wasmtime/runtime/
store.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
//! Wasmtime's "store" type
//!
//! This module, and its submodules, contain the `Store` type and various types
//! used to interact with it. At first glance this is a pretty confusing module
//! where you need to know the difference between:
//!
//! * `Store<T>`
//! * `StoreContext<T>`
//! * `StoreContextMut<T>`
//! * `AsContext`
//! * `AsContextMut`
//! * `StoreInner<T>`
//! * `StoreOpaque`
//! * `StoreData`
//!
//! There's... quite a lot going on here, and it's easy to be confused. This
//! comment is ideally going to serve the purpose of clarifying what all these
//! types are for and why they're motivated.
//!
//! First it's important to know what's "internal" and what's "external". Almost
//! everything above is defined as `pub`, but only some of the items are
//! reexported to the outside world to be usable from this crate. Otherwise all
//! items are `pub` within this `store` module, and the `store` module is
//! private to the `wasmtime` crate. Notably `Store<T>`, `StoreContext<T>`,
//! `StoreContextMut<T>`, `AsContext`, and `AsContextMut` are all public
//! interfaces to the `wasmtime` crate. You can think of these as:
//!
//! * `Store<T>` - an owned reference to a store, the "root of everything"
//! * `StoreContext<T>` - basically `&StoreInner<T>`
//! * `StoreContextMut<T>` - more-or-less `&mut StoreInner<T>` with caveats.
//!   Explained later.
//! * `AsContext` - similar to `AsRef`, but produces `StoreContext<T>`
//! * `AsContextMut` - similar to `AsMut`, but produces `StoreContextMut<T>`
//!
//! Next comes the internal structure of the `Store<T>` itself. This looks like:
//!
//! * `Store<T>` - this type is just a pointer large. It's primarily just
//!   intended to be consumed by the outside world. Note that the "just a
//!   pointer large" is a load-bearing implementation detail in Wasmtime. This
//!   enables it to store a pointer to its own trait object which doesn't need
//!   to change over time.
//!
//! * `StoreInner<T>` - the first layer of the contents of a `Store<T>`, what's
//!   stored inside the `Box`. This is the general Rust pattern when one struct
//!   is a layer over another. The surprising part, though, is that this is
//!   further subdivided. This structure only contains things which actually
//!   need `T` itself. The downside of this structure is that it's always
//!   generic and means that code is monomorphized into consumer crates. We
//!   strive to have things be as monomorphic as possible in `wasmtime` so this
//!   type is not heavily used.
//!
//! * `StoreOpaque` - this is the primary contents of the `StoreInner<T>` type.
//!   Stored inline in the outer type the "opaque" here means that it's a
//!   "store" but it doesn't have access to the `T`. This is the primary
//!   "internal" reference that Wasmtime uses since `T` is rarely needed by the
//!   internals of Wasmtime.
//!
//! * `StoreData` - this is a final helper struct stored within `StoreOpaque`.
//!   All references of Wasm items into a `Store` are actually indices into a
//!   table in this structure, and the `StoreData` being separate makes it a bit
//!   easier to manage/define/work with. There's no real fundamental reason this
//!   is split out, although sometimes it's useful to have separate borrows into
//!   these tables than the `StoreOpaque`.
//!
//! A major caveat with these representations is that the internal `&mut
//! StoreInner<T>` is never handed out publicly to consumers of this crate, only
//! through a wrapper of `StoreContextMut<'_, T>`. The reason for this is that
//! we want to provide mutable, but not destructive, access to the contents of a
//! `Store`. For example if a `StoreInner<T>` were replaced with some other
//! `StoreInner<T>` then that would drop live instances, possibly those
//! currently executing beneath the current stack frame. This would not be a
//! safe operation.
//!
//! This means, though, that the `wasmtime` crate, which liberally uses `&mut
//! StoreOpaque` internally, has to be careful to never actually destroy the
//! contents of `StoreOpaque`. This is an invariant that we, as the authors of
//! `wasmtime`, must uphold for the public interface to be safe.

use crate::hash_set::HashSet;
use crate::instance::InstanceData;
use crate::linker::Definition;
use crate::module::RegisteredModuleId;
use crate::prelude::*;
use crate::runtime::vm::mpk::{self, ProtectionKey, ProtectionMask};
use crate::runtime::vm::{
    Backtrace, ExportGlobal, GcRootsList, GcStore, InstanceAllocationRequest, InstanceAllocator,
    InstanceHandle, ModuleRuntimeInfo, OnDemandInstanceAllocator, SignalHandler, StoreBox,
    StorePtr, VMContext, VMFuncRef, VMGcRef, VMRuntimeLimits,
};
use crate::trampoline::VMHostGlobalContext;
use crate::type_registry::RegisteredType;
use crate::RootSet;
use crate::{module::ModuleRegistry, Engine, Module, Trap, Val, ValRaw};
use crate::{Global, Instance, Memory, RootScope, Table, Uninhabited};
use alloc::sync::Arc;
use core::cell::UnsafeCell;
use core::fmt;
use core::future::Future;
use core::marker;
use core::mem::{self, ManuallyDrop};
use core::num::NonZeroU64;
use core::ops::{Deref, DerefMut, Range};
use core::pin::Pin;
use core::ptr;
use core::task::{Context, Poll};

mod context;
pub use self::context::*;
mod data;
pub use self::data::*;
mod func_refs;
use func_refs::FuncRefs;

/// A [`Store`] is a collection of WebAssembly instances and host-defined state.
///
/// All WebAssembly instances and items will be attached to and refer to a
/// [`Store`]. For example instances, functions, globals, and tables are all
/// attached to a [`Store`]. Instances are created by instantiating a
/// [`Module`](crate::Module) within a [`Store`].
///
/// A [`Store`] is intended to be a short-lived object in a program. No form
/// of GC is implemented at this time so once an instance is created within a
/// [`Store`] it will not be deallocated until the [`Store`] itself is dropped.
/// This makes [`Store`] unsuitable for creating an unbounded number of
/// instances in it because [`Store`] will never release this memory. It's
/// recommended to have a [`Store`] correspond roughly to the lifetime of a
/// "main instance" that an embedding is interested in executing.
///
/// ## Type parameter `T`
///
/// Each [`Store`] has a type parameter `T` associated with it. This `T`
/// represents state defined by the host. This state will be accessible through
/// the [`Caller`](crate::Caller) type that host-defined functions get access
/// to. This `T` is suitable for storing `Store`-specific information which
/// imported functions may want access to.
///
/// The data `T` can be accessed through methods like [`Store::data`] and
/// [`Store::data_mut`].
///
/// ## Stores, contexts, oh my
///
/// Most methods in Wasmtime take something of the form
/// [`AsContext`](crate::AsContext) or [`AsContextMut`](crate::AsContextMut) as
/// the first argument. These two traits allow ergonomically passing in the
/// context you currently have to any method. The primary two sources of
/// contexts are:
///
/// * `Store<T>`
/// * `Caller<'_, T>`
///
/// corresponding to what you create and what you have access to in a host
/// function. You can also explicitly acquire a [`StoreContext`] or
/// [`StoreContextMut`] and pass that around as well.
///
/// Note that all methods on [`Store`] are mirrored onto [`StoreContext`],
/// [`StoreContextMut`], and [`Caller`](crate::Caller). This way no matter what
/// form of context you have you can call various methods, create objects, etc.
///
/// ## Stores and `Default`
///
/// You can create a store with default configuration settings using
/// `Store::default()`. This will create a brand new [`Engine`] with default
/// configuration (see [`Config`](crate::Config) for more information).
///
/// ## Cross-store usage of items
///
/// In `wasmtime` wasm items such as [`Global`] and [`Memory`] "belong" to a
/// [`Store`]. The store they belong to is the one they were created with
/// (passed in as a parameter) or instantiated with. This store is the only
/// store that can be used to interact with wasm items after they're created.
///
/// The `wasmtime` crate will panic if the [`Store`] argument passed in to these
/// operations is incorrect. In other words it's considered a programmer error
/// rather than a recoverable error for the wrong [`Store`] to be used when
/// calling APIs.
pub struct Store<T> {
    // for comments about `ManuallyDrop`, see `Store::into_data`
    inner: ManuallyDrop<Box<StoreInner<T>>>,
}

#[derive(Copy, Clone, Debug)]
/// Passed to the argument of [`Store::call_hook`] to indicate a state transition in
/// the WebAssembly VM.
pub enum CallHook {
    /// Indicates the VM is calling a WebAssembly function, from the host.
    CallingWasm,
    /// Indicates the VM is returning from a WebAssembly function, to the host.
    ReturningFromWasm,
    /// Indicates the VM is calling a host function, from WebAssembly.
    CallingHost,
    /// Indicates the VM is returning from a host function, to WebAssembly.
    ReturningFromHost,
}

impl CallHook {
    /// Indicates the VM is entering host code (exiting WebAssembly code)
    pub fn entering_host(&self) -> bool {
        match self {
            CallHook::ReturningFromWasm | CallHook::CallingHost => true,
            _ => false,
        }
    }
    /// Indicates the VM is exiting host code (entering WebAssembly code)
    pub fn exiting_host(&self) -> bool {
        match self {
            CallHook::ReturningFromHost | CallHook::CallingWasm => true,
            _ => false,
        }
    }
}

/// Internal contents of a `Store<T>` that live on the heap.
///
/// The members of this struct are those that need to be generic over `T`, the
/// store's internal type storage. Otherwise all things that don't rely on `T`
/// should go into `StoreOpaque`.
pub struct StoreInner<T> {
    /// Generic metadata about the store that doesn't need access to `T`.
    inner: StoreOpaque,

    limiter: Option<ResourceLimiterInner<T>>,
    call_hook: Option<CallHookInner<T>>,
    epoch_deadline_behavior:
        Option<Box<dyn FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync>>,
    // for comments about `ManuallyDrop`, see `Store::into_data`
    data: ManuallyDrop<T>,
}

enum ResourceLimiterInner<T> {
    Sync(Box<dyn FnMut(&mut T) -> &mut (dyn crate::ResourceLimiter) + Send + Sync>),
    #[cfg(feature = "async")]
    Async(Box<dyn FnMut(&mut T) -> &mut (dyn crate::ResourceLimiterAsync) + Send + Sync>),
}

/// An object that can take callbacks when the runtime enters or exits hostcalls.
#[cfg(all(feature = "async", feature = "call-hook"))]
#[async_trait::async_trait]
pub trait CallHookHandler<T>: Send {
    /// A callback to run when wasmtime is about to enter a host call, or when about to
    /// exit the hostcall.
    async fn handle_call_event(&self, t: StoreContextMut<'_, T>, ch: CallHook) -> Result<()>;
}

enum CallHookInner<T> {
    #[cfg(feature = "call-hook")]
    Sync(Box<dyn FnMut(StoreContextMut<'_, T>, CallHook) -> Result<()> + Send + Sync>),
    #[cfg(all(feature = "async", feature = "call-hook"))]
    Async(Box<dyn CallHookHandler<T> + Send + Sync>),
    #[allow(dead_code)]
    ForceTypeParameterToBeUsed {
        uninhabited: Uninhabited,
        _marker: marker::PhantomData<T>,
    },
}

/// What to do after returning from a callback when the engine epoch reaches
/// the deadline for a Store during execution of a function using that store.
pub enum UpdateDeadline {
    /// Extend the deadline by the specified number of ticks.
    Continue(u64),
    /// Extend the deadline by the specified number of ticks after yielding to
    /// the async executor loop. This can only be used with an async [`Store`]
    /// configured via [`Config::async_support`](crate::Config::async_support).
    #[cfg(feature = "async")]
    Yield(u64),
}

// Forward methods on `StoreOpaque` to also being on `StoreInner<T>`
impl<T> Deref for StoreInner<T> {
    type Target = StoreOpaque;
    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl<T> DerefMut for StoreInner<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.inner
    }
}

/// Monomorphic storage for a `Store<T>`.
///
/// This structure contains the bulk of the metadata about a `Store`. This is
/// used internally in Wasmtime when dependence on the `T` of `Store<T>` isn't
/// necessary, allowing code to be monomorphic and compiled into the `wasmtime`
/// crate itself.
pub struct StoreOpaque {
    // This `StoreOpaque` structure has references to itself. These aren't
    // immediately evident, however, so we need to tell the compiler that it
    // contains self-references. This notably suppresses `noalias` annotations
    // when this shows up in compiled code because types of this structure do
    // indeed alias itself. An example of this is `default_callee` holds a
    // `*mut dyn Store` to the address of this `StoreOpaque` itself, indeed
    // aliasing!
    //
    // It's somewhat unclear to me at this time if this is 100% sufficient to
    // get all the right codegen in all the right places. For example does
    // `Store` need to internally contain a `Pin<Box<StoreInner<T>>>`? Do the
    // contexts need to contain `Pin<&mut StoreInner<T>>`? I'm not familiar
    // enough with `Pin` to understand if it's appropriate here (we do, for
    // example want to allow movement in and out of `data: T`, just not movement
    // of most of the other members). It's also not clear if using `Pin` in a
    // few places buys us much other than a bunch of `unsafe` that we already
    // sort of hand-wave away.
    //
    // In any case this seems like a good mid-ground for now where we're at
    // least telling the compiler something about all the aliasing happening
    // within a `Store`.
    _marker: marker::PhantomPinned,

    engine: Engine,
    runtime_limits: VMRuntimeLimits,
    instances: Vec<StoreInstance>,
    #[cfg(feature = "component-model")]
    num_component_instances: usize,
    signal_handler: Option<SignalHandler>,
    modules: ModuleRegistry,
    func_refs: FuncRefs,
    host_globals: Vec<StoreBox<VMHostGlobalContext>>,

