!("End trace GC roots :: user");
}
/// Insert a host-allocated GC type into this store.
///
/// This makes it suitable for the embedder to allocate instances of this
/// type in this store, and we don't have to worry about the type being
/// reclaimed (since it is possible that none of the Wasm modules in this
/// store are holding it alive).
pub(crate) fn insert_gc_host_alloc_type(&mut self, ty: RegisteredType) {
self.gc_host_alloc_types.insert(ty);
}
/// Yields the async context, assuming that we are executing on a fiber and
/// that fiber is not in the process of dying. This function will return
/// None in the latter case (the fiber is dying), and panic if
/// `async_support()` is false.
#[cfg(feature = "async")]
#[inline]
pub fn async_cx(&self) -> Option<AsyncCx> {
assert!(self.async_support());
let poll_cx_box_ptr = self.async_state.current_poll_cx.get();
if poll_cx_box_ptr.is_null() {
return None;
}
let poll_cx_inner_ptr = unsafe { *poll_cx_box_ptr };
if poll_cx_inner_ptr.future_context.is_null() {
return None;
}
Some(AsyncCx {
current_suspend: self.async_state.current_suspend.get(),
current_poll_cx: unsafe { core::ptr::addr_of_mut!((*poll_cx_box_ptr).future_context) },
track_pkey_context_switch: self.pkey.is_some(),
})
}
pub fn get_fuel(&self) -> Result<u64> {
anyhow::ensure!(
self.engine().tunables().consume_fuel,
"fuel is not configured in this store"
);
let injected_fuel = unsafe { *self.runtime_limits.fuel_consumed.get() };
Ok(get_fuel(injected_fuel, self.fuel_reserve))
}
fn refuel(&mut self) -> bool {
let injected_fuel = unsafe { &mut *self.runtime_limits.fuel_consumed.get() };
refuel(
injected_fuel,
&mut self.fuel_reserve,
self.fuel_yield_interval,
)
}
pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
anyhow::ensure!(
self.engine().tunables().consume_fuel,
"fuel is not configured in this store"
);
let injected_fuel = unsafe { &mut *self.runtime_limits.fuel_consumed.get() };
set_fuel(
injected_fuel,
&mut self.fuel_reserve,
self.fuel_yield_interval,
fuel,
);
Ok(())
}
pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
anyhow::ensure!(
self.engine().tunables().consume_fuel,
"fuel is not configured in this store"
);
anyhow::ensure!(
self.engine().config().async_support,
"async support is not configured in this store"
);
anyhow::ensure!(
interval != Some(0),
"fuel_async_yield_interval must not be 0"
);
self.fuel_yield_interval = interval.and_then(|i| NonZeroU64::new(i));
// Reset the fuel active + reserve states by resetting the amount.
self.set_fuel(self.get_fuel()?)
}
/// Yields execution to the caller on out-of-gas or epoch interruption.
///
/// This only works on async futures and stores, and assumes that we're
/// executing on a fiber. This will yield execution back to the caller once.
#[cfg(feature = "async")]
fn async_yield_impl(&mut self) -> Result<()> {
use crate::runtime::vm::Yield;
let mut future = Yield::new();
// When control returns, we have a `Result<()>` passed
// in from the host fiber. If this finished successfully then
// we were resumed normally via a `poll`, so keep going. If
// the future was dropped while we were yielded, then we need
// to clean up this fiber. Do so by raising a trap which will
// abort all wasm and get caught on the other side to clean
// things up.
unsafe {
self.async_cx()
.expect("attempted to pull async context during shutdown")
.block_on(Pin::new_unchecked(&mut future))
}
}
#[inline]
pub fn signal_handler(&self) -> Option<*const SignalHandler> {
let handler = self.signal_handler.as_ref()?;
Some(handler)
}
#[inline]
pub fn vmruntime_limits(&self) -> *mut VMRuntimeLimits {
&self.runtime_limits as *const VMRuntimeLimits as *mut VMRuntimeLimits
}
#[inline]
pub fn default_caller(&self) -> *mut VMContext {
self.default_caller.vmctx()
}
#[inline]
pub fn traitobj(&self) -> *mut dyn crate::runtime::vm::VMStore {
self.default_caller.traitobj(self)
}
/// Takes the cached `Vec<Val>` stored internally across hostcalls to get
/// used as part of calling the host in a `Func::new` method invocation.
#[inline]
pub fn take_hostcall_val_storage(&mut self) -> Vec<Val> {
mem::take(&mut self.hostcall_val_storage)
}
/// Restores the vector previously taken by `take_hostcall_val_storage`
/// above back into the store, allowing it to be used in the future for the
/// next wasm->host call.
#[inline]
pub fn save_hostcall_val_storage(&mut self, storage: Vec<Val>) {
if storage.capacity() > self.hostcall_val_storage.capacity() {
self.hostcall_val_storage = storage;
}
}
/// Same as `take_hostcall_val_storage`, but for the direction of the host
/// calling wasm.
