wasmtime/runtime/store.rs
1//! Wasmtime's "store" type
2//!
3//! This module, and its submodules, contain the `Store` type and various types
4//! used to interact with it. At first glance this is a pretty confusing module
5//! where you need to know the difference between:
6//!
7//! * `Store<T>`
8//! * `StoreContext<T>`
9//! * `StoreContextMut<T>`
10//! * `AsContext`
11//! * `AsContextMut`
12//! * `StoreInner<T>`
13//! * `StoreOpaque`
14//! * `StoreData`
15//!
16//! There's... quite a lot going on here, and it's easy to be confused. This
17//! comment is ideally going to serve the purpose of clarifying what all these
18//! types are for and why they're motivated.
19//!
20//! First it's important to know what's "internal" and what's "external". Almost
21//! everything above is defined as `pub`, but only some of the items are
22//! reexported to the outside world to be usable from this crate. Otherwise all
23//! items are `pub` within this `store` module, and the `store` module is
24//! private to the `wasmtime` crate. Notably `Store<T>`, `StoreContext<T>`,
25//! `StoreContextMut<T>`, `AsContext`, and `AsContextMut` are all public
26//! interfaces to the `wasmtime` crate. You can think of these as:
27//!
28//! * `Store<T>` - an owned reference to a store, the "root of everything"
29//! * `StoreContext<T>` - basically `&StoreInner<T>`
30//! * `StoreContextMut<T>` - more-or-less `&mut StoreInner<T>` with caveats.
31//! Explained later.
32//! * `AsContext` - similar to `AsRef`, but produces `StoreContext<T>`
33//! * `AsContextMut` - similar to `AsMut`, but produces `StoreContextMut<T>`
34//!
35//! Next comes the internal structure of the `Store<T>` itself. This looks like:
36//!
37//! * `Store<T>` - this type is just a pointer large. It's primarily just
38//! intended to be consumed by the outside world. Note that the "just a
39//! pointer large" is a load-bearing implementation detail in Wasmtime. This
40//! enables it to store a pointer to its own trait object which doesn't need
41//! to change over time.
42//!
43//! * `StoreInner<T>` - the first layer of the contents of a `Store<T>`, what's
44//! stored inside the `Box`. This is the general Rust pattern when one struct
45//! is a layer over another. The surprising part, though, is that this is
46//! further subdivided. This structure only contains things which actually
47//! need `T` itself. The downside of this structure is that it's always
48//! generic and means that code is monomorphized into consumer crates. We
49//! strive to have things be as monomorphic as possible in `wasmtime` so this
50//! type is not heavily used.
51//!
52//! * `StoreOpaque` - this is the primary contents of the `StoreInner<T>` type.
53//! Stored inline in the outer type the "opaque" here means that it's a
54//! "store" but it doesn't have access to the `T`. This is the primary
55//! "internal" reference that Wasmtime uses since `T` is rarely needed by the
56//! internals of Wasmtime.
57//!
58//! * `StoreData` - this is a final helper struct stored within `StoreOpaque`.
59//! All references of Wasm items into a `Store` are actually indices into a
60//! table in this structure, and the `StoreData` being separate makes it a bit
61//! easier to manage/define/work with. There's no real fundamental reason this
62//! is split out, although sometimes it's useful to have separate borrows into
63//! these tables than the `StoreOpaque`.
64//!
65//! A major caveat with these representations is that the internal `&mut
66//! StoreInner<T>` is never handed out publicly to consumers of this crate, only
67//! through a wrapper of `StoreContextMut<'_, T>`. The reason for this is that
68//! we want to provide mutable, but not destructive, access to the contents of a
69//! `Store`. For example if a `StoreInner<T>` were replaced with some other
70//! `StoreInner<T>` then that would drop live instances, possibly those
71//! currently executing beneath the current stack frame. This would not be a
72//! safe operation.
73//!
74//! This means, though, that the `wasmtime` crate, which liberally uses `&mut
75//! StoreOpaque` internally, has to be careful to never actually destroy the
76//! contents of `StoreOpaque`. This is an invariant that we, as the authors of
77//! `wasmtime`, must uphold for the public interface to be safe.
78
79use crate::RootSet;
80#[cfg(feature = "gc")]
81use crate::ThrownException;
82#[cfg(feature = "component-model-async")]
83use crate::component::ComponentStoreData;
84#[cfg(feature = "component-model-async")]
85use crate::component::concurrent;
86#[cfg(feature = "async")]
87use crate::fiber;
88use crate::module::RegisteredModuleId;
89use crate::prelude::*;
90#[cfg(feature = "gc")]
91use crate::runtime::vm::GcRootsList;
92#[cfg(feature = "stack-switching")]
93use crate::runtime::vm::VMContRef;
94use crate::runtime::vm::mpk::ProtectionKey;
95use crate::runtime::vm::{
96 self, GcStore, Imports, InstanceAllocationRequest, InstanceAllocator, InstanceHandle,
97 Interpreter, InterpreterRef, ModuleRuntimeInfo, OnDemandInstanceAllocator, SendSyncPtr,
98 SignalHandler, StoreBox, Unwind, VMContext, VMFuncRef, VMGcRef, VMStore, VMStoreContext,
99};
100use crate::trampoline::VMHostGlobalContext;
101use crate::{Engine, Module, Val, ValRaw, module::ModuleRegistry};
102#[cfg(feature = "gc")]
103use crate::{ExnRef, Rooted};
104use crate::{Global, Instance, Memory, Table, Uninhabited};
105use alloc::sync::Arc;
106use core::fmt;
107use core::marker;
108use core::mem::{self, ManuallyDrop, MaybeUninit};
109use core::num::NonZeroU64;
110use core::ops::{Deref, DerefMut};
111use core::pin::Pin;
112use core::ptr::NonNull;
113use wasmtime_environ::{DefinedGlobalIndex, DefinedTableIndex, EntityRef, PrimaryMap, TripleExt};
114
115mod context;
116pub use self::context::*;
117mod data;
118pub use self::data::*;
119mod func_refs;
120use func_refs::FuncRefs;
121#[cfg(feature = "component-model-async")]
122mod token;
123#[cfg(feature = "component-model-async")]
124pub(crate) use token::StoreToken;
125#[cfg(feature = "async")]
126mod async_;
127#[cfg(all(feature = "async", feature = "call-hook"))]
128pub use self::async_::CallHookHandler;
129
130#[cfg(feature = "gc")]
131use super::vm::VMExnRef;
132#[cfg(feature = "gc")]
133mod gc;
134
135/// A [`Store`] is a collection of WebAssembly instances and host-defined state.
136///
137/// All WebAssembly instances and items will be attached to and refer to a
138/// [`Store`]. For example instances, functions, globals, and tables are all
139/// attached to a [`Store`]. Instances are created by instantiating a
140/// [`Module`](crate::Module) within a [`Store`].
141///
142/// A [`Store`] is intended to be a short-lived object in a program. No form
143/// of GC is implemented at this time so once an instance is created within a
144/// [`Store`] it will not be deallocated until the [`Store`] itself is dropped.
145/// This makes [`Store`] unsuitable for creating an unbounded number of
146/// instances in it because [`Store`] will never release this memory. It's
147/// recommended to have a [`Store`] correspond roughly to the lifetime of a
148/// "main instance" that an embedding is interested in executing.
149///
150/// ## Type parameter `T`
151///
152/// Each [`Store`] has a type parameter `T` associated with it. This `T`
153/// represents state defined by the host. This state will be accessible through
154/// the [`Caller`](crate::Caller) type that host-defined functions get access
155/// to. This `T` is suitable for storing `Store`-specific information which
156/// imported functions may want access to.
157///
158/// The data `T` can be accessed through methods like [`Store::data`] and
159/// [`Store::data_mut`].
160///
161/// ## Stores, contexts, oh my
162///
163/// Most methods in Wasmtime take something of the form
164/// [`AsContext`](crate::AsContext) or [`AsContextMut`](crate::AsContextMut) as
165/// the first argument. These two traits allow ergonomically passing in the
166/// context you currently have to any method. The primary two sources of
167/// contexts are:
168///
169/// * `Store<T>`
170/// * `Caller<'_, T>`
171///
172/// corresponding to what you create and what you have access to in a host
173/// function. You can also explicitly acquire a [`StoreContext`] or
174/// [`StoreContextMut`] and pass that around as well.
175///
176/// Note that all methods on [`Store`] are mirrored onto [`StoreContext`],
177/// [`StoreContextMut`], and [`Caller`](crate::Caller). This way no matter what
178/// form of context you have you can call various methods, create objects, etc.
179///
180/// ## Stores and `Default`
181///
182/// You can create a store with default configuration settings using
183/// `Store::default()`. This will create a brand new [`Engine`] with default
184/// configuration (see [`Config`](crate::Config) for more information).
185///
186/// ## Cross-store usage of items
187///
188/// In `wasmtime` wasm items such as [`Global`] and [`Memory`] "belong" to a
189/// [`Store`]. The store they belong to is the one they were created with
190/// (passed in as a parameter) or instantiated with. This store is the only
191/// store that can be used to interact with wasm items after they're created.
192///
193/// The `wasmtime` crate will panic if the [`Store`] argument passed in to these
194/// operations is incorrect. In other words it's considered a programmer error
195/// rather than a recoverable error for the wrong [`Store`] to be used when
196/// calling APIs.
197pub struct Store<T: 'static> {
198 // for comments about `ManuallyDrop`, see `Store::into_data`
199 inner: ManuallyDrop<Box<StoreInner<T>>>,
200}
201
202#[derive(Copy, Clone, Debug)]
203/// Passed to the argument of [`Store::call_hook`] to indicate a state transition in
204/// the WebAssembly VM.
205pub enum CallHook {
206 /// Indicates the VM is calling a WebAssembly function, from the host.
207 CallingWasm,
208 /// Indicates the VM is returning from a WebAssembly function, to the host.
209 ReturningFromWasm,
210 /// Indicates the VM is calling a host function, from WebAssembly.
211 CallingHost,
212 /// Indicates the VM is returning from a host function, to WebAssembly.
213 ReturningFromHost,
214}
215
216impl CallHook {
217 /// Indicates the VM is entering host code (exiting WebAssembly code)
218 pub fn entering_host(&self) -> bool {
219 match self {
220 CallHook::ReturningFromWasm | CallHook::CallingHost => true,
221 _ => false,
222 }
223 }
224 /// Indicates the VM is exiting host code (entering WebAssembly code)
225 pub fn exiting_host(&self) -> bool {
226 match self {
227 CallHook::ReturningFromHost | CallHook::CallingWasm => true,
228 _ => false,
229 }
230 }
231}
232
233/// Internal contents of a `Store<T>` that live on the heap.
234///
235/// The members of this struct are those that need to be generic over `T`, the
236/// store's internal type storage. Otherwise all things that don't rely on `T`
237/// should go into `StoreOpaque`.
238pub struct StoreInner<T: 'static> {
239 /// Generic metadata about the store that doesn't need access to `T`.
240 inner: StoreOpaque,
241
242 limiter: Option<ResourceLimiterInner<T>>,
243 call_hook: Option<CallHookInner<T>>,
244 #[cfg(target_has_atomic = "64")]
245 epoch_deadline_behavior:
246 Option<Box<dyn FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync>>,
247 // for comments about `ManuallyDrop`, see `Store::into_data`
248 data: ManuallyDrop<T>,
249}
250
251enum ResourceLimiterInner<T> {
252 Sync(Box<dyn (FnMut(&mut T) -> &mut dyn crate::ResourceLimiter) + Send + Sync>),
253 #[cfg(feature = "async")]
254 Async(Box<dyn (FnMut(&mut T) -> &mut dyn crate::ResourceLimiterAsync) + Send + Sync>),
255}
256
257/// Representation of a configured resource limiter for a store.
258///
259/// This is acquired with `resource_limiter_and_store_opaque` for example and is
260/// threaded through to growth operations on tables/memories. Note that this is
261/// passed around as `Option<&mut StoreResourceLimiter<'_>>` to make it
262/// efficient to pass around (nullable pointer) and it's also notably passed
263/// around as an `Option` to represent how this is optionally specified within a
264/// store.
265pub enum StoreResourceLimiter<'a> {
266 Sync(&'a mut dyn crate::ResourceLimiter),
267 #[cfg(feature = "async")]
268 Async(&'a mut dyn crate::ResourceLimiterAsync),
269}
270
271impl StoreResourceLimiter<'_> {
272 pub(crate) async fn memory_growing(
273 &mut self,
274 current: usize,
275 desired: usize,
276 maximum: Option<usize>,
277 ) -> Result<bool, Error> {
278 match self {
279 Self::Sync(s) => s.memory_growing(current, desired, maximum),
280 #[cfg(feature = "async")]
281 Self::Async(s) => s.memory_growing(current, desired, maximum).await,
282 }
283 }
284
285 pub(crate) fn memory_grow_failed(&mut self, error: anyhow::Error) -> Result<()> {
286 match self {
287 Self::Sync(s) => s.memory_grow_failed(error),
288 #[cfg(feature = "async")]
289 Self::Async(s) => s.memory_grow_failed(error),
290 }
291 }
292
293 pub(crate) async fn table_growing(
294 &mut self,
295 current: usize,
296 desired: usize,
297 maximum: Option<usize>,
298 ) -> Result<bool, Error> {
299 match self {
300 Self::Sync(s) => s.table_growing(current, desired, maximum),
301 #[cfg(feature = "async")]
302 Self::Async(s) => s.table_growing(current, desired, maximum).await,
303 }
304 }
305
306 pub(crate) fn table_grow_failed(&mut self, error: anyhow::Error) -> Result<()> {
307 match self {
308 Self::Sync(s) => s.table_grow_failed(error),
309 #[cfg(feature = "async")]
310 Self::Async(s) => s.table_grow_failed(error),
311 }
312 }
313}
314
315enum CallHookInner<T: 'static> {
316 #[cfg(feature = "call-hook")]
317 Sync(Box<dyn FnMut(StoreContextMut<'_, T>, CallHook) -> Result<()> + Send + Sync>),
318 #[cfg(all(feature = "async", feature = "call-hook"))]
319 Async(Box<dyn CallHookHandler<T> + Send + Sync>),
320 #[expect(
321 dead_code,
322 reason = "forcing, regardless of cfg, the type param to be used"
323 )]
324 ForceTypeParameterToBeUsed {
325 uninhabited: Uninhabited,
326 _marker: marker::PhantomData<T>,
327 },
328}
329
330/// What to do after returning from a callback when the engine epoch reaches
331/// the deadline for a Store during execution of a function using that store.
