1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
//! # Embedding API for the Component Model
//!
//! This module contains the embedding API for the [Component Model] in
//! Wasmtime. This module requires the `component-model` feature to be enabled,
//! which is enabled by default. The embedding API here is mirrored after the
//! core wasm embedding API at the crate root and is intended to have the same
//! look-and-feel while handling concepts of the component model.
//!
//! [Component Model]: https://component-model.bytecodealliance.org
//!
//! The component model is a broad topic which can't be explained here fully, so
//! it's recommended to read over individual items' documentation to see more
//! about the capabilities of the embedding API. At a high-level, however,
//! perhaps the most interesting items in this module are:
//!
//! * [`Component`] - a compiled component ready to be instantiated. Similar to
//!   a [`Module`](crate::Module) for core wasm.
//!
//! * [`Linker`] - a component-style location for defining host functions. This
//!   is not the same as [`wasmtime::Linker`](crate::Linker) for core wasm
//!   modules.
//!
//! * [`bindgen!`] - a macro to generate Rust bindings for a [WIT] [world]. This
//!   maps all WIT types into Rust automatically and generates traits for
//!   embedders to implement.
//!
//! [WIT]: https://component-model.bytecodealliance.org/design/wit.html
//! [world]: https://component-model.bytecodealliance.org/design/worlds.html
//!
//! Embedders of the component model will typically start by defining their API
//! in [WIT]. This describes what will be available to guests and what needs to
//! be provided to the embedder by the guest. This [`world`][world] that was
//! created is then fed into [`bindgen!`] to generate types and traits for the
//! embedder to use. The embedder then implements these traits, adds
//! functionality via the generated `add_to_linker` method (see [`bindgen!`] for
//! more info), and then instantiates/executes a component.
//!
//! It's recommended to read over the [documentation for the Component
//! Model][Component Model] to get an overview about how to build components
//! from various languages.
//!
//! ## Example Usage
//!
//! Imagine you have the following WIT package definition in a file called world.wit
//! along with a component (my_component.wasm) that targets `my-world`:
//!
//! ```text,ignore
//! package component:my-package;
//!
//! world my-world {
//!     import name: func() -> string;
//!     export greet: func() -> string;
//! }
//! ```
//!
//! You can instantiate and call the component like so:
//!
//! ```
//! fn main() -> wasmtime::Result<()> {
//!     #   if true { return Ok(()) }
//!     // Instantiate the engine and store
//!     let engine = wasmtime::Engine::default();
//!     let mut store = wasmtime::Store::new(&engine, ());
//!
//!     // Load the component from disk
//!     let bytes = std::fs::read("my_component.wasm")?;
//!     let component = wasmtime::component::Component::new(&engine, bytes)?;
//!
//!     // Configure the linker
//!     let mut linker = wasmtime::component::Linker::new(&engine);
//!     // The component expects one import `name` that
//!     // takes no params and returns a string
//!     linker
//!         .root()
//!         .func_wrap("name", |_store, _params: ()| {
//!             Ok((String::from("Alice"),))
//!         })?;
//!
//!     // Instantiate the component
//!     let instance = linker.instantiate(&mut store, &component)?;
//!
//!     // Call the `greet` function
//!     let func = instance.get_func(&mut store, "greet").expect("greet export not found");
//!     let mut result = [wasmtime::component::Val::String("".into())];
//!     func.call(&mut store, &[], &mut result)?;
//!
//!     // This should print out `Greeting: [String("Hello, Alice!")]`
//!     println!("Greeting: {:?}", result);
//!
//!     Ok(())
//! }
//! ```
//!
//! Manually configuring the linker and calling untyped component exports is
//! a bit tedious and error prone. The [`bindgen!`] macro can be used to
//! generate bindings eliminating much of this boilerplate.
//!
//! See the docs for [`bindgen!`] for more information on how to use it.

#![cfg_attr(docsrs, doc(cfg(feature = "component-model")))]
// rustdoc appears to lie about a warning above, so squelch it for now.