    // GC-related fields.
    gc_store: Option<GcStore>,
    gc_roots: RootSet,
    gc_roots_list: GcRootsList,
    // Types for which the embedder has created an allocator for.
    gc_host_alloc_types: HashSet<RegisteredType>,

    // Numbers of resources instantiated in this store, and their limits
    instance_count: usize,
    instance_limit: usize,
    memory_count: usize,
    memory_limit: usize,
    table_count: usize,
    table_limit: usize,
    #[cfg(feature = "async")]
    async_state: AsyncState,

    // If fuel_yield_interval is enabled, then we store the remaining fuel (that isn't in
    // runtime_limits) here. The total amount of fuel is the runtime limits and reserve added
    // together. Then when we run out of gas, we inject the yield amount from the reserve
    // until the reserve is empty.
    fuel_reserve: u64,
    fuel_yield_interval: Option<NonZeroU64>,
    /// Indexed data within this `Store`, used to store information about
    /// globals, functions, memories, etc.
    ///
    /// Note that this is `ManuallyDrop` because it needs to be dropped before
    /// `rooted_host_funcs` below. This structure contains pointers which are
    /// otherwise kept alive by the `Arc` references in `rooted_host_funcs`.
    store_data: ManuallyDrop<StoreData>,
    default_caller: InstanceHandle,

    /// Used to optimzed wasm->host calls when the host function is defined with
    /// `Func::new` to avoid allocating a new vector each time a function is
    /// called.
    hostcall_val_storage: Vec<Val>,
    /// Same as `hostcall_val_storage`, but for the direction of the host
    /// calling wasm.
    wasm_val_raw_storage: Vec<ValRaw>,

    /// A list of lists of definitions which have been used to instantiate
    /// within this `Store`.
    ///
    /// Note that not all instantiations end up pushing to this list. At the
    /// time of this writing only the `InstancePre<T>` type will push to this
    /// list. Pushes to this list are typically accompanied with
    /// `HostFunc::to_func_store_rooted` to clone an `Arc` here once which
    /// preserves a strong reference to the `Arc` for each `HostFunc` stored
    /// within the list of `Definition`s.
    ///
    /// Note that this is `ManuallyDrop` as it must be dropped after
    /// `store_data` above, where the function pointers are stored.
    rooted_host_funcs: ManuallyDrop<Vec<Arc<[Definition]>>>,

    /// Keep track of what protection key is being used during allocation so
    /// that the right memory pages can be enabled when entering WebAssembly
    /// guest code.
    pkey: Option<ProtectionKey>,

    /// Runtime state for components used in the handling of resources, borrow,
    /// and calls. These also interact with the `ResourceAny` type and its
    /// internal representation.
    #[cfg(feature = "component-model")]
    component_host_table: crate::runtime::vm::component::ResourceTable,
    #[cfg(feature = "component-model")]
    component_calls: crate::runtime::vm::component::CallContexts,
    #[cfg(feature = "component-model")]
    host_resource_data: crate::component::HostResourceData,
}

#[cfg(feature = "async")]
struct AsyncState {
    current_suspend: UnsafeCell<*mut wasmtime_fiber::Suspend<Result<()>, (), Result<()>>>,
    current_poll_cx: UnsafeCell<PollContext>,
    /// The last fiber stack that was in use by this store.
    last_fiber_stack: Option<wasmtime_fiber::FiberStack>,
}

#[cfg(feature = "async")]
#[derive(Clone, Copy)]
struct PollContext {
    future_context: *mut Context<'static>,
    guard_range_start: *mut u8,
    guard_range_end: *mut u8,
}

#[cfg(feature = "async")]
impl Default for PollContext {
    fn default() -> PollContext {
        PollContext {
            future_context: core::ptr::null_mut(),
            guard_range_start: core::ptr::null_mut(),
            guard_range_end: core::ptr::null_mut(),
        }
    }
}

// Lots of pesky unsafe cells and pointers in this structure. This means we need
// to declare explicitly that we use this in a threadsafe fashion.
#[cfg(feature = "async")]
unsafe impl Send for AsyncState {}
#[cfg(feature = "async")]
unsafe impl Sync for AsyncState {}

/// An RAII type to automatically mark a region of code as unsafe for GC.
#[doc(hidden)]
pub struct AutoAssertNoGc<'a> {
    store: &'a mut StoreOpaque,
    entered: bool,
}

impl<'a> AutoAssertNoGc<'a> {
    #[inline]
    pub fn new(store: &'a mut StoreOpaque) -> Self {
        let entered = if !cfg!(feature = "gc") {
            false
        } else if let Some(gc_store) = store.gc_store.as_mut() {
            gc_store.gc_heap.enter_no_gc_scope();
            true
        } else {
            false
        };

        AutoAssertNoGc { store, entered }
    }

    /// Creates an `AutoAssertNoGc` value which is forcibly "not entered" and
    /// disables checks for no GC happening for the duration of this value.
    ///
    /// This is used when it is statically otherwise known that a GC doesn't
    /// happen for the various types involved.
    ///
    /// # Unsafety
    ///
    /// This method is `unsafe` as it does not provide the same safety
    /// guarantees as `AutoAssertNoGc::new`. It must be guaranteed by the
    /// caller that a GC doesn't happen.
    #[inline]
    pub unsafe fn disabled(store: &'a mut StoreOpaque) -> Self {
        if cfg!(debug_assertions) {
            AutoAssertNoGc::new(store)
        } else {
            AutoAssertNoGc {
                store,
                entered: false,
            }
        }
    }
}

impl core::ops::Deref for AutoAssertNoGc<'_> {
    type Target = StoreOpaque;

    #[inline]
    fn deref(&self) -> &Self::Target {
        &*self.store
    }
}

impl core::ops::DerefMut for AutoAssertNoGc<'_> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut *self.store
    }
}

impl Drop for AutoAssertNoGc<'_> {
    #[inline]
    fn drop(&mut self) {
        if self.entered {
            self.store.unwrap_gc_store_mut().gc_heap.exit_no_gc_scope();
        }
    }
}

/// Used to associate instances with the store.
///
/// This is needed to track if the instance was allocated explicitly with the on-demand
/// instance allocator.
struct StoreInstance {
    handle: InstanceHandle,
    kind: StoreInstanceKind,
}

enum StoreInstanceKind {
    /// An actual, non-dummy instance.
    Real {
        /// The id of this instance's module inside our owning store's
        /// `ModuleRegistry`.
        module_id: RegisteredModuleId,
    },

    /// This is a dummy instance that is just an implementation detail for
    /// something else. For example, host-created memories internally create a
    /// dummy instance.
    ///
    /// Regardless of the configured instance allocator for the engine, dummy
    /// instances always use the on-demand allocator to deallocate the instance.
    Dummy,
}

impl<T> Store<T> {
    /// Creates a new [`Store`] to be associated with the given [`Engine`] and
    /// `data` provided.
    ///
    /// The created [`Store`] will place no additional limits on the size of
    /// linear memories or tables at runtime. Linear memories and tables will
    /// be allowed to grow to any upper limit specified in their definitions.
    /// The store will limit the number of instances, linear memories, and
    /// tables created to 10,000. This can be overridden with the
    /// [`Store::limiter`] configuration method.
    pub fn new(engine: &Engine, data: T) -> Self {
        let pkey = engine.allocator().next_available_pkey();

        let mut inner = Box::new(StoreInner {
            inner: StoreOpaque {
                _marker: marker::PhantomPinned,
                engine: engine.clone(),
                runtime_limits: Default::default(),
                instances: Vec::new(),
                #[cfg(feature = "component-model")]
                num_component_instances: 0,
                signal_handler: None,
                gc_store: None,
                gc_roots: RootSet::default(),
                gc_roots_list: GcRootsList::default(),
                gc_host_alloc_types: HashSet::default(),
                modules: ModuleRegistry::default(),
                func_refs: FuncRefs::default(),
                host_globals: Vec::new(),
                instance_count: 0,
                instance_limit: crate::DEFAULT_INSTANCE_LIMIT,
                memory_count: 0,
                memory_limit: crate::DEFAULT_MEMORY_LIMIT,
                table_count: 0,
                table_limit: crate::DEFAULT_TABLE_LIMIT,
                #[cfg(feature = "async")]
                async_state: AsyncState {
                    current_suspend: UnsafeCell::new(ptr::null_mut()),
                    current_poll_cx: UnsafeCell::new(PollContext::default()),
                    last_fiber_stack: None,
                },
                fuel_reserve: 0,
                fuel_yield_interval: None,
                store_data: ManuallyDrop::new(StoreData::new()),
                default_caller: InstanceHandle::null(),
                hostcall_val_storage: Vec::new(),
                wasm_val_raw_storage: Vec::new(),
                rooted_host_funcs: ManuallyDrop::new(Vec::new()),
                pkey,
                #[cfg(feature = "component-model")]
                component_host_table: Default::default(),
                #[cfg(feature = "component-model")]
                component_calls: Default::default(),
                #[cfg(feature = "component-model")]
                host_resource_data: Default::default(),
            },
            limiter: None,
            call_hook: None,
            epoch_deadline_behavior: None,
            data: ManuallyDrop::new(data),
        });

        // Wasmtime uses the callee argument to host functions to learn about
        // the original pointer to the `Store` itself, allowing it to
        // reconstruct a `StoreContextMut<T>`. When we initially call a `Func`,
        // however, there's no "callee" to provide. To fix this we allocate a
        // single "default callee" for the entire `Store`. This is then used as
        // part of `Func::call` to guarantee that the `callee: *mut VMContext`
        // is never null.
        inner.default_caller = {
            let module = Arc::new(wasmtime_environ::Module::default());
            let shim = ModuleRuntimeInfo::bare(module);
            let allocator = OnDemandInstanceAllocator::default();
            allocator
                .validate_module(shim.env_module(), shim.offsets())
                .unwrap();
            let mut instance = unsafe {
                allocator
                    .allocate_module(InstanceAllocationRequest {
                        host_state: Box::new(()),
                        imports: Default::default(),
                        store: StorePtr::empty(),
                        runtime_info: &shim,
                        wmemcheck: engine.config().wmemcheck,
                        pkey: None,
                        tunables: engine.tunables(),
                    })
                    .expect("failed to allocate default callee")
            };

            // Note the erasure of the lifetime here into `'static`, so in
            // general usage of this trait object must be strictly bounded to
            // the `Store` itself, and this is an invariant that we have to
            // maintain throughout Wasmtime.
            unsafe {
                let traitobj = mem::transmute::<
                    *mut (dyn crate::runtime::vm::VMStore + '_),
                    *mut (dyn crate::runtime::vm::VMStore + 'static),
                >(&mut *inner);
                instance.set_store(traitobj);
                instance
            }
        };

        Self {
            inner: ManuallyDrop::new(inner),
        }
    }

    /// Access the underlying data owned by this `Store`.
    #[inline]
    pub fn data(&self) -> &T {
        self.inner.data()
    }

    /// Access the underlying data owned by this `Store`.
    #[inline]
    pub fn data_mut(&mut self) -> &mut T {
        self.inner.data_mut()
    }

    /// Consumes this [`Store`], destroying it, and returns the underlying data.
    pub fn into_data(mut self) -> T {
        // This is an unsafe operation because we want to avoid having a runtime
        // check or boolean for whether the data is actually contained within a
        // `Store`. The data itself is stored as `ManuallyDrop` since we're
        // manually managing the memory here, and there's also a `ManuallyDrop`
        // around the `Box<StoreInner<T>>`. The way this works though is a bit
        // tricky, so here's how things get dropped appropriately:
        //
        // * When a `Store<T>` is normally dropped, the custom destructor for
        //   `Store<T>` will drop `T`, then the `self.inner` field. The
        //   rustc-glue destructor runs for `Box<StoreInner<T>>` which drops
        //   `StoreInner<T>`. This cleans up all internal fields and doesn't
        //   touch `T` because it's wrapped in `ManuallyDrop`.
        //
        // * When calling this method we skip the top-level destructor for
        //   `Store<T>` with `mem::forget`. This skips both the destructor for
        //   `T` and the destructor for `StoreInner<T>`. We do, however, run the
        //   destructor for `Box<StoreInner<T>>` which, like above, will skip
        //   the destructor for `T` since it's `ManuallyDrop`.
        //
        // In both cases all the other fields of `StoreInner<T>` should all get
        // dropped, and the manual management of destructors is basically
        // between this method and `Drop for Store<T>`. Note that this also
        // means that `Drop for StoreInner<T>` cannot access `self.data`, so
        // there is a comment indicating this as well.
        unsafe {
            let mut inner = ManuallyDrop::take(&mut self.inner);
            core::mem::forget(self);
            ManuallyDrop::take(&mut inner.data)
        }
    }

