wasmtime/runtime/component/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
//! # Embedding API for the Component Model
//!
//! This module contains the embedding API for the [Component Model] in
//! Wasmtime. This module requires the `component-model` feature to be enabled,
//! which is enabled by default. The embedding API here is mirrored after the
//! core wasm embedding API at the crate root and is intended to have the same
//! look-and-feel while handling concepts of the component model.
//!
//! [Component Model]: https://component-model.bytecodealliance.org
//!
//! The component model is a broad topic which can't be explained here fully, so
//! it's recommended to read over individual items' documentation to see more
//! about the capabilities of the embedding API. At a high-level, however,
//! perhaps the most interesting items in this module are:
//!
//! * [`Component`] - a compiled component ready to be instantiated. Similar to
//! a [`Module`](crate::Module) for core wasm.
//!
//! * [`Linker`] - a component-style location for defining host functions. This
//! is not the same as [`wasmtime::Linker`](crate::Linker) for core wasm
//! modules.
//!
//! * [`bindgen!`] - a macro to generate Rust bindings for a [WIT] [world]. This
//! maps all WIT types into Rust automatically and generates traits for
//! embedders to implement.
//!
//! [WIT]: https://component-model.bytecodealliance.org/design/wit.html
//! [world]: https://component-model.bytecodealliance.org/design/worlds.html
//!
//! Embedders of the component model will typically start by defining their API
//! in [WIT]. This describes what will be available to guests and what needs to
//! be provided to the embedder by the guest. This [`world`][world] that was
//! created is then fed into [`bindgen!`] to generate types and traits for the
//! embedder to use. The embedder then implements these traits, adds
//! functionality via the generated `add_to_linker` method (see [`bindgen!`] for
//! more info), and then instantiates/executes a component.
//!
//! It's recommended to read over the [documentation for the Component
//! Model][Component Model] to get an overview about how to build components
//! from various languages.
//!
//! ## Example Usage
//!
//! Imagine you have the following WIT package definition in a file called world.wit
//! along with a component (my_component.wasm) that targets `my-world`:
//!
//! ```text,ignore
//! package component:my-package;
//!
//! world my-world {
//! import name: func() -> string;
//! export greet: func() -> string;
//! }
//! ```
//!
//! You can instantiate and call the component like so:
//!
//! ```
//! fn main() -> wasmtime::Result<()> {
//! # if true { return Ok(()) }
//! // Instantiate the engine and store
//! let engine = wasmtime::Engine::default();
//! let mut store = wasmtime::Store::new(&engine, ());
//!
//! // Load the component from disk
//! let bytes = std::fs::read("my_component.wasm")?;
//! let component = wasmtime::component::Component::new(&engine, bytes)?;
//!
//! // Configure the linker
//! let mut linker = wasmtime::component::Linker::new(&engine);
//! // The component expects one import `name` that
//! // takes no params and returns a string
//! linker
//! .root()
//! .func_wrap("name", |_store, _params: ()| {
//! Ok((String::from("Alice"),))
//! })?;
//!
//! // Instantiate the component
//! let instance = linker.instantiate(&mut store, &component)?;
//!
//! // Call the `greet` function
//! let func = instance.get_func(&mut store, "greet").expect("greet export not found");
//! let mut result = [wasmtime::component::Val::String("".into())];
//! func.call(&mut store, &[], &mut result)?;
//!
//! // This should print out `Greeting: [String("Hello, Alice!")]`
//! println!("Greeting: {:?}", result);
//!
//! Ok(())
//! }
//! ```
//!
//! Manually configuring the linker and calling untyped component exports is
//! a bit tedious and error prone. The [`bindgen!`] macro can be used to
//! generate bindings eliminating much of this boilerplate.
//!
//! See the docs for [`bindgen!`] for more information on how to use it.
// rustdoc appears to lie about a warning above, so squelch it for now.
#![allow(rustdoc::redundant_explicit_links)]
mod component;
mod func;
mod instance;
mod linker;
mod matching;
mod resource_table;
mod resources;
mod storage;
mod store;
pub mod types;
mod values;
pub use self::component::{Component, ComponentExportIndex};
pub use self::func::{
ComponentNamedList, ComponentType, Func, Lift, Lower, TypedFunc, WasmList, WasmStr,
};
pub use self::instance::{Instance, InstanceExportLookup, InstancePre};
pub use self::linker::{Linker, LinkerInstance};
pub use self::resource_table::{ResourceTable, ResourceTableError};
pub use self::resources::{Resource, ResourceAny};
pub use self::types::{ResourceType, Type};
pub use self::values::Val;
pub(crate) use self::resources::HostResourceData;
// Re-export wasm_wave crate so the compatible version of this dep doesn't have to be
// tracked separately from wasmtime.