#[inline]
pub fn take_wasm_val_raw_storage(&mut self) -> Vec<ValRaw> {
mem::take(&mut self.wasm_val_raw_storage)
}
/// Same as `save_hostcall_val_storage`, but for the direction of the host
/// calling wasm.
#[inline]
pub fn save_wasm_val_raw_storage(&mut self, storage: Vec<ValRaw>) {
if storage.capacity() > self.wasm_val_raw_storage.capacity() {
self.wasm_val_raw_storage = storage;
}
}
pub(crate) fn push_rooted_funcs(&mut self, funcs: Arc<[Definition]>) {
self.rooted_host_funcs.push(funcs);
}
/// Translates a WebAssembly fault at the native `pc` and native `addr` to a
/// WebAssembly-relative fault.
///
/// This function may abort the process if `addr` is not found to actually
/// reside in any linear memory. In such a situation it means that the
/// segfault was erroneously caught by Wasmtime and is possibly indicative
/// of a code generator bug.
///
/// This function returns `None` for dynamically-bounds-checked-memories
/// with spectre mitigations enabled since the hardware fault address is
/// always zero in these situations which means that the trapping context
/// doesn't have enough information to report the fault address.
#[cfg(all(feature = "signals-based-traps", not(miri)))]
pub(crate) fn wasm_fault(
&self,
pc: usize,
addr: usize,
) -> Option<crate::runtime::vm::WasmFault> {
// There are a few instances where a "close to zero" pointer is loaded
// and we expect that to happen:
//
// * Explicitly bounds-checked memories with spectre-guards enabled will
// cause out-of-bounds accesses to get routed to address 0, so allow
// wasm instructions to fault on the null address.
// * `call_indirect` when invoking a null function pointer may load data
// from the a `VMFuncRef` whose address is null, meaning any field of
// `VMFuncRef` could be the address of the fault.
//
// In these situations where the address is so small it won't be in any
// instance, so skip the checks below.
if addr <= mem::size_of::<VMFuncRef>() {
const _: () = {
// static-assert that `VMFuncRef` isn't too big to ensure that
// it lives solely within the first page as we currently only
// have the guarantee that the first page of memory is unmapped,
// no more.
assert!(mem::size_of::<VMFuncRef>() <= 512);
};
return None;
}
// Search all known instances in this store for this address. Note that
// this is probably not the speediest way to do this. Traps, however,
// are generally not expected to be super fast and additionally stores
// probably don't have all that many instances or memories.
//
// If this loop becomes hot in the future, however, it should be
// possible to precompute maps about linear memories in a store and have
// a quicker lookup.
let mut fault = None;
for instance in self.instances.iter() {
if let Some(f) = instance.handle.wasm_fault(addr) {
assert!(fault.is_none());
fault = Some(f);
}
}
if fault.is_some() {
return fault;
}
cfg_if::cfg_if! {
if #[cfg(any(feature = "std", unix, windows))] {
// With the standard library a rich error can be printed here
// to stderr and the native abort path is used.
eprintln!(
"\
Wasmtime caught a segfault for a wasm program because the faulting instruction
is allowed to segfault due to how linear memories are implemented. The address
that was accessed, however, is not known to any linear memory in use within this
Store. This may be indicative of a critical bug in Wasmtime's code generation
because all addresses which are known to be reachable from wasm won't reach this
message.
pc: 0x{pc:x}
address: 0x{addr:x}
This is a possible security issue because WebAssembly has accessed something it
shouldn't have been able to. Other accesses may have succeeded and this one just
happened to be caught. The process will now be aborted to prevent this damage
from going any further and to alert what's going on. If this is a security
issue please reach out to the Wasmtime team via its security policy
at https://bytecodealliance.org/security.
"
);
std::process::abort();
} else if #[cfg(panic = "abort")] {
// Without the standard library but with `panic=abort` then
// it's safe to panic as that's known to halt execution. For
// now avoid the above error message as well since without
// `std` it's probably best to be a bit more size-conscious.
let _ = pc;
panic!("invalid fault");
} else {
// Without `std` and with `panic = "unwind"` there's no way to
// abort the process portably, so flag a compile time error.
//
// NB: if this becomes a problem in the future one option would
// be to extend the `capi.rs` module for no_std platforms, but
// it remains yet to be seen at this time if this is hit much.
compile_error!("either `std` or `panic=abort` must be enabled");
None
}
}
}
/// Retrieve the store's protection key.
