cranelift_codegen/
egraph.rs

1//! Support for egraphs represented in the DataFlowGraph.
2
3use crate::alias_analysis::{AliasAnalysis, LastStores};
4use crate::ctxhash::{CtxEq, CtxHash, CtxHashMap};
5use crate::cursor::{Cursor, CursorPosition, FuncCursor};
6use crate::dominator_tree::{DominatorTree, DominatorTreePreorder};
7use crate::egraph::elaborate::Elaborator;
8use crate::inst_predicates::{is_mergeable_for_egraph, is_pure_for_egraph};
9use crate::ir::pcc::Fact;
10use crate::ir::{
11    Block, DataFlowGraph, Function, Inst, InstructionData, Opcode, Type, Value, ValueDef,
12    ValueListPool,
13};
14use crate::loop_analysis::LoopAnalysis;
15use crate::opts::IsleContext;
16use crate::scoped_hash_map::{Entry as ScopedEntry, ScopedHashMap};
17use crate::settings::Flags;
18use crate::trace;
19use crate::unionfind::UnionFind;
20use core::cmp::Ordering;
21use cranelift_control::ControlPlane;
22use cranelift_entity::packed_option::ReservedValue;
23use cranelift_entity::SecondaryMap;
24use rustc_hash::FxHashSet;
25use smallvec::SmallVec;
26use std::hash::Hasher;
27
28mod cost;
29mod elaborate;
30
31/// Pass over a Function that does the whole aegraph thing.
32///
33/// - Removes non-skeleton nodes from the Layout.
34/// - Performs a GVN-and-rule-application pass over all Values
35///   reachable from the skeleton, potentially creating new Union
36///   nodes (i.e., an aegraph) so that some values have multiple
37///   representations.
38/// - Does "extraction" on the aegraph: selects the best value out of
39///   the tree-of-Union nodes for each used value.
40/// - Does "scoped elaboration" on the aegraph: chooses one or more
41///   locations for pure nodes to become instructions again in the
42///   layout, as forced by the skeleton.
43///
44/// At the beginning and end of this pass, the CLIF should be in a
45/// state that passes the verifier and, additionally, has no Union
46/// nodes. During the pass, Union nodes may exist, and instructions in
47/// the layout may refer to results of instructions that are not
48/// placed in the layout.
49pub struct EgraphPass<'a> {
50    /// The function we're operating on.
51    func: &'a mut Function,
52    /// Dominator tree for the CFG, used to visit blocks in pre-order
53    /// so we see value definitions before their uses, and also used for
54    /// O(1) dominance checks.
55    domtree: DominatorTreePreorder,
56    /// Alias analysis, used during optimization.
57    alias_analysis: &'a mut AliasAnalysis<'a>,
58    /// Loop analysis results, used for built-in LICM during
59    /// elaboration.
60    loop_analysis: &'a LoopAnalysis,
61    /// Compiler flags.
62    flags: &'a Flags,
63    /// Chaos-mode control-plane so we can test that we still get
64    /// correct results when our heuristics make bad decisions.
65    ctrl_plane: &'a mut ControlPlane,
66    /// Which canonical Values do we want to rematerialize in each
67    /// block where they're used?
68    ///
69    /// (A canonical Value is the *oldest* Value in an eclass,
70    /// i.e. tree of union value-nodes).
71    remat_values: FxHashSet<Value>,
72    /// Stats collected while we run this pass.
73    pub(crate) stats: Stats,
74    /// Union-find that maps all members of a Union tree (eclass) back
75    /// to the *oldest* (lowest-numbered) `Value`.
76    pub(crate) eclasses: UnionFind<Value>,
77}
78
79// The maximum number of rewrites we will take from a single call into ISLE.
80const MATCHES_LIMIT: usize = 5;
81
82/// Context passed through node insertion and optimization.
