wasmtime/runtime/component/
mod.rs

1//! # Embedding API for the Component Model
2//!
3//! This module contains the embedding API for the [Component Model] in
4//! Wasmtime. This module requires the `component-model` feature to be enabled,
5//! which is enabled by default. The embedding API here is mirrored after the
6//! core wasm embedding API at the crate root and is intended to have the same
7//! look-and-feel while handling concepts of the component model.
8//!
9//! [Component Model]: https://component-model.bytecodealliance.org
10//!
11//! The component model is a broad topic which can't be explained here fully, so
12//! it's recommended to read over individual items' documentation to see more
13//! about the capabilities of the embedding API. At a high-level, however,
14//! perhaps the most interesting items in this module are:
15//!
16//! * [`Component`] - a compiled component ready to be instantiated. Similar to
17//!   a [`Module`](crate::Module) for core wasm.
18//!
19//! * [`Linker`] - a component-style location for defining host functions. This
20//!   is not the same as [`wasmtime::Linker`](crate::Linker) for core wasm
21//!   modules.
22//!
23//! * [`bindgen!`] - a macro to generate Rust bindings for a [WIT] [world]. This
24//!   maps all WIT types into Rust automatically and generates traits for
25//!   embedders to implement.
26//!
27//! [WIT]: https://component-model.bytecodealliance.org/design/wit.html
28//! [world]: https://component-model.bytecodealliance.org/design/worlds.html
29//!
30//! Embedders of the component model will typically start by defining their API
31//! in [WIT]. This describes what will be available to guests and what needs to
32//! be provided to the embedder by the guest. This [`world`][world] that was
33//! created is then fed into [`bindgen!`] to generate types and traits for the
34//! embedder to use. The embedder then implements these traits, adds
35//! functionality via the generated `add_to_linker` method (see [`bindgen!`] for
36//! more info), and then instantiates/executes a component.
37//!
38//! It's recommended to read over the [documentation for the Component
39//! Model][Component Model] to get an overview about how to build components
40//! from various languages.
41//!
42//! ## Example Usage
43//!
44//! Imagine you have the following WIT package definition in a file called world.wit
45//! along with a component (my_component.wasm) that targets `my-world`:
46//!
47//! ```text,ignore
48//! package component:my-package;
49//!
50//! world my-world {
51//!     import name: func() -> string;
52//!     export greet: func() -> string;
53//! }
54//! ```
55//!
56//! You can instantiate and call the component like so:
57//!
58//! ```
59//! fn main() -> wasmtime::Result<()> {
60//!     #   if true { return Ok(()) }
61//!     // Instantiate the engine and store
62//!     let engine = wasmtime::Engine::default();
63//!     let mut store = wasmtime::Store::new(&engine, ());
64//!
65//!     // Load the component from disk
66//!     let bytes = std::fs::read("my_component.wasm")?;
67//!     let component = wasmtime::component::Component::new(&engine, bytes)?;
68//!
69//!     // Configure the linker
70//!     let mut linker = wasmtime::component::Linker::new(&engine);
71//!     // The component expects one import `name` that
72//!     // takes no params and returns a string
73//!     linker
74//!         .root()
75//!         .func_wrap("name", |_store, _params: ()| {
76//!             Ok((String::from("Alice"),))
77//!         })?;
78//!
79//!     // Instantiate the component
80//!     let instance = linker.instantiate(&mut store, &component)?;
81//!
82//!     // Call the `greet` function
83//!     let func = instance.get_func(&mut store, "greet").expect("greet export not found");
84//!     let mut result = [wasmtime::component::Val::String("".into())];
85//!     func.call(&mut store, &[], &mut result)?;
86//!
87//!     // This should print out `Greeting: [String("Hello, Alice!")]`
88//!     println!("Greeting: {:?}", result);
89//!
90//!     Ok(())
91//! }
92//! ```
93//!
94//! Manually configuring the linker and calling untyped component exports is
95//! a bit tedious and error prone. The [`bindgen!`] macro can be used to
96//! generate bindings eliminating much of this boilerplate.
97//!
98//! See the docs for [`bindgen!`] for more information on how to use it.
