Skip to main content

wasmtime/runtime/component/
mod.rs

1//! # Embedding API for the Component Model
2//!
3//! This module contains the embedding API for the [Component Model] in
4//! Wasmtime. This module requires the `component-model` feature to be enabled,
5//! which is enabled by default. The embedding API here is mirrored after the
6//! core wasm embedding API at the crate root and is intended to have the same
7//! look-and-feel while handling concepts of the component model.
8//!
9//! [Component Model]: https://component-model.bytecodealliance.org
10//!
11//! The component model is a broad topic which can't be explained here fully, so
12//! it's recommended to read over individual items' documentation to see more
13//! about the capabilities of the embedding API. At a high-level, however,
14//! perhaps the most interesting items in this module are:
15//!
16//! * [`Component`] - a compiled component ready to be instantiated. Similar to
17//!   a [`Module`](crate::Module) for core wasm.
18//!
19//! * [`Linker`] - a component-style location for defining host functions. This
20//!   is not the same as [`wasmtime::Linker`](crate::Linker) for core wasm
21//!   modules.
22//!
23//! * [`bindgen!`] - a macro to generate Rust bindings for a [WIT] [world]. This
24//!   maps all WIT types into Rust automatically and generates traits for
25//!   embedders to implement.
26//!
27//! [WIT]: https://component-model.bytecodealliance.org/design/wit.html
28//! [world]: https://component-model.bytecodealliance.org/design/worlds.html
29//!
30//! Embedders of the component model will typically start by defining their API
31//! in [WIT]. This describes what will be available to guests and what needs to
32//! be provided to the embedder by the guest. This [`world`][world] that was
33//! created is then fed into [`bindgen!`] to generate types and traits for the
34//! embedder to use. The embedder then implements these traits, adds
35//! functionality via the generated `add_to_linker` method (see [`bindgen!`] for
36//! more info), and then instantiates/executes a component.
37//!
38//! It's recommended to read over the [documentation for the Component
39//! Model][Component Model] to get an overview about how to build components
40//! from various languages.
41//!
42//! ## Example Usage
43//!
44//! Imagine you have the following WIT package definition in a file called world.wit
45//! along with a component (my_component.wasm) that targets `my-world`:
46//!
47//! ```text,ignore
48//! package component:my-package;
49//!
50//! world my-world {
51//!     import name: func() -> string;
52//!     export greet: func() -> string;
53//! }
54//! ```
55//!
56//! You can instantiate and call the component like so:
57//!
58//! ```
59//! fn main() -> wasmtime::Result<()> {
60//!     #   if true { return Ok(()) }
61//!     // Instantiate the engine and store
62//!     let engine = wasmtime::Engine::default();
63//!     let mut store = wasmtime::Store::new(&engine, ());
64//!
65//!     // Load the component from disk
66//!     let bytes = std::fs::read("my_component.wasm")?;
67//!     let component = wasmtime::component::Component::new(&engine, bytes)?;
68//!
69//!     // Configure the linker
70//!     let mut linker = wasmtime::component::Linker::new(&engine);
71//!     // The component expects one import `name` that
72//!     // takes no params and returns a string
73//!     linker
74//!         .root()
75//!         .func_wrap("name", |_store, _params: ()| {
76//!             Ok((String::from("Alice"),))
77//!         })?;
78//!
79//!     // Instantiate the component
80//!     let instance = linker.instantiate(&mut store, &component)?;
81//!
82//!     // Call the `greet` function
83//!     let func = instance.get_func(&mut store, "greet").expect("greet export not found");
84//!     let mut result = [wasmtime::component::Val::String("".into())];
85//!     func.call(&mut store, &[], &mut result)?;
86//!
87//!     // This should print out `Greeting: [String("Hello, Alice!")]`
88//!     println!("Greeting: {:?}", result);
89//!
90//!     Ok(())
91//! }
92//! ```
93//!
94//! Manually configuring the linker and calling untyped component exports is
95//! a bit tedious and error prone. The [`bindgen!`] macro can be used to
96//! generate bindings eliminating much of this boilerplate.
97//!
98//! See the docs for [`bindgen!`] for more information on how to use it.