83pub(crate) struct OptimizeCtx<'opt, 'analysis>
84where
85    'analysis: 'opt,
86{
87    // Borrowed from EgraphPass:
88    pub(crate) func: &'opt mut Function,
89    pub(crate) value_to_opt_value: &'opt mut SecondaryMap<Value, Value>,
90    pub(crate) gvn_map: &'opt mut CtxHashMap<(Type, InstructionData), Value>,
91    pub(crate) effectful_gvn_map: &'opt mut ScopedHashMap<(Type, InstructionData), Option<Value>>,
92    available_block: &'opt mut SecondaryMap<Value, Block>,
93    pub(crate) eclasses: &'opt mut UnionFind<Value>,
94    pub(crate) remat_values: &'opt mut FxHashSet<Value>,
95    pub(crate) stats: &'opt mut Stats,
96    domtree: &'opt DominatorTreePreorder,
97    pub(crate) alias_analysis: &'opt mut AliasAnalysis<'analysis>,
98    pub(crate) alias_analysis_state: &'opt mut LastStores,
99    flags: &'opt Flags,
100    ctrl_plane: &'opt mut ControlPlane,
101    // Held locally during optimization of one node (recursively):
102    pub(crate) rewrite_depth: usize,
103    pub(crate) subsume_values: FxHashSet<Value>,
104    optimized_values: SmallVec<[Value; MATCHES_LIMIT]>,
105}
106
107/// For passing to `insert_pure_enode`. Sometimes the enode already
108/// exists as an Inst (from the original CLIF), and sometimes we're in
109/// the middle of creating it and want to avoid inserting it if
110/// possible until we know we need it.
111pub(crate) enum NewOrExistingInst {
112    New(InstructionData, Type),
113    Existing(Inst),
114}
115
116impl NewOrExistingInst {
117    fn get_inst_key<'a>(&'a self, dfg: &'a DataFlowGraph) -> (Type, InstructionData) {
118        match self {
119            NewOrExistingInst::New(data, ty) => (*ty, *data),
120            NewOrExistingInst::Existing(inst) => {
121                let ty = dfg.ctrl_typevar(*inst);
122                (ty, dfg.insts[*inst])
123            }
124        }
125    }
126}
127
128impl<'opt, 'analysis> OptimizeCtx<'opt, 'analysis>
129where
130    'analysis: 'opt,
131{
132    /// Optimization of a single instruction.
133    ///
134    /// This does a few things:
135    /// - Looks up the instruction in the GVN deduplication map. If we
136    ///   already have the same instruction somewhere else, with the
137    ///   same args, then we can alias the original instruction's
138    ///   results and omit this instruction entirely.
139    ///   - Note that we do this canonicalization based on the
140    ///     instruction with its arguments as *canonical* eclass IDs,
141    ///     that is, the oldest (smallest index) `Value` reachable in
142    ///     the tree-of-unions (whole eclass). This ensures that we
143    ///     properly canonicalize newer nodes that use newer "versions"
144    ///     of a value that are still equal to the older versions.
145    /// - If the instruction is "new" (not deduplicated), then apply
146    ///   optimization rules:
147    ///   - All of the mid-end rules written in ISLE.
148    ///   - Store-to-load forwarding.
149    /// - Update the value-to-opt-value map, and update the eclass
150    ///   union-find, if we rewrote the value to different form(s).
151    pub(crate) fn insert_pure_enode(&mut self, inst: NewOrExistingInst) -> Value {
152        // Create the external context for looking up and updating the
153        // GVN map. This is necessary so that instructions themselves
154        // do not have to carry all the references or data for a full
155        // `Eq` or `Hash` impl.
156        let gvn_context = GVNContext {
157            union_find: self.eclasses,
158            value_lists: &self.func.dfg.value_lists,
159        };
160
161        self.stats.pure_inst += 1;
162        if let NewOrExistingInst::New(..) = inst {
163            self.stats.new_inst += 1;
164        }
165
166        // Does this instruction already exist? If so, add entries to
167        // the value-map to rewrite uses of its results to the results
168        // of the original (existing) instruction. If not, optimize
169        // the new instruction.
170        if let Some(&orig_result) = self
171            .gvn_map
172            .get(&inst.get_inst_key(&self.func.dfg), &gvn_context)
173        {
174            self.stats.pure_inst_deduped += 1;
175            if let NewOrExistingInst::Existing(inst) = inst {
176                debug_assert_eq!(self.func.dfg.inst_results(inst).len(), 1);
177                let result = self.func.dfg.first_result(inst);
178                debug_assert!(
179                    self.domtree.dominates(
180                        self.available_block[orig_result],
181                        self.get_available_block(inst)
182                    ),
183                    "GVN shouldn't replace {result} (available in {}) with non-dominating {orig_result} (available in {})",
184                    self.get_available_block(inst),
185                    self.available_block[orig_result],
186                );
187                self.value_to_opt_value[result] = orig_result;
188                self.func.dfg.merge_facts(result, orig_result);
189            }
190            orig_result
191        } else {
192            // Now actually insert the InstructionData and attach
193            // result value (exactly one).