99
100// rustdoc appears to lie about a warning above, so squelch it for now.
101#![allow(rustdoc::redundant_explicit_links)]
102
103mod component;
104#[cfg(feature = "component-model-async")]
105pub(crate) mod concurrent;
106mod func;
107mod instance;
108mod linker;
109mod matching;
110mod resource_table;
111mod resources;
112mod storage;
113mod store;
114pub mod types;
115mod values;
116pub use self::component::{Component, ComponentExportIndex};
117#[cfg(feature = "component-model-async")]
118pub use self::concurrent::{
119    ErrorContext, FutureReader, Promise, PromisesUnordered, StreamReader, VMComponentAsyncStore,
120};
121pub use self::func::{
122    ComponentNamedList, ComponentType, Func, Lift, Lower, TypedFunc, WasmList, WasmStr,
123};
124pub use self::instance::{Instance, InstanceExportLookup, InstancePre};
125pub use self::linker::{Linker, LinkerInstance};
126pub use self::resource_table::{ResourceTable, ResourceTableError};
127pub use self::resources::{Resource, ResourceAny};
128pub use self::types::{ResourceType, Type};
129pub use self::values::Val;
130
131pub(crate) use self::resources::HostResourceData;
132
133// Re-export wasm_wave crate so the compatible version of this dep doesn't have to be
134// tracked separately from wasmtime.
135#[cfg(feature = "wave")]
136pub use wasm_wave;
137
138// These items are used by `#[derive(ComponentType, Lift, Lower)]`, but they are not part of
139// Wasmtime's API stability guarantees
140#[doc(hidden)]
141pub mod __internal {
142    pub use super::func::{
143        bad_type_info, format_flags, lower_payload, typecheck_enum, typecheck_flags,
144        typecheck_record, typecheck_variant, ComponentVariant, LiftContext, LowerContext, Options,
145    };
146    pub use super::matching::InstanceType;
147    pub use crate::map_maybe_uninit;
148    pub use crate::store::StoreOpaque;
149    pub use crate::MaybeUninitExt;
150    pub use alloc::boxed::Box;
151    pub use alloc::string::String;
152    pub use alloc::vec::Vec;
153    pub use anyhow;
154    pub use core::cell::RefCell;
155    pub use core::mem::transmute;
156    #[cfg(feature = "async")]
157    pub use trait_variant::make as trait_variant_make;
158    pub use wasmtime_environ;
159    pub use wasmtime_environ::component::{CanonicalAbiInfo, ComponentTypes, InterfaceType};
160}
161
162pub(crate) use self::store::ComponentStoreData;
163
164/// Generate bindings for a [WIT world].
165///
166/// [WIT world]: https://component-model.bytecodealliance.org/design/worlds.html
167/// [WIT package]: https://component-model.bytecodealliance.org/design/packages.html
168///
169/// This macro ingests a [WIT world] and will generate all the necessary
170/// bindings for instantiating components that ascribe to the `world`. This
171/// provides a higher-level representation of working with a component than the
172/// raw [`Instance`] type which must be manually-type-checked and manually have
173/// its imports provided via the [`Linker`] type.
174///
175/// # Examples
176///
177/// Examples for this macro can be found in the [`bindgen_examples`] module
178/// documentation. That module has a submodule-per-example which includes the
179/// source code, with WIT, used to generate the structures along with the
180/// generated code itself in documentation.
181///
182/// # Debugging and Exploring
183///
184/// If you need to debug the output of `bindgen!` you can try using the
185/// `WASMTIME_DEBUG_BINDGEN=1` environment variable. This will write the
186/// generated code to a file on disk so rustc can produce better error messages
187/// against the actual generated source instead of the macro invocation itself.
188/// This additionally can enable opening up the generated code in an editor and
189/// exploring it (through an error message).
190///
191/// The generated bindings can additionally be explored with `cargo doc` to see
192/// what's generated. It's also recommended to browse the [`bindgen_examples`]
193/// for example generated structures and example generated code.
194///
195/// # Syntax
196///
197/// This procedural macro accepts a few different syntaxes. The primary purpose
198/// of this macro is to locate a WIT package, parse it, and then extract a
199/// `world` from the parsed package. There are then codegen-specific options to
200/// the bindings themselves which can additionally be specified.
