wasmtime_wasi/stdio.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
use crate::bindings::cli::{
stderr, stdin, stdout, terminal_input, terminal_output, terminal_stderr, terminal_stdin,
terminal_stdout,
};
use crate::bindings::io::streams;
use crate::pipe;
use crate::{
HostInputStream, HostOutputStream, StreamError, StreamResult, Subscribe, WasiImpl, WasiView,
};
use bytes::Bytes;
use std::io::IsTerminal;
use std::sync::Arc;
use tokio::sync::Mutex;
use wasmtime::component::Resource;
/// A trait used to represent the standard input to a guest program.
///
/// This is used to implement various WASI APIs via the method implementations
/// below.
///
/// Built-in implementations are provided for [`Stdin`],
/// [`pipe::MemoryInputPipe`], and [`pipe::ClosedInputStream`].
pub trait StdinStream: Send {
/// Creates a fresh stream which is reading stdin.
///
/// Note that the returned stream must share state with all other streams
/// previously created. Guests may create multiple handles to the same stdin
/// and they should all be synchronized in their progress through the
/// program's input.
///
/// Note that this means that if one handle becomes ready for reading they
/// all become ready for reading. Subsequently if one is read from it may
/// mean that all the others are no longer ready for reading. This is
/// basically a consequence of the way the WIT APIs are designed today.
fn stream(&self) -> Box<dyn HostInputStream>;
/// Returns whether this stream is backed by a TTY.
fn isatty(&self) -> bool;
}
impl StdinStream for pipe::MemoryInputPipe {
fn stream(&self) -> Box<dyn HostInputStream> {
Box::new(self.clone())
}
fn isatty(&self) -> bool {
false
}
}
impl StdinStream for pipe::ClosedInputStream {
fn stream(&self) -> Box<dyn HostInputStream> {
Box::new(*self)
}
fn isatty(&self) -> bool {
false
}
}
/// An impl of [`StdinStream`] built on top of [`crate::pipe::AsyncReadStream`].
//
// Note the usage of `tokio::sync::Mutex` here as opposed to a
// `std::sync::Mutex`. This is intentionally done to implement the `Subscribe`
// variant of this trait. Note that in doing so we're left with the quandry of
// how to implement methods of `HostInputStream` since those methods are not
// `async`. They're currently implemented with `try_lock`, which then raises the
// question of what to do on contention. Currently traps are returned.
//
// Why should it be ok to return a trap? In general concurrency/contention
// shouldn't return a trap since it should be able to happen normally. The
// current assumption, though, is that WASI stdin/stdout streams are special
// enough that the contention case should never come up in practice. Currently
// in WASI there is no actually concurrency, there's just the items in a single
// `Store` and that store owns all of its I/O in a single Tokio task. There's no
// means to actually spawn multiple Tokio tasks that use the same store. This
// means at the very least that there's zero parallelism. Due to the lack of
// multiple tasks that also means that there's no concurrency either.
//
// This `AsyncStdinStream` wrapper is only intended to be used by the WASI
// bindings themselves. It's possible for the host to take this and work with it
// on its own task, but that's niche enough it's not designed for.