#[cfg(feature = "wave")]
pub use wasm_wave;
// These items are used by `#[derive(ComponentType, Lift, Lower)]`, but they are not part of
// Wasmtime's API stability guarantees
#[doc(hidden)]
pub mod __internal {
pub use super::func::{
bad_type_info, format_flags, lower_payload, typecheck_enum, typecheck_flags,
typecheck_record, typecheck_variant, ComponentVariant, LiftContext, LowerContext, Options,
};
pub use super::matching::InstanceType;
pub use crate::map_maybe_uninit;
pub use crate::store::StoreOpaque;
pub use crate::MaybeUninitExt;
pub use alloc::boxed::Box;
pub use alloc::string::String;
pub use alloc::vec::Vec;
pub use anyhow;
pub use core::mem::transmute;
#[cfg(feature = "async")]
pub use trait_variant::make as trait_variant_make;
pub use wasmtime_environ;
pub use wasmtime_environ::component::{CanonicalAbiInfo, ComponentTypes, InterfaceType};
}
pub(crate) use self::store::ComponentStoreData;
/// Generate bindings for a [WIT world].
///
/// [WIT world]: https://component-model.bytecodealliance.org/design/worlds.html
/// [WIT package]: https://component-model.bytecodealliance.org/design/packages.html
///
/// This macro ingests a [WIT world] and will generate all the necessary
/// bindings for instantiating components that ascribe to the `world`. This
/// provides a higher-level representation of working with a component than the
/// raw [`Instance`] type which must be manually-type-checked and manually have
/// its imports provided via the [`Linker`] type.
///
/// # Examples
///
/// Examples for this macro can be found in the [`bindgen_examples`] module
/// documentation. That module has a submodule-per-example which includes the
/// source code, with WIT, used to generate the structures along with the
/// generated code itself in documentation.
///
/// # Debugging and Exploring
///
/// If you need to debug the output of `bindgen!` you can try using the
/// `WASMTIME_DEBUG_BINDGEN=1` environment variable. This will write the
/// generated code to a file on disk so rustc can produce better error messages
/// against the actual generated source instead of the macro invocation itself.
/// This additionally can enable opening up the generated code in an editor and
/// exploring it (through an error message).
///
/// The generated bindings can additionally be explored with `cargo doc` to see
/// what's generated. It's also recommended to browse the [`bindgen_examples`]
/// for example generated structures and example generated code.
///
/// # Syntax
///
/// This procedural macro accepts a few different syntaxes. The primary purpose
/// of this macro is to locate a WIT package, parse it, and then extract a
/// `world` from the parsed package. There are then codegen-specific options to
/// the bindings themselves which can additionally be specified.
///
/// Usage of this macro looks like:
///
/// ```rust
/// # macro_rules! bindgen { ($($t:tt)*) => () }
/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
/// // for a single `world` in it. There must be exactly one for this to
/// // succeed.
/// bindgen!();
///
/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
/// // for the world `foo` contained in it.
/// bindgen!("foo");
///
/// // Parse the folder `other/wit/folder` adjacent to `Cargo.toml`.
/// bindgen!(in "other/wit/folder");
/// bindgen!("foo" in "other/wit/folder");
///
/// // Parse the file `foo.wit` as a single-file WIT package with no
/// // dependencies.
/// bindgen!("foo" in "foo.wit");
///
/// // Specify a suite of options to the bindings generation, documented below
/// bindgen!({
/// world: "foo",
/// path: "other/path/to/wit",
/// // ...
/// });
/// ```
///
/// # Options Reference
///
/// This is an example listing of all options that this macro supports along
/// with documentation for each option and example syntax for each option.
///
/// ```rust
/// # macro_rules! bindgen { ($($t:tt)*) => () }
/// bindgen!({
/// world: "foo", // not needed if `path` has one `world`
///
/// // same as in `bindgen!(in "other/wit/folder")
/// path: "other/wit/folder",
///
/// // Instead of `path` the WIT document can be provided inline if
/// // desired.