    /// Configures the [`ResourceLimiter`] used to limit resource creation
    /// within this [`Store`].
    ///
    /// Whenever resources such as linear memory, tables, or instances are
    /// allocated the `limiter` specified here is invoked with the store's data
    /// `T` and the returned [`ResourceLimiter`] is used to limit the operation
    /// being allocated. The returned [`ResourceLimiter`] is intended to live
    /// within the `T` itself, for example by storing a
    /// [`StoreLimits`](crate::StoreLimits).
    ///
    /// Note that this limiter is only used to limit the creation/growth of
    /// resources in the future, this does not retroactively attempt to apply
    /// limits to the [`Store`].
    ///
    /// # Examples
    ///
    /// ```
    /// use wasmtime::*;
    ///
    /// struct MyApplicationState {
    ///     my_state: u32,
    ///     limits: StoreLimits,
    /// }
    ///
    /// let engine = Engine::default();
    /// let my_state = MyApplicationState {
    ///     my_state: 42,
    ///     limits: StoreLimitsBuilder::new()
    ///         .memory_size(1 << 20 /* 1 MB */)
    ///         .instances(2)
    ///         .build(),
    /// };
    /// let mut store = Store::new(&engine, my_state);
    /// store.limiter(|state| &mut state.limits);
    ///
    /// // Creation of smaller memories is allowed
    /// Memory::new(&mut store, MemoryType::new(1, None)).unwrap();
    ///
    /// // Creation of a larger memory, however, will exceed the 1MB limit we've
    /// // configured
    /// assert!(Memory::new(&mut store, MemoryType::new(1000, None)).is_err());
    ///
    /// // The number of instances in this store is limited to 2, so the third
    /// // instance here should fail.
    /// let module = Module::new(&engine, "(module)").unwrap();
    /// assert!(Instance::new(&mut store, &module, &[]).is_ok());
    /// assert!(Instance::new(&mut store, &module, &[]).is_ok());
    /// assert!(Instance::new(&mut store, &module, &[]).is_err());
    /// ```
    ///
    /// [`ResourceLimiter`]: crate::ResourceLimiter
    pub fn limiter(
        &mut self,
        mut limiter: impl FnMut(&mut T) -> &mut (dyn crate::ResourceLimiter) + Send + Sync + 'static,
    ) {
        // Apply the limits on instances, tables, and memory given by the limiter:
        let inner = &mut self.inner;
        let (instance_limit, table_limit, memory_limit) = {
            let l = limiter(&mut inner.data);
            (l.instances(), l.tables(), l.memories())
        };
        let innermost = &mut inner.inner;
        innermost.instance_limit = instance_limit;
        innermost.table_limit = table_limit;
        innermost.memory_limit = memory_limit;

        // Save the limiter accessor function:
        inner.limiter = Some(ResourceLimiterInner::Sync(Box::new(limiter)));
    }

    /// Configures the [`ResourceLimiterAsync`](crate::ResourceLimiterAsync)
    /// used to limit resource creation within this [`Store`].
    ///
    /// This method is an asynchronous variant of the [`Store::limiter`] method
    /// where the embedder can block the wasm request for more resources with
    /// host `async` execution of futures.
    ///
    /// By using a [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`)
    /// with a [`Store`], you can no longer use
    /// [`Memory::new`](`crate::Memory::new`),
    /// [`Memory::grow`](`crate::Memory::grow`),
    /// [`Table::new`](`crate::Table::new`), and
    /// [`Table::grow`](`crate::Table::grow`). Instead, you must use their
    /// `async` variants: [`Memory::new_async`](`crate::Memory::new_async`),
    /// [`Memory::grow_async`](`crate::Memory::grow_async`),
    /// [`Table::new_async`](`crate::Table::new_async`), and
    /// [`Table::grow_async`](`crate::Table::grow_async`).
    ///
    /// Note that this limiter is only used to limit the creation/growth of
    /// resources in the future, this does not retroactively attempt to apply
    /// limits to the [`Store`]. Additionally this must be used with an async
    /// [`Store`] configured via
    /// [`Config::async_support`](crate::Config::async_support).
    #[cfg(feature = "async")]
    pub fn limiter_async(
        &mut self,
        mut limiter: impl FnMut(&mut T) -> &mut (dyn crate::ResourceLimiterAsync)
            + Send
            + Sync
            + 'static,
    ) {
        debug_assert!(self.inner.async_support());
        // Apply the limits on instances, tables, and memory given by the limiter:
        let inner = &mut self.inner;
        let (instance_limit, table_limit, memory_limit) = {
            let l = limiter(&mut inner.data);
            (l.instances(), l.tables(), l.memories())
        };
        let innermost = &mut inner.inner;
        innermost.instance_limit = instance_limit;
        innermost.table_limit = table_limit;
        innermost.memory_limit = memory_limit;

        // Save the limiter accessor function:
        inner.limiter = Some(ResourceLimiterInner::Async(Box::new(limiter)));
    }

    /// Configures an async function that runs on calls and returns between
    /// WebAssembly and host code. For the non-async equivalent of this method,
    /// see [`Store::call_hook`].
    ///
    /// The function is passed a [`CallHook`] argument, which indicates which
    /// state transition the VM is making.
    ///
    /// This function's future may return a [`Trap`]. If a trap is returned
    /// when an import was called, it is immediately raised as-if the host
    /// import had returned the trap. If a trap is returned after wasm returns
    /// to the host then the wasm function's result is ignored and this trap is
    /// returned instead.
    ///
    /// After this function returns a trap, it may be called for subsequent
    /// returns to host or wasm code as the trap propagates to the root call.
    #[cfg(all(feature = "async", feature = "call-hook"))]
    pub fn call_hook_async(&mut self, hook: impl CallHookHandler<T> + Send + Sync + 'static) {
        self.inner.call_hook = Some(CallHookInner::Async(Box::new(hook)));
    }

    /// Configure a function that runs on calls and returns between WebAssembly
    /// and host code.
    ///
    /// The function is passed a [`CallHook`] argument, which indicates which
    /// state transition the VM is making.
    ///
    /// This function may return a [`Trap`]. If a trap is returned when an
    /// import was called, it is immediately raised as-if the host import had
    /// returned the trap. If a trap is returned after wasm returns to the host
    /// then the wasm function's result is ignored and this trap is returned
    /// instead.
    ///
    /// After this function returns a trap, it may be called for subsequent returns
    /// to host or wasm code as the trap propagates to the root call.
    #[cfg(feature = "call-hook")]
    pub fn call_hook(
        &mut self,
        hook: impl FnMut(StoreContextMut<'_, T>, CallHook) -> Result<()> + Send + Sync + 'static,
    ) {
        self.inner.call_hook = Some(CallHookInner::Sync(Box::new(hook)));
    }

    /// Returns the [`Engine`] that this store is associated with.
    pub fn engine(&self) -> &Engine {
        self.inner.engine()
    }

    /// Perform garbage collection.
    ///
    /// Note that it is not required to actively call this function. GC will
    /// automatically happen according to various internal heuristics. This is
    /// provided if fine-grained control over the GC is desired.
    ///
    /// This method is only available when the `gc` Cargo feature is enabled.
    #[cfg(feature = "gc")]
    pub fn gc(&mut self) {
        self.inner.gc()
    }

    /// Perform garbage collection asynchronously.
    ///
    /// Note that it is not required to actively call this function. GC will
    /// automatically happen according to various internal heuristics. This is
    /// provided if fine-grained control over the GC is desired.
    ///
    /// This method is only available when the `gc` Cargo feature is enabled.
    #[cfg(all(feature = "async", feature = "gc"))]
    pub async fn gc_async(&mut self)
    where
        T: Send,
    {
        self.inner.gc_async().await;
    }

    /// Returns the amount fuel in this [`Store`]. When fuel is enabled, it must
    /// be configured via [`Store::set_fuel`].
    ///
    /// # Errors
    ///
    /// This function will return an error if fuel consumption is not enabled
    /// via [`Config::consume_fuel`](crate::Config::consume_fuel).
    pub fn get_fuel(&self) -> Result<u64> {
        self.inner.get_fuel()
    }

    /// Set the fuel to this [`Store`] for wasm to consume while executing.
    ///
    /// For this method to work fuel consumption must be enabled via
    /// [`Config::consume_fuel`](crate::Config::consume_fuel). By default a
    /// [`Store`] starts with 0 fuel for wasm to execute with (meaning it will
    /// immediately trap). This function must be called for the store to have
    /// some fuel to allow WebAssembly to execute.
    ///
    /// Most WebAssembly instructions consume 1 unit of fuel. Some
    /// instructions, such as `nop`, `drop`, `block`, and `loop`, consume 0
    /// units, as any execution cost associated with them involves other
    /// instructions which do consume fuel.
    ///
    /// Note that when fuel is entirely consumed it will cause wasm to trap.
    ///
    /// # Errors
    ///
    /// This function will return an error if fuel consumption is not enabled via
    /// [`Config::consume_fuel`](crate::Config::consume_fuel).
    pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
        self.inner.set_fuel(fuel)
    }

    /// Configures a [`Store`] to yield execution of async WebAssembly code
    /// periodically.
    ///
    /// When a [`Store`] is configured to consume fuel with
    /// [`Config::consume_fuel`](crate::Config::consume_fuel) this method will
    /// configure WebAssembly to be suspended and control will be yielded back to the
    /// caller every `interval` units of fuel consumed. This is only suitable with use of
    /// a store associated with an [async config](crate::Config::async_support) because
    /// only then are futures used and yields are possible.
    ///
    /// The purpose of this behavior is to ensure that futures which represent
    /// execution of WebAssembly do not execute too long inside their
    /// `Future::poll` method. This allows for some form of cooperative
    /// multitasking where WebAssembly will voluntarily yield control
    /// periodically (based on fuel consumption) back to the running thread.
    ///
    /// Note that futures returned by this crate will automatically flag
    /// themselves to get re-polled if a yield happens. This means that
    /// WebAssembly will continue to execute, just after giving the host an
    /// opportunity to do something else.
    ///
    /// The `interval` parameter indicates how much fuel should be
    /// consumed between yields of an async future. When fuel runs out wasm will trap.
    ///
    /// # Error
    ///
    /// This method will error if it is not called on a store associated with an [async
    /// config](crate::Config::async_support).
    pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
        self.inner.fuel_async_yield_interval(interval)
    }

    /// Sets the epoch deadline to a certain number of ticks in the future.
    ///
    /// When the Wasm guest code is compiled with epoch-interruption
    /// instrumentation
    /// ([`Config::epoch_interruption()`](crate::Config::epoch_interruption)),
    /// and when the `Engine`'s epoch is incremented
    /// ([`Engine::increment_epoch()`](crate::Engine::increment_epoch))
    /// past a deadline, execution can be configured to either trap or
    /// yield and then continue.
    ///
    /// This deadline is always set relative to the current epoch:
    /// `ticks_beyond_current` ticks in the future. The deadline can
    /// be set explicitly via this method, or refilled automatically
    /// on a yield if configured via
    /// [`epoch_deadline_async_yield_and_update()`](Store::epoch_deadline_async_yield_and_update). After
    /// this method is invoked, the deadline is reached when
    /// [`Engine::increment_epoch()`] has been invoked at least
    /// `ticks_beyond_current` times.
    ///
    /// By default a store will trap immediately with an epoch deadline of 0
    /// (which has always "elapsed"). This method is required to be configured
    /// for stores with epochs enabled to some future epoch deadline.
    ///
    /// See documentation on
    /// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
    /// for an introduction to epoch-based interruption.
    pub fn set_epoch_deadline(&mut self, ticks_beyond_current: u64) {
        self.inner.set_epoch_deadline(ticks_beyond_current);
    }

    /// Configures epoch-deadline expiration to trap.
    ///
    /// When epoch-interruption-instrumented code is executed on this
    /// store and the epoch deadline is reached before completion,
    /// with the store configured in this way, execution will
    /// terminate with a trap as soon as an epoch check in the
    /// instrumented code is reached.
    ///
    /// This behavior is the default if the store is not otherwise
    /// configured via
    /// [`epoch_deadline_trap()`](Store::epoch_deadline_trap),
    /// [`epoch_deadline_callback()`](Store::epoch_deadline_callback) or
    /// [`epoch_deadline_async_yield_and_update()`](Store::epoch_deadline_async_yield_and_update).
    ///
    /// This setting is intended to allow for coarse-grained
    /// interruption, but not a deterministic deadline of a fixed,
    /// finite interval. For deterministic interruption, see the
    /// "fuel" mechanism instead.
    ///
    /// Note that when this is used it's required to call
    /// [`Store::set_epoch_deadline`] or otherwise wasm will always immediately
    /// trap.
    ///
    /// See documentation on
    /// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
    /// for an introduction to epoch-based interruption.
    pub fn epoch_deadline_trap(&mut self) {
        self.inner.epoch_deadline_trap();
    }