332#[non_exhaustive]
333pub enum UpdateDeadline {
334 /// Halt execution of WebAssembly, don't update the epoch deadline, and
335 /// raise a trap.
336 Interrupt,
337 /// Extend the deadline by the specified number of ticks.
338 Continue(u64),
339 /// Extend the deadline by the specified number of ticks after yielding to
340 /// the async executor loop. This can only be used with an async [`Store`]
341 /// configured via [`Config::async_support`](crate::Config::async_support).
342 #[cfg(feature = "async")]
343 Yield(u64),
344 /// Extend the deadline by the specified number of ticks after yielding to
345 /// the async executor loop. This can only be used with an async [`Store`]
346 /// configured via [`Config::async_support`](crate::Config::async_support).
347 ///
348 /// The yield will be performed by the future provided; when using `tokio`
349 /// it is recommended to provide [`tokio::task::yield_now`](https://docs.rs/tokio/latest/tokio/task/fn.yield_now.html)
350 /// here.
351 #[cfg(feature = "async")]
352 YieldCustom(
353 u64,
354 ::core::pin::Pin<Box<dyn ::core::future::Future<Output = ()> + Send>>,
355 ),
356}
357
358// Forward methods on `StoreOpaque` to also being on `StoreInner<T>`
359impl<T> Deref for StoreInner<T> {
360 type Target = StoreOpaque;
361 fn deref(&self) -> &Self::Target {
362 &self.inner
363 }
364}
365
366impl<T> DerefMut for StoreInner<T> {
367 fn deref_mut(&mut self) -> &mut Self::Target {
368 &mut self.inner
369 }
370}
371
372/// Monomorphic storage for a `Store<T>`.
373///
374/// This structure contains the bulk of the metadata about a `Store`. This is
375/// used internally in Wasmtime when dependence on the `T` of `Store<T>` isn't
376/// necessary, allowing code to be monomorphic and compiled into the `wasmtime`
377/// crate itself.
378pub struct StoreOpaque {
379 // This `StoreOpaque` structure has references to itself. These aren't
380 // immediately evident, however, so we need to tell the compiler that it
381 // contains self-references. This notably suppresses `noalias` annotations
382 // when this shows up in compiled code because types of this structure do
383 // indeed alias itself. An example of this is `default_callee` holds a
384 // `*mut dyn Store` to the address of this `StoreOpaque` itself, indeed
385 // aliasing!
386 //
387 // It's somewhat unclear to me at this time if this is 100% sufficient to
388 // get all the right codegen in all the right places. For example does
389 // `Store` need to internally contain a `Pin<Box<StoreInner<T>>>`? Do the
390 // contexts need to contain `Pin<&mut StoreInner<T>>`? I'm not familiar
391 // enough with `Pin` to understand if it's appropriate here (we do, for
392 // example want to allow movement in and out of `data: T`, just not movement
393 // of most of the other members). It's also not clear if using `Pin` in a
394 // few places buys us much other than a bunch of `unsafe` that we already
395 // sort of hand-wave away.
396 //
397 // In any case this seems like a good mid-ground for now where we're at
398 // least telling the compiler something about all the aliasing happening
399 // within a `Store`.
400 _marker: marker::PhantomPinned,
401
402 engine: Engine,
403 vm_store_context: VMStoreContext,
404
405 // Contains all continuations ever allocated throughout the lifetime of this
406 // store.
407 #[cfg(feature = "stack-switching")]
408 continuations: Vec<Box<VMContRef>>,
409
410 instances: PrimaryMap<InstanceId, StoreInstance>,
411
412 #[cfg(feature = "component-model")]
413 num_component_instances: usize,
414 signal_handler: Option<SignalHandler>,
415 modules: ModuleRegistry,
416 func_refs: FuncRefs,
417 host_globals: PrimaryMap<DefinedGlobalIndex, StoreBox<VMHostGlobalContext>>,
418 // GC-related fields.
419 gc_store: Option<GcStore>,
420 gc_roots: RootSet,
421 #[cfg(feature = "gc")]
422 gc_roots_list: GcRootsList,
423 // Types for which the embedder has created an allocator for.
424 #[cfg(feature = "gc")]
425 gc_host_alloc_types: crate::hash_set::HashSet<crate::type_registry::RegisteredType>,
426 /// Pending exception, if any. This is also a GC root, because it
427 /// needs to be rooted somewhere between the time that a pending
428 /// exception is set and the time that the handling code takes the
429 /// exception object. We use this rooting strategy rather than a
430 /// root in an `Err` branch of a `Result` on the host side because
431 /// it is less error-prone with respect to rooting behavior. See
432 /// `throw()`, `take_pending_exception()`,
433 /// `peek_pending_exception()`, `has_pending_exception()`, and
434 /// `catch()`.
435 #[cfg(feature = "gc")]
436 pending_exception: Option<VMExnRef>,
437
438 // Numbers of resources instantiated in this store, and their limits
439 instance_count: usize,
440 instance_limit: usize,
441 memory_count: usize,
442 memory_limit: usize,
443 table_count: usize,
444 table_limit: usize,
445 #[cfg(feature = "async")]
446 async_state: fiber::AsyncState,
447
448 // If fuel_yield_interval is enabled, then we store the remaining fuel (that isn't in
449 // runtime_limits) here. The total amount of fuel is the runtime limits and reserve added
450 // together. Then when we run out of gas, we inject the yield amount from the reserve
451 // until the reserve is empty.
452 fuel_reserve: u64,
453 pub(crate) fuel_yield_interval: Option<NonZeroU64>,
454 /// Indexed data within this `Store`, used to store information about
455 /// globals, functions, memories, etc.
456 store_data: StoreData,
457 traitobj: StorePtr,
458 default_caller_vmctx: SendSyncPtr<VMContext>,
459
460 /// Used to optimized wasm->host calls when the host function is defined with
461 /// `Func::new` to avoid allocating a new vector each time a function is
462 /// called.
463 hostcall_val_storage: Vec<Val>,
464 /// Same as `hostcall_val_storage`, but for the direction of the host
465 /// calling wasm.
466 wasm_val_raw_storage: Vec<ValRaw>,
467
468 /// Keep track of what protection key is being used during allocation so
469 /// that the right memory pages can be enabled when entering WebAssembly
470 /// guest code.
471 pkey: Option<ProtectionKey>,
472
473 /// Runtime state for components used in the handling of resources, borrow,
474 /// and calls. These also interact with the `ResourceAny` type and its
475 /// internal representation.
476 #[cfg(feature = "component-model")]
477 component_host_table: vm::component::HandleTable,
478 #[cfg(feature = "component-model")]
479 component_calls: vm::component::CallContexts,
480 #[cfg(feature = "component-model")]
481 host_resource_data: crate::component::HostResourceData,
482
483 #[cfg(feature = "component-model-async")]
484 concurrent_async_state: concurrent::AsyncState,
485
486 /// State related to the executor of wasm code.
487 ///
488 /// For example if Pulley is enabled and configured then this will store a
489 /// Pulley interpreter.
490 executor: Executor,
491}
492
493/// Self-pointer to `StoreInner<T>` from within a `StoreOpaque` which is chiefly
494/// used to copy into instances during instantiation.
495///
496/// FIXME: ideally this type would get deleted and Wasmtime's reliance on it
497/// would go away.
498struct StorePtr(Option<NonNull<dyn VMStore>>);
499
500// We can't make `VMStore: Send + Sync` because that requires making all of
501// Wastime's internals generic over the `Store`'s `T`. So instead, we take care
502// in the whole VM layer to only use the `VMStore` in ways that are `Send`- and
503// `Sync`-safe and we have to have these unsafe impls.
504unsafe impl Send for StorePtr {}
505unsafe impl Sync for StorePtr {}
506
507/// Executor state within `StoreOpaque`.
508///
509/// Effectively stores Pulley interpreter state and handles conditional support
510/// for Cranelift at compile time.
511pub(crate) enum Executor {
512 Interpreter(Interpreter),
513 #[cfg(has_host_compiler_backend)]
514 Native,
515}
516
517impl Executor {
518 pub(crate) fn new(engine: &Engine) -> Self {
519 #[cfg(has_host_compiler_backend)]
520 if cfg!(feature = "pulley") && engine.target().is_pulley() {
521 Executor::Interpreter(Interpreter::new(engine))
522 } else {
523 Executor::Native
524 }
525 #[cfg(not(has_host_compiler_backend))]
526 {
527 debug_assert!(engine.target().is_pulley());
528 Executor::Interpreter(Interpreter::new(engine))
529 }
530 }
531}
532
533/// A borrowed reference to `Executor` above.
534pub(crate) enum ExecutorRef<'a> {
535 Interpreter(InterpreterRef<'a>),
536 #[cfg(has_host_compiler_backend)]
537 Native,
538}
539
540/// An RAII type to automatically mark a region of code as unsafe for GC.
541#[doc(hidden)]
542pub struct AutoAssertNoGc<'a> {
543 store: &'a mut StoreOpaque,
544 entered: bool,
545}
546
547impl<'a> AutoAssertNoGc<'a> {
548 #[inline]
549 pub fn new(store: &'a mut StoreOpaque) -> Self {
550 let entered = if !cfg!(feature = "gc") {
551 false
552 } else if let Some(gc_store) = store.gc_store.as_mut() {
553 gc_store.gc_heap.enter_no_gc_scope();
554 true
555 } else {
556 false
557 };
558
559 AutoAssertNoGc { store, entered }
560 }
561
562 /// Creates an `AutoAssertNoGc` value which is forcibly "not entered" and
563 /// disables checks for no GC happening for the duration of this value.
564 ///
565 /// This is used when it is statically otherwise known that a GC doesn't
566 /// happen for the various types involved.
567 ///
568 /// # Unsafety
569 ///
570 /// This method is `unsafe` as it does not provide the same safety
571 /// guarantees as `AutoAssertNoGc::new`. It must be guaranteed by the
572 /// caller that a GC doesn't happen.
573 #[inline]
574 pub unsafe fn disabled(store: &'a mut StoreOpaque) -> Self {
575 if cfg!(debug_assertions) {
576 AutoAssertNoGc::new(store)
577 } else {
578 AutoAssertNoGc {
579 store,
580 entered: false,
581 }
582 }
583 }
584}
585
586impl core::ops::Deref for AutoAssertNoGc<'_> {
587 type Target = StoreOpaque;
588
589 #[inline]
590 fn deref(&self) -> &Self::Target {
591 &*self.store
592 }
593}
594
595impl core::ops::DerefMut for AutoAssertNoGc<'_> {
596 #[inline]
597 fn deref_mut(&mut self) -> &mut Self::Target {
598 &mut *self.store
599 }
600}
601
602impl Drop for AutoAssertNoGc<'_> {
603 #[inline]
604 fn drop(&mut self) {
605 if self.entered {
606 self.store.unwrap_gc_store_mut().gc_heap.exit_no_gc_scope();
607 }
608 }
609}
610
611/// Used to associate instances with the store.
612///
613/// This is needed to track if the instance was allocated explicitly with the on-demand
614/// instance allocator.
615struct StoreInstance {
616 handle: InstanceHandle,
617 kind: StoreInstanceKind,
618}
619
620enum StoreInstanceKind {
621 /// An actual, non-dummy instance.
622 Real {
623 /// The id of this instance's module inside our owning store's
624 /// `ModuleRegistry`.
625 module_id: RegisteredModuleId,
626 },
627
628 /// This is a dummy instance that is just an implementation detail for
629 /// something else. For example, host-created memories internally create a
630 /// dummy instance.
631 ///
632 /// Regardless of the configured instance allocator for the engine, dummy
633 /// instances always use the on-demand allocator to deallocate the instance.
634 Dummy,
635}
636
637impl<T> Store<T> {
638 /// Creates a new [`Store`] to be associated with the given [`Engine`] and
639 /// `data` provided.
640 ///
641 /// The created [`Store`] will place no additional limits on the size of
642 /// linear memories or tables at runtime. Linear memories and tables will
643 /// be allowed to grow to any upper limit specified in their definitions.
644 /// The store will limit the number of instances, linear memories, and
645 /// tables created to 10,000. This can be overridden with the
646 /// [`Store::limiter`] configuration method.