99
100#![allow(
101    rustdoc::redundant_explicit_links,
102    reason = "rustdoc appears to lie about a warning above, so squelch it for now"
103)]
104
105mod component;
106#[cfg(feature = "component-model-async")]
107pub(crate) mod concurrent;
108mod func;
109mod has_data;
110mod instance;
111mod linker;
112mod matching;
113mod resource_table;
114mod resources;
115mod storage;
116pub(crate) mod store;
117pub mod types;
118mod values;
119pub use self::component::{Component, ComponentExportIndex};
120#[cfg(feature = "component-model-async")]
121pub use self::concurrent::{
122    Access, Accessor, AccessorTask, AsAccessor, Destination, DirectDestination, DirectSource,
123    ErrorContext, FutureAny, FutureConsumer, FutureProducer, FutureReader, GuardedFutureReader,
124    GuardedStreamReader, JoinHandle, ReadBuffer, Source, StreamAny, StreamConsumer, StreamProducer,
125    StreamReader, StreamResult, VMComponentAsyncStore, VecBuffer, WriteBuffer,
126};
127#[cfg(feature = "component-model-async")]
128pub use self::func::TaskExit;
129pub use self::func::{
130    ComponentNamedList, ComponentType, Func, Lift, Lower, TypedFunc, WasmList, WasmStr,
131};
132pub use self::has_data::*;
133pub use self::instance::{Instance, InstanceExportLookup, InstancePre};
134pub use self::linker::{Linker, LinkerInstance};
135pub use self::resource_table::{ResourceTable, ResourceTableError};
136pub use self::resources::{Resource, ResourceAny, ResourceDynamic};
137pub use self::types::{ResourceType, Type};
138pub use self::values::Val;
139
140pub(crate) use self::instance::RuntimeImport;
141pub(crate) use self::resources::HostResourceData;
142pub(crate) use self::store::{ComponentInstanceId, RuntimeInstance};
143
144// Re-export wasm_wave crate so the compatible version of this dep doesn't have to be
145// tracked separately from wasmtime.
146#[cfg(feature = "wave")]
147pub use wasm_wave;
148
149// These items are used by `#[derive(ComponentType, Lift, Lower)]`, but they are not part of
150// Wasmtime's API stability guarantees
151#[doc(hidden)]
152pub mod __internal {
153    pub use super::func::{
154        ComponentVariant, LiftContext, LowerContext, bad_type_info, format_flags, lower_payload,
155        typecheck_enum, typecheck_flags, typecheck_record, typecheck_variant,
156    };
157    pub use super::matching::InstanceType;
158    pub use crate::MaybeUninitExt;
159    pub use crate::map_maybe_uninit;
160    pub use crate::store::StoreOpaque;
161    pub use alloc::boxed::Box;
162    pub use alloc::string::String;
163    pub use alloc::vec::Vec;
164    pub use core::cell::RefCell;
165    pub use core::future::Future;
166    pub use core::mem::transmute;
167    pub use wasmtime_environ;
168    pub use wasmtime_environ::component::{CanonicalAbiInfo, ComponentTypes, InterfaceType};
169}
170
171pub(crate) use self::store::ComponentStoreData;
172
173/// Generate bindings for a [WIT world].
174///
175/// [WIT world]: https://component-model.bytecodealliance.org/design/worlds.html
176/// [WIT package]: https://component-model.bytecodealliance.org/design/packages.html
177///
178/// This macro ingests a [WIT world] and will generate all the necessary
179/// bindings for instantiating components that ascribe to the `world`. This
180/// provides a higher-level representation of working with a component than the
181/// raw [`Instance`] type which must be manually-type-checked and manually have
182/// its imports provided via the [`Linker`] type.
183///
184/// # Examples
185///
186/// Examples for this macro can be found in the [`bindgen_examples`] module
187/// documentation. That module has a submodule-per-example which includes the
188/// source code, with WIT, used to generate the structures along with the
189/// generated code itself in documentation.
190///
191/// # Debugging and Exploring
192///
193/// If you need to debug the output of `bindgen!` you can try using the
194/// `WASMTIME_DEBUG_BINDGEN=1` environment variable. This will write the
195/// generated code to a file on disk so rustc can produce better error messages
196/// against the actual generated source instead of the macro invocation itself.
