Skip to main content

wasmtime/runtime/component/
linker.rs

1#[cfg(feature = "component-model-async")]
2use crate::component::concurrent::Accessor;
3use crate::component::func::HostFunc;
4use crate::component::instance::RuntimeImport;
5use crate::component::matching::{InstanceType, TypeChecker};
6use crate::component::types;
7use crate::component::{
8    Component, ComponentNamedList, Instance, InstancePre, Lift, Lower, ResourceType, Val,
9};
10use crate::hash_map::HashMap;
11use crate::prelude::*;
12use crate::{AsContextMut, Engine, Module, StoreContextMut};
13use alloc::sync::Arc;
14use core::marker;
15#[cfg(feature = "component-model-async")]
16use core::pin::Pin;
17use wasmtime_environ::PrimaryMap;
18use wasmtime_environ::component::{NameMap, NameMapIntern};
19
20/// A type used to instantiate [`Component`]s.
21///
22/// This type is used to both link components together as well as supply host
23/// functionality to components. Values are defined in a [`Linker`] by their
24/// import name and then components are instantiated with a [`Linker`] using the
25/// names provided for name resolution of the component's imports.
26///
27/// # Names and Semver
28///
29/// Names defined in a [`Linker`] correspond to import names in the Component
30/// Model. Names in the Component Model are allowed to be semver-qualified, for
31/// example:
32///
33/// * `wasi:cli/stdout@0.2.0`
34/// * `wasi:http/types@0.2.0-rc-2023-10-25`
35/// * `my:custom/plugin@1.0.0-pre.2`
36///
37/// These version strings are taken into account when looking up names within a
38/// [`Linker`]. You're allowed to define any number of versions within a
39/// [`Linker`] still, for example you can define `a:b/c@0.2.0`, `a:b/c@0.2.1`,
40/// and `a:b/c@0.3.0` all at the same time.
41///
42/// Specifically though when names are looked up within a linker, for example
43/// during instantiation, semver-compatible names are automatically consulted.
44/// This means that if you define `a:b/c@0.2.1` in a [`Linker`] but a component
45/// imports `a:b/c@0.2.0` then that import will resolve to the `0.2.1` version.
46///
47/// This lookup behavior relies on hosts being well-behaved when using Semver,
48/// specifically that interfaces once defined are never changed. This reflects
49/// how Semver works at the Component Model layer, and it's assumed that if
50/// versions are present then hosts are respecting this.
51///
52/// Note that this behavior goes the other direction, too. If a component
53/// imports `a:b/c@0.2.1` and the host has provided `a:b/c@0.2.0` then that
54/// will also resolve correctly. This is because if an API was defined at 0.2.0
55/// and 0.2.1 then it must be the same API.
56///
57/// This behavior is intended to make it easier for hosts to upgrade WASI and
58/// for guests to upgrade WASI. So long as the actual "meat" of the
59/// functionality is defined then it should align correctly and components can
60/// be instantiated.
61pub struct Linker<T: 'static> {
62    engine: Engine,
63    strings: Strings,
64    map: NameMap<usize, Definition>,
65    path: Vec<usize>,
66    allow_shadowing: bool,
67    _marker: marker::PhantomData<fn() -> T>,
68}
69
70impl<T: 'static> Clone for Linker<T> {
71    fn clone(&self) -> Linker<T> {
72        Linker {
73            engine: self.engine.clone(),
74            strings: self.strings.clone(),
75            map: self.map.clone(),
76            path: self.path.clone(),
77            allow_shadowing: self.allow_shadowing,
78            _marker: self._marker,
79        }
80    }
81}
82
83#[derive(Clone, Default)]
84pub struct Strings {
85    string2idx: HashMap<Arc<str>, usize>,
86    strings: Vec<Arc<str>>,
87}
88
89/// Structure representing an "instance" being defined within a linker.
90///
91/// Instances do not need to be actual [`Instance`]s and instead are defined by
92/// a "bag of named items", so each [`LinkerInstance`] can further define items
93/// internally.
94pub struct LinkerInstance<'a, T: 'static> {
95    engine: &'a Engine,
96    path: &'a mut Vec<usize>,
97    path_len: usize,
98    strings: &'a mut Strings,
99    map: &'a mut NameMap<usize, Definition>,
100    allow_shadowing: bool,
101    _marker: marker::PhantomData<fn() -> T>,
102}
103
104#[derive(Clone, Debug)]
105pub(crate) enum Definition {
106    Instance(NameMap<usize, Definition>),
107    Func(Arc<HostFunc>),
108    Module(Module),
109    Resource(ResourceType, Arc<crate::func::HostFunc>),
110}
111
112impl<T: 'static> Linker<T> {
113    /// Creates a new linker for the [`Engine`] specified with no items defined
114    /// within it.