#![allow(rustdoc::redundant_explicit_links)]

mod component;
mod func;
mod instance;
mod linker;
mod matching;
mod resource_table;
mod resources;
mod storage;
mod store;
pub mod types;
mod values;
pub use self::component::Component;
pub use self::func::{
    ComponentNamedList, ComponentType, Func, Lift, Lower, TypedFunc, WasmList, WasmStr,
};
pub use self::instance::{ExportInstance, Exports, Instance, InstancePre};
pub use self::linker::{Linker, LinkerInstance};
pub use self::resource_table::{ResourceTable, ResourceTableError};
pub use self::resources::{Resource, ResourceAny};
pub use self::types::{ResourceType, Type};
pub use self::values::Val;

pub(crate) use self::resources::HostResourceData;

// These items are expected to be used by an eventual
// `#[derive(ComponentType)]`, they are not part of Wasmtime's API stability
// guarantees
#[doc(hidden)]
pub mod __internal {
    pub use super::func::{
        bad_type_info, format_flags, lower_payload, typecheck_enum, typecheck_flags,
        typecheck_record, typecheck_variant, ComponentVariant, LiftContext, LowerContext,
        MaybeUninitExt, Options,
    };
    pub use super::matching::InstanceType;
    pub use crate::map_maybe_uninit;
    pub use crate::store::StoreOpaque;
    pub use anyhow;
    #[cfg(feature = "async")]
    pub use async_trait::async_trait;
    pub use wasmtime_environ;
    pub use wasmtime_environ::component::{CanonicalAbiInfo, ComponentTypes, InterfaceType};
}

pub(crate) use self::store::ComponentStoreData;

/// Generate bindings for a [WIT world].
///
/// [WIT world]: https://component-model.bytecodealliance.org/design/worlds.html
/// [WIT package]: https://component-model.bytecodealliance.org/design/packages.html
///
/// This macro ingests a [WIT world] and will generate all the necessary
/// bindings for instantiating components that ascribe to the `world`. This
/// provides a higher-level representation of working with a component than the
/// raw [`Instance`] type which must be manually-type-checked and manually have
/// its imports provided via the [`Linker`] type.
///
/// The most basic usage of this macro is:
///
/// ```rust,ignore
/// wasmtime::component::bindgen!();
/// ```
///
/// This will parse your projects [WIT package] in a `wit` directory adjacent to
/// your crate's `Cargo.toml`. All of the `*.wit` files in that directory are
/// parsed and then the single `world` found will be used for bindings.
///
/// For example if your project contained:
///
/// ```text,ignore
/// // wit/my-component.wit
///
/// package my:project;
///
/// world hello-world {
///     import name: func() -> string;
///     export greet: func();
/// }
/// ```
///
/// Then you can interact with the generated bindings like so:
///
/// ```rust
/// use wasmtime::component::*;
/// use wasmtime::{Config, Engine, Store};
///
/// # const _: () = { macro_rules! bindgen { () => () }
/// bindgen!();
/// # };
/// # bindgen!({
/// #   inline: r#"
/// #       package my:project;
/// #       world hello-world {
/// #           import name: func() -> string;
/// #           export greet: func();
/// #       }
/// #   "#,
/// # });
///
/// struct MyState {
///     name: String,
/// }
///
/// // Imports into the world, like the `name` import for this world, are
/// // satisfied through traits.
/// impl HelloWorldImports for MyState {
///     // Note the `Result` return value here where `Ok` is returned back to
///     // the component and `Err` will raise a trap.
///     fn name(&mut self) -> String {
///         self.name.clone()
///     }
/// }
///
/// fn main() -> wasmtime::Result<()> {
/// #   if true { return Ok(()) }
///     // Configure an `Engine` and compile the `Component` that is being run for
///     // the application.
///     let mut config = Config::new();
///     config.wasm_component_model(true);
///     let engine = Engine::new(&config)?;
///     let component = Component::from_file(&engine, "./your-component.wasm")?;
///
///     // Instantiation of bindings always happens through a `Linker`.
///     // Configuration of the linker is done through a generated `add_to_linker`
///     // method on the bindings structure.
///     //
///     // Note that the closure provided here is a projection from `T` in
///     // `Store<T>` to `&mut U` where `U` implements the `HelloWorldImports`
///     // trait. In this case the `T`, `MyState`, is stored directly in the
///     // structure so no projection is necessary here.
