1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
//! Compound bit sets.

use crate::scalar::{self, ScalarBitSet};
use alloc::boxed::Box;
use core::{cmp, iter, mem};

/// A large bit set backed by dynamically-sized storage.
///
/// # Example
///
/// ```
/// use cranelift_bitset::CompoundBitSet;
///
/// // Create a new bitset.
/// let mut bitset = CompoundBitSet::new();
///
/// // Bitsets are initially empty.
/// assert!(bitset.is_empty());
/// assert_eq!(bitset.len(), 0);
///
/// // Insert into the bitset.
/// bitset.insert(444);
/// bitset.insert(555);
/// bitset.insert(666);
///
/// // Now the bitset is not empty.
/// assert_eq!(bitset.len(), 3);
/// assert!(!bitset.is_empty());
/// assert!(bitset.contains(444));
/// assert!(bitset.contains(555));
/// assert!(bitset.contains(666));
///
/// // Remove an element from the bitset.
/// let was_present = bitset.remove(666);
/// assert!(was_present);
/// assert!(!bitset.contains(666));
/// assert_eq!(bitset.len(), 2);
///
/// // Can iterate over the elements in the set.
/// let elems: Vec<_> = bitset.iter().collect();
/// assert_eq!(elems, [444, 555]);
/// ```
#[derive(Clone, Default, PartialEq, Eq)]
#[cfg_attr(
    feature = "enable-serde",
    derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct CompoundBitSet {
    elems: Box<[ScalarBitSet<usize>]>,
    max: Option<u32>,
}

impl core::fmt::Debug for CompoundBitSet {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "CompoundBitSet ")?;
        f.debug_set().entries(self.iter()).finish()
    }
}

const BITS_PER_WORD: usize = mem::size_of::<usize>() * 8;

impl CompoundBitSet {
    /// Construct a new, empty bit set.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let bitset = CompoundBitSet::new();
    ///
    /// assert!(bitset.is_empty());
    /// ```
    #[inline]
    pub fn new() -> Self {
        CompoundBitSet::default()
    }

    /// Construct a new, empty bit set with space reserved to store any element
    /// `x` such that `x < capacity`.
    ///
    /// The actual capacity reserved may be greater than that requested.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let bitset = CompoundBitSet::with_capacity(4096);
    ///
    /// assert!(bitset.is_empty());
    /// assert!(bitset.capacity() >= 4096);
    /// ```
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        let mut bitset = Self::new();
        bitset.ensure_capacity(capacity);
        bitset
    }

    /// Get the number of elements in this bitset.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// assert_eq!(bitset.len(), 0);
    ///
    /// bitset.insert(24);
    /// bitset.insert(130);
    /// bitset.insert(3600);
    ///
    /// assert_eq!(bitset.len(), 3);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.elems.iter().map(|sub| usize::from(sub.len())).sum()
    }

    /// Get `n + 1` where `n` is the largest value that can be stored inside
    /// this set without growing the backing storage.
    ///
    /// That is, this set can store any value `x` such that `x <
    /// bitset.capacity()` without growing the backing storage.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// // New bitsets have zero capacity -- they allocate lazily.
    /// assert_eq!(bitset.capacity(), 0);
    ///
    /// // Insert into the bitset, growing its capacity.
    /// bitset.insert(999);
    ///
    /// // The bitset must now have capacity for at least `999` elements,
    /// // perhaps more.
    /// assert!(bitset.capacity() >= 999);
    ///```
    pub fn capacity(&self) -> usize {
        self.elems.len() * BITS_PER_WORD
    }

    /// Is this bitset empty?
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// assert!(bitset.is_empty());
    ///
    /// bitset.insert(1234);
    ///
    /// assert!(!bitset.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Convert an element `i` into the `word` that can be used to index into
    /// `self.elems` and the `bit` that can be tested in the
    /// `ScalarBitSet<usize>` at `self.elems[word]`.
    #[inline]
    fn word_and_bit(i: usize) -> (usize, u8) {
        let word = i / BITS_PER_WORD;
        let bit = i % BITS_PER_WORD;
        let bit = u8::try_from(bit).unwrap();
        (word, bit)
    }