115    pub fn new(engine: &Engine) -> Linker<T> {
116        Linker {
117            engine: engine.clone(),
118            strings: Strings::default(),
119            map: NameMap::default(),
120            allow_shadowing: false,
121            path: Vec::new(),
122            _marker: marker::PhantomData,
123        }
124    }
125
126    /// Returns the [`Engine`] this is connected to.
127    pub fn engine(&self) -> &Engine {
128        &self.engine
129    }
130
131    /// Configures whether or not name-shadowing is allowed.
132    ///
133    /// By default name shadowing is not allowed and it's an error to redefine
134    /// the same name within a linker.
135    pub fn allow_shadowing(&mut self, allow: bool) -> &mut Self {
136        self.allow_shadowing = allow;
137        self
138    }
139
140    /// Returns the "root instance" of this linker, used to define names into
141    /// the root namespace.
142    pub fn root(&mut self) -> LinkerInstance<'_, T> {
143        LinkerInstance {
144            engine: &self.engine,
145            path: &mut self.path,
146            path_len: 0,
147            strings: &mut self.strings,
148            map: &mut self.map,
149            allow_shadowing: self.allow_shadowing,
150            _marker: self._marker,
151        }
152    }
153
154    /// Returns a builder for the named instance specified.
155    ///
156    /// # Errors
157    ///
158    /// Returns an error if `name` is already defined within the linker.
159    pub fn instance(&mut self, name: &str) -> Result<LinkerInstance<'_, T>> {
160        self.root().into_instance(name)
161    }
162
163    fn typecheck<'a>(&'a self, component: &'a Component) -> Result<TypeChecker<'a>> {
164        let mut cx = TypeChecker {
165            engine: &self.engine,
166            types: component.types(),
167            strings: &self.strings,
168            imported_resources: Default::default(),
169        };
170
171        // Walk over the component's list of import names and use that to lookup
172        // the definition within this linker that it corresponds to. When found
173        // perform a typecheck against the component's expected type.
174        let env_component = component.env_component();
175        for (_idx, (name, ty)) in env_component.import_types.iter() {
176            let import = self.map.get(name, &self.strings);
177            cx.definition(ty, import)
178                .with_context(|| format!("component imports {desc} `{name}`, but a matching implementation was not found in the linker", desc = ty.desc()))?;
179        }
180        Ok(cx)
181    }
182
183    /// Returns the [`types::Component`] corresponding to `component` with resource
184    /// types imported by it replaced using imports present in [`Self`].
185    pub fn substituted_component_type(&self, component: &Component) -> Result<types::Component> {
186        let cx = self.typecheck(&component)?;
187        Ok(types::Component::from(
188            component.ty(),
189            &InstanceType {
190                types: cx.types,
191                resources: &cx.imported_resources,
192            },
193        ))
194    }
195
196    /// Performs a "pre-instantiation" to resolve the imports of the
197    /// [`Component`] specified with the items defined within this linker.
198    ///
199    /// This method will perform as much work as possible short of actually
200    /// instantiating an instance. Internally this will use the names defined
201    /// within this linker to satisfy the imports of the [`Component`] provided.
202    /// Additionally this will perform type-checks against the component's
203    /// imports against all items defined within this linker.
204    ///
205    /// Note that unlike internally in components where subtyping at the
206    /// interface-types layer is supported this is not supported here. Items
207    /// defined in this linker must match the component's imports precisely.
208    ///
209    /// # Errors
210    ///
211    /// Returns an error if this linker doesn't define a name that the
212    /// `component` imports or if a name defined doesn't match the type of the
213    /// item imported by the `component` provided.
214    pub fn instantiate_pre(&self, component: &Component) -> Result<InstancePre<T>> {
215        let cx = self.typecheck(&component)?;
216
217        // A successful typecheck resolves all of the imported resources used by
218        // this InstancePre. We keep a clone of this table in the InstancePre
219        // so that we can construct an InstanceType for typechecking.
220        let imported_resources = cx.imported_resources.clone();
221
222        // Now that all imports are known to be defined and satisfied by this
223        // linker a list of "flat" import items (aka no instances) is created
224        // using the import map within the component created at
225        // component-compile-time.