    /// Configures epoch-deadline expiration to invoke a custom callback
    /// function.
    ///
    /// When epoch-interruption-instrumented code is executed on this
    /// store and the epoch deadline is reached before completion, the
    /// provided callback function is invoked.
    ///
    /// This callback should either return an [`UpdateDeadline`], or
    /// return an error, which will terminate execution with a trap.
    ///
    /// The [`UpdateDeadline`] is a positive number of ticks to
    /// add to the epoch deadline, as well as indicating what
    /// to do after the callback returns. If the [`Store`] is
    /// configured with async support, then the callback may return
    /// [`UpdateDeadline::Yield`] to yield to the async executor before
    /// updating the epoch deadline. Alternatively, the callback may
    /// return [`UpdateDeadline::Continue`] to update the epoch deadline
    /// immediately.
    ///
    /// This setting is intended to allow for coarse-grained
    /// interruption, but not a deterministic deadline of a fixed,
    /// finite interval. For deterministic interruption, see the
    /// "fuel" mechanism instead.
    ///
    /// See documentation on
    /// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
    /// for an introduction to epoch-based interruption.
    pub fn epoch_deadline_callback(
        &mut self,
        callback: impl FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync + 'static,
    ) {
        self.inner.epoch_deadline_callback(Box::new(callback));
    }

    /// Configures epoch-deadline expiration to yield to the async
    /// caller and the update the deadline.
    ///
    /// When epoch-interruption-instrumented code is executed on this
    /// store and the epoch deadline is reached before completion,
    /// with the store configured in this way, execution will yield
    /// (the future will return `Pending` but re-awake itself for
    /// later execution) and, upon resuming, the store will be
    /// configured with an epoch deadline equal to the current epoch
    /// plus `delta` ticks.
    ///
    /// This setting is intended to allow for cooperative timeslicing
    /// of multiple CPU-bound Wasm guests in different stores, all
    /// executing under the control of an async executor. To drive
    /// this, stores should be configured to "yield and update"
    /// automatically with this function, and some external driver (a
    /// thread that wakes up periodically, or a timer
    /// signal/interrupt) should call
    /// [`Engine::increment_epoch()`](crate::Engine::increment_epoch).
    ///
    /// See documentation on
    /// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
    /// for an introduction to epoch-based interruption.
    #[cfg(feature = "async")]
    pub fn epoch_deadline_async_yield_and_update(&mut self, delta: u64) {
        self.inner.epoch_deadline_async_yield_and_update(delta);
    }
}

impl<'a, T> StoreContext<'a, T> {
    pub(crate) fn async_support(&self) -> bool {
        self.0.async_support()
    }

    /// Returns the underlying [`Engine`] this store is connected to.
    pub fn engine(&self) -> &Engine {
        self.0.engine()
    }

    /// Access the underlying data owned by this `Store`.
    ///
    /// Same as [`Store::data`].
    pub fn data(&self) -> &'a T {
        self.0.data()
    }

    /// Returns the remaining fuel in this store.
    ///
    /// For more information see [`Store::get_fuel`].
    pub fn get_fuel(&self) -> Result<u64> {
        self.0.get_fuel()
    }
}

impl<'a, T> StoreContextMut<'a, T> {
    /// Access the underlying data owned by this `Store`.
    ///
    /// Same as [`Store::data`].
    pub fn data(&self) -> &T {
        self.0.data()
    }

    /// Access the underlying data owned by this `Store`.
    ///
    /// Same as [`Store::data_mut`].
    pub fn data_mut(&mut self) -> &mut T {
        self.0.data_mut()
    }

    /// Returns the underlying [`Engine`] this store is connected to.
    pub fn engine(&self) -> &Engine {
        self.0.engine()
    }

    /// Perform garbage collection of `ExternRef`s.
    ///
    /// Same as [`Store::gc`].
    ///
    /// This method is only available when the `gc` Cargo feature is enabled.
    #[cfg(feature = "gc")]
    pub fn gc(&mut self) {
        self.0.gc()
    }

    /// Perform garbage collection of `ExternRef`s.
    ///
    /// Same as [`Store::gc`].
    ///
    /// This method is only available when the `gc` Cargo feature is enabled.
    #[cfg(all(feature = "async", feature = "gc"))]
    pub async fn gc_async(&mut self)
    where
        T: Send,
    {
        self.0.gc_async().await;
    }

    /// Returns remaining fuel in this store.
    ///
    /// For more information see [`Store::get_fuel`]
    pub fn get_fuel(&self) -> Result<u64> {
        self.0.get_fuel()
    }

    /// Set the amount of fuel in this store.
    ///
    /// For more information see [`Store::set_fuel`]
    pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
        self.0.set_fuel(fuel)
    }

    /// Configures this `Store` to periodically yield while executing futures.
    ///
    /// For more information see [`Store::fuel_async_yield_interval`]
    pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
        self.0.fuel_async_yield_interval(interval)
    }

    /// Sets the epoch deadline to a certain number of ticks in the future.
    ///
    /// For more information see [`Store::set_epoch_deadline`].
    pub fn set_epoch_deadline(&mut self, ticks_beyond_current: u64) {
        self.0.set_epoch_deadline(ticks_beyond_current);
    }

    /// Configures epoch-deadline expiration to trap.
    ///
    /// For more information see [`Store::epoch_deadline_trap`].
    pub fn epoch_deadline_trap(&mut self) {
        self.0.epoch_deadline_trap();
    }

    /// Configures epoch-deadline expiration to yield to the async
    /// caller and the update the deadline.
    ///
    /// For more information see
    /// [`Store::epoch_deadline_async_yield_and_update`].
    #[cfg(feature = "async")]
    pub fn epoch_deadline_async_yield_and_update(&mut self, delta: u64) {
        self.0.epoch_deadline_async_yield_and_update(delta);
    }
}

impl<T> StoreInner<T> {
    #[inline]
    fn data(&self) -> &T {
        &self.data
    }

    #[inline]
    fn data_mut(&mut self) -> &mut T {
        &mut self.data
    }

    #[inline]
    pub fn call_hook(&mut self, s: CallHook) -> Result<()> {
        if self.inner.pkey.is_none() && self.call_hook.is_none() {
            Ok(())
        } else {
            self.call_hook_slow_path(s)
        }
    }

    fn call_hook_slow_path(&mut self, s: CallHook) -> Result<()> {
        if let Some(pkey) = &self.inner.pkey {
            let allocator = self.engine().allocator();
            match s {
                CallHook::CallingWasm | CallHook::ReturningFromHost => {
                    allocator.restrict_to_pkey(*pkey)
                }
                CallHook::ReturningFromWasm | CallHook::CallingHost => allocator.allow_all_pkeys(),
            }
        }

        // Temporarily take the configured behavior to avoid mutably borrowing
        // multiple times.
        #[cfg_attr(not(feature = "call-hook"), allow(unreachable_patterns))]
        if let Some(mut call_hook) = self.call_hook.take() {
            let result = self.invoke_call_hook(&mut call_hook, s);
            self.call_hook = Some(call_hook);
            return result;
        }

        Ok(())
    }

    fn invoke_call_hook(&mut self, call_hook: &mut CallHookInner<T>, s: CallHook) -> Result<()> {
        match call_hook {
            #[cfg(feature = "call-hook")]
            CallHookInner::Sync(hook) => hook((&mut *self).as_context_mut(), s),

            #[cfg(all(feature = "async", feature = "call-hook"))]
            CallHookInner::Async(handler) => unsafe {
                self.inner
                    .async_cx()
                    .ok_or_else(|| anyhow!("couldn't grab async_cx for call hook"))?
                    .block_on(
                        handler
                            .handle_call_event((&mut *self).as_context_mut(), s)
                            .as_mut(),
                    )?
            },

            CallHookInner::ForceTypeParameterToBeUsed { uninhabited, .. } => {
                let _ = s;
                match *uninhabited {}
            }
        }
    }
}

fn get_fuel(injected_fuel: i64, fuel_reserve: u64) -> u64 {
    fuel_reserve.saturating_add_signed(-injected_fuel)
}

// Add remaining fuel from the reserve into the active fuel if there is any left.
fn refuel(
    injected_fuel: &mut i64,
    fuel_reserve: &mut u64,
    yield_interval: Option<NonZeroU64>,
) -> bool {
    let fuel = get_fuel(*injected_fuel, *fuel_reserve);
    if fuel > 0 {
        set_fuel(injected_fuel, fuel_reserve, yield_interval, fuel);
        true
    } else {
        false
    }
}

fn set_fuel(
    injected_fuel: &mut i64,
    fuel_reserve: &mut u64,
    yield_interval: Option<NonZeroU64>,
    new_fuel_amount: u64,
) {
    let interval = yield_interval.unwrap_or(NonZeroU64::MAX).get();
    // If we're yielding periodically we only store the "active" amount of fuel into consumed_ptr
    // for the VM to use.
    let injected = core::cmp::min(interval, new_fuel_amount);
    // Fuel in the VM is stored as an i64, so we have to cap the amount of fuel we inject into the
    // VM at once to be i64 range.
    let injected = core::cmp::min(injected, i64::MAX as u64);
    // Add whatever is left over after injection to the reserve for later use.
    *fuel_reserve = new_fuel_amount - injected;
    // Within the VM we increment to count fuel, so inject a negative amount. The VM will halt when
    // this counter is positive.
    *injected_fuel = -(injected as i64);
}

#[doc(hidden)]
impl StoreOpaque {
    pub fn id(&self) -> StoreId {
        self.store_data.id()
    }

    pub fn bump_resource_counts(&mut self, module: &Module) -> Result<()> {
        fn bump(slot: &mut usize, max: usize, amt: usize, desc: &str) -> Result<()> {
            let new = slot.saturating_add(amt);
            if new > max {
                bail!(
                    "resource limit exceeded: {} count too high at {}",
                    desc,
                    new
                );
            }
            *slot = new;
            Ok(())
        }

        let module = module.env_module();
        let memories = module.num_defined_memories();
        let tables = module.num_defined_tables();

        bump(&mut self.instance_count, self.instance_limit, 1, "instance")?;
        bump(
            &mut self.memory_count,
            self.memory_limit,
            memories,
            "memory",
        )?;
        bump(&mut self.table_count, self.table_limit, tables, "table")?;

        Ok(())
    }

    #[inline]
    pub fn async_support(&self) -> bool {
        cfg!(feature = "async") && self.engine().config().async_support
    }

    #[inline]
    pub fn engine(&self) -> &Engine {
        &self.engine
    }

    #[inline]
    pub fn store_data(&self) -> &StoreData {
        &self.store_data
    }

    #[inline]
    pub fn store_data_mut(&mut self) -> &mut StoreData {
        &mut self.store_data
    }

    #[inline]
    pub(crate) fn modules(&self) -> &ModuleRegistry {
        &self.modules
    }

    #[inline]
    pub(crate) fn modules_mut(&mut self) -> &mut ModuleRegistry {
        &mut self.modules
    }

    pub(crate) fn func_refs(&mut self) -> &mut FuncRefs {
        &mut self.func_refs
    }

    pub(crate) fn fill_func_refs(&mut self) {
        self.func_refs.fill(&self.modules);
    }

    pub(crate) fn push_instance_pre_func_refs(&mut self, func_refs: Arc<[VMFuncRef]>) {
        self.func_refs.push_instance_pre_func_refs(func_refs);
    }

    pub(crate) fn host_globals(&mut self) -> &mut Vec<StoreBox<VMHostGlobalContext>> {
        &mut self.host_globals
    }

    pub fn module_for_instance(&self, instance: InstanceId) -> Option<&'_ Module> {
        match self.instances[instance.0].kind {
            StoreInstanceKind::Dummy => None,
            StoreInstanceKind::Real { module_id } => {
                let module = self
                    .modules()
                    .lookup_module_by_id(module_id)
                    .expect("should always have a registered module for real instances");
                Some(module)
            }
        }
    }

    pub unsafe fn add_instance(
        &mut self,
        handle: InstanceHandle,
        module_id: RegisteredModuleId,
    ) -> InstanceId {
        self.instances.push(StoreInstance {
            handle: handle.clone(),
            kind: StoreInstanceKind::Real { module_id },
        });
        InstanceId(self.instances.len() - 1)
    }

    /// Add a dummy instance that to the store.
    ///
    /// These are instances that are just implementation details of something
    /// else (e.g. host-created memories that are not actually defined in any
    /// Wasm module) and therefore shouldn't show up in things like core dumps.
    pub unsafe fn add_dummy_instance(&mut self, handle: InstanceHandle) -> InstanceId {
        self.instances.push(StoreInstance {
            handle: handle.clone(),
            kind: StoreInstanceKind::Dummy,
        });
        InstanceId(self.instances.len() - 1)
    }

    pub fn instance(&self, id: InstanceId) -> &InstanceHandle {
        &self.instances[id.0].handle
    }

    pub fn instance_mut(&mut self, id: InstanceId) -> &mut InstanceHandle {
        &mut self.instances[id.0].handle
    }

    /// Get all instances (ignoring dummy instances) within this store.
    pub fn all_instances<'a>(&'a mut self) -> impl ExactSizeIterator<Item = Instance> + 'a {
        let instances = self
            .instances
            .iter()
            .enumerate()
            .filter_map(|(idx, inst)| {
                let id = InstanceId::from_index(idx);
                if let StoreInstanceKind::Dummy = inst.kind {
                    None
                } else {
                    Some(InstanceData::from_id(id))
                }
            })
            .collect::<Vec<_>>();
        instances
            .into_iter()
            .map(|i| Instance::from_wasmtime(i, self))
    }