194            let (inst, result, ty) = match inst {
195                NewOrExistingInst::New(data, typevar) => {
196                    let inst = self.func.dfg.make_inst(data);
197                    // TODO: reuse return value?
198                    self.func.dfg.make_inst_results(inst, typevar);
199                    let result = self.func.dfg.first_result(inst);
200                    // Add to eclass unionfind.
201                    self.eclasses.add(result);
202                    // New inst. We need to do the analysis of its result.
203                    (inst, result, typevar)
204                }
205                NewOrExistingInst::Existing(inst) => {
206                    let result = self.func.dfg.first_result(inst);
207                    let ty = self.func.dfg.ctrl_typevar(inst);
208                    (inst, result, ty)
209                }
210            };
211
212            self.attach_constant_fact(inst, result, ty);
213
214            self.available_block[result] = self.get_available_block(inst);
215            let opt_value = self.optimize_pure_enode(inst);
216
217            for &argument in self.func.dfg.inst_args(inst) {
218                self.eclasses.pin_index(argument);
219            }
220
221            let gvn_context = GVNContext {
222                union_find: self.eclasses,
223                value_lists: &self.func.dfg.value_lists,
224            };
225            self.gvn_map
226                .insert((ty, self.func.dfg.insts[inst]), opt_value, &gvn_context);
227            self.value_to_opt_value[result] = opt_value;
228            opt_value
229        }
230    }
231
232    /// Find the block where a pure instruction first becomes available,
233    /// defined as the block that is closest to the root where all of
234    /// its arguments are available. In the unusual case where a pure
235    /// instruction has no arguments (e.g. get_return_address), we can
236    /// place it anywhere, so it is available in the entry block.
237    ///
238    /// This function does not compute available blocks recursively.
239    /// All of the instruction's arguments must have had their available
240    /// blocks assigned already.
241    fn get_available_block(&self, inst: Inst) -> Block {
242        // Side-effecting instructions have different rules for where
243        // they become available, so this function does not apply.
244        debug_assert!(is_pure_for_egraph(self.func, inst));
245
246        // Note that the def-point of all arguments to an instruction
247        // in SSA lie on a line of direct ancestors in the domtree, and
248        // so do their available-blocks. This means that for any pair of
249        // arguments, their available blocks are either the same or one
250        // strictly dominates the other. We just need to find any argument
251        // whose available block is deepest in the domtree.
252        self.func.dfg.insts[inst]
253            .arguments(&self.func.dfg.value_lists)
254            .iter()
255            .map(|&v| {
256                let block = self.available_block[v];
257                debug_assert!(!block.is_reserved_value());
258                block
259            })
260            .max_by(|&x, &y| {
261                if self.domtree.dominates(x, y) {
262                    Ordering::Less
263                } else {
264                    debug_assert!(self.domtree.dominates(y, x));
265                    Ordering::Greater
266                }
267            })
268            .unwrap_or(self.func.layout.entry_block().unwrap())
269    }
270
271    /// Optimizes an enode by applying any matching mid-end rewrite
272    /// rules (or store-to-load forwarding, which is a special case),
273    /// unioning together all possible optimized (or rewritten) forms
274    /// of this expression into an eclass and returning the `Value`
275    /// that represents that eclass.
276    fn optimize_pure_enode(&mut self, inst: Inst) -> Value {
277        // A pure node always has exactly one result.
278        let orig_value = self.func.dfg.first_result(inst);
279
280        let mut optimized_values = std::mem::take(&mut self.optimized_values);
281
282        // Limit rewrite depth. When we apply optimization rules, they
283        // may create new nodes (values) and those are, recursively,
284        // optimized eagerly as soon as they are created. So we may
285        // have more than one ISLE invocation on the stack. (This is
286        // necessary so that as the toplevel builds the
287        // right-hand-side expression bottom-up, it uses the "latest"
288        // optimized values for all the constituent parts.) To avoid
289        // infinite or problematic recursion, we bound the rewrite
290        // depth to a small constant here.
291        const REWRITE_LIMIT: usize = 5;
292        if self.rewrite_depth > REWRITE_LIMIT {
293            self.stats.rewrite_depth_limit += 1;
294            return orig_value;
295        }
296        self.rewrite_depth += 1;
297        trace!("Incrementing rewrite depth; now {}", self.rewrite_depth);
298
299        // Invoke the ISLE toplevel constructor, getting all new
300        // values produced as equivalents to this value.