226        let env_component = component.env_component();
227        let mut imports = PrimaryMap::with_capacity(env_component.imports.len());
228        for (idx, (import, names)) in env_component.imports.iter() {
229            let (root, _) = &env_component.import_types[*import];
230
231            // This is the flattening process where we go from a definition
232            // optionally through a list of exported names to get to the final
233            // item.
234            let mut cur = self.map.get(root, &self.strings).unwrap();
235            for name in names {
236                cur = match cur {
237                    Definition::Instance(map) => map.get(&name, &self.strings).unwrap(),
238                    _ => unreachable!(),
239                };
240            }
241            let import = match cur {
242                Definition::Module(m) => RuntimeImport::Module(m.clone()),
243                Definition::Func(f) => RuntimeImport::Func(f.clone()),
244                Definition::Resource(t, dtor) => RuntimeImport::Resource {
245                    ty: *t,
246                    dtor: dtor.clone(),
247                    dtor_funcref: component.resource_drop_func_ref(dtor),
248                },
249
250                // This is guaranteed by the compilation process that "leaf"
251                // runtime imports are never instances.
252                Definition::Instance(_) => unreachable!(),
253            };
254            let i = imports.push(import);
255            assert_eq!(i, idx);
256        }
257        Ok(unsafe {
258            InstancePre::new_unchecked(component.clone(), Arc::new(imports), imported_resources)
259        })
260    }
261
262    /// Instantiates the [`Component`] provided into the `store` specified.
263    ///
264    /// This function will use the items defined within this [`Linker`] to
265    /// satisfy the imports of the [`Component`] provided as necessary. For more
266    /// information about this see [`Linker::instantiate_pre`] as well.
267    ///
268    /// # Errors
269    ///
270    /// Returns an error if this [`Linker`] doesn't define an import that
271    /// `component` requires or if it is of the wrong type. Additionally this
272    /// can return an error if something goes wrong during instantiation such as
273    /// a runtime trap or a runtime limit being exceeded.
274    pub fn instantiate(
275        &self,
276        mut store: impl AsContextMut<Data = T>,
277        component: &Component,
278    ) -> Result<Instance> {
279        let store = store.as_context_mut();
280        store.0.validate_sync_call()?;
281        self.instantiate_pre(component)?.instantiate(store)
282    }
283
284    /// Instantiates the [`Component`] provided into the `store` specified.
285    ///
286    /// This is exactly like [`Linker::instantiate`] except for [asynchronous
287    /// execution](crate#async).
288    ///
289    /// # Errors
290    ///
291    /// Returns an error if this [`Linker`] doesn't define an import that
292    /// `component` requires or if it is of the wrong type. Additionally this
293    /// can return an error if something goes wrong during instantiation such as
294    /// a runtime trap or a runtime limit being exceeded.
295    #[cfg(feature = "async")]
296    pub async fn instantiate_async(
297        &self,
298        store: impl AsContextMut<Data = T>,
299        component: &Component,
300    ) -> Result<Instance>
301    where
302        T: Send,
303    {
304        self.instantiate_pre(component)?
305            .instantiate_async(store)
306            .await
307    }
308
309    /// Implement any imports of the given [`Component`] with a function which traps.
310    ///
311    /// By default a [`Linker`] will error when unknown imports are encountered when instantiating a [`Component`].
312    /// This changes this behavior from an instant error to a trap that will happen if the import is called.
313    pub fn define_unknown_imports_as_traps(&mut self, component: &Component) -> Result<()> {
314        use wasmtime_environ::component::ComponentTypes;
315        use wasmtime_environ::component::TypeDef;
316        // Recursively stub out all imports of the component with a function that traps.
317        fn stub_item<T>(
318            linker: &mut LinkerInstance<T>,
319            item_name: &str,
320            item_def: &TypeDef,
321            parent_instance: Option<&str>,
322            types: &ComponentTypes,
323        ) -> Result<()> {
324            // Skip if the item isn't an instance and has already been defined in the linker.