647 pub fn new(engine: &Engine, data: T) -> Self {
648 let store_data = StoreData::new();
649 log::trace!("creating new store {:?}", store_data.id());
650
651 let pkey = engine.allocator().next_available_pkey();
652
653 let inner = StoreOpaque {
654 _marker: marker::PhantomPinned,
655 engine: engine.clone(),
656 vm_store_context: Default::default(),
657 #[cfg(feature = "stack-switching")]
658 continuations: Vec::new(),
659 instances: PrimaryMap::new(),
660 #[cfg(feature = "component-model")]
661 num_component_instances: 0,
662 signal_handler: None,
663 gc_store: None,
664 gc_roots: RootSet::default(),
665 #[cfg(feature = "gc")]
666 gc_roots_list: GcRootsList::default(),
667 #[cfg(feature = "gc")]
668 gc_host_alloc_types: Default::default(),
669 #[cfg(feature = "gc")]
670 pending_exception: None,
671 modules: ModuleRegistry::default(),
672 func_refs: FuncRefs::default(),
673 host_globals: PrimaryMap::new(),
674 instance_count: 0,
675 instance_limit: crate::DEFAULT_INSTANCE_LIMIT,
676 memory_count: 0,
677 memory_limit: crate::DEFAULT_MEMORY_LIMIT,
678 table_count: 0,
679 table_limit: crate::DEFAULT_TABLE_LIMIT,
680 #[cfg(feature = "async")]
681 async_state: Default::default(),
682 fuel_reserve: 0,
683 fuel_yield_interval: None,
684 store_data,
685 traitobj: StorePtr(None),
686 default_caller_vmctx: SendSyncPtr::new(NonNull::dangling()),
687 hostcall_val_storage: Vec::new(),
688 wasm_val_raw_storage: Vec::new(),
689 pkey,
690 #[cfg(feature = "component-model")]
691 component_host_table: Default::default(),
692 #[cfg(feature = "component-model")]
693 component_calls: Default::default(),
694 #[cfg(feature = "component-model")]
695 host_resource_data: Default::default(),
696 executor: Executor::new(engine),
697 #[cfg(feature = "component-model-async")]
698 concurrent_async_state: Default::default(),
699 };
700 let mut inner = Box::new(StoreInner {
701 inner,
702 limiter: None,
703 call_hook: None,
704 #[cfg(target_has_atomic = "64")]
705 epoch_deadline_behavior: None,
706 data: ManuallyDrop::new(data),
707 });
708
709 inner.traitobj = StorePtr(Some(NonNull::from(&mut *inner)));
710
711 // Wasmtime uses the callee argument to host functions to learn about
712 // the original pointer to the `Store` itself, allowing it to
713 // reconstruct a `StoreContextMut<T>`. When we initially call a `Func`,
714 // however, there's no "callee" to provide. To fix this we allocate a
715 // single "default callee" for the entire `Store`. This is then used as
716 // part of `Func::call` to guarantee that the `callee: *mut VMContext`
717 // is never null.
718 let module = Arc::new(wasmtime_environ::Module::default());
719 let shim = ModuleRuntimeInfo::bare(module);
720 let allocator = OnDemandInstanceAllocator::default();
721
722 allocator
723 .validate_module(shim.env_module(), shim.offsets())
724 .unwrap();
725
726 unsafe {
727 // Note that this dummy instance doesn't allocate tables or memories
728 // (also no limiter is passed in) so it won't have an async await
729 // point meaning that it should be ok to assert the future is
730 // always ready.
731 let id = vm::assert_ready(inner.allocate_instance(
732 None,
733 AllocateInstanceKind::Dummy {
734 allocator: &allocator,
735 },
736 &shim,
737 Default::default(),
738 ))
739 .expect("failed to allocate default callee");
740 let default_caller_vmctx = inner.instance(id).vmctx();
741 inner.default_caller_vmctx = default_caller_vmctx.into();
742 }
743
744 Self {
745 inner: ManuallyDrop::new(inner),
746 }
747 }
748
749 /// Access the underlying data owned by this `Store`.
750 #[inline]
751 pub fn data(&self) -> &T {
752 self.inner.data()
753 }
754
755 /// Access the underlying data owned by this `Store`.
756 #[inline]
757 pub fn data_mut(&mut self) -> &mut T {
758 self.inner.data_mut()
759 }
760
761 fn run_manual_drop_routines(&mut self) {
762 // We need to drop the fibers of each component instance before
763 // attempting to drop the instances themselves since the fibers may need
764 // to be resumed and allowed to exit cleanly before we yank the state
765 // out from under them.
766 //
767 // This will also drop any futures which might use a `&Accessor` fields
768 // in their `Drop::drop` implementations, in which case they'll need to
769 // be called from with in the context of a `tls::set` closure.
770 #[cfg(feature = "component-model-async")]
771 ComponentStoreData::drop_fibers_and_futures(&mut **self.inner);
772
773 // Ensure all fiber stacks, even cached ones, are all flushed out to the
774 // instance allocator.
775 self.inner.flush_fiber_stack();
776 }
777
778 /// Consumes this [`Store`], destroying it, and returns the underlying data.
779 pub fn into_data(mut self) -> T {
780 self.run_manual_drop_routines();
781
782 // This is an unsafe operation because we want to avoid having a runtime
783 // check or boolean for whether the data is actually contained within a
784 // `Store`. The data itself is stored as `ManuallyDrop` since we're
785 // manually managing the memory here, and there's also a `ManuallyDrop`
786 // around the `Box<StoreInner<T>>`. The way this works though is a bit
787 // tricky, so here's how things get dropped appropriately:
788 //
789 // * When a `Store<T>` is normally dropped, the custom destructor for
790 // `Store<T>` will drop `T`, then the `self.inner` field. The
791 // rustc-glue destructor runs for `Box<StoreInner<T>>` which drops
792 // `StoreInner<T>`. This cleans up all internal fields and doesn't
793 // touch `T` because it's wrapped in `ManuallyDrop`.
794 //
795 // * When calling this method we skip the top-level destructor for
796 // `Store<T>` with `mem::forget`. This skips both the destructor for
797 // `T` and the destructor for `StoreInner<T>`. We do, however, run the
798 // destructor for `Box<StoreInner<T>>` which, like above, will skip
799 // the destructor for `T` since it's `ManuallyDrop`.
800 //
801 // In both cases all the other fields of `StoreInner<T>` should all get
802 // dropped, and the manual management of destructors is basically
803 // between this method and `Drop for Store<T>`. Note that this also
804 // means that `Drop for StoreInner<T>` cannot access `self.data`, so
805 // there is a comment indicating this as well.
806 unsafe {
807 let mut inner = ManuallyDrop::take(&mut self.inner);
808 core::mem::forget(self);
809 ManuallyDrop::take(&mut inner.data)
810 }
811 }
812
813 /// Configures the [`ResourceLimiter`] used to limit resource creation
814 /// within this [`Store`].
815 ///
816 /// Whenever resources such as linear memory, tables, or instances are
817 /// allocated the `limiter` specified here is invoked with the store's data
818 /// `T` and the returned [`ResourceLimiter`] is used to limit the operation
819 /// being allocated. The returned [`ResourceLimiter`] is intended to live
820 /// within the `T` itself, for example by storing a
821 /// [`StoreLimits`](crate::StoreLimits).
822 ///
823 /// Note that this limiter is only used to limit the creation/growth of
824 /// resources in the future, this does not retroactively attempt to apply
825 /// limits to the [`Store`].
826 ///
827 /// # Examples
828 ///
829 /// ```
830 /// use wasmtime::*;
831 ///
832 /// struct MyApplicationState {
833 /// my_state: u32,
834 /// limits: StoreLimits,
835 /// }
836 ///
837 /// let engine = Engine::default();
838 /// let my_state = MyApplicationState {
839 /// my_state: 42,
840 /// limits: StoreLimitsBuilder::new()
841 /// .memory_size(1 << 20 /* 1 MB */)
842 /// .instances(2)
843 /// .build(),
844 /// };
845 /// let mut store = Store::new(&engine, my_state);
846 /// store.limiter(|state| &mut state.limits);
847 ///
848 /// // Creation of smaller memories is allowed
849 /// Memory::new(&mut store, MemoryType::new(1, None)).unwrap();
850 ///
851 /// // Creation of a larger memory, however, will exceed the 1MB limit we've
852 /// // configured
853 /// assert!(Memory::new(&mut store, MemoryType::new(1000, None)).is_err());
854 ///
855 /// // The number of instances in this store is limited to 2, so the third
856 /// // instance here should fail.
857 /// let module = Module::new(&engine, "(module)").unwrap();
858 /// assert!(Instance::new(&mut store, &module, &[]).is_ok());
859 /// assert!(Instance::new(&mut store, &module, &[]).is_ok());
860 /// assert!(Instance::new(&mut store, &module, &[]).is_err());
861 /// ```
862 ///
863 /// [`ResourceLimiter`]: crate::ResourceLimiter
864 pub fn limiter(
865 &mut self,
866 mut limiter: impl (FnMut(&mut T) -> &mut dyn crate::ResourceLimiter) + Send + Sync + 'static,
867 ) {
868 // Apply the limits on instances, tables, and memory given by the limiter:
869 let inner = &mut self.inner;
870 let (instance_limit, table_limit, memory_limit) = {
871 let l = limiter(&mut inner.data);
872 (l.instances(), l.tables(), l.memories())
873 };
874 let innermost = &mut inner.inner;
875 innermost.instance_limit = instance_limit;
876 innermost.table_limit = table_limit;
877 innermost.memory_limit = memory_limit;
878
879 // Save the limiter accessor function:
880 inner.limiter = Some(ResourceLimiterInner::Sync(Box::new(limiter)));
881 }
882
883 /// Configure a function that runs on calls and returns between WebAssembly
884 /// and host code.
885 ///
886 /// The function is passed a [`CallHook`] argument, which indicates which
887 /// state transition the VM is making.
888 ///
889 /// This function may return a [`Trap`]. If a trap is returned when an
890 /// import was called, it is immediately raised as-if the host import had
891 /// returned the trap. If a trap is returned after wasm returns to the host
892 /// then the wasm function's result is ignored and this trap is returned
893 /// instead.
894 ///
895 /// After this function returns a trap, it may be called for subsequent returns
896 /// to host or wasm code as the trap propagates to the root call.
897 #[cfg(feature = "call-hook")]
898 pub fn call_hook(
899 &mut self,
900 hook: impl FnMut(StoreContextMut<'_, T>, CallHook) -> Result<()> + Send + Sync + 'static,
901 ) {
902 self.inner.call_hook = Some(CallHookInner::Sync(Box::new(hook)));
903 }
904
905 /// Returns the [`Engine`] that this store is associated with.
906 pub fn engine(&self) -> &Engine {
907 self.inner.engine()
908 }
909
910 /// Perform garbage collection.
911 ///
912 /// Note that it is not required to actively call this function. GC will
913 /// automatically happen according to various internal heuristics. This is
914 /// provided if fine-grained control over the GC is desired.
915 ///
916 /// If you are calling this method after an attempted allocation failed, you
917 /// may pass in the [`GcHeapOutOfMemory`][crate::GcHeapOutOfMemory] error.
918 /// When you do so, this method will attempt to create enough space in the
919 /// GC heap for that allocation, so that it will succeed on the next
920 /// attempt.
921 ///
922 /// This method is only available when the `gc` Cargo feature is enabled.
923 #[cfg(feature = "gc")]
924 pub fn gc(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>) {
925 StoreContextMut(&mut self.inner).gc(why)
926 }
927
928 /// Returns the amount fuel in this [`Store`]. When fuel is enabled, it must
929 /// be configured via [`Store::set_fuel`].
930 ///
931 /// # Errors
932 ///
933 /// This function will return an error if fuel consumption is not enabled
934 /// via [`Config::consume_fuel`](crate::Config::consume_fuel).
935 pub fn get_fuel(&self) -> Result<u64> {
936 self.inner.get_fuel()
937 }
938
939 /// Set the fuel to this [`Store`] for wasm to consume while executing.
940 ///
941 /// For this method to work fuel consumption must be enabled via
942 /// [`Config::consume_fuel`](crate::Config::consume_fuel). By default a
943 /// [`Store`] starts with 0 fuel for wasm to execute with (meaning it will
944 /// immediately trap). This function must be called for the store to have
945 /// some fuel to allow WebAssembly to execute.
946 ///
947 /// Most WebAssembly instructions consume 1 unit of fuel. Some
948 /// instructions, such as `nop`, `drop`, `block`, and `loop`, consume 0
949 /// units, as any execution cost associated with them involves other
950 /// instructions which do consume fuel.
951 ///
952 /// Note that when fuel is entirely consumed it will cause wasm to trap.
953 ///
954 /// # Errors
955 ///
956 /// This function will return an error if fuel consumption is not enabled via
957 /// [`Config::consume_fuel`](crate::Config::consume_fuel).
958 pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
959 self.inner.set_fuel(fuel)
960 }
961
962 /// Configures a [`Store`] to yield execution of async WebAssembly code
963 /// periodically.
964 ///
965 /// When a [`Store`] is configured to consume fuel with
966 /// [`Config::consume_fuel`](crate::Config::consume_fuel) this method will
967 /// configure WebAssembly to be suspended and control will be yielded back to the
968 /// caller every `interval` units of fuel consumed. This is only suitable with use of
969 /// a store associated with an [async config](crate::Config::async_support) because
970 /// only then are futures used and yields are possible.
971 ///
972 /// The purpose of this behavior is to ensure that futures which represent
973 /// execution of WebAssembly do not execute too long inside their
974 /// `Future::poll` method. This allows for some form of cooperative
975 /// multitasking where WebAssembly will voluntarily yield control
976 /// periodically (based on fuel consumption) back to the running thread.
977 ///
978 /// Note that futures returned by this crate will automatically flag
979 /// themselves to get re-polled if a yield happens. This means that
980 /// WebAssembly will continue to execute, just after giving the host an
981 /// opportunity to do something else.
982 ///
983 /// The `interval` parameter indicates how much fuel should be
984 /// consumed between yields of an async future. When fuel runs out wasm will trap.
985 ///
986 /// # Error
987 ///
988 /// This method will error if it is not called on a store associated with an [async
989 /// config](crate::Config::async_support).
990 pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
991 self.inner.fuel_async_yield_interval(interval)
992 }
993
994 /// Sets the epoch deadline to a certain number of ticks in the future.
995 ///
996 /// When the Wasm guest code is compiled with epoch-interruption
997 /// instrumentation
998 /// ([`Config::epoch_interruption()`](crate::Config::epoch_interruption)),
999 /// and when the `Engine`'s epoch is incremented
1000 /// ([`Engine::increment_epoch()`](crate::Engine::increment_epoch))
1001 /// past a deadline, execution can be configured to either trap or
1002 /// yield and then continue.
1003 ///
1004 /// This deadline is always set relative to the current epoch:
1005 /// `ticks_beyond_current` ticks in the future. The deadline can
1006 /// be set explicitly via this method, or refilled automatically
1007 /// on a yield if configured via
1008 /// [`epoch_deadline_async_yield_and_update()`](Store::epoch_deadline_async_yield_and_update). After
1009 /// this method is invoked, the deadline is reached when
1010 /// [`Engine::increment_epoch()`] has been invoked at least
1011 /// `ticks_beyond_current` times.