301        trace!("Calling into ISLE with original value {}", orig_value);
302        self.stats.rewrite_rule_invoked += 1;
303        debug_assert!(optimized_values.is_empty());
304        crate::opts::generated_code::constructor_simplify(
305            &mut IsleContext { ctx: self },
306            orig_value,
307            &mut optimized_values,
308        );
309
310        optimized_values.push(orig_value);
311
312        // Remove any values from optimized_values that do not have
313        // the highest possible available block in the domtree, in
314        // O(n) time. This loop scans in reverse, establishing the
315        // loop invariant that all values at indices >= idx have the
316        // same available block, which is the best available block
317        // seen so far. Note that orig_value must also be removed if
318        // it isn't in the best block, so we push it above, which means
319        // optimized_values is never empty: there's always at least one
320        // value in best_block.
321        let mut best_block = self.available_block[*optimized_values.last().unwrap()];
322        for idx in (0..optimized_values.len() - 1).rev() {
323            // At the beginning of each iteration, there is a non-empty
324            // collection of values after idx, which are all available
325            // at best_block.
326            let this_block = self.available_block[optimized_values[idx]];
327            if this_block != best_block {
328                if self.domtree.dominates(this_block, best_block) {
329                    // If the available block for this value dominates
330                    // the best block we've seen so far, discard all
331                    // the values we already checked and leave only this
332                    // value in the tail of the vector.
333                    optimized_values.truncate(idx + 1);
334                    best_block = this_block;
335                } else {
336                    // Otherwise the tail of the vector contains values
337                    // which are all better than this value, so we can
338                    // swap any of them in place of this value to delete
339                    // this one in O(1) time.
340                    debug_assert!(self.domtree.dominates(best_block, this_block));
341                    optimized_values.swap_remove(idx);
342                    debug_assert!(optimized_values.len() > idx);
343                }
344            }
345        }
346
347        // It's not supposed to matter what order `simplify` returns values in.
348        self.ctrl_plane.shuffle(&mut optimized_values);
349
350        let num_matches = optimized_values.len();
351        if num_matches > MATCHES_LIMIT {
352            trace!(
353                "Reached maximum matches limit; too many optimized values \
354                 ({num_matches} > {MATCHES_LIMIT}); ignoring rest.",
355            );
356            optimized_values.truncate(MATCHES_LIMIT);
357        }
358
359        trace!("  -> returned from ISLE: {orig_value} -> {optimized_values:?}");
360
361        // Create a union of all new values with the original (or
362        // maybe just one new value marked as "subsuming" the
363        // original, if present.)
364        let mut union_value = optimized_values.pop().unwrap();
365        for optimized_value in optimized_values.drain(..) {
366            trace!(
367                "Returned from ISLE for {}, got {:?}",
368                orig_value,
369                optimized_value
370            );
371            if optimized_value == orig_value {
372                trace!(" -> same as orig value; skipping");
373                continue;
374            }
375            if self.subsume_values.contains(&optimized_value) {
376                // Merge in the unionfind so canonicalization
377                // still works, but take *only* the subsuming
378                // value, and break now.
379                self.eclasses.union(optimized_value, union_value);
380                self.func.dfg.merge_facts(optimized_value, union_value);
381                union_value = optimized_value;
382                break;
383            }
384
385            let old_union_value = union_value;
386            union_value = self.func.dfg.union(old_union_value, optimized_value);
387            self.available_block[union_value] = best_block;
388            self.stats.union += 1;
389            trace!(" -> union: now {}", union_value);
390            self.eclasses.add(union_value);
391            self.eclasses.union(old_union_value, optimized_value);
392            self.func.dfg.merge_facts(old_union_value, optimized_value);
393            self.eclasses.union(old_union_value, union_value);
394        }
395
396        self.rewrite_depth -= 1;
397        trace!("Decrementing rewrite depth; now {}", self.rewrite_depth);
398
399        debug_assert!(self.optimized_values.is_empty());
400        self.optimized_values = optimized_values;
401
402        union_value
403    }
404
405    /// Optimize a "skeleton" instruction, possibly removing
406    /// it. Returns `true` if the instruction should be removed from
407    /// the layout.
408    fn optimize_skeleton_inst(&mut self, inst: Inst) -> bool {
409        self.stats.skeleton_inst += 1;
410
411        for &result in self.func.dfg.inst_results(inst) {
412            self.available_block[result] = self.func.layout.inst_block(inst).unwrap();
413        }
414
415        // First, can we try to deduplicate? We need to keep some copy
416        // of the instruction around because it's side-effecting, but
417        // we may be able to reuse an earlier instance of it.