#[inline]
pub(crate) fn get_pkey(&self) -> Option<ProtectionKey> {
self.pkey
}
#[inline]
#[cfg(feature = "component-model")]
pub(crate) fn component_resource_state(
&mut self,
) -> (
&mut crate::runtime::vm::component::CallContexts,
&mut crate::runtime::vm::component::ResourceTable,
&mut crate::component::HostResourceData,
) {
(
&mut self.component_calls,
&mut self.component_host_table,
&mut self.host_resource_data,
)
}
#[cfg(feature = "component-model")]
pub(crate) fn push_component_instance(&mut self, instance: crate::component::Instance) {
// We don't actually need the instance itself right now, but it seems
// like something we will almost certainly eventually want to keep
// around, so force callers to provide it.
let _ = instance;
self.num_component_instances += 1;
}
pub(crate) fn async_guard_range(&self) -> Range<*mut u8> {
#[cfg(feature = "async")]
unsafe {
let ptr = self.async_state.current_poll_cx.get();
(*ptr).guard_range_start..(*ptr).guard_range_end
}
#[cfg(not(feature = "async"))]
{
core::ptr::null_mut()..core::ptr::null_mut()
}
}
#[cfg(feature = "async")]
fn allocate_fiber_stack(&mut self) -> Result<wasmtime_fiber::FiberStack> {
if let Some(stack) = self.async_state.last_fiber_stack.take() {
return Ok(stack);
}
self.engine().allocator().allocate_fiber_stack()
}
#[cfg(feature = "async")]
fn deallocate_fiber_stack(&mut self, stack: wasmtime_fiber::FiberStack) {
self.flush_fiber_stack();
self.async_state.last_fiber_stack = Some(stack);
}
/// Releases the last fiber stack to the underlying instance allocator, if
/// present.
fn flush_fiber_stack(&mut self) {
#[cfg(feature = "async")]
if let Some(stack) = self.async_state.last_fiber_stack.take() {
unsafe {
self.engine.allocator().deallocate_fiber_stack(stack);
}
}
}
}
impl<T> StoreContextMut<'_, T> {
/// Executes a synchronous computation `func` asynchronously on a new fiber.
///
/// This function will convert the synchronous `func` into an asynchronous
/// future. This is done by running `func` in a fiber on a separate native
/// stack which can be suspended and resumed from.
///
/// Most of the nitty-gritty here is how we juggle the various contexts
/// necessary to suspend the fiber later on and poll sub-futures. It's hoped
/// that the various comments are illuminating as to what's going on here.
#[cfg(feature = "async")]
pub(crate) async fn on_fiber<R>(
&mut self,
func: impl FnOnce(&mut StoreContextMut<'_, T>) -> R + Send,
) -> Result<R>
where
T: Send,
{
let config = self.engine().config();
debug_assert!(self.0.async_support());
debug_assert!(config.async_stack_size > 0);
let mut slot = None;
let mut future = {
let current_poll_cx = self.0.async_state.current_poll_cx.get();
let current_suspend = self.0.async_state.current_suspend.get();
let stack = self.0.allocate_fiber_stack()?;
let engine = self.engine().clone();
let slot = &mut slot;
let this = &mut *self;
let fiber = wasmtime_fiber::Fiber::new(stack, move |keep_going, suspend| {
// First check and see if we were interrupted/dropped, and only
// continue if we haven't been.
keep_going?;
// Configure our store's suspension context for the rest of the
// execution of this fiber. Note that a raw pointer is stored here
// which is only valid for the duration of this closure.
// Consequently we at least replace it with the previous value when
// we're done. This reset is also required for correctness because
// otherwise our value will overwrite another active fiber's value.
// There should be a test that segfaults in `async_functions.rs` if
// this `Replace` is removed.
unsafe {
let _reset = Reset(current_suspend, *current_suspend);
*current_suspend = suspend;
*slot = Some(func(this));
Ok(())
}
})?;
// Once we have the fiber representing our synchronous computation, we
// wrap that in a custom future implementation which does the
// translation from the future protocol to our fiber API.
FiberFuture {
fiber: Some(fiber),
current_poll_cx,
engine,
state: Some(crate::runtime::vm::AsyncWasmCallState::new()),
}
};
(&mut future).await?;
let stack = future.fiber.take().map(|f| f.into_stack());
drop(future);
if let Some(stack) = stack {
self.0.deallocate_fiber_stack(stack);
}
return Ok(slot.unwrap());
struct FiberFuture<'a> {
fiber: Option<wasmtime_fiber::Fiber<'a, Result<()>, (), Result<()>>>,
current_poll_cx: *mut PollContext,
engine: Engine,
// See comments in `FiberFuture::resume` for this
state: Option<crate::runtime::vm::AsyncWasmCallState>,
}
// This is surely the most dangerous `unsafe impl Send` in the entire
// crate. There are two members in `FiberFuture` which cause it to not
// be `Send`. One is `current_poll_cx` and is entirely uninteresting.
// This is just used to manage `Context` pointers across `await` points
// in the future, and requires raw pointers to get it to happen easily.