325            if !matches!(item_def, TypeDef::ComponentInstance(_)) && linker.get(item_name).is_some()
326            {
327                return Ok(());
328            }
329
330            match item_def {
331                TypeDef::ComponentFunc(_) => {
332                    let fully_qualified_name = parent_instance
333                        .map(|parent| format!("{parent}#{item_name}"))
334                        .unwrap_or_else(|| item_name.to_owned());
335                    linker.func_new(&item_name, move |_, _, _, _| {
336                        bail!("unknown import: `{fully_qualified_name}` has not been defined")
337                    })?;
338                }
339                TypeDef::ComponentInstance(i) => {
340                    let instance = &types[*i];
341                    let mut linker_instance = linker.instance(item_name)?;
342                    for (export_name, export) in instance.exports.iter() {
343                        stub_item(
344                            &mut linker_instance,
345                            export_name,
346                            export,
347                            Some(item_name),
348                            types,
349                        )?;
350                    }
351                }
352                TypeDef::Resource(_) => {
353                    let ty = crate::component::ResourceType::host::<()>();
354                    linker.resource(item_name, ty, |_, _| Ok(()))?;
355                }
356                TypeDef::Component(_) | TypeDef::Module(_) => {
357                    bail!("unable to define {} imports as traps", item_def.desc())
358                }
359                _ => {}
360            }
361            Ok(())
362        }
363
364        for (_, (import_name, import_type)) in &component.env_component().import_types {
365            stub_item(
366                &mut self.root(),
367                import_name,
368                import_type,
369                None,
370                component.types(),
371            )?;
372        }
373        Ok(())
374    }
375}
376
377impl<T: 'static> LinkerInstance<'_, T> {
378    fn as_mut(&mut self) -> LinkerInstance<'_, T> {
379        LinkerInstance {
380            engine: self.engine,
381            path: self.path,
382            path_len: self.path_len,
383            strings: self.strings,
384            map: self.map,
385            allow_shadowing: self.allow_shadowing,
386            _marker: self._marker,
387        }
388    }
389
390    /// Defines a new host-provided function into this [`LinkerInstance`].
391    ///
392    /// This method is used to give host functions to wasm components. The
393    /// `func` provided will be callable from linked components with the type
394    /// signature dictated by `Params` and `Return`. The `Params` is a tuple of
395    /// types that will come from wasm and `Return` is a value coming from the
396    /// host going back to wasm.
397    ///
398    /// Additionally the `func` takes a
399    /// [`StoreContextMut`](crate::StoreContextMut) as its first parameter.
400    ///
401    /// Note that `func` must be an `Fn` and must also be `Send + Sync +
402    /// 'static`. Shared state within a func is typically accessed with the `T`
403    /// type parameter from [`Store<T>`](crate::Store) which is accessible
404    /// through the leading [`StoreContextMut<'_, T>`](crate::StoreContextMut)
405    /// argument which can be provided to the `func` given here.
406    ///
407    /// # Blocking / Async Behavior
408    ///
409    /// The host function `func` provided here is a blocking function from the
410    /// perspective of WebAssembly. WebAssembly, and Rust, will be blocked until
411    /// `func` completes.
412    ///
413    /// To define a function which is async on the host, but blocking to the
414    /// guest, see the [`func_wrap_async`] method.
415    ///
416    /// [`func_wrap_async`]: LinkerInstance::func_wrap_async
417    //
418    // TODO: needs more words and examples
419    pub fn func_wrap<F, Params, Return>(&mut self, name: &str, func: F) -> Result<()>
420    where
421        F: Fn(StoreContextMut<T>, Params) -> Result<Return> + Send + Sync + 'static,
422        Params: ComponentNamedList + Lift + 'static,
423        Return: ComponentNamedList + Lower + 'static,
424    {
425        self.insert(name, Definition::Func(HostFunc::func_wrap(func)))?;
426        Ok(())
427    }
428
429    /// Defines a new host-provided async function into this [`LinkerInstance`].
430    ///
431    /// This function is similar to [`Self::func_wrap`] except it takes an async
432    /// host function instead of a blocking host function. The `F` function here
433    /// is intended to be:
434    ///
435    /// ```ignore
436    /// F: AsyncFn(StoreContextMut<'_, T>, Params) -> Result<Return>
437    /// ```
438    ///
439    /// however the returned future must be `Send` which is not possible to
440    /// bound at this time. This will be switched to an async closure once Rust
441    /// supports it.
442    ///
443    /// # Blocking / Async Behavior
444    ///
445    /// The function defined which WebAssembly calls will still appear as
446    /// blocking from the perspective of WebAssembly itself. The host, however,
447    /// can perform asynchronous operations without blocking the thread
448    /// performing a call.
449    ///
450    /// When defining host functions with this function, WebAssembly is invoked
451    /// on a separate stack within a Wasmtime-managed fiber (through the
452    /// `call_async`-style of invocation). This means that if the future
453    /// returned by `F` is not immediately ready then the fiber will be
454    /// suspended to block WebAssembly but not the host. When the future
455    /// becomes ready again the fiber will be resumed to continue execution
456    /// within WebAssembly.