/// inline: "
/// package my:inline;
///
/// world foo {
/// // ...
/// }
/// ",
///
/// // Add calls to `tracing::span!` before each import or export is called
/// // to log most arguments and return values. By default values
/// // containing lists are excluded; enable `verbose_tracing` to include
/// // them.
/// //
/// // This option defaults to `false`.
/// tracing: true,
///
/// // Include all arguments and return values in the tracing output,
/// // including values containing lists, which may be very large.
/// //
/// // This option defaults to `false`.
/// verbose_tracing: false,
///
/// // Imports will be async functions and exports
/// // are also invoked as async functions. Requires `Config::async_support`
/// // to be `true`.
/// //
/// // Note that this is only async for the host as the guest will still
/// // appear as if it's invoking blocking functions.
/// //
/// // This option defaults to `false`.
/// async: true,
///
/// // Alternative mode of async configuration where this still implies
/// // async instantiation happens, for example, but more control is
/// // provided over which imports are async and which aren't.
/// //
/// // Note that in this mode all exports are still async.
/// async: {
/// // All imports are async except for functions with these names
/// except_imports: ["foo", "bar"],
///
/// // All imports are synchronous except for functions with these names
/// //
/// // Note that this key cannot be specified with `except_imports`,
/// // only one or the other is accepted.
/// only_imports: ["foo", "bar"],
/// },
///
/// // This option is used to indicate whether imports can trap.
/// //
/// // Imports that may trap have their return types wrapped in
/// // `wasmtime::Result<T>` where the `Err` variant indicates that a
/// // trap will be raised in the guest.
/// //
/// // By default imports cannot trap and the return value is the return
/// // value from the WIT bindings itself. This value can be set to `true`
/// // to indicate that any import can trap. This value can also be set to
/// // an array-of-strings to indicate that only a set list of imports
/// // can trap.
/// trappable_imports: false, // no imports can trap (default)
/// // trappable_imports: true, // all imports can trap
/// // trappable_imports: ["foo", "bar"], // only these can trap
///
/// // This can be used to translate WIT return values of the form
/// // `result<T, error-type>` into `Result<T, RustErrorType>` in Rust.
/// // Users must define `RustErrorType` and the `Host` trait for the
/// // interface which defines `error-type` will have a method
/// // called `convert_error_type` which converts `RustErrorType`
/// // into `wasmtime::Result<ErrorType>`. This conversion can either
/// // return the raw WIT error (`ErrorType` here) or a trap.
/// //
/// // By default this option is not specified. This option only takes
/// // effect when `trappable_imports` is set for some imports.
/// trappable_error_type: {
/// "wasi:io/streams/stream-error" => RustErrorType,
/// },
///
/// // All generated bindgen types are "owned" meaning types like `String`
/// // are used instead of `&str`, for example. This is the default and
/// // ensures that the same type used in both imports and exports uses the
/// // same generated type.
/// ownership: Owning,
///
/// // Alternative to `Owning` above where borrowed types attempt to be used
/// // instead. The `duplicate_if_necessary` configures whether duplicate
/// // Rust types will be generated for the same WIT type if necessary, for
/// // example when a type is used both as an import and an export.
/// ownership: Borrowing {
/// duplicate_if_necessary: true
/// },
///
/// // Restrict the code generated to what's needed for the interface
/// // imports in the inlined WIT document fragment.
/// interfaces: "
/// import wasi:cli/command;
/// ",
///
/// // Remap imported interfaces or resources to types defined in Rust
/// // elsewhere. Using this option will prevent any code from being
/// // generated for interfaces mentioned here. Resources named here will
/// // not have a type generated to represent the resource.
/// //
/// // Interfaces mapped with this option should be previously generated
/// // with an invocation of this macro. Resources need to be mapped to a
/// // Rust type name.
/// with: {
/// // This can be used to indicate that entire interfaces have
/// // bindings generated elsewhere with a path pointing to the
/// // bindinges-generated module.
/// "wasi:random/random": wasmtime_wasi::bindings::random::random,
///
/// // Similarly entire packages can also be specified.
/// "wasi:cli": wasmtime_wasi::bindings::cli,
///
/// // Or, if applicable, entire namespaces can additionally be mapped.