    /// Get all memories (host- or Wasm-defined) within this store.
    pub fn all_memories<'a>(&'a mut self) -> impl Iterator<Item = Memory> + 'a {
        // NB: Host-created memories have dummy instances. Therefore, we can get
        // all memories in the store by iterating over all instances (including
        // dummy instances) and getting each of their defined memories.
        let mems = self
            .instances
            .iter_mut()
            .flat_map(|instance| instance.handle.defined_memories())
            .collect::<Vec<_>>();
        mems.into_iter()
            .map(|memory| unsafe { Memory::from_wasmtime_memory(memory, self) })
    }

    /// Iterate over all tables (host- or Wasm-defined) within this store.
    pub fn for_each_table(&mut self, mut f: impl FnMut(&mut Self, Table)) {
        // NB: Host-created tables have dummy instances. Therefore, we can get
        // all memories in the store by iterating over all instances (including
        // dummy instances) and getting each of their defined memories.

        struct TempTakeInstances<'a> {
            instances: Vec<StoreInstance>,
            store: &'a mut StoreOpaque,
        }

        impl<'a> TempTakeInstances<'a> {
            fn new(store: &'a mut StoreOpaque) -> Self {
                let instances = mem::take(&mut store.instances);
                Self { instances, store }
            }
        }

        impl Drop for TempTakeInstances<'_> {
            fn drop(&mut self) {
                assert!(self.store.instances.is_empty());
                self.store.instances = mem::take(&mut self.instances);
            }
        }

        let mut temp = TempTakeInstances::new(self);
        for instance in temp.instances.iter_mut() {
            for table in instance.handle.defined_tables() {
                let table = unsafe { Table::from_wasmtime_table(table, temp.store) };
                f(temp.store, table);
            }
        }
    }

    /// Iterate over all globals (host- or Wasm-defined) within this store.
    pub fn for_each_global(&mut self, mut f: impl FnMut(&mut Self, Global)) {
        struct TempTakeHostGlobalsAndInstances<'a> {
            host_globals: Vec<StoreBox<VMHostGlobalContext>>,
            instances: Vec<StoreInstance>,
            store: &'a mut StoreOpaque,
        }

        impl<'a> TempTakeHostGlobalsAndInstances<'a> {
            fn new(store: &'a mut StoreOpaque) -> Self {
                let host_globals = mem::take(&mut store.host_globals);
                let instances = mem::take(&mut store.instances);
                Self {
                    host_globals,
                    instances,
                    store,
                }
            }
        }

        impl Drop for TempTakeHostGlobalsAndInstances<'_> {
            fn drop(&mut self) {
                assert!(self.store.host_globals.is_empty());
                self.store.host_globals = mem::take(&mut self.host_globals);
                assert!(self.store.instances.is_empty());
                self.store.instances = mem::take(&mut self.instances);
            }
        }

        let mut temp = TempTakeHostGlobalsAndInstances::new(self);
        unsafe {
            // First enumerate all the host-created globals.
            for global in temp.host_globals.iter() {
                let export = ExportGlobal {
                    definition: &mut (*global.get()).global as *mut _,
                    vmctx: core::ptr::null_mut(),
                    global: (*global.get()).ty.to_wasm_type(),
                };
                let global = Global::from_wasmtime_global(export, temp.store);
                f(temp.store, global);
            }

            // Then enumerate all instances' defined globals.
            for instance in temp.instances.iter_mut() {
                for (_, export) in instance.handle.defined_globals() {
                    let global = Global::from_wasmtime_global(export, temp.store);
                    f(temp.store, global);
                }
            }
        }
    }

    #[cfg_attr(not(target_os = "linux"), allow(dead_code))] // not used on all platforms
    pub fn set_signal_handler(&mut self, handler: Option<SignalHandler>) {
        self.signal_handler = handler;
    }

    #[inline]
    pub fn runtime_limits(&self) -> &VMRuntimeLimits {
        &self.runtime_limits
    }

    #[inline(never)]
    pub(crate) fn allocate_gc_heap(&mut self) -> Result<()> {
        assert!(self.gc_store.is_none());
        let gc_store = allocate_gc_store(self.engine())?;
        self.gc_store = Some(gc_store);
        return Ok(());

        #[cfg(feature = "gc")]
        fn allocate_gc_store(engine: &Engine) -> Result<GcStore> {
            ensure!(
                engine.features().gc_types(),
                "cannot allocate a GC store when GC is disabled at configuration time"
            );
            let (index, heap) = engine
                .allocator()
                .allocate_gc_heap(&**engine.gc_runtime()?)?;
            Ok(GcStore::new(index, heap))
        }

        #[cfg(not(feature = "gc"))]
        fn allocate_gc_store(_engine: &Engine) -> Result<GcStore> {
            bail!("cannot allocate a GC store: the `gc` feature was disabled at compile time")
        }
    }

    #[inline]
    #[cfg(feature = "gc")]
    pub(crate) fn gc_store(&self) -> Result<&GcStore> {
        match &self.gc_store {
            Some(gc_store) => Ok(gc_store),
            None => bail!("GC heap not initialized yet"),
        }
    }

    #[inline]
    pub(crate) fn gc_store_mut(&mut self) -> Result<&mut GcStore> {
        if self.gc_store.is_none() {
            self.allocate_gc_heap()?;
        }
        Ok(self.unwrap_gc_store_mut())
    }

    /// If this store is configured with a GC heap, return a mutable reference
    /// to it. Otherwise, return `None`.
    #[inline]
    pub(crate) fn optional_gc_store_mut(&mut self) -> Result<Option<&mut GcStore>> {
        if cfg!(not(feature = "gc")) || !self.engine.features().gc_types() {
            Ok(None)
        } else {
            Ok(Some(self.gc_store_mut()?))
        }
    }

    #[inline]
    #[cfg(feature = "gc")]
    pub(crate) fn unwrap_gc_store(&self) -> &GcStore {
        self.gc_store
            .as_ref()
            .expect("attempted to access the store's GC heap before it has been allocated")
    }

    #[inline]
    pub(crate) fn unwrap_gc_store_mut(&mut self) -> &mut GcStore {
        self.gc_store
            .as_mut()
            .expect("attempted to access the store's GC heap before it has been allocated")
    }

    #[inline]
    pub(crate) fn gc_roots(&self) -> &RootSet {
        &self.gc_roots
    }

    #[inline]
    pub(crate) fn gc_roots_mut(&mut self) -> &mut RootSet {
        &mut self.gc_roots
    }

    #[inline]
    pub(crate) fn exit_gc_lifo_scope(&mut self, scope: usize) {
        self.gc_roots.exit_lifo_scope(self.gc_store.as_mut(), scope);
    }

    #[cfg(feature = "gc")]
    pub fn gc(&mut self) {
        // If the GC heap hasn't been initialized, there is nothing to collect.
        if self.gc_store.is_none() {
            return;
        }

        log::trace!("============ Begin GC ===========");

        // Take the GC roots out of `self` so we can borrow it mutably but still
        // call mutable methods on `self`.
        let mut roots = core::mem::take(&mut self.gc_roots_list);

        self.trace_roots(&mut roots);
        self.unwrap_gc_store_mut().gc(unsafe { roots.iter() });

        // Restore the GC roots for the next GC.
        roots.clear();
        self.gc_roots_list = roots;

        log::trace!("============ End GC ===========");
    }

    #[inline]
    #[cfg(not(feature = "gc"))]
    pub fn gc(&mut self) {
        // Nothing to collect.
        //
        // Note that this is *not* a public method, this is just defined for the
        // crate-internal `StoreOpaque` type. This is a convenience so that we
        // don't have to `cfg` every call site.
    }

    #[cfg(feature = "gc")]
    fn trace_roots(&mut self, gc_roots_list: &mut GcRootsList) {
        log::trace!("Begin trace GC roots");

        // We shouldn't have any leftover, stale GC roots.
        assert!(gc_roots_list.is_empty());

        self.trace_wasm_stack_roots(gc_roots_list);
        self.trace_vmctx_roots(gc_roots_list);
        self.trace_user_roots(gc_roots_list);

        log::trace!("End trace GC roots")
    }

    #[cfg(all(feature = "async", feature = "gc"))]
    pub async fn gc_async(&mut self) {
        assert!(
            self.async_support(),
            "cannot use `gc_async` without enabling async support in the config",
        );

        // If the GC heap hasn't been initialized, there is nothing to collect.
        if self.gc_store.is_none() {
            return;
        }

        log::trace!("============ Begin Async GC ===========");

        // Take the GC roots out of `self` so we can borrow it mutably but still
        // call mutable methods on `self`.
        let mut roots = std::mem::take(&mut self.gc_roots_list);

        self.trace_roots_async(&mut roots).await;
        self.unwrap_gc_store_mut()
            .gc_async(unsafe { roots.iter() })
            .await;

        // Restore the GC roots for the next GC.
        roots.clear();
        self.gc_roots_list = roots;

        log::trace!("============ End Async GC ===========");
    }

    #[inline]
    #[cfg(all(feature = "async", not(feature = "gc")))]
    pub async fn gc_async(&mut self) {
        // Nothing to collect.
        //
        // Note that this is *not* a public method, this is just defined for the
        // crate-internal `StoreOpaque` type. This is a convenience so that we
        // don't have to `cfg` every call site.
    }

    #[cfg(all(feature = "async", feature = "gc"))]
    async fn trace_roots_async(&mut self, gc_roots_list: &mut GcRootsList) {
        use crate::runtime::vm::Yield;

        log::trace!("Begin trace GC roots");

        // We shouldn't have any leftover, stale GC roots.
        assert!(gc_roots_list.is_empty());

        self.trace_wasm_stack_roots(gc_roots_list);
        Yield::new().await;
        self.trace_vmctx_roots(gc_roots_list);
        Yield::new().await;
        self.trace_user_roots(gc_roots_list);

        log::trace!("End trace GC roots")
    }

    #[cfg(feature = "gc")]
    fn trace_wasm_stack_roots(&mut self, gc_roots_list: &mut GcRootsList) {
        use crate::runtime::vm::SendSyncPtr;
        use core::ptr::NonNull;

        log::trace!("Begin trace GC roots :: Wasm stack");

        Backtrace::trace(self.vmruntime_limits().cast_const(), |frame| {
            let pc = frame.pc();
            debug_assert!(pc != 0, "we should always get a valid PC for Wasm frames");

            let fp = frame.fp() as *mut usize;
            debug_assert!(
                !fp.is_null(),
                "we should always get a valid frame pointer for Wasm frames"
            );

            let module_info = self
                .modules()
                .lookup_module_by_pc(pc)
                .expect("should have module info for Wasm frame");

            let stack_map = match module_info.lookup_stack_map(pc) {
                Some(sm) => sm,
                None => {
                    log::trace!("No stack map for this Wasm frame");
                    return core::ops::ControlFlow::Continue(());
                }
            };
            log::trace!(
                "We have a stack map that maps {} bytes in this Wasm frame",
                stack_map.frame_size()
            );

            let sp = unsafe { stack_map.sp(fp) };
            for stack_slot in unsafe { stack_map.live_gc_refs(sp) } {
                let raw: u32 = unsafe { core::ptr::read(stack_slot) };
                log::trace!("Stack slot @ {stack_slot:p} = {raw:#x}");

                let gc_ref = VMGcRef::from_raw_u32(raw);
                if gc_ref.is_some() {
                    unsafe {
                        gc_roots_list.add_wasm_stack_root(SendSyncPtr::new(
                            NonNull::new(stack_slot).unwrap(),
                        ));
                    }
                }
            }

            core::ops::ControlFlow::Continue(())
        });

        log::trace!("End trace GC roots :: Wasm stack");
    }

    #[cfg(feature = "gc")]
    fn trace_vmctx_roots(&mut self, gc_roots_list: &mut GcRootsList) {
        log::trace!("Begin trace GC roots :: vmctx");
        self.for_each_global(|store, global| global.trace_root(store, gc_roots_list));
        self.for_each_table(|store, table| table.trace_roots(store, gc_roots_list));
        log::trace!("End trace GC roots :: vmctx");
    }

    #[cfg(feature = "gc")]
    fn trace_user_roots(&mut self, gc_roots_list: &mut GcRootsList) {
        log::trace!("Begin trace GC roots :: user");
        self.gc_roots.trace_roots(gc_roots_list);
        log::trace!("End trace GC roots :: user");
    }

    /// Insert a host-allocated GC type into this store.
    ///
    /// This makes it suitable for the embedder to allocate instances of this
    /// type in this store, and we don't have to worry about the type being
    /// reclaimed (since it is possible that none of the Wasm modules in this
    /// store are holding it alive).
    pub(crate) fn insert_gc_host_alloc_type(&mut self, ty: RegisteredType) {
        self.gc_host_alloc_types.insert(ty);
    }

    /// Yields the async context, assuming that we are executing on a fiber and
    /// that fiber is not in the process of dying. This function will return
    /// None in the latter case (the fiber is dying), and panic if
    /// `async_support()` is false.
    #[cfg(feature = "async")]
    #[inline]
    pub fn async_cx(&self) -> Option<AsyncCx> {
        assert!(self.async_support());

        let poll_cx_box_ptr = self.async_state.current_poll_cx.get();
        if poll_cx_box_ptr.is_null() {
            return None;
        }

        let poll_cx_inner_ptr = unsafe { *poll_cx_box_ptr };
        if poll_cx_inner_ptr.future_context.is_null() {
            return None;
        }