418        if is_mergeable_for_egraph(self.func, inst) {
419            let result = self.func.dfg.inst_results(inst).get(0).copied();
420            trace!(" -> mergeable side-effecting op {}", inst);
421
422            // Does this instruction already exist? If so, add entries to
423            // the value-map to rewrite uses of its results to the results
424            // of the original (existing) instruction. If not, optimize
425            // the new instruction.
426            //
427            // Note that we use the "effectful GVN map", which is
428            // scoped: because effectful ops are not removed from the
429            // skeleton (`Layout`), we need to be mindful of whether
430            // our current position is dominated by an instance of the
431            // instruction. (See #5796 for details.)
432            let ty = self.func.dfg.ctrl_typevar(inst);
433            match self
434                .effectful_gvn_map
435                .entry((ty, self.func.dfg.insts[inst]))
436            {
437                ScopedEntry::Occupied(o) => {
438                    let orig_result = *o.get();
439                    match (result, orig_result) {
440                        (Some(result), Some(orig_result)) => {
441                            // Hit in GVN map -- reuse value.
442                            self.value_to_opt_value[result] = orig_result;
443                            trace!(" -> merges result {} to {}", result, orig_result);
444                        }
445                        (None, None) => {
446                            // Hit in the GVN map, but the instruction doesn't
447                            // produce results, only side effects. Nothing else
448                            // to do here.
449                            trace!(" -> merges with dominating instruction");
450                        }
451                        (_, _) => unreachable!(),
452                    }
453                    true
454                }
455                ScopedEntry::Vacant(v) => {
456                    // Otherwise, insert it into the value-map.
457                    if let Some(result) = result {
458                        self.value_to_opt_value[result] = result;
459                    }
460                    v.insert(result);
461                    trace!(" -> inserts as new (no GVN)");
462                    false
463                }
464            }
465        }
466        // Otherwise, if a load or store, process it with the alias
467        // analysis to see if we can optimize it (rewrite in terms of
468        // an earlier load or stored value).
469        else if let Some(new_result) =
470            self.alias_analysis
471                .process_inst(self.func, self.alias_analysis_state, inst)
472        {
473            self.stats.alias_analysis_removed += 1;
474            let result = self.func.dfg.first_result(inst);
475            trace!(
476                " -> inst {} has result {} replaced with {}",
477                inst,
478                result,
479                new_result
480            );
481            self.value_to_opt_value[result] = new_result;
482            self.func.dfg.merge_facts(result, new_result);
483            true
484        }
485        // Otherwise, generic side-effecting op -- always keep it, and
486        // set its results to identity-map to original values.
487        else {
488            // Set all results to identity-map to themselves
489            // in the value-to-opt-value map.
490            for &result in self.func.dfg.inst_results(inst) {
491                self.value_to_opt_value[result] = result;
492                self.eclasses.add(result);
493            }
494            false
495        }
496    }
497
498    /// Helper to propagate facts on constant values: if PCC is
499    /// enabled, then unconditionally add a fact attesting to the
500    /// Value's concrete value.
501    fn attach_constant_fact(&mut self, inst: Inst, value: Value, ty: Type) {
502        if self.flags.enable_pcc() {
503            if let InstructionData::UnaryImm {
504                opcode: Opcode::Iconst,
505                imm,
506            } = self.func.dfg.insts[inst]
507            {
508                let imm: i64 = imm.into();
509                self.func.dfg.facts[value] =
510                    Some(Fact::constant(ty.bits().try_into().unwrap(), imm as u64));
511            }
512        }
513    }
514}
515
516impl<'a> EgraphPass<'a> {
517    /// Create a new EgraphPass.
518    pub fn new(
519        func: &'a mut Function,
520        raw_domtree: &'a DominatorTree,
521        loop_analysis: &'a LoopAnalysis,
522        alias_analysis: &'a mut AliasAnalysis<'a>,
523        flags: &'a Flags,
524        ctrl_plane: &'a mut ControlPlane,
525    ) -> Self {
526        let num_values = func.dfg.num_values();
527        let mut domtree = DominatorTreePreorder::new();
528        domtree.compute(raw_domtree);
529        Self {
530            func,
531            domtree,
532            loop_analysis,
533            alias_analysis,
534            flags,
535            ctrl_plane,
536            stats: Stats::default(),
537            eclasses: UnionFind::with_capacity(num_values),
538            remat_values: FxHashSet::default(),
539        }
540    }
541
542    /// Run the process.