201///
202/// Usage of this macro looks like:
203///
204/// ```rust
205/// # macro_rules! bindgen { ($($t:tt)*) => () }
206/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
207/// // for a single `world` in it. There must be exactly one for this to
208/// // succeed.
209/// bindgen!();
210///
211/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
212/// // for the world `foo` contained in it.
213/// bindgen!("foo");
214///
215/// // Parse the folder `other/wit/folder` adjacent to `Cargo.toml`.
216/// bindgen!(in "other/wit/folder");
217/// bindgen!("foo" in "other/wit/folder");
218///
219/// // Parse the file `foo.wit` as a single-file WIT package with no
220/// // dependencies.
221/// bindgen!("foo" in "foo.wit");
222///
223/// // Specify a suite of options to the bindings generation, documented below
224/// bindgen!({
225///     world: "foo",
226///     path: "other/path/to/wit",
227///     // ...
228/// });
229/// ```
230///
231/// # Options Reference
232///
233/// This is an example listing of all options that this macro supports along
234/// with documentation for each option and example syntax for each option.
235///
236/// ```rust
237/// # macro_rules! bindgen { ($($t:tt)*) => () }
238/// bindgen!({
239///     world: "foo", // not needed if `path` has one `world`
240///
241///     // same as in `bindgen!(in "other/wit/folder")
242///     path: "other/wit/folder",
243///
244///     // Instead of `path` the WIT document can be provided inline if
245///     // desired.
246///     inline: "
247///         package my:inline;
248///
249///         world foo {
250///             // ...
251///         }
252///     ",
253///
254///     // Add calls to `tracing::span!` before each import or export is called
255///     // to log most arguments and return values. By default values
256///     // containing lists are excluded; enable `verbose_tracing` to include
257///     // them.
258///     //
259///     // This option defaults to `false`.
260///     tracing: true,
261///
262///     // Include all arguments and return values in the tracing output,
263///     // including values containing lists, which may be very large.
264///     //
265///     // This option defaults to `false`.
266///     verbose_tracing: false,
267///
268///     // Imports will be async functions and exports
269///     // are also invoked as async functions. Requires `Config::async_support`
270///     // to be `true`.
271///     //
272///     // Note that this is only async for the host as the guest will still
273///     // appear as if it's invoking blocking functions.
274///     //
275///     // This option defaults to `false`.
276///     async: true,
277///
278///     // Alternative mode of async configuration where this still implies
279///     // async instantiation happens, for example, but more control is
280///     // provided over which imports are async and which aren't.
281///     //
282///     // Note that in this mode all exports are still async.
283///     async: {
284///         // All imports are async except for functions with these names
285///         except_imports: ["foo", "bar"],
286///
287///         // All imports are synchronous except for functions with these names
288///         //
289///         // Note that this key cannot be specified with `except_imports`,
290///         // only one or the other is accepted.
291///         only_imports: ["foo", "bar"],
292///     },
293///
294///     // This option is used to indicate whether imports can trap.
295///     //
296///     // Imports that may trap have their return types wrapped in
297///     // `wasmtime::Result<T>` where the `Err` variant indicates that a
298///     // trap will be raised in the guest.
299///     //
300///     // By default imports cannot trap and the return value is the return
301///     // value from the WIT bindings itself. This value can be set to `true`
302///     // to indicate that any import can trap. This value can also be set to
303///     // an array-of-strings to indicate that only a set list of imports
304///     // can trap.
305///     trappable_imports: false,             // no imports can trap (default)
306///     // trappable_imports: true,           // all imports can trap
307///     // trappable_imports: ["foo", "bar"], // only these can trap
308///
309///     // This can be used to translate WIT return values of the form
310///     // `result<T, error-type>` into `Result<T, RustErrorType>` in Rust.
311///     // Users must define `RustErrorType` and the `Host` trait for the
312///     // interface which defines `error-type` will have a method
313///     // called `convert_error_type` which converts `RustErrorType`
314///     // into `wasmtime::Result<ErrorType>`. This conversion can either
315///     // return the raw WIT error (`ErrorType` here) or a trap.