// Nothing too weird about the `Send`-ness, values aren't actually
// crossing threads.
//
// The really interesting piece is `fiber`. Now the "fiber" here is
// actual honest-to-god Rust code which we're moving around. What we're
// doing is the equivalent of moving our thread's stack to another OS
// thread. Turns out we, in general, have no idea what's on the stack
// and would generally have no way to verify that this is actually safe
// to do!
//
// Thankfully, though, Wasmtime has the power. Without being glib it's
// actually worth examining what's on the stack. It's unfortunately not
// super-local to this function itself. Our closure to `Fiber::new` runs
// `func`, which is given to us from the outside. Thankfully, though, we
// have tight control over this. Usage of `on_fiber` is typically done
// *just* before entering WebAssembly itself, so we'll have a few stack
// frames of Rust code (all in Wasmtime itself) before we enter wasm.
//
// Once we've entered wasm, well then we have a whole bunch of wasm
// frames on the stack. We've got this nifty thing called Cranelift,
// though, which allows us to also have complete control over everything
// on the stack!
//
// Finally, when wasm switches back to the fiber's starting pointer
// (this future we're returning) then it means wasm has reentered Rust.
// Suspension can only happen via the `block_on` function of an
// `AsyncCx`. This, conveniently, also happens entirely in Wasmtime
// controlled code!
//
// There's an extremely important point that should be called out here.
// User-provided futures **are not on the stack** during suspension
// points. This is extremely crucial because we in general cannot reason
// about Send/Sync for stack-local variables since rustc doesn't analyze
// them at all. With our construction, though, we are guaranteed that
// Wasmtime owns all stack frames between the stack of a fiber and when
// the fiber suspends (and it could move across threads). At this time
// the only user-provided piece of data on the stack is the future
// itself given to us. Lo-and-behold as you might notice the future is
// required to be `Send`!
//
// What this all boils down to is that we, as the authors of Wasmtime,
// need to be extremely careful that on the async fiber stack we only
// store Send things. For example we can't start using `Rc` willy nilly
// by accident and leave a copy in TLS somewhere. (similarly we have to
// be ready for TLS to change while we're executing wasm code between
// suspension points).
//
// While somewhat onerous it shouldn't be too too hard (the TLS bit is
// the hardest bit so far). This does mean, though, that no user should
// ever have to worry about the `Send`-ness of Wasmtime. If rustc says
// it's ok, then it's ok.
//
// With all that in mind we unsafely assert here that wasmtime is
// correct. We declare the fiber as only containing Send data on its
// stack, despite not knowing for sure at compile time that this is
// correct. That's what `unsafe` in Rust is all about, though, right?
unsafe impl Send for FiberFuture<'_> {}
impl FiberFuture<'_> {
fn fiber(&self) -> &wasmtime_fiber::Fiber<'_, Result<()>, (), Result<()>> {
self.fiber.as_ref().unwrap()
}
/// This is a helper function to call `resume` on the underlying
/// fiber while correctly managing Wasmtime's thread-local data.
///
/// Wasmtime's implementation of traps leverages thread-local data
/// to get access to metadata during a signal. This thread-local
/// data is a linked list of "activations" where the nodes of the
/// linked list are stored on the stack. It would be invalid as a
/// result to suspend a computation with the head of the linked list
/// on this stack then move the stack to another thread and resume
/// it. That means that a different thread would point to our stack
/// and our thread doesn't point to our stack at all!
///
/// Basically management of TLS is required here one way or another.
/// The strategy currently settled on is to manage the list of
/// activations created by this fiber as a unit. When a fiber
/// resumes the linked list is prepended to the current thread's
/// list. When the fiber is suspended then the fiber's list of
/// activations are all removed en-masse and saved within the fiber.
fn resume(&mut self, val: Result<()>) -> Result<Result<()>, ()> {
unsafe {
let prev = self.state.take().unwrap().push();
let restore = Restore {
fiber: self,
state: Some(prev),
};
return restore.fiber.fiber().resume(val);
}
struct Restore<'a, 'b> {
fiber: &'a mut FiberFuture<'b>,
state: Option<crate::runtime::vm::PreviousAsyncWasmCallState>,
}
impl Drop for Restore<'_, '_> {
fn drop(&mut self) {
unsafe {
self.fiber.state = Some(self.state.take().unwrap().restore());
}
}
}
}
}
impl Future for FiberFuture<'_> {
type Output = Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
// We need to carry over this `cx` into our fiber's runtime
// for when it tries to poll sub-futures that are created. Doing
// this must be done unsafely, however, since `cx` is only alive
// for this one singular function call. Here we do a `transmute`
// to extend the lifetime of `Context` so it can be stored in
// our `Store`, and then we replace the current polling context
// with this one.
//
// Note that the replace is done for weird situations where
// futures might be switching contexts and there's multiple
// wasmtime futures in a chain of futures.