543    pub fn run(&mut self) {
544        self.remove_pure_and_optimize();
545
546        trace!("egraph built:\n{}\n", self.func.display());
547        if cfg!(feature = "trace-log") {
548            for (value, def) in self.func.dfg.values_and_defs() {
549                trace!(" -> {} = {:?}", value, def);
550                match def {
551                    ValueDef::Result(i, 0) => {
552                        trace!("  -> {} = {:?}", i, self.func.dfg.insts[i]);
553                    }
554                    _ => {}
555                }
556            }
557        }
558        trace!("stats: {:#?}", self.stats);
559        trace!("pinned_union_count: {}", self.eclasses.pinned_union_count);
560        self.elaborate();
561    }
562
563    /// Remove pure nodes from the `Layout` of the function, ensuring
564    /// that only the "side-effect skeleton" remains, and also
565    /// optimize the pure nodes. This is the first step of
566    /// egraph-based processing and turns the pure CFG-based CLIF into
567    /// a CFG skeleton with a sea of (optimized) nodes tying it
568    /// together.
569    ///
570    /// As we walk through the code, we eagerly apply optimization
571    /// rules; at any given point we have a "latest version" of an
572    /// eclass of possible representations for a `Value` in the
573    /// original program, which is itself a `Value` at the root of a
574    /// union-tree. We keep a map from the original values to these
575    /// optimized values. When we encounter any instruction (pure or
576    /// side-effecting skeleton) we rewrite its arguments to capture
577    /// the "latest" optimized forms of these values. (We need to do
578    /// this as part of this pass, and not later using a finished map,
579    /// because the eclass can continue to be updated and we need to
580    /// only refer to its subset that exists at this stage, to
581    /// maintain acyclicity.)
582    fn remove_pure_and_optimize(&mut self) {
583        let mut cursor = FuncCursor::new(self.func);
584        let mut value_to_opt_value: SecondaryMap<Value, Value> =
585            SecondaryMap::with_default(Value::reserved_value());
586
587        // Map from instruction to value for hash-consing of pure ops
588        // into the egraph. This can be a standard (non-scoped)
589        // hashmap because pure ops have no location: they are
590        // "outside of" control flow.
591        //
592        // Note also that we keep the controlling typevar (the `Type`
593        // in the tuple below) because it may disambiguate
594        // instructions that are identical except for type.
595        let mut gvn_map: CtxHashMap<(Type, InstructionData), Value> =
596            CtxHashMap::with_capacity(cursor.func.dfg.num_values());
597
598        // Map from instruction to an optional value for GVN'ing of effectful
599        // but idempotent ops, which remain in the side-effecting skeleton. This
600        // needs to be scoped because we cannot deduplicate one instruction to
601        // another that is in a non-dominating block.
602        //
603        // If the instruction produces a value, then it is stored in the map and
604        // can be used to GVN the results of idempotently side-effectful
605        // instructions. If the instruction does not produce a value, and is
606        // only used for its effects, then the entry's value is `None`. In the
607        // latter case, we can still deduplicate the idempotent instructions,
608        // but there is no value to GVN.
609        //
610        // Note that we can use a ScopedHashMap here without the "context" (as
611        // needed by CtxHashMap) because in practice the ops we want to GVN have
612        // all their args inline. Equality on the InstructionData itself is
613        // conservative: two insts whose struct contents compare shallowly equal
614        // are definitely identical, but identical insts in a deep-equality
615        // sense may not compare shallowly equal, due to list indirection. This
616        // is fine for GVN, because it is still sound to skip any given GVN
617        // opportunity (and keep the original instructions).
618        //
619        // As above, we keep the controlling typevar here as part of the key:
620        // effectful instructions may (as for pure instructions) be
621        // differentiated only on the type.
622        let mut effectful_gvn_map: ScopedHashMap<(Type, InstructionData), Option<Value>> =
623            ScopedHashMap::new();
624
625        // We assign an "available block" to every value. Values tied to
626        // the side-effecting skeleton are available in the block where
627        // they're defined. Results from pure instructions could legally
628        // float up the domtree so they are available as soon as all
629        // their arguments are available. Values which identify union
630        // nodes are available in the same block as all values in the
631        // eclass, enforced by optimize_pure_enode.