/// "wasi": wasmtime_wasi::bindings,
///
/// // Versions are supported if multiple versions are in play:
/// "wasi:http/types@0.2.0": wasmtime_wasi_http::bindings::http::types,
/// "wasi:http@0.2.0": wasmtime_wasi_http::bindings::http,
///
/// // The `with` key can also be used to specify the `T` used in
/// // import bindings of `Resource<T>`. This can be done to configure
/// // which typed resource shows up in generated bindings and can be
/// // useful when working with the typed methods of `ResourceTable`.
/// "wasi:filesystem/types/descriptor": MyDescriptorType,
/// },
///
/// // Additional derive attributes to include on generated types (structs or enums).
/// //
/// // These are deduplicated and attached in a deterministic order.
/// additional_derives: [
/// Hash,
/// serde::Deserialize,
/// serde::Serialize,
/// ],
///
/// // An niche configuration option to require that the `T` in `Store<T>`
/// // is always `Send` in the generated bindings. Typically not needed
/// // but if synchronous bindings depend on asynchronous bindings using
/// // the `with` key then this may be required.
/// require_store_data_send: false,
///
/// // If the `wasmtime` crate is depended on at a nonstandard location
/// // or is renamed then this is the path to the root of the `wasmtime`
/// // crate. Much of the generated code needs to refer to `wasmtime` so
/// // this should be used if the `wasmtime` name is not wasmtime itself.
/// //
/// // By default this is `wasmtime`.
/// wasmtime_crate: path::to::wasmtime,
///
/// // This is an in-source alternative to using `WASMTIME_DEBUG_BINDGEN`.
/// //
/// // Note that if this option is specified then the compiler will always
/// // recompile your bindings. Cargo records the start time of when rustc
/// // is spawned by this will write a file during compilation. To Cargo
/// // that looks like a file was modified after `rustc` was spawned,
/// // so Cargo will always think your project is "dirty" and thus always
/// // recompile it. Recompiling will then overwrite the file again,
/// // starting the cycle anew. This is only recommended for debugging.
/// //
/// // This option defaults to false.
/// include_generated_code_from_file: false,
/// });
/// ```
pub use wasmtime_component_macro::bindgen;
/// Derive macro to generate implementations of the [`ComponentType`] trait.
///
/// This derive macro can be applied to `struct` and `enum` definitions and is
/// used to bind either a `record`, `enum`, or `variant` in the component model.
///
/// Note you might be looking for [`bindgen!`] rather than this macro as that
/// will generate the entire type for you rather than just a trait
/// implementation.
///
/// This macro supports a `#[component]` attribute which is used to customize
/// how the type is bound to the component model. A top-level `#[component]`
/// attribute is required to specify either `record`, `enum`, or `variant`.
///
/// ## Records
///
/// `record`s in the component model correspond to `struct`s in Rust. An example
/// is:
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(record)]
/// struct Color {
/// r: u8,
/// g: u8,
/// b: u8,
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// record color {
/// r: u8,
/// g: u8,
/// b: u8,
/// }
/// ```
///
/// Note that the name `Color` here does not need to match the name in WIT.
/// That's purely used as a name in Rust of what to refer to. The field names
/// must match that in WIT, however. Field names can be customized with the
/// `#[component]` attribute though.
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(record)]
/// struct VerboseColor {
/// #[component(name = "r")]
/// red: u8,
/// #[component(name = "g")]
/// green: u8,
/// #[component(name = "b")]
/// blue: u8,
/// }
/// ```
///
/// Also note that field ordering is significant at this time and must match
/// WIT.
///
/// ## Variants
///
/// `variant`s in the component model correspond to a subset of shapes of a Rust
/// `enum`. Variants in the component model have a single optional payload type
/// which means that not all Rust `enum`s correspond to component model
/// `variant`s. An example variant is:
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(variant)]
/// enum Filter {
/// #[component(name = "none")]
/// None,
/// #[component(name = "all")]
/// All,
/// #[component(name = "some")]
/// Some(Vec<String>),
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// variant filter {
/// none,
/// all,
/// some(list<string>),
/// }
/// ```
///
/// The `variant` style of derive allows an optional payload on Rust `enum`
/// variants but it must be a single unnamed field. Variants of the form `Foo(T,
/// U)` or `Foo { name: T }` are not supported at this time.
///
/// Note that the order of variants in Rust must match the order of variants in
/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
/// on all Rust `enum` variants because the name currently defaults to the Rust
/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
///
/// ## Enums
///
/// `enum`s in the component model correspond to C-like `enum`s in Rust. Note
/// that a component model `enum` does not allow any payloads so the Rust `enum`
/// must additionally have no payloads.