        Some(AsyncCx {
            current_suspend: self.async_state.current_suspend.get(),
            current_poll_cx: unsafe { core::ptr::addr_of_mut!((*poll_cx_box_ptr).future_context) },
            track_pkey_context_switch: self.pkey.is_some(),
        })
    }

    pub fn get_fuel(&self) -> Result<u64> {
        anyhow::ensure!(
            self.engine().tunables().consume_fuel,
            "fuel is not configured in this store"
        );
        let injected_fuel = unsafe { *self.runtime_limits.fuel_consumed.get() };
        Ok(get_fuel(injected_fuel, self.fuel_reserve))
    }

    fn refuel(&mut self) -> bool {
        let injected_fuel = unsafe { &mut *self.runtime_limits.fuel_consumed.get() };
        refuel(
            injected_fuel,
            &mut self.fuel_reserve,
            self.fuel_yield_interval,
        )
    }

    pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
        anyhow::ensure!(
            self.engine().tunables().consume_fuel,
            "fuel is not configured in this store"
        );
        let injected_fuel = unsafe { &mut *self.runtime_limits.fuel_consumed.get() };
        set_fuel(
            injected_fuel,
            &mut self.fuel_reserve,
            self.fuel_yield_interval,
            fuel,
        );
        Ok(())
    }

    pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
        anyhow::ensure!(
            self.engine().tunables().consume_fuel,
            "fuel is not configured in this store"
        );
        anyhow::ensure!(
            self.engine().config().async_support,
            "async support is not configured in this store"
        );
        anyhow::ensure!(
            interval != Some(0),
            "fuel_async_yield_interval must not be 0"
        );
        self.fuel_yield_interval = interval.and_then(|i| NonZeroU64::new(i));
        // Reset the fuel active + reserve states by resetting the amount.
        self.set_fuel(self.get_fuel()?)
    }

    /// Yields execution to the caller on out-of-gas or epoch interruption.
    ///
    /// This only works on async futures and stores, and assumes that we're
    /// executing on a fiber. This will yield execution back to the caller once.
    #[cfg(feature = "async")]
    fn async_yield_impl(&mut self) -> Result<()> {
        use crate::runtime::vm::Yield;

        let mut future = Yield::new();

        // When control returns, we have a `Result<()>` passed
        // in from the host fiber. If this finished successfully then
        // we were resumed normally via a `poll`, so keep going.  If
        // the future was dropped while we were yielded, then we need
        // to clean up this fiber. Do so by raising a trap which will
        // abort all wasm and get caught on the other side to clean
        // things up.
        unsafe {
            self.async_cx()
                .expect("attempted to pull async context during shutdown")
                .block_on(Pin::new_unchecked(&mut future))
        }
    }

    #[inline]
    pub fn signal_handler(&self) -> Option<*const SignalHandler> {
        let handler = self.signal_handler.as_ref()?;
        Some(handler)
    }

    #[inline]
    pub fn vmruntime_limits(&self) -> *mut VMRuntimeLimits {
        &self.runtime_limits as *const VMRuntimeLimits as *mut VMRuntimeLimits
    }

    #[inline]
    pub fn default_caller(&self) -> *mut VMContext {
        self.default_caller.vmctx()
    }

    #[inline]
    pub fn traitobj(&self) -> *mut dyn crate::runtime::vm::VMStore {
        self.default_caller.traitobj(self)
    }

    /// Takes the cached `Vec<Val>` stored internally across hostcalls to get
    /// used as part of calling the host in a `Func::new` method invocation.
    #[inline]
    pub fn take_hostcall_val_storage(&mut self) -> Vec<Val> {
        mem::take(&mut self.hostcall_val_storage)
    }

    /// Restores the vector previously taken by `take_hostcall_val_storage`
    /// above back into the store, allowing it to be used in the future for the
    /// next wasm->host call.
    #[inline]
    pub fn save_hostcall_val_storage(&mut self, storage: Vec<Val>) {
        if storage.capacity() > self.hostcall_val_storage.capacity() {
            self.hostcall_val_storage = storage;
        }
    }

    /// Same as `take_hostcall_val_storage`, but for the direction of the host
    /// calling wasm.
    #[inline]
    pub fn take_wasm_val_raw_storage(&mut self) -> Vec<ValRaw> {
        mem::take(&mut self.wasm_val_raw_storage)
    }

    /// Same as `save_hostcall_val_storage`, but for the direction of the host
    /// calling wasm.
    #[inline]
    pub fn save_wasm_val_raw_storage(&mut self, storage: Vec<ValRaw>) {
        if storage.capacity() > self.wasm_val_raw_storage.capacity() {
            self.wasm_val_raw_storage = storage;
        }
    }

    pub(crate) fn push_rooted_funcs(&mut self, funcs: Arc<[Definition]>) {
        self.rooted_host_funcs.push(funcs);
    }

    /// Translates a WebAssembly fault at the native `pc` and native `addr` to a
    /// WebAssembly-relative fault.
    ///
    /// This function may abort the process if `addr` is not found to actually
    /// reside in any linear memory. In such a situation it means that the
    /// segfault was erroneously caught by Wasmtime and is possibly indicative
    /// of a code generator bug.
    ///
    /// This function returns `None` for dynamically-bounds-checked-memories
    /// with spectre mitigations enabled since the hardware fault address is
    /// always zero in these situations which means that the trapping context
    /// doesn't have enough information to report the fault address.
    #[cfg(all(feature = "signals-based-traps", not(miri)))]
    pub(crate) fn wasm_fault(
        &self,
        pc: usize,
        addr: usize,
    ) -> Option<crate::runtime::vm::WasmFault> {
        // There are a few instances where a "close to zero" pointer is loaded
        // and we expect that to happen:
        //
        // * Explicitly bounds-checked memories with spectre-guards enabled will
        //   cause out-of-bounds accesses to get routed to address 0, so allow
        //   wasm instructions to fault on the null address.
        // * `call_indirect` when invoking a null function pointer may load data
        //   from the a `VMFuncRef` whose address is null, meaning any field of
        //   `VMFuncRef` could be the address of the fault.
        //
        // In these situations where the address is so small it won't be in any
        // instance, so skip the checks below.
        if addr <= mem::size_of::<VMFuncRef>() {
            const _: () = {
                // static-assert that `VMFuncRef` isn't too big to ensure that
                // it lives solely within the first page as we currently only
                // have the guarantee that the first page of memory is unmapped,
                // no more.
                assert!(mem::size_of::<VMFuncRef>() <= 512);
            };
            return None;
        }

        // Search all known instances in this store for this address. Note that
        // this is probably not the speediest way to do this. Traps, however,
        // are generally not expected to be super fast and additionally stores
        // probably don't have all that many instances or memories.
        //
        // If this loop becomes hot in the future, however, it should be
        // possible to precompute maps about linear memories in a store and have
        // a quicker lookup.
        let mut fault = None;
        for instance in self.instances.iter() {
            if let Some(f) = instance.handle.wasm_fault(addr) {
                assert!(fault.is_none());
                fault = Some(f);
            }
        }
        if fault.is_some() {
            return fault;
        }

        cfg_if::cfg_if! {
            if #[cfg(any(feature = "std", unix, windows))] {
                // With the standard library a rich error can be printed here
                // to stderr and the native abort path is used.
                eprintln!(
                    "\
Wasmtime caught a segfault for a wasm program because the faulting instruction
is allowed to segfault due to how linear memories are implemented. The address
that was accessed, however, is not known to any linear memory in use within this
Store. This may be indicative of a critical bug in Wasmtime's code generation
because all addresses which are known to be reachable from wasm won't reach this
message.

    pc:      0x{pc:x}
    address: 0x{addr:x}

This is a possible security issue because WebAssembly has accessed something it
shouldn't have been able to. Other accesses may have succeeded and this one just
happened to be caught. The process will now be aborted to prevent this damage
from going any further and to alert what's going on. If this is a security
issue please reach out to the Wasmtime team via its security policy
at https://bytecodealliance.org/security.
"
                );
                std::process::abort();
            } else if #[cfg(panic = "abort")] {
                // Without the standard library but with `panic=abort` then
                // it's safe to panic as that's known to halt execution. For
                // now avoid the above error message as well since without
                // `std` it's probably best to be a bit more size-conscious.
                let _ = pc;
                panic!("invalid fault");
            } else {
                // Without `std` and with `panic = "unwind"` there's no way to
                // abort the process portably, so flag a compile time error.
                //
                // NB: if this becomes a problem in the future one option would
                // be to extend the `capi.rs` module for no_std platforms, but
                // it remains yet to be seen at this time if this is hit much.
                compile_error!("either `std` or `panic=abort` must be enabled");
                None
            }
        }
    }

    /// Retrieve the store's protection key.
    #[inline]
    pub(crate) fn get_pkey(&self) -> Option<ProtectionKey> {
        self.pkey
    }

    #[inline]
    #[cfg(feature = "component-model")]
    pub(crate) fn component_resource_state(
        &mut self,
    ) -> (
        &mut crate::runtime::vm::component::CallContexts,
        &mut crate::runtime::vm::component::ResourceTable,
        &mut crate::component::HostResourceData,
    ) {
        (
            &mut self.component_calls,
            &mut self.component_host_table,
            &mut self.host_resource_data,
        )
    }

    #[cfg(feature = "component-model")]
    pub(crate) fn push_component_instance(&mut self, instance: crate::component::Instance) {
        // We don't actually need the instance itself right now, but it seems
        // like something we will almost certainly eventually want to keep
        // around, so force callers to provide it.
        let _ = instance;

        self.num_component_instances += 1;
    }

    pub(crate) fn async_guard_range(&self) -> Range<*mut u8> {
        #[cfg(feature = "async")]
        unsafe {
            let ptr = self.async_state.current_poll_cx.get();
            (*ptr).guard_range_start..(*ptr).guard_range_end
        }
        #[cfg(not(feature = "async"))]
        {
            core::ptr::null_mut()..core::ptr::null_mut()
        }
    }

    #[cfg(feature = "async")]
    fn allocate_fiber_stack(&mut self) -> Result<wasmtime_fiber::FiberStack> {
        if let Some(stack) = self.async_state.last_fiber_stack.take() {
            return Ok(stack);
        }
        self.engine().allocator().allocate_fiber_stack()
    }

    #[cfg(feature = "async")]
    fn deallocate_fiber_stack(&mut self, stack: wasmtime_fiber::FiberStack) {
        self.flush_fiber_stack();
        self.async_state.last_fiber_stack = Some(stack);
    }

    /// Releases the last fiber stack to the underlying instance allocator, if
    /// present.
    fn flush_fiber_stack(&mut self) {
        #[cfg(feature = "async")]
        if let Some(stack) = self.async_state.last_fiber_stack.take() {
            unsafe {
                self.engine.allocator().deallocate_fiber_stack(stack);
            }
        }
    }
}

impl<T> StoreContextMut<'_, T> {
    /// Executes a synchronous computation `func` asynchronously on a new fiber.
    ///
    /// This function will convert the synchronous `func` into an asynchronous
    /// future. This is done by running `func` in a fiber on a separate native
    /// stack which can be suspended and resumed from.
    ///
    /// Most of the nitty-gritty here is how we juggle the various contexts
    /// necessary to suspend the fiber later on and poll sub-futures. It's hoped
    /// that the various comments are illuminating as to what's going on here.
    #[cfg(feature = "async")]
    pub(crate) async fn on_fiber<R>(
        &mut self,
        func: impl FnOnce(&mut StoreContextMut<'_, T>) -> R + Send,
    ) -> Result<R>
    where
        T: Send,
    {
        let config = self.engine().config();
        debug_assert!(self.0.async_support());
        debug_assert!(config.async_stack_size > 0);

        let mut slot = None;
        let mut future = {
            let current_poll_cx = self.0.async_state.current_poll_cx.get();
            let current_suspend = self.0.async_state.current_suspend.get();
            let stack = self.0.allocate_fiber_stack()?;

            let engine = self.engine().clone();
            let slot = &mut slot;
            let this = &mut *self;
            let fiber = wasmtime_fiber::Fiber::new(stack, move |keep_going, suspend| {
                // First check and see if we were interrupted/dropped, and only
                // continue if we haven't been.
                keep_going?;

                // Configure our store's suspension context for the rest of the
                // execution of this fiber. Note that a raw pointer is stored here
                // which is only valid for the duration of this closure.
                // Consequently we at least replace it with the previous value when
                // we're done. This reset is also required for correctness because
                // otherwise our value will overwrite another active fiber's value.
                // There should be a test that segfaults in `async_functions.rs` if
                // this `Replace` is removed.
                unsafe {
                    let _reset = Reset(current_suspend, *current_suspend);
                    *current_suspend = suspend;

                    *slot = Some(func(this));
                    Ok(())
                }
            })?;