197/// This additionally can enable opening up the generated code in an editor and
198/// exploring it (through an error message).
199///
200/// The generated bindings can additionally be explored with `cargo doc` to see
201/// what's generated. It's also recommended to browse the [`bindgen_examples`]
202/// for example generated structures and example generated code.
203///
204/// # Syntax
205///
206/// This procedural macro accepts a few different syntaxes. The primary purpose
207/// of this macro is to locate a WIT package, parse it, and then extract a
208/// `world` from the parsed package. There are then codegen-specific options to
209/// the bindings themselves which can additionally be specified.
210///
211/// Usage of this macro looks like:
212///
213/// ```rust
214/// # macro_rules! bindgen { ($($t:tt)*) => () }
215/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
216/// // for a single `world` in it. There must be exactly one for this to
217/// // succeed.
218/// bindgen!();
219///
220/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
221/// // for the world `foo` contained in it.
222/// bindgen!("foo");
223///
224/// // Parse the folder `other/wit/folder` adjacent to `Cargo.toml`.
225/// bindgen!(in "other/wit/folder");
226/// bindgen!("foo" in "other/wit/folder");
227///
228/// // Parse the file `foo.wit` as a single-file WIT package with no
229/// // dependencies.
230/// bindgen!("foo" in "foo.wit");
231///
232/// // Specify a suite of options to the bindings generation, documented below
233/// bindgen!({
234///     world: "foo",
235///     path: "other/path/to/wit",
236///     // ...
237/// });
238/// ```
239///
240/// # Options Reference
241///
242/// This is an example listing of all options that this macro supports along
243/// with documentation for each option and example syntax for each option.
244///
245/// ```rust
246/// # macro_rules! bindgen { ($($t:tt)*) => () }
247/// bindgen!({
248///     world: "foo", // not needed if `path` has one `world`
249///
250///     // same as in `bindgen!(in "other/wit/folder")
251///     path: "other/wit/folder",
252///
253///     // Instead of `path` the WIT document can be provided inline if
254///     // desired.
255///     inline: "
256///         package my:inline;
257///
258///         world foo {
259///             // ...
260///         }
261///     ",
262///
263///     // Further configuration of imported functions. This can be used to add
264///     // functionality per-function or by default for all imports. Note that
265///     // exports are also supported via the `exports` key below.
266///     //
267///     // Functions in this list are specified as their interface first then
268///     // the raw wasm name of the function. Interface versions can be
269///     // optionally omitted and prefixes are also supported to configure
270///     // entire interfaces at once for example. Only the first matching item
271///     // in this list is used to configure a function.
272///     //
273///     // Configuration for a function is a set of flags which can be added
274///     // per-function. Each flag's meaning is documented below and the final
275///     // set of flags for a function are calculated by the first matching
276///     // rule below unioned with the default flags inferred from the WIT
277///     // signature itself (unless below configures the `ignore_wit` flag).
278///     //
279///     // Specifically the defaults for a normal WIT function are empty,
280///     // meaning all flags below are disabled. For a WIT `async` function the
281///     // `async | store` flags are enabled by default, but all others are
282///     // still disabled.
283///     //
284///     // Note that unused keys in this map are a compile-time error. All
285///     // keys are required to be used and consulted.
286///     imports: {
287///         // The `async` flag is used to indicate that a Rust-level `async`
288///         // function is used on the host. This means that the host is allowed
289///         // to do async I/O. Note though that to WebAssembly itself the
290///         // function will still be blocking.
291///         "wasi:io/poll.poll": async,
292///
293///         // The `store` flag means that the host function will have access
294///         // to the store during its execution. By default host functions take
295///         // `&mut self` which only has access to the data in question
296///         // implementing the generated traits from `bindgen!`. This
297///         // configuration means that in addition to `Self` the entire store
298///         // will be accessible if necessary.
299///         //
300///         // Functions that have access to a `store` are generated in a
301///         // `HostWithStore` trait. Functions without a `store` are generated
302///         // in a `Host` trait.
303///         //
304///         // > Note: this is not yet implemented for non-async functions. This
305///         // > will result in bindgen errors right now and is intended to be
306///         // > implemented in the near future.