///     let mut linker = Linker::new(&engine);
///     HelloWorld::add_to_linker(&mut linker, |state: &mut MyState| state)?;
///
///     // As with the core wasm API of Wasmtime instantiation occurs within a
///     // `Store`. The bindings structure contains an `instantiate` method which
///     // takes the store, component, and linker. This returns the `bindings`
///     // structure which is an instance of `HelloWorld` and supports typed access
///     // to the exports of the component.
///     let mut store = Store::new(
///         &engine,
///         MyState {
///             name: "me".to_string(),
///         },
///     );
///     let (bindings, _) = HelloWorld::instantiate(&mut store, &component, &linker)?;
///
///     // Here our `greet` function doesn't take any parameters for the component,
///     // but in the Wasmtime embedding API the first argument is always a `Store`.
///     bindings.call_greet(&mut store)?;
///     Ok(())
/// }
/// ```
///
/// The function signatures within generated traits and on generated exports
/// match the component-model signatures as specified in the WIT `world` item.
/// Note that WIT also has support for importing and exports interfaces within
/// worlds, which can be bound here as well:
///
/// For example this WIT input
///
/// ```text,ignore
/// // wit/my-component.wit
///
/// package my:project;
///
/// interface host {
///     gen-random-integer: func() -> u32;
///     sha256: func(bytes: list<u8>) -> string;
/// }
///
/// world hello-world {
///     import host;
///
///     export demo: interface {
///         run: func();
///     }
/// }
/// ```
///
/// Then you can interact with the generated bindings like so:
///
/// ```rust
/// use wasmtime::component::*;
/// use wasmtime::{Config, Engine, Store};
/// use my::project::host::Host;
///
/// # const _: () = { macro_rules! bindgen { () => () }
/// bindgen!();
/// # };
/// # bindgen!({
/// #   inline: r#"
/// # package my:project;
/// #
/// # interface host {
/// #     gen-random-integer: func() -> u32;
/// #     sha256: func(bytes: list<u8>) -> string;
/// # }
/// #
/// # world hello-world {
/// #     import host;
/// #
/// #     export demo: interface {
/// #         run: func();
/// #     }
/// # }
/// #   "#,
/// # });
///
/// struct MyState {
///     // ...
/// }
///
/// // Note that the trait here is per-interface and within a submodule now.
/// impl Host for MyState {
///     fn gen_random_integer(&mut self) -> u32 {
/// #       panic!();
/// #       #[cfg(FALSE)]
///         rand::thread_rng().gen()
///     }
///
///     fn sha256(&mut self, bytes: Vec<u8>) -> String {
///         // ...
/// #       panic!()
///     }
/// }
///
/// fn main() -> wasmtime::Result<()> {
/// #   if true { return Ok(()) }
///     let mut config = Config::new();
///     config.wasm_component_model(true);
///     let engine = Engine::new(&config)?;
///     let component = Component::from_file(&engine, "./your-component.wasm")?;
///
///     let mut linker = Linker::new(&engine);
///     HelloWorld::add_to_linker(&mut linker, |state: &mut MyState| state)?;
///
///     let mut store = Store::new(
///         &engine,
///         MyState { /* ... */ },
///     );
///     let (bindings, _) = HelloWorld::instantiate(&mut store, &component, &linker)?;
///
///     // Note that the `demo` method returns a `&Demo` through which we can
///     // run the methods on that interface.
///     bindings.demo().call_run(&mut store)?;
///     Ok(())
/// }
/// ```
///
/// The generated bindings can additionally be explored more fully with `cargo
/// doc` to see what types and traits and such are generated.
///
/// # Syntax
///
/// This procedural macro accepts a few different syntaxes. The primary purpose
/// of this macro is to locate a WIT package, parse it, and then extract a
/// `world` from the parsed package. There are then codegen-specific options to
/// the bindings themselves which can additionally be specified.
///
/// Usage of this macro looks like:
///
/// ```rust,ignore
/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
/// // for a single `world` in it. There must be exactly one for this to
/// // succeed.
/// bindgen!();
///
/// // Parse the `wit/` folder adjacent to this crate's `Cargo.toml` and look
/// // for the world `foo` contained in it.