//
// On exit from this function, though, we reset the polling
// context back to what it was to signify that `Store` no longer
// has access to this pointer.
let guard = self
.fiber()
.stack()
.guard_range()
.unwrap_or(core::ptr::null_mut()..core::ptr::null_mut());
unsafe {
let _reset = Reset(self.current_poll_cx, *self.current_poll_cx);
*self.current_poll_cx = PollContext {
future_context: core::mem::transmute::<
&mut Context<'_>,
*mut Context<'static>,
>(cx),
guard_range_start: guard.start,
guard_range_end: guard.end,
};
// After that's set up we resume execution of the fiber, which
// may also start the fiber for the first time. This either
// returns `Ok` saying the fiber finished (yay!) or it
// returns `Err` with the payload passed to `suspend`, which
// in our case is `()`.
match self.resume(Ok(())) {
Ok(result) => Poll::Ready(result),
// If `Err` is returned that means the fiber polled a
// future but it said "Pending", so we propagate that
// here.
//
// An additional safety check is performed when leaving
// this function to help bolster the guarantees of
// `unsafe impl Send` above. Notably this future may get
// re-polled on a different thread. Wasmtime's
// thread-local state points to the stack, however,
// meaning that it would be incorrect to leave a pointer
// in TLS when this function returns. This function
// performs a runtime assert to verify that this is the
// case, notably that the one TLS pointer Wasmtime uses
// is not pointing anywhere within the stack. If it is
// then that's a bug indicating that TLS management in
// Wasmtime is incorrect.
Err(()) => {
if let Some(range) = self.fiber().stack().range() {
crate::runtime::vm::AsyncWasmCallState::assert_current_state_not_in_range(range);
}
Poll::Pending
}
}
}
}
}
// Dropping futures is pretty special in that it means the future has
// been requested to be cancelled. Here we run the risk of dropping an
// in-progress fiber, and if we were to do nothing then the fiber would
// leak all its owned stack resources.
//
// To handle this we implement `Drop` here and, if the fiber isn't done,
// resume execution of the fiber saying "hey please stop you're
// interrupted". Our `Trap` created here (which has the stack trace
// of whomever dropped us) will then get propagated in whatever called
// `block_on`, and the idea is that the trap propagates all the way back
// up to the original fiber start, finishing execution.
//
// We don't actually care about the fiber's return value here (no one's
// around to look at it), we just assert the fiber finished to
// completion.
impl Drop for FiberFuture<'_> {
fn drop(&mut self) {
if self.fiber.is_none() {
return;
}
if !self.fiber().done() {
let result = self.resume(Err(anyhow!("future dropped")));
// This resumption with an error should always complete the
// fiber. While it's technically possible for host code to catch
// the trap and re-resume, we'd ideally like to signal that to
// callers that they shouldn't be doing that.
debug_assert!(result.is_ok());
}
self.state.take().unwrap().assert_null();
unsafe {
self.engine
.allocator()
.deallocate_fiber_stack(self.fiber.take().unwrap().into_stack());
}
}
}
}
}
#[cfg(feature = "async")]
pub struct AsyncCx {
current_suspend: *mut *mut wasmtime_fiber::Suspend<Result<()>, (), Result<()>>,
current_poll_cx: *mut *mut Context<'static>,
track_pkey_context_switch: bool,
}
#[cfg(feature = "async")]
impl AsyncCx {
/// Blocks on the asynchronous computation represented by `future` and
/// produces the result here, in-line.
///
/// This function is designed to only work when it's currently executing on
/// a native fiber. This fiber provides the ability for us to handle the
/// future's `Pending` state as "jump back to whomever called the fiber in
/// an asynchronous fashion and propagate `Pending`". This tight coupling
/// with `on_fiber` below is what powers the asynchronicity of calling wasm.
/// Note that the asynchronous part only applies to host functions, wasm
/// itself never really does anything asynchronous at this time.
///
/// This function takes a `future` and will (appear to) synchronously wait
/// on the result. While this function is executing it will fiber switch
/// to-and-from the original frame calling `on_fiber` which should be a
/// guarantee due to how async stores are configured.
///
/// The return value here is either the output of the future `T`, or a trap
/// which represents that the asynchronous computation was cancelled. It is
/// not recommended to catch the trap and try to keep executing wasm, so
/// we've tried to liberally document this.
pub unsafe fn block_on<U>(
&self,
mut future: Pin<&mut (dyn Future<Output = U> + Send)>,
) -> Result<U> {
// Take our current `Suspend` context which was configured as soon as
// our fiber started. Note that we must load it at the front here and
// save it on our stack frame. While we're polling the future other
// fibers may be started for recursive computations, and the current
// suspend context is only preserved at the edges of the fiber, not
// during the fiber itself.