307///         "wasi:clocks/monotonic-clock.now": store,
308///
309///         // This is an example of combining flags where the `async` and
310///         // `store` flags are combined. This means that the generated
311///         // host function is both `async` and additionally has access to
312///         // the `store`. Note though that this configuration is not necessary
313///         // as the WIT function is itself already marked as `async`. That
314///         // means that this is the default already applied meaning that
315///         // specifying it here would be redundant.
316///         //
317///         // "wasi:clocks/monotonic-clock.wait-until": async | store,
318///
319///         // The `tracing` flag indicates that `tracing!` will be used to log
320///         // entries and exits into this host API. This can assist with
321///         // debugging or just generally be used to provide logs for the host.
322///         //
323///         // By default values are traced unless they contain lists, but
324///         // tracing of lists can be enabled with `verbose_tracing` below.
325///         "my:local/api.foo": tracing,
326///
327///         // The `verbose_tracing` flag indicates that when combined with
328///         // `tracing` the values of parameters/results are added to logs.
329///         // This may include lists which may be very large.
330///         "my:local/api.other-function": tracing | verbose_tracing,
331///
332///         // The `trappable` flag indicates that this import is allowed to
333///         // generate a trap.
334///         //
335///         // Imports that may trap have their return types wrapped in
336///         // `wasmtime::Result<T>` where the `Err` variant indicates that a
337///         // trap will be raised in the guest.
338///         //
339///         // By default imports cannot trap and the return value is the return
340///         // value from the WIT bindings itself.
341///         //
342///         // Note that the `trappable` configuration can be combined with the
343///         // `trappable_error_type` configuration below to avoid having a
344///         // host function return `wasmtime::Result<Result<WitOk, WitErr>>`
345///         // for example and instead return `Result<WitOk, RustErrorType>`.
346///         "my:local/api.fallible": trappable,
347///
348///         // The `ignore_wit` flag discards the WIT-level defaults of a
349///         // function. For example this `async` WIT function will be ignored
350///         // and a synchronous function will be generated on the host.
351///         "my:local/api.wait": ignore_wit,
352///
353///         // The `exact` flag ensures that the filter, here "f", only matches
354///         // functions exactly. For example "f" here would only refer to
355///         // `import f: func()` in a world. Without this flag then "f"
356///         // would also configure any package `f:*/*/*` for example.
357///         "f": exact,
358///
359///         // This is used to configure the defaults of all functions if no
360///         // other key above matches a function. Note that if specific
361///         // functions mentioned above want these flags too then the flags
362///         // must be added there too because only one matching rule in this
363///         // map is used per-function.
364///         default: async | trappable,
365///     },
366///
367///     // Mostly the same as `imports` above, but applies to exported functions.
368///     //
369///     // The one difference here is that, whereas the `task_exit` flag has no
370///     // effect for `imports`, it changes how bindings are generated for
371///     // exported functions as described below.
372///     exports: {
373///         /* ... */
374///
375///         // The `task_exit` flag indicates that the generated binding for
376///         // this function should return a tuple of the result produced by the
377///         // callee and a `TaskExit` future which will resolve when the task
378///         // (and any transitively created subtasks) have exited.
379///         "my:local/api.does-stuff-after-returning": task_exit,
380///     },
381///
382///     // This can be used to translate WIT return values of the form
383///     // `result<T, error-type>` into `Result<T, RustErrorType>` in Rust.
384///     // Users must define `RustErrorType` and the `Host` trait for the
385///     // interface which defines `error-type` will have a method
386///     // called `convert_error_type` which converts `RustErrorType`
387///     // into `wasmtime::Result<ErrorType>`. This conversion can either
388///     // return the raw WIT error (`ErrorType` here) or a trap.
389///     //
390///     // By default this option is not specified. This option only takes
391///     // effect when `trappable` is set for some imports.
392///     trappable_error_type: {
393///         "wasi:io/streams.stream-error" => RustErrorType,
394///     },
395///
396///     // All generated bindgen types are "owned" meaning types like `String`
397///     // are used instead of `&str`, for example. This is the default and
398///     // ensures that the same type used in both imports and exports uses the
399///     // same generated type.