1012 ///
1013 /// By default a store will trap immediately with an epoch deadline of 0
1014 /// (which has always "elapsed"). This method is required to be configured
1015 /// for stores with epochs enabled to some future epoch deadline.
1016 ///
1017 /// See documentation on
1018 /// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
1019 /// for an introduction to epoch-based interruption.
1020 #[cfg(target_has_atomic = "64")]
1021 pub fn set_epoch_deadline(&mut self, ticks_beyond_current: u64) {
1022 self.inner.set_epoch_deadline(ticks_beyond_current);
1023 }
1024
1025 /// Configures epoch-deadline expiration to trap.
1026 ///
1027 /// When epoch-interruption-instrumented code is executed on this
1028 /// store and the epoch deadline is reached before completion,
1029 /// with the store configured in this way, execution will
1030 /// terminate with a trap as soon as an epoch check in the
1031 /// instrumented code is reached.
1032 ///
1033 /// This behavior is the default if the store is not otherwise
1034 /// configured via
1035 /// [`epoch_deadline_trap()`](Store::epoch_deadline_trap),
1036 /// [`epoch_deadline_callback()`](Store::epoch_deadline_callback) or
1037 /// [`epoch_deadline_async_yield_and_update()`](Store::epoch_deadline_async_yield_and_update).
1038 ///
1039 /// This setting is intended to allow for coarse-grained
1040 /// interruption, but not a deterministic deadline of a fixed,
1041 /// finite interval. For deterministic interruption, see the
1042 /// "fuel" mechanism instead.
1043 ///
1044 /// Note that when this is used it's required to call
1045 /// [`Store::set_epoch_deadline`] or otherwise wasm will always immediately
1046 /// trap.
1047 ///
1048 /// See documentation on
1049 /// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
1050 /// for an introduction to epoch-based interruption.
1051 #[cfg(target_has_atomic = "64")]
1052 pub fn epoch_deadline_trap(&mut self) {
1053 self.inner.epoch_deadline_trap();
1054 }
1055
1056 /// Configures epoch-deadline expiration to invoke a custom callback
1057 /// function.
1058 ///
1059 /// When epoch-interruption-instrumented code is executed on this
1060 /// store and the epoch deadline is reached before completion, the
1061 /// provided callback function is invoked.
1062 ///
1063 /// This callback should either return an [`UpdateDeadline`], or
1064 /// return an error, which will terminate execution with a trap.
1065 ///
1066 /// The [`UpdateDeadline`] is a positive number of ticks to
1067 /// add to the epoch deadline, as well as indicating what
1068 /// to do after the callback returns. If the [`Store`] is
1069 /// configured with async support, then the callback may return
1070 /// [`UpdateDeadline::Yield`] or [`UpdateDeadline::YieldCustom`]
1071 /// to yield to the async executor before updating the epoch deadline.
1072 /// Alternatively, the callback may return [`UpdateDeadline::Continue`] to
1073 /// update the epoch deadline immediately.
1074 ///
1075 /// This setting is intended to allow for coarse-grained
1076 /// interruption, but not a deterministic deadline of a fixed,
1077 /// finite interval. For deterministic interruption, see the
1078 /// "fuel" mechanism instead.
1079 ///
1080 /// See documentation on
1081 /// [`Config::epoch_interruption()`](crate::Config::epoch_interruption)
1082 /// for an introduction to epoch-based interruption.
1083 #[cfg(target_has_atomic = "64")]
1084 pub fn epoch_deadline_callback(
1085 &mut self,
1086 callback: impl FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync + 'static,
1087 ) {
1088 self.inner.epoch_deadline_callback(Box::new(callback));
1089 }
1090
1091 /// Set an exception as the currently pending exception, and
1092 /// return an error that propagates the throw.
1093 ///
1094 /// This method takes an exception object and stores it in the
1095 /// `Store` as the currently pending exception. This is a special
1096 /// rooted slot that holds the exception as long as it is
1097 /// propagating. This method then returns a `ThrownException`
1098 /// error, which is a special type that indicates a pending
1099 /// exception exists. When this type propagates as an error
1100 /// returned from a Wasm-to-host call, the pending exception is
1101 /// thrown within the Wasm context, and either caught or
1102 /// propagated further to the host-to-Wasm call boundary. If an
1103 /// exception is thrown out of Wasm (or across Wasm from a
1104 /// hostcall) back to the host-to-Wasm call boundary, *that*
1105 /// invocation returns a `ThrownException`, and the pending
1106 /// exception slot is again set. In other words, the
1107 /// `ThrownException` error type should propagate upward exactly
1108 /// and only when a pending exception is set.
1109 ///
1110 /// To inspect or take the pending exception, use
1111 /// [`peek_pending_exception`] and [`take_pending_exception`]. For
1112 /// a convenient wrapper that invokes a closure and provides any
1113 /// caught exception from the closure to a separate handler
1114 /// closure, see [`StoreContextMut::catch`].
1115 ///
1116 /// This method is parameterized over `R` for convenience, but
1117 /// will always return an `Err`.
1118 ///
1119 /// # Panics
1120 ///
1121 /// - Will panic if `exception` has been unrooted.
1122 /// - Will panic if `exception` is a null reference.
1123 /// - Will panic if a pending exception has already been set.
1124 #[cfg(feature = "gc")]
1125 pub fn throw<R>(&mut self, exception: Rooted<ExnRef>) -> Result<R, ThrownException> {
1126 self.inner.throw_impl(exception);
1127 Err(ThrownException)
1128 }
1129
1130 /// Take the currently pending exception, if any, and return it,
1131 /// removing it from the "pending exception" slot.
1132 ///
1133 /// If there is no pending exception, returns `None`.
1134 ///
1135 /// Note: the returned exception is a LIFO root (see
1136 /// [`crate::Rooted`]), rooted in the current handle scope. Take
1137 /// care to ensure that it is re-rooted or otherwise does not
1138 /// escape this scope! It is usually best to allow an exception
1139 /// object to be rooted in the store's "pending exception" slot
1140 /// until the final consumer has taken it, rather than root it and
1141 /// pass it up the callstack in some other way.
1142 ///
1143 /// This method is useful to implement ad-hoc exception plumbing
1144 /// in various ways, but for the most idiomatic handling, see
1145 /// [`StoreContextMut::catch`].
1146 #[cfg(feature = "gc")]
1147 pub fn take_pending_exception(&mut self) -> Option<Rooted<ExnRef>> {
1148 self.inner.take_pending_exception_rooted()
1149 }
1150
1151 /// Tests whether there is a pending exception.
1152 ///
1153 /// Ordinarily, a pending exception will be set on a store if and
1154 /// only if a host-side callstack is propagating a
1155 /// [`crate::ThrownException`] error. The final consumer that
1156 /// catches the exception takes it; it may re-place it to re-throw
1157 /// (using [`throw`]) if it chooses not to actually handle the
1158 /// exception.
1159 ///
1160 /// This method is useful to tell whether a store is in this
1161 /// state, but should not be used as part of the ordinary
1162 /// exception-handling flow. For the most idiomatic handling, see
1163 /// [`StoreContextMut::catch`].
1164 #[cfg(feature = "gc")]
1165 pub fn has_pending_exception(&self) -> bool {
1166 self.inner.pending_exception.is_some()
1167 }
1168}
1169
1170impl<'a, T> StoreContext<'a, T> {
1171 pub(crate) fn async_support(&self) -> bool {
1172 self.0.async_support()
1173 }
1174
1175 /// Returns the underlying [`Engine`] this store is connected to.
1176 pub fn engine(&self) -> &Engine {
1177 self.0.engine()
1178 }
1179
1180 /// Access the underlying data owned by this `Store`.
1181 ///
1182 /// Same as [`Store::data`].
1183 pub fn data(&self) -> &'a T {
1184 self.0.data()
1185 }
1186
1187 /// Returns the remaining fuel in this store.
1188 ///
1189 /// For more information see [`Store::get_fuel`].
1190 pub fn get_fuel(&self) -> Result<u64> {
1191 self.0.get_fuel()
1192 }
1193}
1194
1195impl<'a, T> StoreContextMut<'a, T> {
1196 /// Access the underlying data owned by this `Store`.
1197 ///
1198 /// Same as [`Store::data`].
1199 pub fn data(&self) -> &T {
1200 self.0.data()
1201 }
1202
1203 /// Access the underlying data owned by this `Store`.
1204 ///
1205 /// Same as [`Store::data_mut`].
1206 pub fn data_mut(&mut self) -> &mut T {
1207 self.0.data_mut()
1208 }
1209
1210 /// Returns the underlying [`Engine`] this store is connected to.
1211 pub fn engine(&self) -> &Engine {
1212 self.0.engine()
1213 }
1214
1215 /// Perform garbage collection of `ExternRef`s.
1216 ///
1217 /// Same as [`Store::gc`].
1218 ///
1219 /// This method is only available when the `gc` Cargo feature is enabled.
1220 #[cfg(feature = "gc")]
1221 pub fn gc(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>) {
1222 assert!(!self.0.async_support());
1223 let (mut limiter, store) = self.0.resource_limiter_and_store_opaque();
1224 vm::assert_ready(store.gc(limiter.as_mut(), None, why.map(|e| e.bytes_needed())));
1225 }
1226
1227 /// Returns remaining fuel in this store.
1228 ///
1229 /// For more information see [`Store::get_fuel`]
1230 pub fn get_fuel(&self) -> Result<u64> {
1231 self.0.get_fuel()
1232 }
1233
1234 /// Set the amount of fuel in this store.
1235 ///
1236 /// For more information see [`Store::set_fuel`]
1237 pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
1238 self.0.set_fuel(fuel)
1239 }
1240
1241 /// Configures this `Store` to periodically yield while executing futures.
1242 ///
1243 /// For more information see [`Store::fuel_async_yield_interval`]
1244 pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
1245 self.0.fuel_async_yield_interval(interval)
1246 }
1247
1248 /// Sets the epoch deadline to a certain number of ticks in the future.
1249 ///
1250 /// For more information see [`Store::set_epoch_deadline`].
1251 #[cfg(target_has_atomic = "64")]
1252 pub fn set_epoch_deadline(&mut self, ticks_beyond_current: u64) {
1253 self.0.set_epoch_deadline(ticks_beyond_current);
1254 }
1255
1256 /// Configures epoch-deadline expiration to trap.
1257 ///
1258 /// For more information see [`Store::epoch_deadline_trap`].
1259 #[cfg(target_has_atomic = "64")]
1260 pub fn epoch_deadline_trap(&mut self) {
1261 self.0.epoch_deadline_trap();
1262 }
1263
1264 /// Set an exception as the currently pending exception, and
1265 /// return an error that propagates the throw.
1266 ///
1267 /// See [`Store::throw`] for more details.
1268 #[cfg(feature = "gc")]
1269 pub fn throw<R>(&mut self, exception: Rooted<ExnRef>) -> Result<R, ThrownException> {
1270 self.0.inner.throw_impl(exception);
1271 Err(ThrownException)
1272 }
1273
1274 /// Take the currently pending exception, if any, and return it,
1275 /// removing it from the "pending exception" slot.
1276 ///
1277 /// See [`Store::take_pending_exception`] for more details.
1278 #[cfg(feature = "gc")]
1279 pub fn take_pending_exception(&mut self) -> Option<Rooted<ExnRef>> {
1280 self.0.inner.take_pending_exception_rooted()
1281 }
1282
1283 /// Tests whether there is a pending exception.
1284 ///
1285 ///
1286 /// See [`Store::has_pending_exception`] for more details.
1287 #[cfg(feature = "gc")]
1288 pub fn has_pending_exception(&self) -> bool {
1289 self.0.inner.pending_exception.is_some()
1290 }
1291}
1292
1293impl<T> StoreInner<T> {
1294 #[inline]
1295 fn data(&self) -> &T {
1296 &self.data
1297 }
1298
1299 #[inline]
1300 fn data_mut(&mut self) -> &mut T {
1301 &mut self.data
1302 }
1303
1304 #[inline]
1305 pub fn call_hook(&mut self, s: CallHook) -> Result<()> {
1306 if self.inner.pkey.is_none() && self.call_hook.is_none() {
1307 Ok(())
1308 } else {
1309 self.call_hook_slow_path(s)
1310 }
1311 }
1312
1313 fn call_hook_slow_path(&mut self, s: CallHook) -> Result<()> {
1314 if let Some(pkey) = &self.inner.pkey {
1315 let allocator = self.engine().allocator();
1316 match s {
1317 CallHook::CallingWasm | CallHook::ReturningFromHost => {
1318 allocator.restrict_to_pkey(*pkey)
1319 }
1320 CallHook::ReturningFromWasm | CallHook::CallingHost => allocator.allow_all_pkeys(),
1321 }
1322 }
1323
1324 // Temporarily take the configured behavior to avoid mutably borrowing
1325 // multiple times.
1326 if let Some(mut call_hook) = self.call_hook.take() {
1327 let result = self.invoke_call_hook(&mut call_hook, s);
1328 self.call_hook = Some(call_hook);
1329 return result;
1330 }
1331
1332 Ok(())
1333 }
1334
1335 fn invoke_call_hook(&mut self, call_hook: &mut CallHookInner<T>, s: CallHook) -> Result<()> {
1336 match call_hook {
1337 #[cfg(feature = "call-hook")]
1338 CallHookInner::Sync(hook) => hook((&mut *self).as_context_mut(), s),
1339
1340 #[cfg(all(feature = "async", feature = "call-hook"))]
1341 CallHookInner::Async(handler) => {
1342 if !self.can_block() {
1343 bail!("couldn't grab async_cx for call hook")
1344 }
1345 return (&mut *self)
1346 .as_context_mut()
1347 .with_blocking(|store, cx| cx.block_on(handler.handle_call_event(store, s)))?;
1348 }
1349
1350 CallHookInner::ForceTypeParameterToBeUsed { uninhabited, .. } => {
1351 let _ = s;
1352 match *uninhabited {}
1353 }
1354 }
1355 }
1356
1357 #[cfg(not(feature = "async"))]
1358 fn flush_fiber_stack(&mut self) {
1359 // noop shim so code can assume this always exists.