316///     //
317///     // By default this option is not specified. This option only takes
318///     // effect when `trappable_imports` is set for some imports.
319///     trappable_error_type: {
320///         "wasi:io/streams/stream-error" => RustErrorType,
321///     },
322///
323///     // All generated bindgen types are "owned" meaning types like `String`
324///     // are used instead of `&str`, for example. This is the default and
325///     // ensures that the same type used in both imports and exports uses the
326///     // same generated type.
327///     ownership: Owning,
328///
329///     // Alternative to `Owning` above where borrowed types attempt to be used
330///     // instead. The `duplicate_if_necessary` configures whether duplicate
331///     // Rust types will be generated for the same WIT type if necessary, for
332///     // example when a type is used both as an import and an export.
333///     ownership: Borrowing {
334///         duplicate_if_necessary: true
335///     },
336///
337///     // Restrict the code generated to what's needed for the interface
338///     // imports in the inlined WIT document fragment.
339///     interfaces: "
340///         import wasi:cli/command;
341///     ",
342///
343///     // Remap imported interfaces or resources to types defined in Rust
344///     // elsewhere. Using this option will prevent any code from being
345///     // generated for interfaces mentioned here. Resources named here will
346///     // not have a type generated to represent the resource.
347///     //
348///     // Interfaces mapped with this option should be previously generated
349///     // with an invocation of this macro. Resources need to be mapped to a
350///     // Rust type name.
351///     with: {
352///         // This can be used to indicate that entire interfaces have
353///         // bindings generated elsewhere with a path pointing to the
354///         // bindinges-generated module.
355///         "wasi:random/random": wasmtime_wasi::bindings::random::random,
356///
357///         // Similarly entire packages can also be specified.
358///         "wasi:cli": wasmtime_wasi::bindings::cli,
359///
360///         // Or, if applicable, entire namespaces can additionally be mapped.
361///         "wasi": wasmtime_wasi::bindings,
362///
363///         // Versions are supported if multiple versions are in play:
364///         "wasi:http/types@0.2.0": wasmtime_wasi_http::bindings::http::types,
365///         "wasi:http@0.2.0": wasmtime_wasi_http::bindings::http,
366///
367///         // The `with` key can also be used to specify the `T` used in
368///         // import bindings of `Resource<T>`. This can be done to configure
369///         // which typed resource shows up in generated bindings and can be
370///         // useful when working with the typed methods of `ResourceTable`.
371///         "wasi:filesystem/types/descriptor": MyDescriptorType,
372///     },
373///
374///     // Additional derive attributes to include on generated types (structs or enums).
375///     //
376///     // These are deduplicated and attached in a deterministic order.
377///     additional_derives: [
378///         Hash,
379///         serde::Deserialize,
380///         serde::Serialize,
381///     ],
382///
383///     // An niche configuration option to require that the `T` in `Store<T>`
384///     // is always `Send` in the generated bindings. Typically not needed
385///     // but if synchronous bindings depend on asynchronous bindings using
386///     // the `with` key then this may be required.
387///     require_store_data_send: false,
388///
389///     // If the `wasmtime` crate is depended on at a nonstandard location
390///     // or is renamed then this is the path to the root of the `wasmtime`
391///     // crate. Much of the generated code needs to refer to `wasmtime` so
392///     // this should be used if the `wasmtime` name is not wasmtime itself.
393///     //
394///     // By default this is `wasmtime`.
395///     wasmtime_crate: path::to::wasmtime,
396///
397///     // This is an in-source alternative to using `WASMTIME_DEBUG_BINDGEN`.
398///     //
399///     // Note that if this option is specified then the compiler will always
400///     // recompile your bindings. Cargo records the start time of when rustc
401///     // is spawned by this will write a file during compilation. To Cargo
402///     // that looks like a file was modified after `rustc` was spawned,
403///     // so Cargo will always think your project is "dirty" and thus always
404///     // recompile it. Recompiling will then overwrite the file again,
405///     // starting the cycle anew. This is only recommended for debugging.
406///     //
407///     // This option defaults to false.
408///     include_generated_code_from_file: false,
409/// });
410/// ```
411pub use wasmtime_component_macro::bindgen;
412
413/// Derive macro to generate implementations of the [`ComponentType`] trait.