632        let mut available_block: SecondaryMap<Value, Block> =
633            SecondaryMap::with_default(Block::reserved_value());
634
635        // This is an initial guess at the size we'll need, but we add
636        // more values as we build simplified alternative expressions so
637        // this is likely to realloc again later.
638        available_block.resize(cursor.func.dfg.num_values());
639
640        // In domtree preorder, visit blocks. (TODO: factor out an
641        // iterator from this and elaborator.)
642        let root = cursor.layout().entry_block().unwrap();
643        enum StackEntry {
644            Visit(Block),
645            Pop,
646        }
647        let mut block_stack = vec![StackEntry::Visit(root)];
648        while let Some(entry) = block_stack.pop() {
649            match entry {
650                StackEntry::Visit(block) => {
651                    // We popped this block; push children
652                    // immediately, then process this block.
653                    block_stack.push(StackEntry::Pop);
654                    block_stack.extend(
655                        self.ctrl_plane
656                            .shuffled(self.domtree.children(block))
657                            .map(StackEntry::Visit),
658                    );
659                    effectful_gvn_map.increment_depth();
660
661                    trace!("Processing block {}", block);
662                    cursor.set_position(CursorPosition::Before(block));
663
664                    let mut alias_analysis_state = self.alias_analysis.block_starting_state(block);
665
666                    for &param in cursor.func.dfg.block_params(block) {
667                        trace!("creating initial singleton eclass for blockparam {}", param);
668                        self.eclasses.add(param);
669                        value_to_opt_value[param] = param;
670                        available_block[param] = block;
671                    }
672                    while let Some(inst) = cursor.next_inst() {
673                        trace!("Processing inst {}", inst);
674
675                        // While we're passing over all insts, create initial
676                        // singleton eclasses for all result and blockparam
677                        // values.  Also do initial analysis of all inst
678                        // results.
679                        for &result in cursor.func.dfg.inst_results(inst) {
680                            trace!("creating initial singleton eclass for {}", result);
681                            self.eclasses.add(result);
682                        }
683
684                        // Rewrite args of *all* instructions using the
685                        // value-to-opt-value map.
686                        cursor.func.dfg.map_inst_values(inst, |arg| {
687                            let new_value = value_to_opt_value[arg];
688                            trace!("rewriting arg {} of inst {} to {}", arg, inst, new_value);
689                            debug_assert_ne!(new_value, Value::reserved_value());
690                            new_value
691                        });
692
693                        // Build a context for optimization, with borrows of
694                        // state. We can't invoke a method on `self` because
695                        // we've borrowed `self.func` mutably (as
696                        // `cursor.func`) so we pull apart the pieces instead
697                        // here.
698                        let mut ctx = OptimizeCtx {
699                            func: cursor.func,
700                            value_to_opt_value: &mut value_to_opt_value,
701                            gvn_map: &mut gvn_map,
702                            effectful_gvn_map: &mut effectful_gvn_map,
703                            available_block: &mut available_block,
704                            eclasses: &mut self.eclasses,
705                            rewrite_depth: 0,
706                            subsume_values: FxHashSet::default(),
707                            remat_values: &mut self.remat_values,
708                            stats: &mut self.stats,
709                            domtree: &self.domtree,
710                            alias_analysis: self.alias_analysis,
711                            alias_analysis_state: &mut alias_analysis_state,
712                            flags: self.flags,
713                            ctrl_plane: self.ctrl_plane,
714                            optimized_values: Default::default(),
715                        };
716
717                        if is_pure_for_egraph(ctx.func, inst) {
718                            // Insert into GVN map and optimize any new nodes
719                            // inserted (recursively performing this work for
720                            // any nodes the optimization rules produce).
721                            let inst = NewOrExistingInst::Existing(inst);
722                            ctx.insert_pure_enode(inst);
723                            // We've now rewritten all uses, or will when we
724                            // see them, and the instruction exists as a pure
725                            // enode in the eclass, so we can remove it.
726                            cursor.remove_inst_and_step_back();
727                        } else {
728                            if ctx.optimize_skeleton_inst(inst) {
729                                cursor.remove_inst_and_step_back();
730                            }
731                        }
732                    }
733                }
734                StackEntry::Pop => {
735                    effectful_gvn_map.decrement_depth();
736                }
737            }
738        }
739    }
740
741    /// Scoped elaboration: compute a final ordering of op computation
742    /// for each block and update the given Func body. After this
743    /// runs, the function body is back into the state where every
744    /// Inst with an used result is placed in the layout (possibly
745    /// duplicated, if our code-motion logic decides this is the best
746    /// option).