1360 }
1361}
1362
1363fn get_fuel(injected_fuel: i64, fuel_reserve: u64) -> u64 {
1364 fuel_reserve.saturating_add_signed(-injected_fuel)
1365}
1366
1367// Add remaining fuel from the reserve into the active fuel if there is any left.
1368fn refuel(
1369 injected_fuel: &mut i64,
1370 fuel_reserve: &mut u64,
1371 yield_interval: Option<NonZeroU64>,
1372) -> bool {
1373 let fuel = get_fuel(*injected_fuel, *fuel_reserve);
1374 if fuel > 0 {
1375 set_fuel(injected_fuel, fuel_reserve, yield_interval, fuel);
1376 true
1377 } else {
1378 false
1379 }
1380}
1381
1382fn set_fuel(
1383 injected_fuel: &mut i64,
1384 fuel_reserve: &mut u64,
1385 yield_interval: Option<NonZeroU64>,
1386 new_fuel_amount: u64,
1387) {
1388 let interval = yield_interval.unwrap_or(NonZeroU64::MAX).get();
1389 // If we're yielding periodically we only store the "active" amount of fuel into consumed_ptr
1390 // for the VM to use.
1391 let injected = core::cmp::min(interval, new_fuel_amount);
1392 // Fuel in the VM is stored as an i64, so we have to cap the amount of fuel we inject into the
1393 // VM at once to be i64 range.
1394 let injected = core::cmp::min(injected, i64::MAX as u64);
1395 // Add whatever is left over after injection to the reserve for later use.
1396 *fuel_reserve = new_fuel_amount - injected;
1397 // Within the VM we increment to count fuel, so inject a negative amount. The VM will halt when
1398 // this counter is positive.
1399 *injected_fuel = -(injected as i64);
1400}
1401
1402#[doc(hidden)]
1403impl StoreOpaque {
1404 pub fn id(&self) -> StoreId {
1405 self.store_data.id()
1406 }
1407
1408 pub fn bump_resource_counts(&mut self, module: &Module) -> Result<()> {
1409 fn bump(slot: &mut usize, max: usize, amt: usize, desc: &str) -> Result<()> {
1410 let new = slot.saturating_add(amt);
1411 if new > max {
1412 bail!(
1413 "resource limit exceeded: {} count too high at {}",
1414 desc,
1415 new
1416 );
1417 }
1418 *slot = new;
1419 Ok(())
1420 }
1421
1422 let module = module.env_module();
1423 let memories = module.num_defined_memories();
1424 let tables = module.num_defined_tables();
1425
1426 bump(&mut self.instance_count, self.instance_limit, 1, "instance")?;
1427 bump(
1428 &mut self.memory_count,
1429 self.memory_limit,
1430 memories,
1431 "memory",
1432 )?;
1433 bump(&mut self.table_count, self.table_limit, tables, "table")?;
1434
1435 Ok(())
1436 }
1437
1438 #[inline]
1439 pub fn async_support(&self) -> bool {
1440 cfg!(feature = "async") && self.engine().config().async_support
1441 }
1442
1443 #[inline]
1444 pub fn engine(&self) -> &Engine {
1445 &self.engine
1446 }
1447
1448 #[inline]
1449 pub fn store_data(&self) -> &StoreData {
1450 &self.store_data
1451 }
1452
1453 #[inline]
1454 pub fn store_data_mut(&mut self) -> &mut StoreData {
1455 &mut self.store_data
1456 }
1457
1458 #[inline]
1459 pub(crate) fn modules(&self) -> &ModuleRegistry {
1460 &self.modules
1461 }
1462
1463 #[inline]
1464 pub(crate) fn modules_mut(&mut self) -> &mut ModuleRegistry {
1465 &mut self.modules
1466 }
1467
1468 pub(crate) fn func_refs_and_modules(&mut self) -> (&mut FuncRefs, &ModuleRegistry) {
1469 (&mut self.func_refs, &self.modules)
1470 }
1471
1472 pub(crate) fn host_globals(
1473 &self,
1474 ) -> &PrimaryMap<DefinedGlobalIndex, StoreBox<VMHostGlobalContext>> {
1475 &self.host_globals
1476 }
1477
1478 pub(crate) fn host_globals_mut(
1479 &mut self,
1480 ) -> &mut PrimaryMap<DefinedGlobalIndex, StoreBox<VMHostGlobalContext>> {
1481 &mut self.host_globals
1482 }
1483
1484 pub fn module_for_instance(&self, instance: StoreInstanceId) -> Option<&'_ Module> {
1485 instance.store_id().assert_belongs_to(self.id());
1486 match self.instances[instance.instance()].kind {
1487 StoreInstanceKind::Dummy => None,
1488 StoreInstanceKind::Real { module_id } => {
1489 let module = self
1490 .modules()
1491 .lookup_module_by_id(module_id)
1492 .expect("should always have a registered module for real instances");
1493 Some(module)
1494 }
1495 }
1496 }
1497
1498 /// Accessor from `InstanceId` to `&vm::Instance`.
1499 ///
1500 /// Note that if you have a `StoreInstanceId` you should use
1501 /// `StoreInstanceId::get` instead. This assumes that `id` has been
1502 /// validated to already belong to this store.
1503 #[inline]
1504 pub fn instance(&self, id: InstanceId) -> &vm::Instance {
1505 self.instances[id].handle.get()
1506 }
1507
1508 /// Accessor from `InstanceId` to `Pin<&mut vm::Instance>`.
1509 ///
1510 /// Note that if you have a `StoreInstanceId` you should use
1511 /// `StoreInstanceId::get_mut` instead. This assumes that `id` has been
1512 /// validated to already belong to this store.
1513 #[inline]
1514 pub fn instance_mut(&mut self, id: InstanceId) -> Pin<&mut vm::Instance> {
1515 self.instances[id].handle.get_mut()
1516 }
1517
1518 /// Access multiple instances specified via `ids`.
1519 ///
1520 /// # Panics
1521 ///
1522 /// This method will panic if any indices in `ids` overlap.
1523 ///
1524 /// # Safety
1525 ///
1526 /// This method is not safe if the returned instances are used to traverse
1527 /// "laterally" between other instances. For example accessing imported
1528 /// items in an instance may traverse laterally to a sibling instance thus
1529 /// aliasing a returned value here. The caller must ensure that only defined
1530 /// items within the instances themselves are accessed.
1531 #[inline]
1532 pub unsafe fn optional_gc_store_and_instances_mut<const N: usize>(
1533 &mut self,
1534 ids: [InstanceId; N],
1535 ) -> (Option<&mut GcStore>, [Pin<&mut vm::Instance>; N]) {
1536 let instances = self
1537 .instances
1538 .get_disjoint_mut(ids)
1539 .unwrap()
1540 .map(|h| h.handle.get_mut());
1541 (self.gc_store.as_mut(), instances)
1542 }
1543
1544 /// Pair of `Self::optional_gc_store_mut` and `Self::instance_mut`
1545 pub fn optional_gc_store_and_instance_mut(
1546 &mut self,
1547 id: InstanceId,
1548 ) -> (Option<&mut GcStore>, Pin<&mut vm::Instance>) {
1549 (self.gc_store.as_mut(), self.instances[id].handle.get_mut())
1550 }
1551
1552 /// Get all instances (ignoring dummy instances) within this store.
1553 pub fn all_instances<'a>(&'a mut self) -> impl ExactSizeIterator<Item = Instance> + 'a {
1554 let instances = self
1555 .instances
1556 .iter()
1557 .filter_map(|(id, inst)| {
1558 if let StoreInstanceKind::Dummy = inst.kind {
1559 None
1560 } else {
1561 Some(id)
1562 }
1563 })
1564 .collect::<Vec<_>>();
1565 instances
1566 .into_iter()
1567 .map(|i| Instance::from_wasmtime(i, self))
1568 }
1569
1570 /// Get all memories (host- or Wasm-defined) within this store.
1571 pub fn all_memories<'a>(&'a self) -> impl Iterator<Item = Memory> + 'a {
1572 // NB: Host-created memories have dummy instances. Therefore, we can get
1573 // all memories in the store by iterating over all instances (including
1574 // dummy instances) and getting each of their defined memories.
1575 let id = self.id();
1576 self.instances
1577 .iter()
1578 .flat_map(move |(_, instance)| instance.handle.get().defined_memories(id))
1579 }
1580
1581 /// Iterate over all tables (host- or Wasm-defined) within this store.
1582 pub fn for_each_table(&mut self, mut f: impl FnMut(&mut Self, Table)) {
1583 // NB: Host-created tables have dummy instances. Therefore, we can get
1584 // all tables in the store by iterating over all instances (including
1585 // dummy instances) and getting each of their defined memories.
1586 for id in self.instances.keys() {
1587 let instance = StoreInstanceId::new(self.id(), id);
1588 for table in 0..self.instance(id).env_module().num_defined_tables() {
1589 let table = DefinedTableIndex::new(table);
1590 f(self, Table::from_raw(instance, table));
1591 }
1592 }
1593 }
1594
1595 /// Iterate over all globals (host- or Wasm-defined) within this store.
1596 pub fn for_each_global(&mut self, mut f: impl FnMut(&mut Self, Global)) {
1597 // First enumerate all the host-created globals.
1598 for global in self.host_globals.keys() {
1599 let global = Global::new_host(self, global);
1600 f(self, global);
1601 }
1602
1603 // Then enumerate all instances' defined globals.
1604 for id in self.instances.keys() {
1605 for index in 0..self.instance(id).env_module().num_defined_globals() {
1606 let index = DefinedGlobalIndex::new(index);
1607 let global = Global::new_instance(self, id, index);
1608 f(self, global);
1609 }
1610 }
1611 }
1612
1613 #[cfg(all(feature = "std", any(unix, windows)))]
1614 pub fn set_signal_handler(&mut self, handler: Option<SignalHandler>) {
1615 self.signal_handler = handler;
1616 }
1617
1618 #[inline]
1619 pub fn vm_store_context(&self) -> &VMStoreContext {
1620 &self.vm_store_context
1621 }
1622
1623 #[inline]
1624 pub fn vm_store_context_mut(&mut self) -> &mut VMStoreContext {
1625 &mut self.vm_store_context
1626 }
1627
1628 /// Performs a lazy allocation of the `GcStore` within this store, returning
1629 /// the previous allocation if it's already present.
1630 ///
1631 /// This method will, if necessary, allocate a new `GcStore` -- linear
1632 /// memory and all. This is a blocking operation due to
1633 /// `ResourceLimiterAsync` which means that this should only be executed
1634 /// in a fiber context at this time.
1635 #[inline]
1636 pub(crate) async fn ensure_gc_store(
1637 &mut self,
1638 limiter: Option<&mut StoreResourceLimiter<'_>>,
1639 ) -> Result<&mut GcStore> {
1640 if self.gc_store.is_some() {
1641 return Ok(self.gc_store.as_mut().unwrap());
1642 }
1643 self.allocate_gc_store(limiter).await
1644 }
1645
1646 #[inline(never)]
1647 async fn allocate_gc_store(
1648 &mut self,
1649 limiter: Option<&mut StoreResourceLimiter<'_>>,
1650 ) -> Result<&mut GcStore> {
1651 log::trace!("allocating GC heap for store {:?}", self.id());
1652
1653 assert!(self.gc_store.is_none());
1654 assert_eq!(
1655 self.vm_store_context.gc_heap.base.as_non_null(),
1656 NonNull::dangling(),
1657 );
1658 assert_eq!(self.vm_store_context.gc_heap.current_length(), 0);
1659
1660 let gc_store = allocate_gc_store(self, limiter).await?;
1661 self.vm_store_context.gc_heap = gc_store.vmmemory_definition();
1662 return Ok(self.gc_store.insert(gc_store));
1663
1664 #[cfg(feature = "gc")]
1665 async fn allocate_gc_store(
1666 store: &mut StoreOpaque,
1667 limiter: Option<&mut StoreResourceLimiter<'_>>,
1668 ) -> Result<GcStore> {
1669 use wasmtime_environ::packed_option::ReservedValue;
1670
1671 let engine = store.engine();
1672 let mem_ty = engine.tunables().gc_heap_memory_type();
1673 ensure!(
1674 engine.features().gc_types(),
1675 "cannot allocate a GC store when GC is disabled at configuration time"
1676 );
1677
1678 // First, allocate the memory that will be our GC heap's storage.
1679 let mut request = InstanceAllocationRequest {
1680 id: InstanceId::reserved_value(),
1681 runtime_info: &ModuleRuntimeInfo::bare(Arc::new(
1682 wasmtime_environ::Module::default(),
1683 )),
1684 imports: vm::Imports::default(),
1685 store,
1686 limiter,
1687 };
1688
1689 let (mem_alloc_index, mem) = engine
1690 .allocator()
1691 .allocate_memory(&mut request, &mem_ty, None)
1692 .await?;
1693
1694 // Then, allocate the actual GC heap, passing in that memory
1695 // storage.
1696 let gc_runtime = engine
1697 .gc_runtime()
1698 .context("no GC runtime: GC disabled at compile time or configuration time")?;
1699 let (index, heap) =
1700 engine
1701 .allocator()
1702 .allocate_gc_heap(engine, &**gc_runtime, mem_alloc_index, mem)?;
1703
1704 Ok(GcStore::new(index, heap))
1705 }
1706
1707 #[cfg(not(feature = "gc"))]
1708 async fn allocate_gc_store(
1709 _: &mut StoreOpaque,
1710 _: Option<&mut StoreResourceLimiter<'_>>,
1711 ) -> Result<GcStore> {
1712 bail!("cannot allocate a GC store: the `gc` feature was disabled at compile time")
1713 }
1714 }
1715
1716 /// Helper method to require that a `GcStore` was previously allocated for
1717 /// this store, failing if it has not yet been allocated.