//
// Overall that means that the guest is either calling `Subscribe` or it's
// calling `HostInputStream` methods. This means that there should never be
// contention between the two at this time. This may all change in the future
// with WASI 0.3, but perhaps we'll have a better story for stdio at that time
// (see the doc block on the `HostOutputStream` impl below)
pub struct AsyncStdinStream(Arc<Mutex<crate::pipe::AsyncReadStream>>);
impl AsyncStdinStream {
pub fn new(s: crate::pipe::AsyncReadStream) -> Self {
Self(Arc::new(Mutex::new(s)))
}
}
impl StdinStream for AsyncStdinStream {
fn stream(&self) -> Box<dyn HostInputStream> {
Box::new(Self(self.0.clone()))
}
fn isatty(&self) -> bool {
false
}
}
#[async_trait::async_trait]
impl HostInputStream for AsyncStdinStream {
fn read(&mut self, size: usize) -> Result<bytes::Bytes, StreamError> {
match self.0.try_lock() {
Ok(mut stream) => stream.read(size),
Err(_) => Err(StreamError::trap("concurrent reads are not supported")),
}
}
fn skip(&mut self, size: usize) -> Result<usize, StreamError> {
match self.0.try_lock() {
Ok(mut stream) => stream.skip(size),
Err(_) => Err(StreamError::trap("concurrent skips are not supported")),
}
}
async fn cancel(&mut self) {
// Cancel the inner stream if we're the last reference to it:
if let Some(mutex) = Arc::get_mut(&mut self.0) {
match mutex.try_lock() {
Ok(mut stream) => stream.cancel().await,
Err(_) => {}
}
}
}
}
#[async_trait::async_trait]
impl Subscribe for AsyncStdinStream {
async fn ready(&mut self) {
self.0.lock().await.ready().await
}
}
mod worker_thread_stdin;
pub use self::worker_thread_stdin::{stdin, Stdin};
/// Similar to [`StdinStream`], except for output.
pub trait StdoutStream: Send {
/// Returns a fresh new stream which can write to this output stream.
///
/// Note that all output streams should output to the same logical source.
/// This means that it's possible for each independent stream to acquire a
/// separate "permit" to write and then act on that permit. Note that
/// additionally at this time once a permit is "acquired" there's no way to
/// release it, for example you can wait for readiness and then never
/// actually write in WASI. This means that acquisition of a permit for one
/// stream cannot discount the size of a permit another stream could
/// obtain.
///
/// Implementations must be able to handle this
fn stream(&self) -> Box<dyn HostOutputStream>;
/// Returns whether this stream is backed by a TTY.
fn isatty(&self) -> bool;
}
impl StdoutStream for pipe::MemoryOutputPipe {
fn stream(&self) -> Box<dyn HostOutputStream> {
Box::new(self.clone())
}
fn isatty(&self) -> bool {
false
}
}
impl StdoutStream for pipe::SinkOutputStream {
fn stream(&self) -> Box<dyn HostOutputStream> {
Box::new(*self)
}
fn isatty(&self) -> bool {
false
}
}
impl StdoutStream for pipe::ClosedOutputStream {
fn stream(&self) -> Box<dyn HostOutputStream> {
Box::new(*self)
}
fn isatty(&self) -> bool {
false
}
}
/// This implementation will yield output streams that block on writes, and
/// output directly to a file. If truly async output is required, [`AsyncStdoutStream`]
/// should be used instead.
pub struct OutputFile {
file: Arc<std::fs::File>,
}
impl OutputFile {
pub fn new(file: std::fs::File) -> Self {
Self {
file: Arc::new(file),
}
}
}
impl StdoutStream for OutputFile {
fn stream(&self) -> Box<dyn HostOutputStream> {
Box::new(OutputFileStream {
file: Arc::clone(&self.file),
})
}
fn isatty(&self) -> bool {
false
}
}
struct OutputFileStream {
file: Arc<std::fs::File>,
}
#[async_trait::async_trait]
impl Subscribe for OutputFileStream {
async fn ready(&mut self) {}
}
impl HostOutputStream for OutputFileStream {
fn write(&mut self, bytes: Bytes) -> StreamResult<()> {
use std::io::Write;
self.file
.write_all(&bytes)
.map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
}
fn flush(&mut self) -> StreamResult<()> {
use std::io::Write;
self.file
.flush()
.map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
}
fn check_write(&mut self) -> StreamResult<usize> {
Ok(1024 * 1024)
}
}
/// This implementation will yield output streams that block on writes, as they
/// inherit the implementation directly from the rust std library. A different
/// implementation of [`StdoutStream`] will be necessary if truly async output
/// streams are required.
pub struct Stdout;
/// Returns a stream that represents the host's standard out.