//
// For a little bit of extra safety we also replace the current value
// with null to try to catch any accidental bugs on our part early.
// This is all pretty unsafe so we're trying to be careful...
//
// Note that there should be a segfaulting test in `async_functions.rs`
// if this `Reset` is removed.
let suspend = *self.current_suspend;
let _reset = Reset(self.current_suspend, suspend);
*self.current_suspend = ptr::null_mut();
assert!(!suspend.is_null());
loop {
let future_result = {
let poll_cx = *self.current_poll_cx;
let _reset = Reset(self.current_poll_cx, poll_cx);
*self.current_poll_cx = ptr::null_mut();
assert!(!poll_cx.is_null());
future.as_mut().poll(&mut *poll_cx)
};
match future_result {
Poll::Ready(t) => break Ok(t),
Poll::Pending => {}
}
// In order to prevent this fiber's MPK state from being munged by
// other fibers while it is suspended, we save and restore it once
// once execution resumes. Note that when MPK is not supported,
// these are noops.
let previous_mask = if self.track_pkey_context_switch {
let previous_mask = mpk::current_mask();
mpk::allow(ProtectionMask::all());
previous_mask
} else {
ProtectionMask::all()
};
(*suspend).suspend(())?;
if self.track_pkey_context_switch {
mpk::allow(previous_mask);
}
}
}
}
unsafe impl<T> crate::runtime::vm::VMStore for StoreInner<T> {
fn store_opaque(&self) -> &StoreOpaque {
&self.inner
}
fn store_opaque_mut(&mut self) -> &mut StoreOpaque {
&mut self.inner
}
fn memory_growing(
&mut self,
current: usize,
desired: usize,
maximum: Option<usize>,
) -> Result<bool, anyhow::Error> {
match self.limiter {
Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
limiter(&mut self.data).memory_growing(current, desired, maximum)
}
#[cfg(feature = "async")]
Some(ResourceLimiterInner::Async(ref mut limiter)) => unsafe {
self.inner
.async_cx()
.expect("ResourceLimiterAsync requires async Store")
.block_on(
limiter(&mut self.data)
.memory_growing(current, desired, maximum)
.as_mut(),
)?
},
None => Ok(true),
}
}
fn memory_grow_failed(&mut self, error: anyhow::Error) -> Result<()> {
match self.limiter {
Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
limiter(&mut self.data).memory_grow_failed(error)
}
#[cfg(feature = "async")]
Some(ResourceLimiterInner::Async(ref mut limiter)) => {
limiter(&mut self.data).memory_grow_failed(error)
}
None => {
log::debug!("ignoring memory growth failure error: {error:?}");
Ok(())
}
}
}
fn table_growing(
&mut self,
current: usize,
desired: usize,
maximum: Option<usize>,
) -> Result<bool, anyhow::Error> {
// Need to borrow async_cx before the mut borrow of the limiter.
// self.async_cx() panicks when used with a non-async store, so
// wrap this in an option.
#[cfg(feature = "async")]
let async_cx = if self.async_support()
&& matches!(self.limiter, Some(ResourceLimiterInner::Async(_)))
{
Some(self.async_cx().unwrap())
} else {
None
};
match self.limiter {
Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
limiter(&mut self.data).table_growing(current, desired, maximum)
}
#[cfg(feature = "async")]
Some(ResourceLimiterInner::Async(ref mut limiter)) => unsafe {
async_cx
.expect("ResourceLimiterAsync requires async Store")
.block_on(
limiter(&mut self.data)
.table_growing(current, desired, maximum)
.as_mut(),
)?
},
None => Ok(true),
}
}
fn table_grow_failed(&mut self, error: anyhow::Error) -> Result<()> {
match self.limiter {
Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
limiter(&mut self.data).table_grow_failed(error)
}
#[cfg(feature = "async")]
Some(ResourceLimiterInner::Async(ref mut limiter)) => {
limiter(&mut self.data).table_grow_failed(error)
}
None => {
log::debug!("ignoring table growth failure: {error:?}");
Ok(())
}
}
}
fn out_of_gas(&mut self) -> Result<()> {
if !self.refuel() {
return Err(Trap::OutOfFuel).err2anyhow();
}
#[cfg(feature = "async")]
if self.fuel_yield_interval.is_some() {
self.async_yield_impl()?;
}
Ok(())
}
fn new_epoch(&mut self) -> Result<u64, anyhow::Error> {
// Temporarily take the configured behavior to avoid mutably borrowing
// multiple times.
let mut behavior = self.epoch_deadline_behavior.take();
let delta_result = match &mut behavior {
None => Err(Trap::Interrupt).err2anyhow(),
Some(callback) => callback((&mut *self).as_context_mut()).and_then(|update| {
let delta = match update {
UpdateDeadline::Continue(delta) => delta,
#[cfg(feature = "async")]
UpdateDeadline::Yield(delta) => {
assert!(
self.async_support(),
"cannot use `UpdateDeadline::Yield` without enabling async support in the config"
);
// Do the async yield. May return a trap if future was
// canceled while we're yielded.