414///
415/// This derive macro can be applied to `struct` and `enum` definitions and is
416/// used to bind either a `record`, `enum`, or `variant` in the component model.
417///
418/// Note you might be looking for [`bindgen!`] rather than this macro as that
419/// will generate the entire type for you rather than just a trait
420/// implementation.
421///
422/// This macro supports a `#[component]` attribute which is used to customize
423/// how the type is bound to the component model. A top-level `#[component]`
424/// attribute is required to specify either `record`, `enum`, or `variant`.
425///
426/// ## Records
427///
428/// `record`s in the component model correspond to `struct`s in Rust. An example
429/// is:
430///
431/// ```rust
432/// use wasmtime::component::ComponentType;
433///
434/// #[derive(ComponentType)]
435/// #[component(record)]
436/// struct Color {
437///     r: u8,
438///     g: u8,
439///     b: u8,
440/// }
441/// ```
442///
443/// which corresponds to the WIT type:
444///
445/// ```wit
446/// record color {
447///     r: u8,
448///     g: u8,
449///     b: u8,
450/// }
451/// ```
452///
453/// Note that the name `Color` here does not need to match the name in WIT.
454/// That's purely used as a name in Rust of what to refer to. The field names
455/// must match that in WIT, however. Field names can be customized with the
456/// `#[component]` attribute though.
457///
458/// ```rust
459/// use wasmtime::component::ComponentType;
460///
461/// #[derive(ComponentType)]
462/// #[component(record)]
463/// struct VerboseColor {
464///     #[component(name = "r")]
465///     red: u8,
466///     #[component(name = "g")]
467///     green: u8,
468///     #[component(name = "b")]
469///     blue: u8,
470/// }
471/// ```
472///
473/// Also note that field ordering is significant at this time and must match
474/// WIT.
475///
476/// ## Variants
477///
478/// `variant`s in the component model correspond to a subset of shapes of a Rust
479/// `enum`. Variants in the component model have a single optional payload type
480/// which means that not all Rust `enum`s correspond to component model
481/// `variant`s. An example variant is:
482///
483/// ```rust
484/// use wasmtime::component::ComponentType;
485///
486/// #[derive(ComponentType)]
487/// #[component(variant)]
488/// enum Filter {
489///     #[component(name = "none")]
490///     None,
491///     #[component(name = "all")]
492///     All,
493///     #[component(name = "some")]
494///     Some(Vec<String>),
495/// }
496/// ```
497///
498/// which corresponds to the WIT type:
499///
500/// ```wit
501/// variant filter {
502///     none,
503///     all,
504///     some(list<string>),
505/// }
506/// ```
507///
508/// The `variant` style of derive allows an optional payload on Rust `enum`
509/// variants but it must be a single unnamed field. Variants of the form `Foo(T,
510/// U)` or `Foo { name: T }` are not supported at this time.
511///
512/// Note that the order of variants in Rust must match the order of variants in
513/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
514/// on all Rust `enum` variants because the name currently defaults to the Rust
515/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
516///
517/// ## Enums
518///
519/// `enum`s in the component model correspond to C-like `enum`s in Rust. Note
520/// that a component model `enum` does not allow any payloads so the Rust `enum`
521/// must additionally have no payloads.
522///
523/// ```rust
524/// use wasmtime::component::ComponentType;
525///
526/// #[derive(ComponentType)]
527/// #[component(enum)]
528/// #[repr(u8)]
529/// enum Setting {
530///     #[component(name = "yes")]
531///     Yes,
532///     #[component(name = "no")]
533///     No,
534///     #[component(name = "auto")]
535///     Auto,
536/// }
537/// ```
538///
539/// which corresponds to the WIT type:
540///
541/// ```wit
542/// enum setting {
543///     yes,
544///     no,
545///     auto,
546/// }
547/// ```
548///
549/// Note that the order of variants in Rust must match the order of variants in
550/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
551/// on all Rust `enum` variants because the name currently defaults to the Rust
552/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
553pub use wasmtime_component_macro::ComponentType;
554
555/// A derive macro for generating implementations of the [`Lift`] trait.