///
/// Suitable for passing to
/// [`WasiCtxBuilder::stdout`](crate::WasiCtxBuilder::stdout).
pub fn stdout() -> Stdout {
Stdout
}
impl StdoutStream for Stdout {
fn stream(&self) -> Box<dyn HostOutputStream> {
Box::new(OutputStream::Stdout)
}
fn isatty(&self) -> bool {
std::io::stdout().is_terminal()
}
}
/// This implementation will yield output streams that block on writes, as they
/// inherit the implementation directly from the rust std library. A different
/// implementation of [`StdoutStream`] will be necessary if truly async output
/// streams are required.
pub struct Stderr;
/// Returns a stream that represents the host's standard err.
///
/// Suitable for passing to
/// [`WasiCtxBuilder::stderr`](crate::WasiCtxBuilder::stderr).
pub fn stderr() -> Stderr {
Stderr
}
impl StdoutStream for Stderr {
fn stream(&self) -> Box<dyn HostOutputStream> {
Box::new(OutputStream::Stderr)
}
fn isatty(&self) -> bool {
std::io::stderr().is_terminal()
}
}
enum OutputStream {
Stdout,
Stderr,
}
impl HostOutputStream for OutputStream {
fn write(&mut self, bytes: Bytes) -> StreamResult<()> {
use std::io::Write;
match self {
OutputStream::Stdout => std::io::stdout().write_all(&bytes),
OutputStream::Stderr => std::io::stderr().write_all(&bytes),
}
.map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
}
fn flush(&mut self) -> StreamResult<()> {
use std::io::Write;
match self {
OutputStream::Stdout => std::io::stdout().flush(),
OutputStream::Stderr => std::io::stderr().flush(),
}
.map_err(|e| StreamError::LastOperationFailed(anyhow::anyhow!(e)))
}
fn check_write(&mut self) -> StreamResult<usize> {
Ok(1024 * 1024)
}
}
#[async_trait::async_trait]
impl Subscribe for OutputStream {
async fn ready(&mut self) {}
}
/// A wrapper of [`crate::pipe::AsyncWriteStream`] that implements
/// [`StdoutStream`]. Note that the [`HostOutputStream`] impl for this is not
/// correct when used for interleaved async IO.
//
// Note that the use of `tokio::sync::Mutex` here is intentional, in addition to
// the `try_lock()` calls below in the implementation of `HostOutputStream`. For
// more information see the documentation on `AsyncStdinStream`.
pub struct AsyncStdoutStream(Arc<Mutex<crate::pipe::AsyncWriteStream>>);
impl AsyncStdoutStream {
pub fn new(s: crate::pipe::AsyncWriteStream) -> Self {
Self(Arc::new(Mutex::new(s)))
}
}
impl StdoutStream for AsyncStdoutStream {
fn stream(&self) -> Box<dyn HostOutputStream> {
Box::new(Self(self.0.clone()))
}
fn isatty(&self) -> bool {
false
}
}
// This implementation is known to be bogus. All check-writes and writes are
// directed at the same underlying stream. The check-write/write protocol does
// require the size returned by a check-write to be accepted by write, even if
// other side-effects happen between those calls, and this implementation
// permits another view (created by StdoutStream::stream()) of the same
// underlying stream to accept a write which will invalidate a prior
// check-write of another view.
// Ultimately, the Std{in,out}Stream::stream() methods exist because many
// different places in a linked component (which may itself contain many
// modules) may need to access stdio without any coordination to keep those
// accesses all using pointing to the same resource. So, we allow many
// resources to be created. We have the reasonable expectation that programs
// won't attempt to interleave async IO from these disparate uses of stdio.
// If that expectation doesn't turn out to be true, and you find yourself at
// this comment to correct it: sorry about that.