    /// The opposite of `word_and_bit`: convert the pair of an index into
    /// `self.elems` and associated bit index into a set element.
    #[inline]
    fn elem(word: usize, bit: u8) -> usize {
        let bit = usize::from(bit);
        debug_assert!(bit < BITS_PER_WORD);
        word * BITS_PER_WORD + bit
    }

    /// Is `i` contained in this bitset?
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// assert!(!bitset.contains(666));
    ///
    /// bitset.insert(666);
    ///
    /// assert!(bitset.contains(666));
    /// ```
    #[inline]
    pub fn contains(&self, i: usize) -> bool {
        let (word, bit) = Self::word_and_bit(i);
        if word < self.elems.len() {
            self.elems[word].contains(bit)
        } else {
            false
        }
    }

    /// Ensure there is space in this bitset for the values `0..n`, growing the
    /// backing storage if necessary.
    ///
    /// After calling `bitset.ensure_capacity(n)`, inserting any element `i`
    /// where `i < n` is guaranteed to succeed without growing the bitset's
    /// backing storage.
    ///
    /// # Example
    ///
    /// ```
    /// # use cranelift_bitset::CompoundBitSet;
    /// # let mut bitset = CompoundBitSet::new();
    /// // We are going to do a series of inserts where `1000` will be the
    /// // maximum value inserted. Make sure that our bitset has capacity for
    /// // these elements once up front, to avoid growing the backing storage
    /// // multiple times incrementally.
    /// bitset.ensure_capacity(1001);
    ///
    /// for i in 0..=1000 {
    ///     if i % 2 == 0 {
    ///         // Inserting this value should not require growing the backing
    ///         // storage.
    ///         assert!(bitset.capacity() > i);
    ///         bitset.insert(i);
    ///     }
    /// }
    /// ```
    #[inline]
    pub fn ensure_capacity(&mut self, n: usize) {
        let (word, _bit) = Self::word_and_bit(n);
        if word >= self.elems.len() {
            assert!(word < usize::try_from(isize::MAX).unwrap());

            let delta = word - self.elems.len();
            let to_grow = delta + 1;

            // Amortize the cost of growing.
            let to_grow = cmp::max(to_grow, self.elems.len() * 2);
            // Don't make ridiculously small allocations.
            let to_grow = cmp::max(to_grow, 4);

            let new_elems = self
                .elems
                .iter()
                .copied()
                .chain(iter::repeat(ScalarBitSet::new()).take(to_grow))
                .collect::<Box<[_]>>();
            self.elems = new_elems;
        }
    }

    /// Insert `i` into this bitset.
    ///
    /// Returns whether the value was newly inserted. That is:
    ///
    /// * If the set did not previously contain `i` then `true` is returned.
    ///
    /// * If the set already contained `i` then `false` is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// // When an element is inserted that was not already present in the set,
    /// // then `true` is returned.
    /// let is_new = bitset.insert(1234);
    /// assert!(is_new);
    ///
    /// // The element is now present in the set.
    /// assert!(bitset.contains(1234));
    ///
    /// // And when the element is already in the set, `false` is returned from
    /// // `insert`.
    /// let is_new = bitset.insert(1234);
    /// assert!(!is_new);
    /// ```
    #[inline]
    pub fn insert(&mut self, i: usize) -> bool {
        self.ensure_capacity(i + 1);

        let (word, bit) = Self::word_and_bit(i);
        let is_new = self.elems[word].insert(bit);

        let i = u32::try_from(i).unwrap();
        self.max = self.max.map(|max| cmp::max(max, i)).or(Some(i));

        is_new
    }

    /// Remove `i` from this bitset.
    ///
    /// Returns whether `i` was previously in this set or not.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// // Removing an element that was not present in the set returns `false`.
    /// let was_present = bitset.remove(456);
    /// assert!(!was_present);
    ///
    /// // And when the element was in the set, `true` is returned.
    /// bitset.insert(456);
    /// let was_present = bitset.remove(456);
    /// assert!(was_present);
    /// ```
    #[inline]
    pub fn remove(&mut self, i: usize) -> bool {
        let (word, bit) = Self::word_and_bit(i);
        if word < self.elems.len() {
            let sub = &mut self.elems[word];
            let was_present = sub.remove(bit);
            if was_present && self.max() == Some(i) {
                self.update_max(word);
            }
            was_present
        } else {
            false
        }
    }