/// bindgen!("foo");
///
/// // Parse the folder `other/wit/folder` adjacent to `Cargo.toml`.
/// bindgen!(in "other/wit/folder");
/// bindgen!("foo" in "other/wit/folder");
///
/// // Parse the file `foo.wit` as a single-file WIT package with no
/// // dependencies.
/// bindgen!("foo" in "foo.wit");
/// ```
///
/// A more configured version of invoking this macro looks like:
///
/// ```rust,ignore
/// bindgen!({
///     world: "foo", // not needed if `path` has one `world`
///
///     // same as in `bindgen!(in "other/wit/folder")
///     path: "other/wit/folder",
///
///     // Instead of `path` the WIT document can be provided inline if
///     // desired.
///     inline: "
///         package my:inline;
///
///         world foo {
///             // ...
///         }
///     ",
///
///     // Add calls to `tracing::span!` before each import or export is called
///     // to log arguments and return values.
///     //
///     // This option defaults to `false`.
///     tracing: true,
///
///     // Imports will be async functions through #[async_trait] and exports
///     // are also invoked as async functions. Requires `Config::async_support`
///     // to be `true`.
///     //
///     // Note that this is only async for the host as the guest will still
///     // appear as if it's invoking blocking functions.
///     //
///     // This option defaults to `false`.
///     async: true,
///
///     // Alternative mode of async configuration where this still implies
///     // async instantiation happens, for example, but more control is
///     // provided over which imports are async and which aren't.
///     //
///     // Note that in this mode all exports are still async.
///     async: {
///         // All imports are async except for functions with these names
///         except_imports: ["foo", "bar"],
///
///         // All imports are synchronous except for functions with these names
///         //
///         // Note that this key cannot be specified with `except_imports`,
///         // only one or the other is accepted.
///         only_imports: ["foo", "bar"],
///     },
///
///     // This option is used to indicate whether imports can trap.
///     //
///     // Imports that may trap have their return types wrapped in
///     // `wasmtime::Result<T>` where the `Err` variant indicates that a
///     // trap will be raised in the guest.
///     //
///     // By default imports cannot trap and the return value is the return
///     // value from the WIT bindings itself. This value can be set to `true`
///     // to indicate that any import can trap. This value can also be set to
///     // an array-of-strings to indicate that only a set list of imports
///     // can trap.
///     trappable_imports: false,             // no imports can trap (default)
///     // trappable_imports: true,           // all imports can trap
///     // trappable_imports: ["foo", "bar"], // only these can trap
///
///     // This can be used to translate WIT return values of the form
///     // `result<T, error-type>` into `Result<T, RustErrorType>` in Rust.
///     // Users must define `RustErrorType` and the `Host` trait for the
///     // interface which defines `error-type` will have a method
///     // called `convert_error_type` which converts `RustErrorType`
///     // into `wasmtime::Result<ErrorType>`. This conversion can either
///     // return the raw WIT error (`ErrorType` here) or a trap.
///     //
///     // By default this option is not specified. This option only takes
///     // effect when `trappable_imports` is set for some imports.
///     trappable_error_type: {
///         "wasi:io/streams/stream-error" => RustErrorType,
///     },
///
///     // All generated bindgen types are "owned" meaning types like `String`
///     // are used instead of `&str`, for example. This is the default and
///     // ensures that the same type used in both imports and exports uses the
///     // same generated type.
///     ownership: Owning,
///
///     // Alternative to `Owning` above where borrowed types attempt to be used
///     // instead. The `duplicate_if_necessary` configures whether duplicate
///     // Rust types will be generated for the same WIT type if necessary, for
///     // example when a type is used both as an import and an export.
///     ownership: Borrowing {
///         duplicate_if_necessary: true
///     },
///
///     // Restrict the code generated to what's needed for the interface
///     // imports in the inlined WIT document fragment.
///     interfaces: "
///         import wasi:cli/command;
///     ",
///
///     // Remap imported interfaces or resources to types defined in Rust
///     // elsewhere. Using this option will prevent any code from being
///     // generated for interfaces mentioned here. Resources named here will
///     // not have a type generated to represent the resource.