#[async_trait::async_trait]
impl HostOutputStream for AsyncStdoutStream {
fn check_write(&mut self) -> Result<usize, StreamError> {
match self.0.try_lock() {
Ok(mut stream) => stream.check_write(),
Err(_) => Err(StreamError::trap("concurrent writes are not supported")),
}
}
fn write(&mut self, bytes: Bytes) -> Result<(), StreamError> {
match self.0.try_lock() {
Ok(mut stream) => stream.write(bytes),
Err(_) => Err(StreamError::trap("concurrent writes not supported yet")),
}
}
fn flush(&mut self) -> Result<(), StreamError> {
match self.0.try_lock() {
Ok(mut stream) => stream.flush(),
Err(_) => Err(StreamError::trap("concurrent flushes not supported yet")),
}
}
async fn cancel(&mut self) {
// Cancel the inner stream if we're the last reference to it:
if let Some(mutex) = Arc::get_mut(&mut self.0) {
match mutex.try_lock() {
Ok(mut stream) => stream.cancel().await,
Err(_) => {}
}
}
}
}
#[async_trait::async_trait]
impl Subscribe for AsyncStdoutStream {
async fn ready(&mut self) {
self.0.lock().await.ready().await
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum IsATTY {
Yes,
No,
}
impl<T> stdin::Host for WasiImpl<T>
where
T: WasiView,
{
fn get_stdin(&mut self) -> Result<Resource<streams::InputStream>, anyhow::Error> {
let stream = self.ctx().stdin.stream();
Ok(self.table().push(stream)?)
}
}
impl<T> stdout::Host for WasiImpl<T>
where
T: WasiView,
{
fn get_stdout(&mut self) -> Result<Resource<streams::OutputStream>, anyhow::Error> {
let stream = self.ctx().stdout.stream();
Ok(self.table().push(stream)?)
}
}
impl<T> stderr::Host for WasiImpl<T>
where
T: WasiView,
{
fn get_stderr(&mut self) -> Result<Resource<streams::OutputStream>, anyhow::Error> {
let stream = self.ctx().stderr.stream();
Ok(self.table().push(stream)?)
}
}
pub struct TerminalInput;
pub struct TerminalOutput;
impl<T> terminal_input::Host for WasiImpl<T> where T: WasiView {}
impl<T> terminal_input::HostTerminalInput for WasiImpl<T>
where
T: WasiView,
{
fn drop(&mut self, r: Resource<TerminalInput>) -> anyhow::Result<()> {
self.table().delete(r)?;
Ok(())
}
}
impl<T> terminal_output::Host for WasiImpl<T> where T: WasiView {}
impl<T> terminal_output::HostTerminalOutput for WasiImpl<T>
where
T: WasiView,
{
fn drop(&mut self, r: Resource<TerminalOutput>) -> anyhow::Result<()> {
self.table().delete(r)?;
Ok(())
}
}
impl<T> terminal_stdin::Host for WasiImpl<T>
where
T: WasiView,
{
fn get_terminal_stdin(&mut self) -> anyhow::Result<Option<Resource<TerminalInput>>> {
if self.ctx().stdin.isatty() {
let fd = self.table().push(TerminalInput)?;
Ok(Some(fd))
} else {
Ok(None)
}
}
}
impl<T> terminal_stdout::Host for WasiImpl<T>
where
T: WasiView,
{
fn get_terminal_stdout(&mut self) -> anyhow::Result<Option<Resource<TerminalOutput>>> {
if self.ctx().stdout.isatty() {
let fd = self.table().push(TerminalOutput)?;
Ok(Some(fd))
} else {
Ok(None)
}
}
}
impl<T> terminal_stderr::Host for WasiImpl<T>
where
T: WasiView,
{
fn get_terminal_stderr(&mut self) -> anyhow::Result<Option<Resource<TerminalOutput>>> {
if self.ctx().stderr.isatty() {
let fd = self.table().push(TerminalOutput)?;
Ok(Some(fd))
} else {
Ok(None)
}
}
}
#[cfg(test)]
mod test {
use crate::stdio::StdoutStream;
use crate::write_stream::AsyncWriteStream;
use crate::{AsyncStdoutStream, HostOutputStream};
use anyhow::Result;
use bytes::Bytes;
use tokio::io::AsyncReadExt;
#[test]
fn memory_stdin_stream() {
// A StdinStream has the property that there are multiple
// HostInputStreams created, using the stream() method which are each
// views on the same shared state underneath. Consuming input on one
// stream results in consuming that input on all streams.