    /// Update the `self.max` field, based on the old word index of `self.max`.
    fn update_max(&mut self, word_of_old_max: usize) {
        self.max = self.elems[0..word_of_old_max + 1]
            .iter()
            .enumerate()
            .rev()
            .filter_map(|(word, sub)| {
                let bit = sub.max()?;
                Some(u32::try_from(Self::elem(word, bit)).unwrap())
            })
            .next();
    }

    /// Get the largest value in this set, or `None` if this set is empty.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// // Returns `None` if the bitset is empty.
    /// assert!(bitset.max().is_none());
    ///
    /// bitset.insert(123);
    /// bitset.insert(987);
    /// bitset.insert(999);
    ///
    /// // Otherwise, it returns the largest value in the set.
    /// assert_eq!(bitset.max(), Some(999));
    /// ```
    #[inline]
    pub fn max(&self) -> Option<usize> {
        self.max.map(|m| usize::try_from(m).unwrap())
    }

    /// Removes and returns the largest value in this set.
    ///
    /// Returns `None` if this set is empty.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// bitset.insert(111);
    /// bitset.insert(222);
    /// bitset.insert(333);
    /// bitset.insert(444);
    /// bitset.insert(555);
    ///
    /// assert_eq!(bitset.pop(), Some(555));
    /// assert_eq!(bitset.pop(), Some(444));
    /// assert_eq!(bitset.pop(), Some(333));
    /// assert_eq!(bitset.pop(), Some(222));
    /// assert_eq!(bitset.pop(), Some(111));
    /// assert_eq!(bitset.pop(), None);
    /// ```
    #[inline]
    pub fn pop(&mut self) -> Option<usize> {
        let max = self.max()?;
        self.remove(max);
        Some(max)
    }

    /// Remove all elements from this bitset.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// bitset.insert(100);
    /// bitset.insert(200);
    /// bitset.insert(300);
    ///
    /// bitset.clear();
    ///
    /// assert!(bitset.is_empty());
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        let max = match self.max() {
            Some(max) => max,
            None => return,
        };
        let (word, _bit) = Self::word_and_bit(max);
        debug_assert!(self.elems[word + 1..].iter().all(|sub| sub.is_empty()));
        for sub in &mut self.elems[..=word] {
            *sub = ScalarBitSet::new();
        }
        self.max = None;
    }

    /// Iterate over the elements in this bitset.
    ///
    /// The elements are always yielded in sorted order.
    ///
    /// # Example
    ///
    /// ```
    /// use cranelift_bitset::CompoundBitSet;
    ///
    /// let mut bitset = CompoundBitSet::new();
    ///
    /// bitset.insert(0);
    /// bitset.insert(4096);
    /// bitset.insert(123);
    /// bitset.insert(456);
    /// bitset.insert(789);
    ///
    /// assert_eq!(
    ///     bitset.iter().collect::<Vec<_>>(),
    ///     [0, 123, 456, 789, 4096],
    /// );
    /// ```
    #[inline]
    pub fn iter(&self) -> Iter<'_> {
        Iter {
            bitset: self,
            word: 0,
            sub: None,
        }
    }
}

impl<'a> IntoIterator for &'a CompoundBitSet {
    type Item = usize;

    type IntoIter = Iter<'a>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

/// An iterator over the elements in a [`CompoundBitSet`].
pub struct Iter<'a> {
    bitset: &'a CompoundBitSet,
    word: usize,
    sub: Option<scalar::Iter<usize>>,
}

impl Iterator for Iter<'_> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        loop {
            if let Some(sub) = &mut self.sub {
                if let Some(bit) = sub.next() {
                    return Some(CompoundBitSet::elem(self.word, bit));
                } else {
                    self.word += 1;
                }
            }

            self.sub = Some(self.bitset.elems.get(self.word)?.iter());
        }
    }
}