///     //
///     // Interfaces mapped with this option should be previously generated
///     // with an invocation of this macro. Resources need to be mapped to a
///     // Rust type name.
///     with: {
///         // This can be used to indicate that entire interfaces have
///         // bindings generated elsewhere with a path pointing to the
///         // bindinges-generated module.
///         "wasi:random/random": wasmtime_wasi::bindings::random::random,
///
///         // Similarly entire packages can also be specified.
///         "wasi:cli": wasmtime_wasi::bindings::cli,
///
///         // Or, if applicable, entire namespaces can additionally be mapped.
///         "wasi": wasmtime_wasi::bindings,
///
///         // Versions are supported if multiple versions are in play:
///         "wasi:http/types@0.2.0": wasmtime_wasi_http::bindings::http::types,
///         "wasi:http@0.2.0": wasmtime_wasi_http::bindings::http,
///
///         // The `with` key can also be used to specify the `T` used in
///         // import bindings of `Resource<T>`. This can be done to configure
///         // which typed resource shows up in generated bindings and can be
///         // useful when working with the typed methods of `ResourceTable`.
///         "wasi:filesystem/types/descriptor": MyDescriptorType,
///     },
///
///     // Addtional derive attributes to include on generated types (structs or enums).
///     //
///     // These are deduplicated and attached in a deterministic order.
///     additional_derives: [
///         Hash,
///         serde::Deserialize,
///         serde::Serialize,
///     ]
/// });
/// ```
pub use wasmtime_component_macro::bindgen;

/// Derive macro to generate implementations of the [`ComponentType`] trait.
///
/// This derive macro can be applied to `struct` and `enum` definitions and is
/// used to bind either a `record`, `enum`, or `variant` in the component model.
///
/// Note you might be looking for [`bindgen!`] rather than this macro as that
/// will generate the entire type for you rather than just a trait
/// implementation.
///
/// This macro supports a `#[component]` attribute which is used to customize
/// how the type is bound to the component model. A top-level `#[component]`
/// attribute is required to specify either `record`, `enum`, or `variant`.
///
/// ## Records
///
/// `record`s in the component model correspond to `struct`s in Rust. An example
/// is:
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(record)]
/// struct Color {
///     r: u8,
///     g: u8,
///     b: u8,
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// record color {
///     r: u8,
///     g: u8,
///     b: u8,
/// }
/// ```
///
/// Note that the name `Color` here does not need to match the name in WIT.
/// That's purely used as a name in Rust of what to refer to. The field names
/// must match that in WIT, however. Field names can be customized with the
/// `#[component]` attribute though.
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(record)]
/// struct VerboseColor {
///     #[component(name = "r")]
///     red: u8,
///     #[component(name = "g")]
///     green: u8,
///     #[component(name = "b")]
///     blue: u8,
/// }
/// ```
///
/// Also note that field ordering is significant at this time and must match
/// WIT.
///
/// ## Variants
///
/// `variant`s in the component model correspond to a subset of shapes of a Rust
/// `enum`. Variants in the component model have a single optional payload type
/// which means that not all Rust `enum`s correspond to component model
/// `variant`s. An example variant is:
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(variant)]
/// enum Filter {
///     #[component(name = "none")]
///     None,
///     #[component(name = "all")]
///     All,
///     #[component(name = "some")]
///     Some(Vec<String>),
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// variant filter {
///     none,
///     all,
///     some(list<string>),
/// }
/// ```
///
/// The `variant` style of derive allows an optional payload on Rust `enum`
/// variants but it must be a single unnamed field. Variants of the form `Foo(T,
/// U)` or `Foo { name: T }` are not supported at this time.
///
/// Note that the order of variants in Rust must match the order of variants in
/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
/// on all Rust `enum` variants because the name currently defaults to the Rust
/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
///
/// ## Enums
///
/// `enum`s in the component model correspond to C-like `enum`s in Rust. Note
/// that a component model `enum` does not allow any payloads so the Rust `enum`
/// must additionally have no payloads.