1718 ///
1719 /// Note that this should only be used in a context where allocation of a
1720 /// `GcStore` is sure to have already happened prior, otherwise this may
1721 /// return a confusing error to embedders which is a bug in Wasmtime.
1722 ///
1723 /// Some situations where it's safe to call this method:
1724 ///
1725 /// * There's already a non-null and non-i31 `VMGcRef` in scope. By existing
1726 /// this shows proof that the `GcStore` was previously allocated.
1727 /// * During instantiation and instance's `needs_gc_heap` flag will be
1728 /// handled and instantiation will automatically create a GC store.
1729 #[inline]
1730 #[cfg(feature = "gc")]
1731 pub(crate) fn require_gc_store(&self) -> Result<&GcStore> {
1732 match &self.gc_store {
1733 Some(gc_store) => Ok(gc_store),
1734 None => bail!("GC heap not initialized yet"),
1735 }
1736 }
1737
1738 /// Same as [`Self::require_gc_store`], but mutable.
1739 #[inline]
1740 #[cfg(feature = "gc")]
1741 pub(crate) fn require_gc_store_mut(&mut self) -> Result<&mut GcStore> {
1742 match &mut self.gc_store {
1743 Some(gc_store) => Ok(gc_store),
1744 None => bail!("GC heap not initialized yet"),
1745 }
1746 }
1747
1748 /// Attempts to access the GC store that has been previously allocated.
1749 ///
1750 /// This method will return `Some` if the GC store was previously allocated.
1751 /// A `None` return value means either that the GC heap hasn't yet been
1752 /// allocated or that it does not need to be allocated for this store. Note
1753 /// that to require a GC store in a particular situation it's recommended to
1754 /// use [`Self::require_gc_store_mut`] instead.
1755 #[inline]
1756 pub(crate) fn optional_gc_store_mut(&mut self) -> Option<&mut GcStore> {
1757 if cfg!(not(feature = "gc")) || !self.engine.features().gc_types() {
1758 debug_assert!(self.gc_store.is_none());
1759 None
1760 } else {
1761 self.gc_store.as_mut()
1762 }
1763 }
1764
1765 /// Helper to assert that a GC store was previously allocated and is
1766 /// present.
1767 ///
1768 /// # Panics
1769 ///
1770 /// This method will panic if the GC store has not yet been allocated. This
1771 /// should only be used in a context where there's an existing GC reference,
1772 /// for example, or if `ensure_gc_store` has already been called.
1773 #[inline]
1774 #[track_caller]
1775 pub(crate) fn unwrap_gc_store(&self) -> &GcStore {
1776 self.gc_store
1777 .as_ref()
1778 .expect("attempted to access the store's GC heap before it has been allocated")
1779 }
1780
1781 /// Same as [`Self::unwrap_gc_store`], but mutable.
1782 #[inline]
1783 #[track_caller]
1784 pub(crate) fn unwrap_gc_store_mut(&mut self) -> &mut GcStore {
1785 self.gc_store
1786 .as_mut()
1787 .expect("attempted to access the store's GC heap before it has been allocated")
1788 }
1789
1790 #[inline]
1791 pub(crate) fn gc_roots(&self) -> &RootSet {
1792 &self.gc_roots
1793 }
1794
1795 #[inline]
1796 #[cfg(feature = "gc")]
1797 pub(crate) fn gc_roots_mut(&mut self) -> &mut RootSet {
1798 &mut self.gc_roots
1799 }
1800
1801 #[inline]
1802 pub(crate) fn exit_gc_lifo_scope(&mut self, scope: usize) {
1803 self.gc_roots.exit_lifo_scope(self.gc_store.as_mut(), scope);
1804 }
1805
1806 #[cfg(feature = "gc")]
1807 async fn do_gc(&mut self) {
1808 // If the GC heap hasn't been initialized, there is nothing to collect.
1809 if self.gc_store.is_none() {
1810 return;
1811 }
1812
1813 log::trace!("============ Begin GC ===========");
1814
1815 // Take the GC roots out of `self` so we can borrow it mutably but still
1816 // call mutable methods on `self`.
1817 let mut roots = core::mem::take(&mut self.gc_roots_list);
1818
1819 self.trace_roots(&mut roots).await;
1820 let async_yield = self.async_support();
1821 self.unwrap_gc_store_mut()
1822 .gc(async_yield, unsafe { roots.iter() })
1823 .await;
1824
1825 // Restore the GC roots for the next GC.
1826 roots.clear();
1827 self.gc_roots_list = roots;
1828
1829 log::trace!("============ End GC ===========");
1830 }
1831
1832 #[cfg(feature = "gc")]
1833 async fn trace_roots(&mut self, gc_roots_list: &mut GcRootsList) {
1834 log::trace!("Begin trace GC roots");
1835
1836 // We shouldn't have any leftover, stale GC roots.
1837 assert!(gc_roots_list.is_empty());
1838
1839 self.trace_wasm_stack_roots(gc_roots_list);
1840 #[cfg(feature = "async")]
1841 if self.async_support() {
1842 vm::Yield::new().await;
1843 }
1844 #[cfg(feature = "stack-switching")]
1845 {
1846 self.trace_wasm_continuation_roots(gc_roots_list);
1847 #[cfg(feature = "async")]
1848 if self.async_support() {
1849 vm::Yield::new().await;
1850 }
1851 }
1852 self.trace_vmctx_roots(gc_roots_list);
1853 #[cfg(feature = "async")]
1854 if self.async_support() {
1855 vm::Yield::new().await;
1856 }
1857 self.trace_user_roots(gc_roots_list);
1858 self.trace_pending_exception_roots(gc_roots_list);
1859
1860 log::trace!("End trace GC roots")
1861 }
1862
1863 #[cfg(feature = "gc")]
1864 fn trace_wasm_stack_frame(
1865 &self,
1866 gc_roots_list: &mut GcRootsList,
1867 frame: crate::runtime::vm::Frame,
1868 ) {
1869 use crate::runtime::vm::SendSyncPtr;
1870 use core::ptr::NonNull;
1871
1872 let pc = frame.pc();
1873 debug_assert!(pc != 0, "we should always get a valid PC for Wasm frames");
1874
1875 let fp = frame.fp() as *mut usize;
1876 debug_assert!(
1877 !fp.is_null(),
1878 "we should always get a valid frame pointer for Wasm frames"
1879 );
1880
1881 let module_info = self
1882 .modules()
1883 .lookup_module_by_pc(pc)
1884 .expect("should have module info for Wasm frame");
1885
1886 let stack_map = match module_info.lookup_stack_map(pc) {
1887 Some(sm) => sm,
1888 None => {
1889 log::trace!("No stack map for this Wasm frame");
1890 return;
1891 }
1892 };
1893 log::trace!(
1894 "We have a stack map that maps {} bytes in this Wasm frame",
1895 stack_map.frame_size()
1896 );
1897
1898 let sp = unsafe { stack_map.sp(fp) };
1899 for stack_slot in unsafe { stack_map.live_gc_refs(sp) } {
1900 let raw: u32 = unsafe { core::ptr::read(stack_slot) };
1901 log::trace!("Stack slot @ {stack_slot:p} = {raw:#x}");
1902
1903 let gc_ref = vm::VMGcRef::from_raw_u32(raw);
1904 if gc_ref.is_some() {
1905 unsafe {
1906 gc_roots_list
1907 .add_wasm_stack_root(SendSyncPtr::new(NonNull::new(stack_slot).unwrap()));
1908 }
1909 }
1910 }
1911 }
1912
1913 #[cfg(feature = "gc")]
1914 fn trace_wasm_stack_roots(&mut self, gc_roots_list: &mut GcRootsList) {
1915 use crate::runtime::vm::Backtrace;
1916 log::trace!("Begin trace GC roots :: Wasm stack");
1917
1918 Backtrace::trace(self, |frame| {
1919 self.trace_wasm_stack_frame(gc_roots_list, frame);
1920 core::ops::ControlFlow::Continue(())
1921 });
1922
1923 log::trace!("End trace GC roots :: Wasm stack");
1924 }
1925
1926 #[cfg(all(feature = "gc", feature = "stack-switching"))]
1927 fn trace_wasm_continuation_roots(&mut self, gc_roots_list: &mut GcRootsList) {
1928 use crate::{runtime::vm::Backtrace, vm::VMStackState};
1929 log::trace!("Begin trace GC roots :: continuations");
1930
1931 for continuation in &self.continuations {
1932 let state = continuation.common_stack_information.state;
1933
1934 // FIXME(frank-emrich) In general, it is not enough to just trace
1935 // through the stacks of continuations; we also need to look through
1936 // their `cont.bind` arguments. However, we don't currently have
1937 // enough RTTI information to check if any of the values in the
1938 // buffers used by `cont.bind` are GC values. As a workaround, note
1939 // that we currently disallow cont.bind-ing GC values altogether.
1940 // This way, it is okay not to check them here.
1941 match state {
1942 VMStackState::Suspended => {
1943 Backtrace::trace_suspended_continuation(self, continuation.deref(), |frame| {
1944 self.trace_wasm_stack_frame(gc_roots_list, frame);
1945 core::ops::ControlFlow::Continue(())
1946 });
1947 }
1948 VMStackState::Running => {
1949 // Handled by `trace_wasm_stack_roots`.
1950 }
1951 VMStackState::Parent => {
1952 // We don't know whether our child is suspended or running, but in
1953 // either case things should be hanlded correctly when traversing
1954 // further along in the chain, nothing required at this point.
1955 }
1956 VMStackState::Fresh | VMStackState::Returned => {
1957 // Fresh/Returned continuations have no gc values on their stack.
1958 }
1959 }
1960 }
1961
1962 log::trace!("End trace GC roots :: continuations");
1963 }
1964
1965 #[cfg(feature = "gc")]
1966 fn trace_vmctx_roots(&mut self, gc_roots_list: &mut GcRootsList) {
1967 log::trace!("Begin trace GC roots :: vmctx");
1968 self.for_each_global(|store, global| global.trace_root(store, gc_roots_list));
1969 self.for_each_table(|store, table| table.trace_roots(store, gc_roots_list));
1970 log::trace!("End trace GC roots :: vmctx");
1971 }
1972
1973 #[cfg(feature = "gc")]
1974 fn trace_user_roots(&mut self, gc_roots_list: &mut GcRootsList) {
1975 log::trace!("Begin trace GC roots :: user");
1976 self.gc_roots.trace_roots(gc_roots_list);
1977 log::trace!("End trace GC roots :: user");
1978 }
1979
1980 #[cfg(feature = "gc")]
1981 fn trace_pending_exception_roots(&mut self, gc_roots_list: &mut GcRootsList) {
1982 log::trace!("Begin trace GC roots :: pending exception");
1983 if let Some(pending_exception) = self.pending_exception.as_mut() {
1984 unsafe {
1985 let root = pending_exception.as_gc_ref_mut();
1986 gc_roots_list.add_root(root.into(), "Pending exception");
1987 }
1988 }
1989 log::trace!("End trace GC roots :: pending exception");
1990 }
1991
1992 /// Insert a host-allocated GC type into this store.
1993 ///
1994 /// This makes it suitable for the embedder to allocate instances of this
1995 /// type in this store, and we don't have to worry about the type being
1996 /// reclaimed (since it is possible that none of the Wasm modules in this
1997 /// store are holding it alive).
1998 #[cfg(feature = "gc")]
1999 pub(crate) fn insert_gc_host_alloc_type(&mut self, ty: crate::type_registry::RegisteredType) {
2000 self.gc_host_alloc_types.insert(ty);
2001 }
2002
2003 /// Helper function execute a `init_gc_ref` when placing `gc_ref` in `dest`.
2004 ///
2005 /// This avoids allocating `GcStore` where possible.
2006 pub(crate) fn init_gc_ref(
2007 &mut self,
2008 dest: &mut MaybeUninit<Option<VMGcRef>>,
2009 gc_ref: Option<&VMGcRef>,
2010 ) {
2011 if GcStore::needs_init_barrier(gc_ref) {
2012 self.unwrap_gc_store_mut().init_gc_ref(dest, gc_ref)
2013 } else {
2014 dest.write(gc_ref.map(|r| r.copy_i31()));
2015 }
2016 }
2017
2018 /// Helper function execute a write barrier when placing `gc_ref` in `dest`.
2019 ///
2020 /// This avoids allocating `GcStore` where possible.
2021 pub(crate) fn write_gc_ref(&mut self, dest: &mut Option<VMGcRef>, gc_ref: Option<&VMGcRef>) {
2022 GcStore::write_gc_ref_optional_store(self.optional_gc_store_mut(), dest, gc_ref)
2023 }
2024
2025 /// Helper function to clone `gc_ref` notably avoiding allocating a
2026 /// `GcStore` where possible.
2027 pub(crate) fn clone_gc_ref(&mut self, gc_ref: &VMGcRef) -> VMGcRef {
2028 if gc_ref.is_i31() {
2029 gc_ref.copy_i31()
2030 } else {
2031 self.unwrap_gc_store_mut().clone_gc_ref(gc_ref)
2032 }
2033 }
2034
2035 pub fn get_fuel(&self) -> Result<u64> {
2036 anyhow::ensure!(
2037 self.engine().tunables().consume_fuel,
2038 "fuel is not configured in this store"
2039 );
2040 let injected_fuel = unsafe { *self.vm_store_context.fuel_consumed.get() };
2041 Ok(get_fuel(injected_fuel, self.fuel_reserve))
2042 }
2043
2044 pub(crate) fn refuel(&mut self) -> bool {
2045 let injected_fuel = unsafe { &mut *self.vm_store_context.fuel_consumed.get() };
2046 refuel(
2047 injected_fuel,
2048 &mut self.fuel_reserve,
2049 self.fuel_yield_interval,
2050 )
2051 }
2052
2053 pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
2054 anyhow::ensure!(
2055 self.engine().tunables().consume_fuel,
2056 "fuel is not configured in this store"
2057 );
2058 let injected_fuel = unsafe { &mut *self.vm_store_context.fuel_consumed.get() };
2059 set_fuel(
2060 injected_fuel,
2061 &mut self.fuel_reserve,
2062 self.fuel_yield_interval,
2063 fuel,
2064 );
2065 Ok(())
2066 }
2067
2068 pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
2069 anyhow::ensure!(
2070 self.engine().tunables().consume_fuel,
2071 "fuel is not configured in this store"
2072 );
2073 anyhow::ensure!(
2074 self.engine().config().async_support,
2075 "async support is not configured in this store"
2076 );
2077 anyhow::ensure!(
2078 interval != Some(0),
2079 "fuel_async_yield_interval must not be 0"
2080 );
2081 self.fuel_yield_interval = interval.and_then(|i| NonZeroU64::new(i));
2082 // Reset the fuel active + reserve states by resetting the amount.