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(enum)]
/// #[repr(u8)]
/// enum Setting {
/// #[component(name = "yes")]
/// Yes,
/// #[component(name = "no")]
/// No,
/// #[component(name = "auto")]
/// Auto,
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// enum setting {
/// yes,
/// no,
/// auto,
/// }
/// ```
///
/// Note that the order of variants in Rust must match the order of variants in
/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
/// on all Rust `enum` variants because the name currently defaults to the Rust
/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
pub use wasmtime_component_macro::ComponentType;
/// A derive macro for generating implementations of the [`Lift`] trait.
///
/// This macro will likely be applied in conjunction with the
/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
/// of `#[derive(ComponentType, Lift)]`. This trait enables reading values from
/// WebAssembly.
///
/// Note you might be looking for [`bindgen!`] rather than this macro as that
/// will generate the entire type for you rather than just a trait
/// implementation.
///
/// At this time this derive macro has no configuration.
///
/// ## Examples
///
/// ```rust
/// use wasmtime::component::{ComponentType, Lift};
///
/// #[derive(ComponentType, Lift)]
/// #[component(record)]
/// struct Color {
/// r: u8,
/// g: u8,
/// b: u8,
/// }
/// ```
pub use wasmtime_component_macro::Lift;
/// A derive macro for generating implementations of the [`Lower`] trait.
///
/// This macro will likely be applied in conjunction with the
/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
/// of `#[derive(ComponentType, Lower)]`. This trait enables passing values to
/// WebAssembly.
///
/// Note you might be looking for [`bindgen!`] rather than this macro as that
/// will generate the entire type for you rather than just a trait
/// implementation.
///
/// At this time this derive macro has no configuration.
///
/// ## Examples
///
/// ```rust
/// use wasmtime::component::{ComponentType, Lower};
///
/// #[derive(ComponentType, Lower)]
/// #[component(record)]
/// struct Color {
/// r: u8,
/// g: u8,
/// b: u8,
/// }
/// ```
pub use wasmtime_component_macro::Lower;
/// A macro to generate a Rust type corresponding to WIT `flags`
///
/// This macro generates a type that implements the [`ComponentType`], [`Lift`],
/// and [`Lower`] traits. The generated Rust type corresponds to the `flags`
/// type in WIT.
///
/// Example usage of this looks like:
///
/// ```rust
/// use wasmtime::component::flags;
///
/// flags! {
/// Permissions {
/// #[component(name = "read")]
/// const READ;
/// #[component(name = "write")]
/// const WRITE;
/// #[component(name = "execute")]
/// const EXECUTE;
/// }
/// }
///
/// fn validate_permissions(permissions: &mut Permissions) {
/// if permissions.contains(Permissions::EXECUTE | Permissions::WRITE) {
/// panic!("cannot enable both writable and executable at the same time");
/// }
///
/// if permissions.contains(Permissions::READ) {
/// panic!("permissions must at least contain read");
/// }
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// flags permissions {
/// read,
/// write,
/// execute,
/// }
/// ```
///
/// This generates a structure which is similar to/inspired by the [`bitflags`
/// crate](https://crates.io/crates/bitflags). The `Permissions` structure
/// generated implements the [`PartialEq`], [`Eq`], [`Debug`], [`BitOr`],
/// [`BitOrAssign`], [`BitAnd`], [`BitAndAssign`], [`BitXor`], [`BitXorAssign`],
/// and [`Not`] traits - in addition to the Wasmtime-specific component ones
/// [`ComponentType`], [`Lift`], and [`Lower`].
///
/// [`BitOr`]: std::ops::BitOr
/// [`BitOrAssign`]: std::ops::BitOrAssign
/// [`BitAnd`]: std::ops::BitAnd
/// [`BitAndAssign`]: std::ops::BitAndAssign
/// [`BitXor`]: std::ops::BitXor
/// [`BitXorAssign`]: std::ops::BitXorAssign
/// [`Not`]: std::ops::Not
pub use wasmtime_component_macro::flags;
#[cfg(any(docsrs, test, doctest))]
pub mod bindgen_examples;
// NB: needed for the links in the docs above to work in all `cargo doc`
// configurations and avoid errors.
#[cfg(not(any(docsrs, test, doctest)))]
#[doc(hidden)]
pub mod bindgen_examples {}