            // Once we have the fiber representing our synchronous computation, we
            // wrap that in a custom future implementation which does the
            // translation from the future protocol to our fiber API.
            FiberFuture {
                fiber: Some(fiber),
                current_poll_cx,
                engine,
                state: Some(crate::runtime::vm::AsyncWasmCallState::new()),
            }
        };
        (&mut future).await?;
        let stack = future.fiber.take().map(|f| f.into_stack());
        drop(future);
        if let Some(stack) = stack {
            self.0.deallocate_fiber_stack(stack);
        }

        return Ok(slot.unwrap());

        struct FiberFuture<'a> {
            fiber: Option<wasmtime_fiber::Fiber<'a, Result<()>, (), Result<()>>>,
            current_poll_cx: *mut PollContext,
            engine: Engine,
            // See comments in `FiberFuture::resume` for this
            state: Option<crate::runtime::vm::AsyncWasmCallState>,
        }

        // This is surely the most dangerous `unsafe impl Send` in the entire
        // crate. There are two members in `FiberFuture` which cause it to not
        // be `Send`. One is `current_poll_cx` and is entirely uninteresting.
        // This is just used to manage `Context` pointers across `await` points
        // in the future, and requires raw pointers to get it to happen easily.
        // Nothing too weird about the `Send`-ness, values aren't actually
        // crossing threads.
        //
        // The really interesting piece is `fiber`. Now the "fiber" here is
        // actual honest-to-god Rust code which we're moving around. What we're
        // doing is the equivalent of moving our thread's stack to another OS
        // thread. Turns out we, in general, have no idea what's on the stack
        // and would generally have no way to verify that this is actually safe
        // to do!
        //
        // Thankfully, though, Wasmtime has the power. Without being glib it's
        // actually worth examining what's on the stack. It's unfortunately not
        // super-local to this function itself. Our closure to `Fiber::new` runs
        // `func`, which is given to us from the outside. Thankfully, though, we
        // have tight control over this. Usage of `on_fiber` is typically done
        // *just* before entering WebAssembly itself, so we'll have a few stack
        // frames of Rust code (all in Wasmtime itself) before we enter wasm.
        //
        // Once we've entered wasm, well then we have a whole bunch of wasm
        // frames on the stack. We've got this nifty thing called Cranelift,
        // though, which allows us to also have complete control over everything
        // on the stack!
        //
        // Finally, when wasm switches back to the fiber's starting pointer
        // (this future we're returning) then it means wasm has reentered Rust.
        // Suspension can only happen via the `block_on` function of an
        // `AsyncCx`. This, conveniently, also happens entirely in Wasmtime
        // controlled code!
        //
        // There's an extremely important point that should be called out here.
        // User-provided futures **are not on the stack** during suspension
        // points. This is extremely crucial because we in general cannot reason
        // about Send/Sync for stack-local variables since rustc doesn't analyze
        // them at all. With our construction, though, we are guaranteed that
        // Wasmtime owns all stack frames between the stack of a fiber and when
        // the fiber suspends (and it could move across threads). At this time
        // the only user-provided piece of data on the stack is the future
        // itself given to us. Lo-and-behold as you might notice the future is
        // required to be `Send`!
        //
        // What this all boils down to is that we, as the authors of Wasmtime,
        // need to be extremely careful that on the async fiber stack we only
        // store Send things. For example we can't start using `Rc` willy nilly
        // by accident and leave a copy in TLS somewhere. (similarly we have to
        // be ready for TLS to change while we're executing wasm code between
        // suspension points).
        //
        // While somewhat onerous it shouldn't be too too hard (the TLS bit is
        // the hardest bit so far). This does mean, though, that no user should
        // ever have to worry about the `Send`-ness of Wasmtime. If rustc says
        // it's ok, then it's ok.
        //
        // With all that in mind we unsafely assert here that wasmtime is
        // correct. We declare the fiber as only containing Send data on its
        // stack, despite not knowing for sure at compile time that this is
        // correct. That's what `unsafe` in Rust is all about, though, right?
        unsafe impl Send for FiberFuture<'_> {}

        impl FiberFuture<'_> {
            fn fiber(&self) -> &wasmtime_fiber::Fiber<'_, Result<()>, (), Result<()>> {
                self.fiber.as_ref().unwrap()
            }

            /// This is a helper function to call `resume` on the underlying
            /// fiber while correctly managing Wasmtime's thread-local data.
            ///
            /// Wasmtime's implementation of traps leverages thread-local data
            /// to get access to metadata during a signal. This thread-local
            /// data is a linked list of "activations" where the nodes of the
            /// linked list are stored on the stack. It would be invalid as a
            /// result to suspend a computation with the head of the linked list
            /// on this stack then move the stack to another thread and resume
            /// it. That means that a different thread would point to our stack
            /// and our thread doesn't point to our stack at all!
            ///
            /// Basically management of TLS is required here one way or another.
            /// The strategy currently settled on is to manage the list of
            /// activations created by this fiber as a unit. When a fiber
            /// resumes the linked list is prepended to the current thread's
            /// list. When the fiber is suspended then the fiber's list of
            /// activations are all removed en-masse and saved within the fiber.
            fn resume(&mut self, val: Result<()>) -> Result<Result<()>, ()> {
                unsafe {
                    let prev = self.state.take().unwrap().push();
                    let restore = Restore {
                        fiber: self,
                        state: Some(prev),
                    };
                    return restore.fiber.fiber().resume(val);
                }

                struct Restore<'a, 'b> {
                    fiber: &'a mut FiberFuture<'b>,
                    state: Option<crate::runtime::vm::PreviousAsyncWasmCallState>,
                }

                impl Drop for Restore<'_, '_> {
                    fn drop(&mut self) {
                        unsafe {
                            self.fiber.state = Some(self.state.take().unwrap().restore());
                        }
                    }
                }
            }
        }

        impl Future for FiberFuture<'_> {
            type Output = Result<()>;

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
                // We need to carry over this `cx` into our fiber's runtime
                // for when it tries to poll sub-futures that are created. Doing
                // this must be done unsafely, however, since `cx` is only alive
                // for this one singular function call. Here we do a `transmute`
                // to extend the lifetime of `Context` so it can be stored in
                // our `Store`, and then we replace the current polling context
                // with this one.
                //
                // Note that the replace is done for weird situations where
                // futures might be switching contexts and there's multiple
                // wasmtime futures in a chain of futures.
                //
                // On exit from this function, though, we reset the polling
                // context back to what it was to signify that `Store` no longer
                // has access to this pointer.
                let guard = self
                    .fiber()
                    .stack()
                    .guard_range()
                    .unwrap_or(core::ptr::null_mut()..core::ptr::null_mut());
                unsafe {
                    let _reset = Reset(self.current_poll_cx, *self.current_poll_cx);
                    *self.current_poll_cx = PollContext {
                        future_context: core::mem::transmute::<
                            &mut Context<'_>,
                            *mut Context<'static>,
                        >(cx),
                        guard_range_start: guard.start,
                        guard_range_end: guard.end,
                    };

                    // After that's set up we resume execution of the fiber, which
                    // may also start the fiber for the first time. This either
                    // returns `Ok` saying the fiber finished (yay!) or it
                    // returns `Err` with the payload passed to `suspend`, which
                    // in our case is `()`.
                    match self.resume(Ok(())) {
                        Ok(result) => Poll::Ready(result),

                        // If `Err` is returned that means the fiber polled a
                        // future but it said "Pending", so we propagate that
                        // here.
                        //
                        // An additional safety check is performed when leaving
                        // this function to help bolster the guarantees of
                        // `unsafe impl Send` above. Notably this future may get
                        // re-polled on a different thread. Wasmtime's
                        // thread-local state points to the stack, however,
                        // meaning that it would be incorrect to leave a pointer
                        // in TLS when this function returns. This function
                        // performs a runtime assert to verify that this is the
                        // case, notably that the one TLS pointer Wasmtime uses
                        // is not pointing anywhere within the stack. If it is
                        // then that's a bug indicating that TLS management in
                        // Wasmtime is incorrect.
                        Err(()) => {
                            if let Some(range) = self.fiber().stack().range() {
                                crate::runtime::vm::AsyncWasmCallState::assert_current_state_not_in_range(range);
                            }
                            Poll::Pending
                        }
                    }
                }
            }
        }

        // Dropping futures is pretty special in that it means the future has
        // been requested to be cancelled. Here we run the risk of dropping an
        // in-progress fiber, and if we were to do nothing then the fiber would
        // leak all its owned stack resources.
        //
        // To handle this we implement `Drop` here and, if the fiber isn't done,
        // resume execution of the fiber saying "hey please stop you're
        // interrupted". Our `Trap` created here (which has the stack trace
        // of whomever dropped us) will then get propagated in whatever called
        // `block_on`, and the idea is that the trap propagates all the way back
        // up to the original fiber start, finishing execution.
        //
        // We don't actually care about the fiber's return value here (no one's
        // around to look at it), we just assert the fiber finished to
        // completion.
        impl Drop for FiberFuture<'_> {
            fn drop(&mut self) {
                if self.fiber.is_none() {
                    return;
                }

                if !self.fiber().done() {
                    let result = self.resume(Err(anyhow!("future dropped")));
                    // This resumption with an error should always complete the
                    // fiber. While it's technically possible for host code to catch
                    // the trap and re-resume, we'd ideally like to signal that to
                    // callers that they shouldn't be doing that.
                    debug_assert!(result.is_ok());
                }

                self.state.take().unwrap().assert_null();

                unsafe {
                    self.engine
                        .allocator()
                        .deallocate_fiber_stack(self.fiber.take().unwrap().into_stack());
                }
            }
        }
    }
}

#[cfg(feature = "async")]
pub struct AsyncCx {
    current_suspend: *mut *mut wasmtime_fiber::Suspend<Result<()>, (), Result<()>>,
    current_poll_cx: *mut *mut Context<'static>,
    track_pkey_context_switch: bool,
}

#[cfg(feature = "async")]
impl AsyncCx {
    /// Blocks on the asynchronous computation represented by `future` and
    /// produces the result here, in-line.
    ///
    /// This function is designed to only work when it's currently executing on
    /// a native fiber. This fiber provides the ability for us to handle the
    /// future's `Pending` state as "jump back to whomever called the fiber in
    /// an asynchronous fashion and propagate `Pending`". This tight coupling
    /// with `on_fiber` below is what powers the asynchronicity of calling wasm.
    /// Note that the asynchronous part only applies to host functions, wasm
    /// itself never really does anything asynchronous at this time.
    ///
    /// This function takes a `future` and will (appear to) synchronously wait
    /// on the result. While this function is executing it will fiber switch
    /// to-and-from the original frame calling `on_fiber` which should be a
    /// guarantee due to how async stores are configured.
    ///
    /// The return value here is either the output of the future `T`, or a trap
    /// which represents that the asynchronous computation was cancelled. It is
    /// not recommended to catch the trap and try to keep executing wasm, so
    /// we've tried to liberally document this.
    pub unsafe fn block_on<U>(
        &self,
        mut future: Pin<&mut (dyn Future<Output = U> + Send)>,
    ) -> Result<U> {
        // Take our current `Suspend` context which was configured as soon as
        // our fiber started. Note that we must load it at the front here and
        // save it on our stack frame. While we're polling the future other
        // fibers may be started for recursive computations, and the current
        // suspend context is only preserved at the edges of the fiber, not
        // during the fiber itself.
        //
        // For a little bit of extra safety we also replace the current value
        // with null to try to catch any accidental bugs on our part early.
        // This is all pretty unsafe so we're trying to be careful...
        //
        // Note that there should be a segfaulting test  in `async_functions.rs`
        // if this `Reset` is removed.
        let suspend = *self.current_suspend;
        let _reset = Reset(self.current_suspend, suspend);
        *self.current_suspend = ptr::null_mut();
        assert!(!suspend.is_null());

        loop {
            let future_result = {
                let poll_cx = *self.current_poll_cx;
                let _reset = Reset(self.current_poll_cx, poll_cx);
                *self.current_poll_cx = ptr::null_mut();
                assert!(!poll_cx.is_null());
                future.as_mut().poll(&mut *poll_cx)
            };

            match future_result {
                Poll::Ready(t) => break Ok(t),
                Poll::Pending => {}
            }