400///     ownership: Owning,
401///
402///     // Alternative to `Owning` above where borrowed types attempt to be used
403///     // instead. The `duplicate_if_necessary` configures whether duplicate
404///     // Rust types will be generated for the same WIT type if necessary, for
405///     // example when a type is used both as an import and an export.
406///     ownership: Borrowing {
407///         duplicate_if_necessary: true
408///     },
409///
410///     // Restrict the code generated to what's needed for the interface
411///     // imports in the inlined WIT document fragment.
412///     interfaces: "
413///         import wasi:cli/command;
414///     ",
415///
416///     // Remap imported interfaces or resources to types defined in Rust
417///     // elsewhere. Using this option will prevent any code from being
418///     // generated for interfaces mentioned here. Resources named here will
419///     // not have a type generated to represent the resource.
420///     //
421///     // Interfaces mapped with this option should be previously generated
422///     // with an invocation of this macro. Resources need to be mapped to a
423///     // Rust type name.
424///     with: {
425///         // This can be used to indicate that entire interfaces have
426///         // bindings generated elsewhere with a path pointing to the
427///         // bindinges-generated module.
428///         "wasi:random/random": wasmtime_wasi::p2::bindings::random::random,
429///
430///         // Similarly entire packages can also be specified.
431///         "wasi:cli": wasmtime_wasi::p2::bindings::cli,
432///
433///         // Or, if applicable, entire namespaces can additionally be mapped.
434///         "wasi": wasmtime_wasi::p2::bindings,
435///
436///         // Versions are supported if multiple versions are in play:
437///         "wasi:http/types@0.2.0": wasmtime_wasi_http::bindings::http::types,
438///         "wasi:http@0.2.0": wasmtime_wasi_http::bindings::http,
439///
440///         // The `with` key can also be used to specify the `T` used in
441///         // import bindings of `Resource<T>`. This can be done to configure
442///         // which typed resource shows up in generated bindings and can be
443///         // useful when working with the typed methods of `ResourceTable`.
444///         "wasi:filesystem/types.descriptor": MyDescriptorType,
445///     },
446///
447///     // Additional derive attributes to include on generated types (structs or enums).
448///     //
449///     // These are deduplicated and attached in a deterministic order.
450///     additional_derives: [
451///         Hash,
452///         serde::Deserialize,
453///         serde::Serialize,
454///     ],
455///
456///     // An niche configuration option to require that the `T` in `Store<T>`
457///     // is always `Send` in the generated bindings. Typically not needed
458///     // but if synchronous bindings depend on asynchronous bindings using
459///     // the `with` key then this may be required.
460///     require_store_data_send: false,
461///
462///     // If the `wasmtime` crate is depended on at a nonstandard location
463///     // or is renamed then this is the path to the root of the `wasmtime`
464///     // crate. Much of the generated code needs to refer to `wasmtime` so
465///     // this should be used if the `wasmtime` name is not wasmtime itself.
466///     //
467///     // By default this is `wasmtime`.
468///     wasmtime_crate: path::to::wasmtime,
469///
470///     // Whether to use `anyhow::Result` for trappable host-defined function
471///     // imports, rather than `wasmtime::Result`.
472///     //
473///     // By default, this is false and `wasmtime::Result` is used instead of
474///     // `anyhow::Result`.
475///     //
476///     // When enabled, the generated code requires the `"anyhow"` cargo feature
477///     // to also be enabled in the `wasmtime` crate.
478///     anyhow: false,
479///
480///     // This is an in-source alternative to using `WASMTIME_DEBUG_BINDGEN`.
481///     //
482///     // Note that if this option is specified then the compiler will always
483///     // recompile your bindings. Cargo records the start time of when rustc
484///     // is spawned by this will write a file during compilation. To Cargo
485///     // that looks like a file was modified after `rustc` was spawned,
486///     // so Cargo will always think your project is "dirty" and thus always
487///     // recompile it. Recompiling will then overwrite the file again,
488///     // starting the cycle anew. This is only recommended for debugging.
489///     //
490///     // This option defaults to false.
491///     include_generated_code_from_file: false,
492/// });
493/// ```
494pub use wasmtime_component_macro::bindgen;
495
496/// Derive macro to generate implementations of the [`ComponentType`] trait.