self.async_yield_impl()?;
delta
}
};
// Set a new deadline and return the new epoch deadline so
// the Wasm code doesn't have to reload it.
self.set_epoch_deadline(delta);
Ok(self.get_epoch_deadline())
})
};
// Put back the original behavior which was replaced by `take`.
self.epoch_deadline_behavior = behavior;
delta_result
}
#[cfg(feature = "gc")]
fn maybe_async_gc(&mut self, root: Option<VMGcRef>) -> Result<Option<VMGcRef>> {
let mut scope = RootScope::new(self);
let store = scope.as_context_mut().0;
let store_id = store.id();
let root = root.map(|r| store.gc_roots_mut().push_lifo_root(store_id, r));
if store.async_support() {
#[cfg(feature = "async")]
unsafe {
let async_cx = store.async_cx();
let mut future = store.gc_async();
async_cx
.expect("attempted to pull async context during shutdown")
.block_on(Pin::new_unchecked(&mut future))?;
}
} else {
(**store).gc();
}
let root = match root {
None => None,
Some(r) => {
let r = r
.get_gc_ref(store)
.expect("still in scope")
.unchecked_copy();
Some(store.gc_store_mut()?.clone_gc_ref(&r))
}
};
Ok(root)
}
#[cfg(not(feature = "gc"))]
fn maybe_async_gc(&mut self, root: Option<VMGcRef>) -> Result<Option<VMGcRef>> {
Ok(root)
}
#[cfg(feature = "component-model")]
fn component_calls(&mut self) -> &mut crate::runtime::vm::component::CallContexts {
&mut self.component_calls
}
}
impl<T> StoreInner<T> {
pub(crate) fn set_epoch_deadline(&mut self, delta: u64) {
// Set a new deadline based on the "epoch deadline delta".
//
// Safety: this is safe because the epoch deadline in the
// `VMRuntimeLimits` is accessed only here and by Wasm guest code
// running in this store, and we have a `&mut self` here.
//
// Also, note that when this update is performed while Wasm is
// on the stack, the Wasm will reload the new value once we
// return into it.
let epoch_deadline = unsafe { (*self.vmruntime_limits()).epoch_deadline.get_mut() };
*epoch_deadline = self.engine().current_epoch() + delta;
}
fn epoch_deadline_trap(&mut self) {
self.epoch_deadline_behavior = None;
}
fn epoch_deadline_callback(
&mut self,
callback: Box<dyn FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync>,
) {
self.epoch_deadline_behavior = Some(callback);
}
fn epoch_deadline_async_yield_and_update(&mut self, delta: u64) {
assert!(
self.async_support(),
"cannot use `epoch_deadline_async_yield_and_update` without enabling async support in the config"
);
#[cfg(feature = "async")]
{
self.epoch_deadline_behavior =
Some(Box::new(move |_store| Ok(UpdateDeadline::Yield(delta))));
}
let _ = delta; // suppress warning in non-async build
}
fn get_epoch_deadline(&self) -> u64 {
// Safety: this is safe because, as above, it is only invoked
// from within `new_epoch` which is called from guest Wasm
// code, which will have an exclusive borrow on the Store.
let epoch_deadline = unsafe { (*self.vmruntime_limits()).epoch_deadline.get_mut() };
*epoch_deadline
}
}
impl<T: Default> Default for Store<T> {
fn default() -> Store<T> {
Store::new(&Engine::default(), T::default())
}
}
impl<T: fmt::Debug> fmt::Debug for Store<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let inner = &**self.inner as *const StoreInner<T>;
f.debug_struct("Store")
.field("inner", &inner)
.field("data", &self.inner.data)
.finish()
}
}
impl<T> Drop for Store<T> {
fn drop(&mut self) {
self.inner.flush_fiber_stack();
// for documentation on this `unsafe`, see `into_data`.
unsafe {
ManuallyDrop::drop(&mut self.inner.data);
ManuallyDrop::drop(&mut self.inner);
}
}
}
impl Drop for StoreOpaque {
fn drop(&mut self) {
// NB it's important that this destructor does not access `self.data`.
// That is deallocated by `Drop for Store<T>` above.
unsafe {
let allocator = self.engine.allocator();
let ondemand = OnDemandInstanceAllocator::default();
for instance in self.instances.iter_mut() {
if let StoreInstanceKind::Dummy = instance.kind {
ondemand.deallocate_module(&mut instance.handle);
} else {
allocator.deallocate_module(&mut instance.handle);
}
}
ondemand.deallocate_module(&mut self.default_caller);
#[cfg(feature = "gc")]
if let Some(gc_store) = self.gc_store.take() {
debug_assert!(self.engine.features().gc_types());
allocator.deallocate_gc_heap(gc_store.allocation_index, gc_store.gc_heap);
}
#[cfg(feature = "component-model")]
{
for _ in 0..self.num_component_instances {
allocator.decrement_component_instance_count();
}
}
// See documentation for these fields on `StoreOpaque` for why they
// must be dropped in this order.