//
// The simplest way to measure this is to check if the MemoryInputPipe
// impl of StdinStream follows this property.
let pipe = super::pipe::MemoryInputPipe::new(
"the quick brown fox jumped over the three lazy dogs",
);
use super::StdinStream;
let mut view1 = pipe.stream();
let mut view2 = pipe.stream();
let read1 = view1.read(10).expect("read first 10 bytes");
assert_eq!(read1, "the quick ".as_bytes(), "first 10 bytes");
let read2 = view2.read(10).expect("read second 10 bytes");
assert_eq!(read2, "brown fox ".as_bytes(), "second 10 bytes");
let read3 = view1.read(10).expect("read third 10 bytes");
assert_eq!(read3, "jumped ove".as_bytes(), "third 10 bytes");
let read4 = view2.read(10).expect("read fourth 10 bytes");
assert_eq!(read4, "r the thre".as_bytes(), "fourth 10 bytes");
}
#[tokio::test]
async fn async_stdin_stream() {
// A StdinStream has the property that there are multiple
// HostInputStreams created, using the stream() method which are each
// views on the same shared state underneath. Consuming input on one
// stream results in consuming that input on all streams.
//
// AsyncStdinStream is a slightly more complex impl of StdinStream
// than the MemoryInputPipe above. We can create an AsyncReadStream
// from a file on the disk, and an AsyncStdinStream from that common
// stream, then check that the same property holds as above.
let dir = tempfile::tempdir().unwrap();
let mut path = std::path::PathBuf::from(dir.path());
path.push("file");
std::fs::write(&path, "the quick brown fox jumped over the three lazy dogs").unwrap();
let file = tokio::fs::File::open(&path)
.await
.expect("open created file");
let stdin_stream = super::AsyncStdinStream::new(crate::pipe::AsyncReadStream::new(file));
use super::StdinStream;
let mut view1 = stdin_stream.stream();
let mut view2 = stdin_stream.stream();
view1.ready().await;
let read1 = view1.read(10).expect("read first 10 bytes");
assert_eq!(read1, "the quick ".as_bytes(), "first 10 bytes");
let read2 = view2.read(10).expect("read second 10 bytes");
assert_eq!(read2, "brown fox ".as_bytes(), "second 10 bytes");
let read3 = view1.read(10).expect("read third 10 bytes");
assert_eq!(read3, "jumped ove".as_bytes(), "third 10 bytes");
let read4 = view2.read(10).expect("read fourth 10 bytes");
assert_eq!(read4, "r the thre".as_bytes(), "fourth 10 bytes");
}
#[tokio::test]
async fn async_stdout_stream_unblocks() {
let (mut read, write) = tokio::io::duplex(32);
let stdout = AsyncStdoutStream::new(AsyncWriteStream::new(32, write));
let task = tokio::task::spawn(async move {
let mut stream = stdout.stream();
blocking_write_and_flush(&mut *stream, "x".into())
.await
.unwrap();
});
let mut buf = [0; 100];
let n = read.read(&mut buf).await.unwrap();
assert_eq!(&buf[..n], b"x");
task.await.unwrap();
}
async fn blocking_write_and_flush(
s: &mut dyn HostOutputStream,
mut bytes: Bytes,
) -> Result<()> {
while !bytes.is_empty() {
let permit = s.write_ready().await?;
let len = bytes.len().min(permit);
let chunk = bytes.split_to(len);
s.write(chunk)?;
}
s.flush()?;
s.write_ready().await?;
Ok(())
}
}