556///
557/// This macro will likely be applied in conjunction with the
558/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
559/// of `#[derive(ComponentType, Lift)]`. This trait enables reading values from
560/// WebAssembly.
561///
562/// Note you might be looking for [`bindgen!`] rather than this macro as that
563/// will generate the entire type for you rather than just a trait
564/// implementation.
565///
566/// At this time this derive macro has no configuration.
567///
568/// ## Examples
569///
570/// ```rust
571/// use wasmtime::component::{ComponentType, Lift};
572///
573/// #[derive(ComponentType, Lift)]
574/// #[component(record)]
575/// struct Color {
576///     r: u8,
577///     g: u8,
578///     b: u8,
579/// }
580/// ```
581pub use wasmtime_component_macro::Lift;
582
583/// A derive macro for generating implementations of the [`Lower`] trait.
584///
585/// This macro will likely be applied in conjunction with the
586/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
587/// of `#[derive(ComponentType, Lower)]`. This trait enables passing values to
588/// WebAssembly.
589///
590/// Note you might be looking for [`bindgen!`] rather than this macro as that
591/// will generate the entire type for you rather than just a trait
592/// implementation.
593///
594/// At this time this derive macro has no configuration.
595///
596/// ## Examples
597///
598/// ```rust
599/// use wasmtime::component::{ComponentType, Lower};
600///
601/// #[derive(ComponentType, Lower)]
602/// #[component(record)]
603/// struct Color {
604///     r: u8,
605///     g: u8,
606///     b: u8,
607/// }
608/// ```
609pub use wasmtime_component_macro::Lower;
610
611/// A macro to generate a Rust type corresponding to WIT `flags`
612///
613/// This macro generates a type that implements the [`ComponentType`], [`Lift`],
614/// and [`Lower`] traits. The generated Rust type corresponds to the `flags`
615/// type in WIT.
616///
617/// Example usage of this looks like:
618///
619/// ```rust
620/// use wasmtime::component::flags;
621///
622/// flags! {
623///     Permissions {
624///         #[component(name = "read")]
625///         const READ;
626///         #[component(name = "write")]
627///         const WRITE;
628///         #[component(name = "execute")]
629///         const EXECUTE;
630///     }
631/// }
632///
633/// fn validate_permissions(permissions: &mut Permissions) {
634///     if permissions.contains(Permissions::EXECUTE | Permissions::WRITE) {
635///         panic!("cannot enable both writable and executable at the same time");
636///     }
637///
638///     if permissions.contains(Permissions::READ) {
639///         panic!("permissions must at least contain read");
640///     }
641/// }
642/// ```
643///
644/// which corresponds to the WIT type:
645///
646/// ```wit
647/// flags permissions {
648///     read,
649///     write,
650///     execute,
651/// }
652/// ```
653///
654/// This generates a structure which is similar to/inspired by the [`bitflags`
655/// crate](https://crates.io/crates/bitflags). The `Permissions` structure
656/// generated implements the [`PartialEq`], [`Eq`], [`Debug`], [`BitOr`],
657/// [`BitOrAssign`], [`BitAnd`], [`BitAndAssign`], [`BitXor`], [`BitXorAssign`],
658/// and [`Not`] traits - in addition to the Wasmtime-specific component ones
659/// [`ComponentType`], [`Lift`], and [`Lower`].
660///
661/// [`BitOr`]: std::ops::BitOr
662/// [`BitOrAssign`]: std::ops::BitOrAssign
663/// [`BitAnd`]: std::ops::BitAnd
664/// [`BitAndAssign`]: std::ops::BitAndAssign
665/// [`BitXor`]: std::ops::BitXor
666/// [`BitXorAssign`]: std::ops::BitXorAssign
667/// [`Not`]: std::ops::Not
668pub use wasmtime_component_macro::flags;
669
670#[cfg(any(docsrs, test, doctest))]
671pub mod bindgen_examples;
672
673// NB: needed for the links in the docs above to work in all `cargo doc`
674// configurations and avoid errors.
675#[cfg(not(any(docsrs, test, doctest)))]
676#[doc(hidden)]
677pub mod bindgen_examples {}