2083 self.set_fuel(self.get_fuel()?)
2084 }
2085
2086 #[inline]
2087 pub fn signal_handler(&self) -> Option<*const SignalHandler> {
2088 let handler = self.signal_handler.as_ref()?;
2089 Some(handler)
2090 }
2091
2092 #[inline]
2093 pub fn vm_store_context_ptr(&self) -> NonNull<VMStoreContext> {
2094 NonNull::from(&self.vm_store_context)
2095 }
2096
2097 #[inline]
2098 pub fn default_caller(&self) -> NonNull<VMContext> {
2099 self.default_caller_vmctx.as_non_null()
2100 }
2101
2102 #[inline]
2103 pub fn traitobj(&self) -> NonNull<dyn VMStore> {
2104 self.traitobj.0.unwrap()
2105 }
2106
2107 /// Takes the cached `Vec<Val>` stored internally across hostcalls to get
2108 /// used as part of calling the host in a `Func::new` method invocation.
2109 #[inline]
2110 pub fn take_hostcall_val_storage(&mut self) -> Vec<Val> {
2111 mem::take(&mut self.hostcall_val_storage)
2112 }
2113
2114 /// Restores the vector previously taken by `take_hostcall_val_storage`
2115 /// above back into the store, allowing it to be used in the future for the
2116 /// next wasm->host call.
2117 #[inline]
2118 pub fn save_hostcall_val_storage(&mut self, storage: Vec<Val>) {
2119 if storage.capacity() > self.hostcall_val_storage.capacity() {
2120 self.hostcall_val_storage = storage;
2121 }
2122 }
2123
2124 /// Same as `take_hostcall_val_storage`, but for the direction of the host
2125 /// calling wasm.
2126 #[inline]
2127 pub fn take_wasm_val_raw_storage(&mut self) -> Vec<ValRaw> {
2128 mem::take(&mut self.wasm_val_raw_storage)
2129 }
2130
2131 /// Same as `save_hostcall_val_storage`, but for the direction of the host
2132 /// calling wasm.
2133 #[inline]
2134 pub fn save_wasm_val_raw_storage(&mut self, storage: Vec<ValRaw>) {
2135 if storage.capacity() > self.wasm_val_raw_storage.capacity() {
2136 self.wasm_val_raw_storage = storage;
2137 }
2138 }
2139
2140 /// Translates a WebAssembly fault at the native `pc` and native `addr` to a
2141 /// WebAssembly-relative fault.
2142 ///
2143 /// This function may abort the process if `addr` is not found to actually
2144 /// reside in any linear memory. In such a situation it means that the
2145 /// segfault was erroneously caught by Wasmtime and is possibly indicative
2146 /// of a code generator bug.
2147 ///
2148 /// This function returns `None` for dynamically-bounds-checked-memories
2149 /// with spectre mitigations enabled since the hardware fault address is
2150 /// always zero in these situations which means that the trapping context
2151 /// doesn't have enough information to report the fault address.
2152 pub(crate) fn wasm_fault(&self, pc: usize, addr: usize) -> Option<vm::WasmFault> {
2153 // There are a few instances where a "close to zero" pointer is loaded
2154 // and we expect that to happen:
2155 //
2156 // * Explicitly bounds-checked memories with spectre-guards enabled will
2157 // cause out-of-bounds accesses to get routed to address 0, so allow
2158 // wasm instructions to fault on the null address.
2159 // * `call_indirect` when invoking a null function pointer may load data
2160 // from the a `VMFuncRef` whose address is null, meaning any field of
2161 // `VMFuncRef` could be the address of the fault.
2162 //
2163 // In these situations where the address is so small it won't be in any
2164 // instance, so skip the checks below.
2165 if addr <= mem::size_of::<VMFuncRef>() {
2166 const _: () = {
2167 // static-assert that `VMFuncRef` isn't too big to ensure that
2168 // it lives solely within the first page as we currently only
2169 // have the guarantee that the first page of memory is unmapped,
2170 // no more.
2171 assert!(mem::size_of::<VMFuncRef>() <= 512);
2172 };
2173 return None;
2174 }
2175
2176 // Search all known instances in this store for this address. Note that
2177 // this is probably not the speediest way to do this. Traps, however,
2178 // are generally not expected to be super fast and additionally stores
2179 // probably don't have all that many instances or memories.
2180 //
2181 // If this loop becomes hot in the future, however, it should be
2182 // possible to precompute maps about linear memories in a store and have
2183 // a quicker lookup.
2184 let mut fault = None;
2185 for (_, instance) in self.instances.iter() {
2186 if let Some(f) = instance.handle.get().wasm_fault(addr) {
2187 assert!(fault.is_none());
2188 fault = Some(f);
2189 }
2190 }
2191 if fault.is_some() {
2192 return fault;
2193 }
2194
2195 cfg_if::cfg_if! {
2196 if #[cfg(feature = "std")] {
2197 // With the standard library a rich error can be printed here
2198 // to stderr and the native abort path is used.
2199 eprintln!(
2200 "\
2201Wasmtime caught a segfault for a wasm program because the faulting instruction
2202is allowed to segfault due to how linear memories are implemented. The address
2203that was accessed, however, is not known to any linear memory in use within this
2204Store. This may be indicative of a critical bug in Wasmtime's code generation
2205because all addresses which are known to be reachable from wasm won't reach this
2206message.
2207
2208 pc: 0x{pc:x}
2209 address: 0x{addr:x}
2210
2211This is a possible security issue because WebAssembly has accessed something it
2212shouldn't have been able to. Other accesses may have succeeded and this one just
2213happened to be caught. The process will now be aborted to prevent this damage
2214from going any further and to alert what's going on. If this is a security
2215issue please reach out to the Wasmtime team via its security policy
2216at https://bytecodealliance.org/security.
2217"
2218 );
2219 std::process::abort();
2220 } else if #[cfg(panic = "abort")] {
2221 // Without the standard library but with `panic=abort` then
2222 // it's safe to panic as that's known to halt execution. For
2223 // now avoid the above error message as well since without
2224 // `std` it's probably best to be a bit more size-conscious.
2225 let _ = pc;
2226 panic!("invalid fault");
2227 } else {
2228 // Without `std` and with `panic = "unwind"` there's no
2229 // dedicated API to abort the process portably, so manufacture
2230 // this with a double-panic.
2231 let _ = pc;
2232
2233 struct PanicAgainOnDrop;
2234
2235 impl Drop for PanicAgainOnDrop {
2236 fn drop(&mut self) {
2237 panic!("panicking again to trigger a process abort");
2238 }
2239
2240 }
2241
2242 let _bomb = PanicAgainOnDrop;
2243
2244 panic!("invalid fault");
2245 }
2246 }
2247 }
2248
2249 /// Retrieve the store's protection key.
2250 #[inline]
2251 #[cfg(feature = "pooling-allocator")]
2252 pub(crate) fn get_pkey(&self) -> Option<ProtectionKey> {
2253 self.pkey
2254 }
2255
2256 #[inline]
2257 #[cfg(feature = "component-model")]
2258 pub(crate) fn component_resource_state(
2259 &mut self,
2260 ) -> (
2261 &mut vm::component::CallContexts,
2262 &mut vm::component::HandleTable,
2263 &mut crate::component::HostResourceData,
2264 ) {
2265 (
2266 &mut self.component_calls,
2267 &mut self.component_host_table,
2268 &mut self.host_resource_data,
2269 )
2270 }
2271
2272 #[cfg(feature = "component-model")]
2273 pub(crate) fn push_component_instance(&mut self, instance: crate::component::Instance) {
2274 // We don't actually need the instance itself right now, but it seems
2275 // like something we will almost certainly eventually want to keep
2276 // around, so force callers to provide it.
2277 let _ = instance;
2278
2279 self.num_component_instances += 1;
2280 }
2281
2282 #[inline]
2283 #[cfg(feature = "component-model")]
2284 pub(crate) fn component_resource_state_with_instance(
2285 &mut self,
2286 instance: crate::component::Instance,
2287 ) -> (
2288 &mut vm::component::CallContexts,
2289 &mut vm::component::HandleTable,
2290 &mut crate::component::HostResourceData,
2291 Pin<&mut vm::component::ComponentInstance>,
2292 ) {
2293 (
2294 &mut self.component_calls,
2295 &mut self.component_host_table,
2296 &mut self.host_resource_data,
2297 instance.id().from_data_get_mut(&mut self.store_data),
2298 )
2299 }
2300
2301 #[cfg(feature = "async")]
2302 pub(crate) fn fiber_async_state_mut(&mut self) -> &mut fiber::AsyncState {
2303 &mut self.async_state
2304 }
2305
2306 #[cfg(feature = "component-model-async")]
2307 pub(crate) fn concurrent_async_state_mut(&mut self) -> &mut concurrent::AsyncState {
2308 &mut self.concurrent_async_state
2309 }
2310
2311 #[cfg(feature = "async")]
2312 pub(crate) fn has_pkey(&self) -> bool {
2313 self.pkey.is_some()
2314 }
2315
2316 pub(crate) fn executor(&mut self) -> ExecutorRef<'_> {
2317 match &mut self.executor {
2318 Executor::Interpreter(i) => ExecutorRef::Interpreter(i.as_interpreter_ref()),
2319 #[cfg(has_host_compiler_backend)]
2320 Executor::Native => ExecutorRef::Native,
2321 }
2322 }
2323
2324 #[cfg(feature = "async")]
2325 pub(crate) fn swap_executor(&mut self, executor: &mut Executor) {
2326 mem::swap(&mut self.executor, executor);
2327 }
2328
2329 pub(crate) fn unwinder(&self) -> &'static dyn Unwind {
2330 match &self.executor {
2331 Executor::Interpreter(i) => i.unwinder(),
2332 #[cfg(has_host_compiler_backend)]
2333 Executor::Native => &vm::UnwindHost,
2334 }
2335 }
2336
2337 /// Allocates a new continuation. Note that we currently don't support
2338 /// deallocating them. Instead, all continuations remain allocated
2339 /// throughout the store's lifetime.
2340 #[cfg(feature = "stack-switching")]
2341 pub fn allocate_continuation(&mut self) -> Result<*mut VMContRef> {
2342 // FIXME(frank-emrich) Do we need to pin this?
2343 let mut continuation = Box::new(VMContRef::empty());
2344 let stack_size = self.engine.config().async_stack_size;
2345 let stack = crate::vm::VMContinuationStack::new(stack_size)?;
2346 continuation.stack = stack;
2347 let ptr = continuation.deref_mut() as *mut VMContRef;
2348 self.continuations.push(continuation);
2349 Ok(ptr)
2350 }
2351
2352 /// Constructs and executes an `InstanceAllocationRequest` and pushes the
2353 /// returned instance into the store.
2354 ///
2355 /// This is a helper method for invoking
2356 /// `InstanceAllocator::allocate_module` with the appropriate parameters
2357 /// from this store's own configuration. The `kind` provided is used to
2358 /// distinguish between "real" modules and dummy ones that are synthesized
2359 /// for embedder-created memories, globals, tables, etc. The `kind` will
2360 /// also use a different instance allocator by default, the one passed in,
2361 /// rather than the engine's default allocator.
2362 ///
2363 /// This method will push the instance within `StoreOpaque` onto the
2364 /// `instances` array and return the `InstanceId` which can be use to look
2365 /// it up within the store.
2366 ///
2367 /// # Safety
2368 ///
2369 /// The `imports` provided must be correctly sized/typed for the module
2370 /// being allocated.
2371 pub(crate) async unsafe fn allocate_instance(
2372 &mut self,
2373 limiter: Option<&mut StoreResourceLimiter<'_>>,
2374 kind: AllocateInstanceKind<'_>,
2375 runtime_info: &ModuleRuntimeInfo,
2376 imports: Imports<'_>,
2377 ) -> Result<InstanceId> {
2378 let id = self.instances.next_key();
2379
2380 let allocator = match kind {
2381 AllocateInstanceKind::Module(_) => self.engine().allocator(),
2382 AllocateInstanceKind::Dummy { allocator } => allocator,
2383 };
2384 // SAFETY: this function's own contract is the same as
2385 // `allocate_module`, namely the imports provided are valid.
2386 let handle = unsafe {
2387 allocator
2388 .allocate_module(InstanceAllocationRequest {
2389 id,
2390 runtime_info,
2391 imports,
2392 store: self,
2393 limiter,
2394 })
2395 .await?
2396 };
2397
2398 let actual = match kind {
2399 AllocateInstanceKind::Module(module_id) => {
2400 log::trace!(
2401 "Adding instance to store: store={:?}, module={module_id:?}, instance={id:?}",
2402 self.id()
2403 );
2404 self.instances.push(StoreInstance {
2405 handle,
2406 kind: StoreInstanceKind::Real { module_id },
2407 })
2408 }
2409 AllocateInstanceKind::Dummy { .. } => {
2410 log::trace!(
2411 "Adding dummy instance to store: store={:?}, instance={id:?}",
2412 self.id()
2413 );
2414 self.instances.push(StoreInstance {
2415 handle,
2416 kind: StoreInstanceKind::Dummy,
2417 })
2418 }
2419 };
2420
2421 // double-check we didn't accidentally allocate two instances and our
2422 // prediction of what the id would be is indeed the id it should be.