497///
498/// This derive macro can be applied to `struct` and `enum` definitions and is
499/// used to bind either a `record`, `enum`, or `variant` in the component model.
500///
501/// Note you might be looking for [`bindgen!`] rather than this macro as that
502/// will generate the entire type for you rather than just a trait
503/// implementation.
504///
505/// This macro supports a `#[component]` attribute which is used to customize
506/// how the type is bound to the component model. A top-level `#[component]`
507/// attribute is required to specify either `record`, `enum`, or `variant`.
508///
509/// ## Records
510///
511/// `record`s in the component model correspond to `struct`s in Rust. An example
512/// is:
513///
514/// ```rust
515/// use wasmtime::component::ComponentType;
516///
517/// #[derive(ComponentType)]
518/// #[component(record)]
519/// struct Color {
520///     r: u8,
521///     g: u8,
522///     b: u8,
523/// }
524/// ```
525///
526/// which corresponds to the WIT type:
527///
528/// ```wit
529/// record color {
530///     r: u8,
531///     g: u8,
532///     b: u8,
533/// }
534/// ```
535///
536/// Note that the name `Color` here does not need to match the name in WIT.
537/// That's purely used as a name in Rust of what to refer to. The field names
538/// must match that in WIT, however. Field names can be customized with the
539/// `#[component]` attribute though.
540///
541/// ```rust
542/// use wasmtime::component::ComponentType;
543///
544/// #[derive(ComponentType)]
545/// #[component(record)]
546/// struct VerboseColor {
547///     #[component(name = "r")]
548///     red: u8,
549///     #[component(name = "g")]
550///     green: u8,
551///     #[component(name = "b")]
552///     blue: u8,
553/// }
554/// ```
555///
556/// Also note that field ordering is significant at this time and must match
557/// WIT.
558///
559/// ## Variants
560///
561/// `variant`s in the component model correspond to a subset of shapes of a Rust
562/// `enum`. Variants in the component model have a single optional payload type
563/// which means that not all Rust `enum`s correspond to component model
564/// `variant`s. An example variant is:
565///
566/// ```rust
567/// use wasmtime::component::ComponentType;
568///
569/// #[derive(ComponentType)]
570/// #[component(variant)]
571/// enum Filter {
572///     #[component(name = "none")]
573///     None,
574///     #[component(name = "all")]
575///     All,
576///     #[component(name = "some")]
577///     Some(Vec<String>),
578/// }
579/// ```
580///
581/// which corresponds to the WIT type:
582///
583/// ```wit
584/// variant filter {
585///     none,
586///     all,
587///     some(list<string>),
588/// }
589/// ```
590///
591/// The `variant` style of derive allows an optional payload on Rust `enum`
592/// variants but it must be a single unnamed field. Variants of the form `Foo(T,
593/// U)` or `Foo { name: T }` are not supported at this time.
594///
595/// Note that the order of variants in Rust must match the order of variants in
596/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
597/// on all Rust `enum` variants because the name currently defaults to the Rust
598/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
599///
600/// ## Enums
601///
602/// `enum`s in the component model correspond to C-like `enum`s in Rust. Note
603/// that a component model `enum` does not allow any payloads so the Rust `enum`
604/// must additionally have no payloads.
605///
606/// ```rust
607/// use wasmtime::component::ComponentType;
608///
609/// #[derive(ComponentType)]
610/// #[component(enum)]
611/// #[repr(u8)]
612/// enum Setting {
613///     #[component(name = "yes")]
614///     Yes,
615///     #[component(name = "no")]
616///     No,
617///     #[component(name = "auto")]
618///     Auto,
619/// }
620/// ```
621///
622/// which corresponds to the WIT type:
623///
624/// ```wit
625/// enum setting {
626///     yes,
627///     no,
628///     auto,
629/// }
630/// ```
631///
632/// Note that the order of variants in Rust must match the order of variants in
633/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
634/// on all Rust `enum` variants because the name currently defaults to the Rust
635/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
636pub use wasmtime_component_macro::ComponentType;
637
638/// A derive macro for generating implementations of the [`Lift`] trait.
639///
640/// This macro will likely be applied in conjunction with the
641/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
642/// of `#[derive(ComponentType, Lift)]`. This trait enables reading values from
643/// WebAssembly.