///
/// ```rust
/// use wasmtime::component::ComponentType;
///
/// #[derive(ComponentType)]
/// #[component(enum)]
/// enum Setting {
///     #[component(name = "yes")]
///     Yes,
///     #[component(name = "no")]
///     No,
///     #[component(name = "auto")]
///     Auto,
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// enum setting {
///     yes,
///     no,
///     auto,
/// }
/// ```
///
/// Note that the order of variants in Rust must match the order of variants in
/// WIT. Additionally it's likely that `#[component(name = "...")]` is required
/// on all Rust `enum` variants because the name currently defaults to the Rust
/// name which is typically UpperCamelCase whereas WIT uses kebab-case.
pub use wasmtime_component_macro::ComponentType;

/// A derive macro for generating implementations of the [`Lift`] trait.
///
/// This macro will likely be applied in conjunction with the
/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
/// of `#[derive(ComponentType, Lift)]`. This trait enables reading values from
/// WebAssembly.
///
/// Note you might be looking for [`bindgen!`] rather than this macro as that
/// will generate the entire type for you rather than just a trait
/// implementation.
///
/// At this time this derive macro has no configuration.
///
/// ## Examples
///
/// ```rust
/// use wasmtime::component::{ComponentType, Lift};
///
/// #[derive(ComponentType, Lift)]
/// #[component(record)]
/// struct Color {
///     r: u8,
///     g: u8,
///     b: u8,
/// }
/// ```
pub use wasmtime_component_macro::Lift;

/// A derive macro for generating implementations of the [`Lower`] trait.
///
/// This macro will likely be applied in conjunction with the
/// [`#[derive(ComponentType)]`](macro@ComponentType) macro along the lines
/// of `#[derive(ComponentType, Lower)]`. This trait enables passing values to
/// WebAssembly.
///
/// Note you might be looking for [`bindgen!`] rather than this macro as that
/// will generate the entire type for you rather than just a trait
/// implementation.
///
/// At this time this derive macro has no configuration.
///
/// ## Examples
///
/// ```rust
/// use wasmtime::component::{ComponentType, Lower};
///
/// #[derive(ComponentType, Lower)]
/// #[component(record)]
/// struct Color {
///     r: u8,
///     g: u8,
///     b: u8,
/// }
/// ```
pub use wasmtime_component_macro::Lower;

/// A macro to generate a Rust type corresponding to WIT `flags`
///
/// This macro generates a type that implements the [`ComponentType`], [`Lift`],
/// and [`Lower`] traits. The generated Rust type corresponds to the `flags`
/// type in WIT.
///
/// Example usage of this looks like:
///
/// ```rust
/// use wasmtime::component::flags;
///
/// flags! {
///     Permissions {
///         #[component(name = "read")]
///         const READ;
///         #[component(name = "write")]
///         const WRITE;
///         #[component(name = "execute")]
///         const EXECUTE;
///     }
/// }
///
/// fn validate_permissions(permissions: &mut Permissions) {
///     if permissions.contains(Permissions::EXECUTE | Permissions::WRITE) {
///         panic!("cannot enable both writable and executable at the same time");
///     }
///
///     if permissions.contains(Permissions::READ) {
///         panic!("permissions must at least contain read");
///     }
/// }
/// ```
///
/// which corresponds to the WIT type:
///
/// ```wit
/// flags permissions {
///     read,
///     write,
///     execute,
/// }
/// ```
///
/// This generates a structure which is similar to/inspired by the [`bitflags`
/// crate](https://crates.io/crates/bitflags). The `Permissions` structure
/// generated implements the [`PartialEq`], [`Eq`], [`Debug`], [`BitOr`],
/// [`BitOrAssign`], [`BitAnd`], [`BitAndAssign`], [`BitXor`], [`BitXorAssign`],
/// and [`Not`] traits - in addition to the Wasmtime-specific component ones
/// [`ComponentType`], [`Lift`], and [`Lower`].
///
/// [`BitOr`]: std::ops::BitOr
/// [`BitOrAssign`]: std::ops::BitOrAssign
/// [`BitAnd`]: std::ops::BitAnd
/// [`BitAndAssign`]: std::ops::BitAndAssign
/// [`BitXor`]: std::ops::BitXor
/// [`BitXorAssign`]: std::ops::BitXorAssign
/// [`Not`]: std::ops::Not
pub use wasmtime_component_macro::flags;