747    ///
748    /// This works in concert with the domtree. We do a preorder
749    /// traversal of the domtree, tracking a scoped map from Id to
750    /// (new) Value. The map's scopes correspond to levels in the
751    /// domtree.
752    ///
753    /// At each block, we iterate forward over the side-effecting
754    /// eclasses, and recursively generate their arg eclasses, then
755    /// emit the ops themselves.
756    ///
757    /// To use an eclass in a given block, we first look it up in the
758    /// scoped map, and get the Value if already present. If not, we
759    /// need to generate it. We emit the extracted enode for this
760    /// eclass after recursively generating its args. Eclasses are
761    /// thus computed "as late as possible", but then memoized into
762    /// the Id-to-Value map and available to all dominated blocks and
763    /// for the rest of this block. (This subsumes GVN.)
764    fn elaborate(&mut self) {
765        let mut elaborator = Elaborator::new(
766            self.func,
767            &self.domtree,
768            self.loop_analysis,
769            &self.remat_values,
770            &mut self.stats,
771            self.ctrl_plane,
772        );
773        elaborator.elaborate();
774
775        self.check_post_egraph();
776    }
777
778    #[cfg(debug_assertions)]
779    fn check_post_egraph(&self) {
780        // Verify that no union nodes are reachable from inst args,
781        // and that all inst args' defining instructions are in the
782        // layout.
783        for block in self.func.layout.blocks() {
784            for inst in self.func.layout.block_insts(block) {
785                self.func
786                    .dfg
787                    .inst_values(inst)
788                    .for_each(|arg| match self.func.dfg.value_def(arg) {
789                        ValueDef::Result(i, _) => {
790                            debug_assert!(self.func.layout.inst_block(i).is_some());
791                        }
792                        ValueDef::Union(..) => {
793                            panic!("egraph union node {arg} still reachable at {inst}!");
794                        }
795                        _ => {}
796                    })
797            }
798        }
799    }
800
801    #[cfg(not(debug_assertions))]
802    fn check_post_egraph(&self) {}
803}
804
805/// Implementation of external-context equality and hashing on
806/// InstructionData. This allows us to deduplicate instructions given
807/// some context that lets us see its value lists and the mapping from
808/// any value to "canonical value" (in an eclass).
809struct GVNContext<'a> {
810    value_lists: &'a ValueListPool,
811    union_find: &'a UnionFind<Value>,
812}
813
814impl<'a> CtxEq<(Type, InstructionData), (Type, InstructionData)> for GVNContext<'a> {
815    fn ctx_eq(
816        &self,
817        (a_ty, a_inst): &(Type, InstructionData),
818        (b_ty, b_inst): &(Type, InstructionData),
819    ) -> bool {
820        a_ty == b_ty
821            && a_inst.eq(b_inst, self.value_lists, |value| {
822                self.union_find.find(value)
823            })
824    }
825}
826
827impl<'a> CtxHash<(Type, InstructionData)> for GVNContext<'a> {
828    fn ctx_hash<H: Hasher>(&self, state: &mut H, (ty, inst): &(Type, InstructionData)) {
829        std::hash::Hash::hash(&ty, state);
830        inst.hash(state, self.value_lists, |value| self.union_find.find(value));
831    }
832}
833
834/// Statistics collected during egraph-based processing.
835#[derive(Clone, Debug, Default)]
836pub(crate) struct Stats {
837    pub(crate) pure_inst: u64,
838    pub(crate) pure_inst_deduped: u64,
839    pub(crate) skeleton_inst: u64,
840    pub(crate) alias_analysis_removed: u64,
841    pub(crate) new_inst: u64,
842    pub(crate) union: u64,
843    pub(crate) subsume: u64,
844    pub(crate) remat: u64,
845    pub(crate) rewrite_rule_invoked: u64,
846    pub(crate) rewrite_depth_limit: u64,
847    pub(crate) elaborate_visit_node: u64,
848    pub(crate) elaborate_memoize_hit: u64,
849    pub(crate) elaborate_memoize_miss: u64,
850    pub(crate) elaborate_remat: u64,
851    pub(crate) elaborate_licm_hoist: u64,
852    pub(crate) elaborate_func: u64,
853    pub(crate) elaborate_func_pre_insts: u64,
854    pub(crate) elaborate_func_post_insts: u64,
855    pub(crate) elaborate_best_cost_fixpoint_iters: u64,
856}