ManuallyDrop::drop(&mut self.store_data);
ManuallyDrop::drop(&mut self.rooted_host_funcs);
}
}
}
struct Reset<T: Copy>(*mut T, T);
impl<T: Copy> Drop for Reset<T> {
fn drop(&mut self) {
unsafe {
*self.0 = self.1;
}
}
}
#[cfg(test)]
mod tests {
use super::{get_fuel, refuel, set_fuel};
use std::num::NonZeroU64;
struct FuelTank {
pub consumed_fuel: i64,
pub reserve_fuel: u64,
pub yield_interval: Option<NonZeroU64>,
}
impl FuelTank {
fn new() -> Self {
FuelTank {
consumed_fuel: 0,
reserve_fuel: 0,
yield_interval: None,
}
}
fn get_fuel(&self) -> u64 {
get_fuel(self.consumed_fuel, self.reserve_fuel)
}
fn refuel(&mut self) -> bool {
refuel(
&mut self.consumed_fuel,
&mut self.reserve_fuel,
self.yield_interval,
)
}
fn set_fuel(&mut self, fuel: u64) {
set_fuel(
&mut self.consumed_fuel,
&mut self.reserve_fuel,
self.yield_interval,
fuel,
);
}
}
#[test]
fn smoke() {
let mut tank = FuelTank::new();
tank.set_fuel(10);
assert_eq!(tank.consumed_fuel, -10);
assert_eq!(tank.reserve_fuel, 0);
tank.yield_interval = NonZeroU64::new(10);
tank.set_fuel(25);
assert_eq!(tank.consumed_fuel, -10);
assert_eq!(tank.reserve_fuel, 15);
}
#[test]
fn does_not_lose_precision() {
let mut tank = FuelTank::new();
tank.set_fuel(u64::MAX);
assert_eq!(tank.get_fuel(), u64::MAX);
tank.set_fuel(i64::MAX as u64);
assert_eq!(tank.get_fuel(), i64::MAX as u64);
tank.set_fuel(i64::MAX as u64 + 1);
assert_eq!(tank.get_fuel(), i64::MAX as u64 + 1);
}
#[test]
fn yielding_does_not_lose_precision() {
let mut tank = FuelTank::new();
tank.yield_interval = NonZeroU64::new(10);
tank.set_fuel(u64::MAX);
assert_eq!(tank.get_fuel(), u64::MAX);
assert_eq!(tank.consumed_fuel, -10);
assert_eq!(tank.reserve_fuel, u64::MAX - 10);
tank.yield_interval = NonZeroU64::new(u64::MAX);
tank.set_fuel(u64::MAX);
assert_eq!(tank.get_fuel(), u64::MAX);
assert_eq!(tank.consumed_fuel, -i64::MAX);
assert_eq!(tank.reserve_fuel, u64::MAX - (i64::MAX as u64));
tank.yield_interval = NonZeroU64::new((i64::MAX as u64) + 1);
tank.set_fuel(u64::MAX);
assert_eq!(tank.get_fuel(), u64::MAX);
assert_eq!(tank.consumed_fuel, -i64::MAX);
assert_eq!(tank.reserve_fuel, u64::MAX - (i64::MAX as u64));
}
#[test]
fn refueling() {
// It's possible to fuel to have consumed over the limit as some instructions can consume
// multiple units of fuel at once. Refueling should be strict in it's consumption and not
// add more fuel than there is.
let mut tank = FuelTank::new();
tank.yield_interval = NonZeroU64::new(10);
tank.reserve_fuel = 42;
tank.consumed_fuel = 4;
assert!(tank.refuel());
assert_eq!(tank.reserve_fuel, 28);
assert_eq!(tank.consumed_fuel, -10);
tank.yield_interval = NonZeroU64::new(1);
tank.reserve_fuel = 8;
tank.consumed_fuel = 4;
assert_eq!(tank.get_fuel(), 4);
assert!(tank.refuel());
assert_eq!(tank.reserve_fuel, 3);
assert_eq!(tank.consumed_fuel, -1);
assert_eq!(tank.get_fuel(), 4);
tank.yield_interval = NonZeroU64::new(10);
tank.reserve_fuel = 3;
tank.consumed_fuel = 4;
assert_eq!(tank.get_fuel(), 0);
assert!(!tank.refuel());
assert_eq!(tank.reserve_fuel, 3);
assert_eq!(tank.consumed_fuel, 4);
assert_eq!(tank.get_fuel(), 0);
}
}