            // In order to prevent this fiber's MPK state from being munged by
            // other fibers while it is suspended, we save and restore it once
            // once execution resumes. Note that when MPK is not supported,
            // these are noops.
            let previous_mask = if self.track_pkey_context_switch {
                let previous_mask = mpk::current_mask();
                mpk::allow(ProtectionMask::all());
                previous_mask
            } else {
                ProtectionMask::all()
            };
            (*suspend).suspend(())?;
            if self.track_pkey_context_switch {
                mpk::allow(previous_mask);
            }
        }
    }
}

unsafe impl<T> crate::runtime::vm::VMStore for StoreInner<T> {
    fn store_opaque(&self) -> &StoreOpaque {
        &self.inner
    }

    fn store_opaque_mut(&mut self) -> &mut StoreOpaque {
        &mut self.inner
    }

    fn memory_growing(
        &mut self,
        current: usize,
        desired: usize,
        maximum: Option<usize>,
    ) -> Result<bool, anyhow::Error> {
        match self.limiter {
            Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
                limiter(&mut self.data).memory_growing(current, desired, maximum)
            }
            #[cfg(feature = "async")]
            Some(ResourceLimiterInner::Async(ref mut limiter)) => unsafe {
                self.inner
                    .async_cx()
                    .expect("ResourceLimiterAsync requires async Store")
                    .block_on(
                        limiter(&mut self.data)
                            .memory_growing(current, desired, maximum)
                            .as_mut(),
                    )?
            },
            None => Ok(true),
        }
    }

    fn memory_grow_failed(&mut self, error: anyhow::Error) -> Result<()> {
        match self.limiter {
            Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
                limiter(&mut self.data).memory_grow_failed(error)
            }
            #[cfg(feature = "async")]
            Some(ResourceLimiterInner::Async(ref mut limiter)) => {
                limiter(&mut self.data).memory_grow_failed(error)
            }
            None => {
                log::debug!("ignoring memory growth failure error: {error:?}");
                Ok(())
            }
        }
    }

    fn table_growing(
        &mut self,
        current: usize,
        desired: usize,
        maximum: Option<usize>,
    ) -> Result<bool, anyhow::Error> {
        // Need to borrow async_cx before the mut borrow of the limiter.
        // self.async_cx() panicks when used with a non-async store, so
        // wrap this in an option.
        #[cfg(feature = "async")]
        let async_cx = if self.async_support()
            && matches!(self.limiter, Some(ResourceLimiterInner::Async(_)))
        {
            Some(self.async_cx().unwrap())
        } else {
            None
        };

        match self.limiter {
            Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
                limiter(&mut self.data).table_growing(current, desired, maximum)
            }
            #[cfg(feature = "async")]
            Some(ResourceLimiterInner::Async(ref mut limiter)) => unsafe {
                async_cx
                    .expect("ResourceLimiterAsync requires async Store")
                    .block_on(
                        limiter(&mut self.data)
                            .table_growing(current, desired, maximum)
                            .as_mut(),
                    )?
            },
            None => Ok(true),
        }
    }

    fn table_grow_failed(&mut self, error: anyhow::Error) -> Result<()> {
        match self.limiter {
            Some(ResourceLimiterInner::Sync(ref mut limiter)) => {
                limiter(&mut self.data).table_grow_failed(error)
            }
            #[cfg(feature = "async")]
            Some(ResourceLimiterInner::Async(ref mut limiter)) => {
                limiter(&mut self.data).table_grow_failed(error)
            }
            None => {
                log::debug!("ignoring table growth failure: {error:?}");
                Ok(())
            }
        }
    }

    fn out_of_gas(&mut self) -> Result<()> {
        if !self.refuel() {
            return Err(Trap::OutOfFuel).err2anyhow();
        }
        #[cfg(feature = "async")]
        if self.fuel_yield_interval.is_some() {
            self.async_yield_impl()?;
        }
        Ok(())
    }

    fn new_epoch(&mut self) -> Result<u64, anyhow::Error> {
        // Temporarily take the configured behavior to avoid mutably borrowing
        // multiple times.
        let mut behavior = self.epoch_deadline_behavior.take();
        let delta_result = match &mut behavior {
            None => Err(Trap::Interrupt).err2anyhow(),
            Some(callback) => callback((&mut *self).as_context_mut()).and_then(|update| {
                let delta = match update {
                    UpdateDeadline::Continue(delta) => delta,

                    #[cfg(feature = "async")]
                    UpdateDeadline::Yield(delta) => {
                        assert!(
                            self.async_support(),
                            "cannot use `UpdateDeadline::Yield` without enabling async support in the config"
                        );
                        // Do the async yield. May return a trap if future was
                        // canceled while we're yielded.
                        self.async_yield_impl()?;
                        delta
                    }
                };

                // Set a new deadline and return the new epoch deadline so
                // the Wasm code doesn't have to reload it.
                self.set_epoch_deadline(delta);
                Ok(self.get_epoch_deadline())
            })
        };

        // Put back the original behavior which was replaced by `take`.
        self.epoch_deadline_behavior = behavior;
        delta_result
    }

    #[cfg(feature = "gc")]
    fn maybe_async_gc(&mut self, root: Option<VMGcRef>) -> Result<Option<VMGcRef>> {
        let mut scope = RootScope::new(self);
        let store = scope.as_context_mut().0;
        let store_id = store.id();
        let root = root.map(|r| store.gc_roots_mut().push_lifo_root(store_id, r));

        if store.async_support() {
            #[cfg(feature = "async")]
            unsafe {
                let async_cx = store.async_cx();
                let mut future = store.gc_async();
                async_cx
                    .expect("attempted to pull async context during shutdown")
                    .block_on(Pin::new_unchecked(&mut future))?;
            }
        } else {
            (**store).gc();
        }

        let root = match root {
            None => None,
            Some(r) => {
                let r = r
                    .get_gc_ref(store)
                    .expect("still in scope")
                    .unchecked_copy();
                Some(store.gc_store_mut()?.clone_gc_ref(&r))
            }
        };

        Ok(root)
    }

    #[cfg(not(feature = "gc"))]
    fn maybe_async_gc(&mut self, root: Option<VMGcRef>) -> Result<Option<VMGcRef>> {
        Ok(root)
    }

    #[cfg(feature = "component-model")]
    fn component_calls(&mut self) -> &mut crate::runtime::vm::component::CallContexts {
        &mut self.component_calls
    }
}

impl<T> StoreInner<T> {
    pub(crate) fn set_epoch_deadline(&mut self, delta: u64) {
        // Set a new deadline based on the "epoch deadline delta".
        //
        // Safety: this is safe because the epoch deadline in the
        // `VMRuntimeLimits` is accessed only here and by Wasm guest code
        // running in this store, and we have a `&mut self` here.
        //
        // Also, note that when this update is performed while Wasm is
        // on the stack, the Wasm will reload the new value once we
        // return into it.
        let epoch_deadline = unsafe { (*self.vmruntime_limits()).epoch_deadline.get_mut() };
        *epoch_deadline = self.engine().current_epoch() + delta;
    }

    fn epoch_deadline_trap(&mut self) {
        self.epoch_deadline_behavior = None;
    }

    fn epoch_deadline_callback(
        &mut self,
        callback: Box<dyn FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync>,
    ) {
        self.epoch_deadline_behavior = Some(callback);
    }

    fn epoch_deadline_async_yield_and_update(&mut self, delta: u64) {
        assert!(
            self.async_support(),
            "cannot use `epoch_deadline_async_yield_and_update` without enabling async support in the config"
        );
        #[cfg(feature = "async")]
        {
            self.epoch_deadline_behavior =
                Some(Box::new(move |_store| Ok(UpdateDeadline::Yield(delta))));
        }
        let _ = delta; // suppress warning in non-async build
    }

    fn get_epoch_deadline(&self) -> u64 {
        // Safety: this is safe because, as above, it is only invoked
        // from within `new_epoch` which is called from guest Wasm
        // code, which will have an exclusive borrow on the Store.
        let epoch_deadline = unsafe { (*self.vmruntime_limits()).epoch_deadline.get_mut() };
        *epoch_deadline
    }
}

impl<T: Default> Default for Store<T> {
    fn default() -> Store<T> {
        Store::new(&Engine::default(), T::default())
    }
}

impl<T: fmt::Debug> fmt::Debug for Store<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let inner = &**self.inner as *const StoreInner<T>;
        f.debug_struct("Store")
            .field("inner", &inner)
            .field("data", &self.inner.data)
            .finish()
    }
}

impl<T> Drop for Store<T> {
    fn drop(&mut self) {
        self.inner.flush_fiber_stack();

        // for documentation on this `unsafe`, see `into_data`.
        unsafe {
            ManuallyDrop::drop(&mut self.inner.data);
            ManuallyDrop::drop(&mut self.inner);
        }
    }
}

impl Drop for StoreOpaque {
    fn drop(&mut self) {
        // NB it's important that this destructor does not access `self.data`.
        // That is deallocated by `Drop for Store<T>` above.

        unsafe {
            let allocator = self.engine.allocator();
            let ondemand = OnDemandInstanceAllocator::default();
            for instance in self.instances.iter_mut() {
                if let StoreInstanceKind::Dummy = instance.kind {
                    ondemand.deallocate_module(&mut instance.handle);
                } else {
                    allocator.deallocate_module(&mut instance.handle);
                }
            }
            ondemand.deallocate_module(&mut self.default_caller);

            #[cfg(feature = "gc")]
            if let Some(gc_store) = self.gc_store.take() {
                debug_assert!(self.engine.features().gc_types());
                allocator.deallocate_gc_heap(gc_store.allocation_index, gc_store.gc_heap);
            }

            #[cfg(feature = "component-model")]
            {
                for _ in 0..self.num_component_instances {
                    allocator.decrement_component_instance_count();
                }
            }

            // See documentation for these fields on `StoreOpaque` for why they
            // must be dropped in this order.
            ManuallyDrop::drop(&mut self.store_data);
            ManuallyDrop::drop(&mut self.rooted_host_funcs);
        }
    }
}

struct Reset<T: Copy>(*mut T, T);

impl<T: Copy> Drop for Reset<T> {
    fn drop(&mut self) {
        unsafe {
            *self.0 = self.1;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{get_fuel, refuel, set_fuel};
    use std::num::NonZeroU64;

    struct FuelTank {
        pub consumed_fuel: i64,
        pub reserve_fuel: u64,
        pub yield_interval: Option<NonZeroU64>,
    }

    impl FuelTank {
        fn new() -> Self {
            FuelTank {
                consumed_fuel: 0,
                reserve_fuel: 0,
                yield_interval: None,
            }
        }
        fn get_fuel(&self) -> u64 {
            get_fuel(self.consumed_fuel, self.reserve_fuel)
        }
        fn refuel(&mut self) -> bool {
            refuel(
                &mut self.consumed_fuel,
                &mut self.reserve_fuel,
                self.yield_interval,
            )
        }
        fn set_fuel(&mut self, fuel: u64) {
            set_fuel(
                &mut self.consumed_fuel,
                &mut self.reserve_fuel,
                self.yield_interval,
                fuel,
            );
        }
    }

    #[test]
    fn smoke() {
        let mut tank = FuelTank::new();
        tank.set_fuel(10);
        assert_eq!(tank.consumed_fuel, -10);
        assert_eq!(tank.reserve_fuel, 0);

        tank.yield_interval = NonZeroU64::new(10);
        tank.set_fuel(25);
        assert_eq!(tank.consumed_fuel, -10);
        assert_eq!(tank.reserve_fuel, 15);
    }

    #[test]
    fn does_not_lose_precision() {
        let mut tank = FuelTank::new();
        tank.set_fuel(u64::MAX);
        assert_eq!(tank.get_fuel(), u64::MAX);

        tank.set_fuel(i64::MAX as u64);
        assert_eq!(tank.get_fuel(), i64::MAX as u64);

        tank.set_fuel(i64::MAX as u64 + 1);
        assert_eq!(tank.get_fuel(), i64::MAX as u64 + 1);
    }

    #[test]
    fn yielding_does_not_lose_precision() {
        let mut tank = FuelTank::new();

        tank.yield_interval = NonZeroU64::new(10);
        tank.set_fuel(u64::MAX);
        assert_eq!(tank.get_fuel(), u64::MAX);
        assert_eq!(tank.consumed_fuel, -10);
        assert_eq!(tank.reserve_fuel, u64::MAX - 10);

        tank.yield_interval = NonZeroU64::new(u64::MAX);
        tank.set_fuel(u64::MAX);
        assert_eq!(tank.get_fuel(), u64::MAX);
        assert_eq!(tank.consumed_fuel, -i64::MAX);
        assert_eq!(tank.reserve_fuel, u64::MAX - (i64::MAX as u64));

        tank.yield_interval = NonZeroU64::new((i64::MAX as u64) + 1);
        tank.set_fuel(u64::MAX);
        assert_eq!(tank.get_fuel(), u64::MAX);
        assert_eq!(tank.consumed_fuel, -i64::MAX);
        assert_eq!(tank.reserve_fuel, u64::MAX - (i64::MAX as u64));
    }

    #[test]
    fn refueling() {
        // It's possible to fuel to have consumed over the limit as some instructions can consume
        // multiple units of fuel at once. Refueling should be strict in it's consumption and not
        // add more fuel than there is.
        let mut tank = FuelTank::new();

        tank.yield_interval = NonZeroU64::new(10);
        tank.reserve_fuel = 42;
        tank.consumed_fuel = 4;
        assert!(tank.refuel());
        assert_eq!(tank.reserve_fuel, 28);
        assert_eq!(tank.consumed_fuel, -10);

        tank.yield_interval = NonZeroU64::new(1);
        tank.reserve_fuel = 8;
        tank.consumed_fuel = 4;
        assert_eq!(tank.get_fuel(), 4);
        assert!(tank.refuel());
        assert_eq!(tank.reserve_fuel, 3);
        assert_eq!(tank.consumed_fuel, -1);
        assert_eq!(tank.get_fuel(), 4);

        tank.yield_interval = NonZeroU64::new(10);
        tank.reserve_fuel = 3;
        tank.consumed_fuel = 4;
        assert_eq!(tank.get_fuel(), 0);
        assert!(!tank.refuel());
        assert_eq!(tank.reserve_fuel, 3);
        assert_eq!(tank.consumed_fuel, 4);
        assert_eq!(tank.get_fuel(), 0);
    }
}