2423 assert_eq!(id, actual);
2424
2425 Ok(id)
2426 }
2427
2428 /// Set a pending exception. The `exnref` is taken and held on
2429 /// this store to be fetched later by an unwind. This method does
2430 /// *not* set up an unwind request on the TLS call state; that
2431 /// must be done separately.
2432 #[cfg(feature = "gc")]
2433 pub(crate) fn set_pending_exception(&mut self, exnref: VMExnRef) {
2434 self.pending_exception = Some(exnref);
2435 }
2436
2437 /// Take a pending exception, if any.
2438 #[cfg(feature = "gc")]
2439 pub(crate) fn take_pending_exception(&mut self) -> Option<VMExnRef> {
2440 self.pending_exception.take()
2441 }
2442
2443 #[cfg(feature = "gc")]
2444 fn take_pending_exception_rooted(&mut self) -> Option<Rooted<ExnRef>> {
2445 let vmexnref = self.take_pending_exception()?;
2446 let mut nogc = AutoAssertNoGc::new(self);
2447 Some(Rooted::new(&mut nogc, vmexnref.into()))
2448 }
2449
2450 #[cfg(feature = "gc")]
2451 fn throw_impl(&mut self, exception: Rooted<ExnRef>) {
2452 let mut nogc = AutoAssertNoGc::new(self);
2453 let exnref = exception._to_raw(&mut nogc).unwrap();
2454 let exnref = VMGcRef::from_raw_u32(exnref)
2455 .expect("exception cannot be null")
2456 .into_exnref_unchecked();
2457 nogc.set_pending_exception(exnref);
2458 }
2459
2460 #[cfg(target_has_atomic = "64")]
2461 pub(crate) fn set_epoch_deadline(&mut self, delta: u64) {
2462 // Set a new deadline based on the "epoch deadline delta".
2463 //
2464 // Also, note that when this update is performed while Wasm is
2465 // on the stack, the Wasm will reload the new value once we
2466 // return into it.
2467 let current_epoch = self.engine().current_epoch();
2468 let epoch_deadline = self.vm_store_context.epoch_deadline.get_mut();
2469 *epoch_deadline = current_epoch + delta;
2470 }
2471
2472 pub(crate) fn get_epoch_deadline(&mut self) -> u64 {
2473 *self.vm_store_context.epoch_deadline.get_mut()
2474 }
2475}
2476
2477/// Helper parameter to [`StoreOpaque::allocate_instance`].
2478pub(crate) enum AllocateInstanceKind<'a> {
2479 /// An embedder-provided module is being allocated meaning that the default
2480 /// engine's allocator will be used.
2481 Module(RegisteredModuleId),
2482
2483 /// Add a dummy instance that to the store.
2484 ///
2485 /// These are instances that are just implementation details of something
2486 /// else (e.g. host-created memories that are not actually defined in any
2487 /// Wasm module) and therefore shouldn't show up in things like core dumps.
2488 ///
2489 /// A custom, typically OnDemand-flavored, allocator is provided to execute
2490 /// the allocation.
2491 Dummy {
2492 allocator: &'a dyn InstanceAllocator,
2493 },
2494}
2495
2496unsafe impl<T> VMStore for StoreInner<T> {
2497 #[cfg(feature = "component-model-async")]
2498 fn component_async_store(
2499 &mut self,
2500 ) -> &mut dyn crate::runtime::component::VMComponentAsyncStore {
2501 self
2502 }
2503
2504 fn store_opaque(&self) -> &StoreOpaque {
2505 &self.inner
2506 }
2507
2508 fn store_opaque_mut(&mut self) -> &mut StoreOpaque {
2509 &mut self.inner
2510 }
2511
2512 fn resource_limiter_and_store_opaque(
2513 &mut self,
2514 ) -> (Option<StoreResourceLimiter<'_>>, &mut StoreOpaque) {
2515 (
2516 self.limiter.as_mut().map(|l| match l {
2517 ResourceLimiterInner::Sync(s) => StoreResourceLimiter::Sync(s(&mut self.data)),
2518 #[cfg(feature = "async")]
2519 ResourceLimiterInner::Async(s) => StoreResourceLimiter::Async(s(&mut self.data)),
2520 }),
2521 &mut self.inner,
2522 )
2523 }
2524
2525 #[cfg(target_has_atomic = "64")]
2526 fn new_epoch_updated_deadline(&mut self) -> Result<UpdateDeadline> {
2527 // Temporarily take the configured behavior to avoid mutably borrowing
2528 // multiple times.
2529 let mut behavior = self.epoch_deadline_behavior.take();
2530 let update = match &mut behavior {
2531 Some(callback) => callback((&mut *self).as_context_mut()),
2532 None => Ok(UpdateDeadline::Interrupt),
2533 };
2534
2535 // Put back the original behavior which was replaced by `take`.
2536 self.epoch_deadline_behavior = behavior;
2537 update
2538 }
2539
2540 #[cfg(feature = "component-model")]
2541 fn component_calls(&mut self) -> &mut vm::component::CallContexts {
2542 &mut self.component_calls
2543 }
2544}
2545
2546impl<T> StoreInner<T> {
2547 #[cfg(target_has_atomic = "64")]
2548 fn epoch_deadline_trap(&mut self) {
2549 self.epoch_deadline_behavior = None;
2550 }
2551
2552 #[cfg(target_has_atomic = "64")]
2553 fn epoch_deadline_callback(
2554 &mut self,
2555 callback: Box<dyn FnMut(StoreContextMut<T>) -> Result<UpdateDeadline> + Send + Sync>,
2556 ) {
2557 self.epoch_deadline_behavior = Some(callback);
2558 }
2559}
2560
2561impl<T: Default> Default for Store<T> {
2562 fn default() -> Store<T> {
2563 Store::new(&Engine::default(), T::default())
2564 }
2565}
2566
2567impl<T: fmt::Debug> fmt::Debug for Store<T> {
2568 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2569 let inner = &**self.inner as *const StoreInner<T>;
2570 f.debug_struct("Store")
2571 .field("inner", &inner)
2572 .field("data", &self.inner.data)
2573 .finish()
2574 }
2575}
2576
2577impl<T> Drop for Store<T> {
2578 fn drop(&mut self) {
2579 self.run_manual_drop_routines();
2580
2581 // for documentation on this `unsafe`, see `into_data`.
2582 unsafe {
2583 ManuallyDrop::drop(&mut self.inner.data);
2584 ManuallyDrop::drop(&mut self.inner);
2585 }
2586 }
2587}
2588
2589impl Drop for StoreOpaque {
2590 fn drop(&mut self) {
2591 // NB it's important that this destructor does not access `self.data`.
2592 // That is deallocated by `Drop for Store<T>` above.
2593
2594 unsafe {
2595 let allocator = self.engine.allocator();
2596 let ondemand = OnDemandInstanceAllocator::default();
2597 let store_id = self.id();
2598
2599 #[cfg(feature = "gc")]
2600 if let Some(gc_store) = self.gc_store.take() {
2601 let gc_alloc_index = gc_store.allocation_index;
2602 log::trace!("store {store_id:?} is deallocating GC heap {gc_alloc_index:?}");
2603 debug_assert!(self.engine.features().gc_types());
2604 let (mem_alloc_index, mem) =
2605 allocator.deallocate_gc_heap(gc_alloc_index, gc_store.gc_heap);
2606 allocator.deallocate_memory(None, mem_alloc_index, mem);
2607 }
2608
2609 for (id, instance) in self.instances.iter_mut() {
2610 log::trace!("store {store_id:?} is deallocating {id:?}");
2611 let allocator = match instance.kind {
2612 StoreInstanceKind::Dummy => &ondemand,
2613 _ => allocator,
2614 };
2615 allocator.deallocate_module(&mut instance.handle);
2616 }
2617
2618 #[cfg(feature = "component-model")]
2619 {
2620 for _ in 0..self.num_component_instances {
2621 allocator.decrement_component_instance_count();
2622 }
2623 }
2624 }
2625 }
2626}
2627
2628#[cfg_attr(
2629 not(any(feature = "gc", feature = "async")),
2630 // NB: Rust 1.89, current stable, does not fire this lint. Rust 1.90,
2631 // however, does, so use #[allow] until our MSRV is 1.90.
2632 allow(dead_code, reason = "don't want to put #[cfg] on all impls below too")
2633)]
2634pub(crate) trait AsStoreOpaque {
2635 fn as_store_opaque(&mut self) -> &mut StoreOpaque;
2636}
2637
2638impl AsStoreOpaque for StoreOpaque {
2639 fn as_store_opaque(&mut self) -> &mut StoreOpaque {
2640 self
2641 }
2642}
2643
2644impl AsStoreOpaque for dyn VMStore {
2645 fn as_store_opaque(&mut self) -> &mut StoreOpaque {
2646 self
2647 }
2648}
2649
2650impl<T: 'static> AsStoreOpaque for StoreInner<T> {
2651 fn as_store_opaque(&mut self) -> &mut StoreOpaque {
2652 self
2653 }
2654}
2655
2656impl<T: AsStoreOpaque + ?Sized> AsStoreOpaque for &mut T {
2657 fn as_store_opaque(&mut self) -> &mut StoreOpaque {
2658 T::as_store_opaque(self)
2659 }
2660}
2661
2662#[cfg(test)]
2663mod tests {
2664 use super::{get_fuel, refuel, set_fuel};
2665 use std::num::NonZeroU64;
2666
2667 struct FuelTank {
2668 pub consumed_fuel: i64,
2669 pub reserve_fuel: u64,
2670 pub yield_interval: Option<NonZeroU64>,
2671 }
2672
2673 impl FuelTank {
2674 fn new() -> Self {
2675 FuelTank {
2676 consumed_fuel: 0,
2677 reserve_fuel: 0,
2678 yield_interval: None,
2679 }
2680 }
2681 fn get_fuel(&self) -> u64 {
2682 get_fuel(self.consumed_fuel, self.reserve_fuel)
2683 }
2684 fn refuel(&mut self) -> bool {
2685 refuel(
2686 &mut self.consumed_fuel,
2687 &mut self.reserve_fuel,
2688 self.yield_interval,
2689 )
2690 }
2691 fn set_fuel(&mut self, fuel: u64) {
2692 set_fuel(
2693 &mut self.consumed_fuel,
2694 &mut self.reserve_fuel,
2695 self.yield_interval,
2696 fuel,
2697 );
2698 }
2699 }
2700
2701 #[test]
2702 fn smoke() {
2703 let mut tank = FuelTank::new();
2704 tank.set_fuel(10);
2705 assert_eq!(tank.consumed_fuel, -10);
2706 assert_eq!(tank.reserve_fuel, 0);
2707
2708 tank.yield_interval = NonZeroU64::new(10);
2709 tank.set_fuel(25);
2710 assert_eq!(tank.consumed_fuel, -10);
2711 assert_eq!(tank.reserve_fuel, 15);
2712 }
2713
2714 #[test]
2715 fn does_not_lose_precision() {
2716 let mut tank = FuelTank::new();
2717 tank.set_fuel(u64::MAX);
2718 assert_eq!(tank.get_fuel(), u64::MAX);
2719
2720 tank.set_fuel(i64::MAX as u64);
2721 assert_eq!(tank.get_fuel(), i64::MAX as u64);
2722
2723 tank.set_fuel(i64::MAX as u64 + 1);
2724 assert_eq!(tank.get_fuel(), i64::MAX as u64 + 1);
2725 }
2726
2727 #[test]
2728 fn yielding_does_not_lose_precision() {
2729 let mut tank = FuelTank::new();
2730
2731 tank.yield_interval = NonZeroU64::new(10);
2732 tank.set_fuel(u64::MAX);
2733 assert_eq!(tank.get_fuel(), u64::MAX);
2734 assert_eq!(tank.consumed_fuel, -10);
2735 assert_eq!(tank.reserve_fuel, u64::MAX - 10);
2736
2737 tank.yield_interval = NonZeroU64::new(u64::MAX);
2738 tank.set_fuel(u64::MAX);
2739 assert_eq!(tank.get_fuel(), u64::MAX);
2740 assert_eq!(tank.consumed_fuel, -i64::MAX);
2741 assert_eq!(tank.reserve_fuel, u64::MAX - (i64::MAX as u64));
2742
2743 tank.yield_interval = NonZeroU64::new((i64::MAX as u64) + 1);
2744 tank.set_fuel(u64::MAX);
2745 assert_eq!(tank.get_fuel(), u64::MAX);
2746 assert_eq!(tank.consumed_fuel, -i64::MAX);
2747 assert_eq!(tank.reserve_fuel, u64::MAX - (i64::MAX as u64));
2748 }
2749
2750 #[test]
2751 fn refueling() {
2752 // It's possible to fuel to have consumed over the limit as some instructions can consume
2753 // multiple units of fuel at once. Refueling should be strict in it's consumption and not
2754 // add more fuel than there is.
2755 let mut tank = FuelTank::new();
2756
2757 tank.yield_interval = NonZeroU64::new(10);
2758 tank.reserve_fuel = 42;
2759 tank.consumed_fuel = 4;
2760 assert!(tank.refuel());
2761 assert_eq!(tank.reserve_fuel, 28);
2762 assert_eq!(tank.consumed_fuel, -10);
2763
2764 tank.yield_interval = NonZeroU64::new(1);
2765 tank.reserve_fuel = 8;
2766 tank.consumed_fuel = 4;
2767 assert_eq!(tank.get_fuel(), 4);
2768 assert!(tank.refuel());
2769 assert_eq!(tank.reserve_fuel, 3);
2770 assert_eq!(tank.consumed_fuel, -1);
2771 assert_eq!(tank.get_fuel(), 4);
2772
2773 tank.yield_interval = NonZeroU64::new(10);
2774 tank.reserve_fuel = 3;
2775 tank.consumed_fuel = 4;
2776 assert_eq!(tank.get_fuel(), 0);
2777 assert!(!tank.refuel());
2778 assert_eq!(tank.reserve_fuel, 3);
2779 assert_eq!(tank.consumed_fuel, 4);
2780 assert_eq!(tank.get_fuel(), 0);
2781 }
2782}