644///
645/// Note you might be looking for [`bindgen!`] rather than this macro as that
646/// will generate the entire type for you rather than just a trait
647/// implementation.
648///
649/// At this time this derive macro has no configuration.
650///
651/// ## Examples
652///
653/// ```rust
654/// use wasmtime::component::{ComponentType, Lift};
655///
656/// #[derive(ComponentType, Lift)]
657/// #[component(record)]
658/// struct Color {
659///     r: u8,
660///     g: u8,
661///     b: u8,
662/// }
663/// ```
664pub use wasmtime_component_macro::Lift;
665
666/// A derive macro for generating implementations of the [`Lower`] trait.
667///
668/// This macro will likely be applied in conjunction with the
669/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
670/// of `#[derive(ComponentType, Lower)]`. This trait enables passing values to
671/// WebAssembly.
672///
673/// Note you might be looking for [`bindgen!`] rather than this macro as that
674/// will generate the entire type for you rather than just a trait
675/// implementation.
676///
677/// At this time this derive macro has no configuration.
678///
679/// ## Examples
680///
681/// ```rust
682/// use wasmtime::component::{ComponentType, Lower};
683///
684/// #[derive(ComponentType, Lower)]
685/// #[component(record)]
686/// struct Color {
687///     r: u8,
688///     g: u8,
689///     b: u8,
690/// }
691/// ```
692pub use wasmtime_component_macro::Lower;
693
694/// A macro to generate a Rust type corresponding to WIT `flags`
695///
696/// This macro generates a type that implements the [`ComponentType`], [`Lift`],
697/// and [`Lower`] traits. The generated Rust type corresponds to the `flags`
698/// type in WIT.
699///
700/// Example usage of this looks like:
701///
702/// ```rust
703/// use wasmtime::component::flags;
704///
705/// flags! {
706///     Permissions {
707///         #[component(name = "read")]
708///         const READ;
709///         #[component(name = "write")]
710///         const WRITE;
711///         #[component(name = "execute")]
712///         const EXECUTE;
713///     }
714/// }
715///
716/// fn validate_permissions(permissions: &mut Permissions) {
717///     if permissions.contains(Permissions::EXECUTE | Permissions::WRITE) {
718///         panic!("cannot enable both writable and executable at the same time");
719///     }
720///
721///     if permissions.contains(Permissions::READ) {
722///         panic!("permissions must at least contain read");
723///     }
724/// }
725/// ```
726///
727/// which corresponds to the WIT type:
728///
729/// ```wit
730/// flags permissions {
731///     read,
732///     write,
733///     execute,
734/// }
735/// ```
736///
737/// This generates a structure which is similar to/inspired by the [`bitflags`
738/// crate](https://crates.io/crates/bitflags). The `Permissions` structure
739/// generated implements the [`PartialEq`], [`Eq`], [`Debug`], [`BitOr`],
740/// [`BitOrAssign`], [`BitAnd`], [`BitAndAssign`], [`BitXor`], [`BitXorAssign`],
741/// and [`Not`] traits - in addition to the Wasmtime-specific component ones
742/// [`ComponentType`], [`Lift`], and [`Lower`].
743///
744/// [`BitOr`]: std::ops::BitOr
745/// [`BitOrAssign`]: std::ops::BitOrAssign
746/// [`BitAnd`]: std::ops::BitAnd
747/// [`BitAndAssign`]: std::ops::BitAndAssign
748/// [`BitXor`]: std::ops::BitXor
749/// [`BitXorAssign`]: std::ops::BitXorAssign
750/// [`Not`]: std::ops::Not
751pub use wasmtime_component_macro::flags;
752
753#[cfg(any(docsrs, test, doctest))]
754pub mod bindgen_examples;
755
756// NB: needed for the links in the docs above to work in all `cargo doc`
757// configurations and avoid errors.
758#[cfg(not(any(docsrs, test, doctest)))]
759#[doc(hidden)]
760pub mod bindgen_examples {}
761
762#[cfg(not(feature = "component-model-async"))]
763pub(crate) mod concurrent_disabled;
764
765#[cfg(not(feature = "component-model-async"))]
766pub(crate) use concurrent_disabled as concurrent;