457    ///
458    /// [`func_wrap_async`]: LinkerInstance::func_wrap_async
459    #[cfg(feature = "async")]
460    pub fn func_wrap_async<Params, Return, F>(&mut self, name: &str, f: F) -> Result<()>
461    where
462        F: Fn(
463                StoreContextMut<'_, T>,
464                Params,
465            ) -> Box<dyn Future<Output = Result<Return>> + Send + '_>
466            + Send
467            + Sync
468            + 'static,
469        Params: ComponentNamedList + Lift + 'static,
470        Return: ComponentNamedList + Lower + 'static,
471    {
472        self.insert(name, Definition::Func(HostFunc::func_wrap_async(f)))?;
473        Ok(())
474    }
475
476    /// Defines a new host-provided async function into this [`LinkerInstance`].
477    ///
478    /// This function defines a host function available to call from
479    /// WebAssembly. WebAssembly may additionally make multiple invocations of
480    /// this function concurrently all at the same time. This function requires
481    /// the [`Config::wasm_component_model_async`] feature to be enabled.
482    ///
483    /// The function `f` provided will be invoked when called by WebAssembly.
484    /// WebAssembly components may then call `f` multiple times while previous
485    /// invocations of `f` are already running. Additionally while `f` is
486    /// running other host functions may be invoked.
487    ///
488    /// The `F` function here is intended to be:
489    ///
490    /// ```ignore
491    /// F: AsyncFn(&Accessor<T>, Params) -> Result<Return>
492    /// ```
493    ///
494    /// however the returned future must be `Send` which is not possible to
495    /// bound at this time. This will be switched to an async closure once Rust
496    /// supports it.
497    ///
498    /// The closure `f` is provided an [`Accessor`] which can be used to acquire
499    /// temporary, blocking, access to a [`StoreContextMut`] (through
500    /// [`Access`](crate::component::Access]). This models how a store is not
501    /// available to `f` across `await` points but it is temporarily available
502    /// while actively being polled.
503    ///
504    /// # Blocking / Async Behavior
505    ///
506    /// Unlike [`Self::func_wrap`] and [`Self::func_wrap_async`] this function
507    /// is asynchronous even from the perspective of guest WebAssembly. This
508    /// means that if `f` is not immediately resolved then the call from
509    /// WebAssembly will still return immediately (assuming it was lowered with
510    /// `async`). The closure `f` should not block the current thread and
511    /// should only perform blocking via `async` meaning that `f` won't block
512    /// either WebAssembly nor the host.
513    ///
514    /// Note that WebAssembly components can lower host functions both with and
515    /// without `async`. That means that even if a host function is defined in
516    /// the "concurrent" mode here a guest may still lower it synchronously. In
517    /// this situation Wasmtime will manage blocking the guest while the closure
518    /// `f` provided here completes. If a guest lowers this function with
519    /// `async`, though, then no blocking will happen.
520    ///
521    /// [`Config::wasm_component_model_async`]: crate::Config::wasm_component_model_async
522    /// [`func_wrap_async`]: LinkerInstance::func_wrap_async
523    #[cfg(feature = "component-model-async")]
524    pub fn func_wrap_concurrent<Params, Return, F>(&mut self, name: &str, f: F) -> Result<()>
525    where
526        T: 'static,
527        F: Fn(&Accessor<T>, Params) -> Pin<Box<dyn Future<Output = Result<Return>> + Send + '_>>
528            + Send
529            + Sync
530            + 'static,
531        Params: ComponentNamedList + Lift + 'static,
532        Return: ComponentNamedList + Lower + 'static,
533    {
534        if !self.engine.tunables().concurrency_support {
535            bail!("concurrent host functions require `Config::concurrency_support`");
536        }
537        self.insert(name, Definition::Func(HostFunc::func_wrap_concurrent(f)))?;
538        Ok(())
539    }
540
541    /// Define a new host-provided function using dynamically typed values.
542    ///
543    /// The `name` provided is the name of the function to define and the
544    /// `func` provided is the host-defined closure to invoke when this
545    /// function is called.
546    ///
547    /// This function is the "dynamic" version of defining a host function as
548    /// compared to [`LinkerInstance::func_wrap`]. With
549    /// [`LinkerInstance::func_wrap`] a function's type is statically known but
550    /// with this method the `func` argument's type isn't known ahead of time.
551    /// That means that `func` can be by imported component so long as it's
552    /// imported as a matching name.
553    ///
554    /// Type information will be available at execution time, however. For
555    /// example when `func` is invoked the second argument, a `&[Val]` list,
556    /// contains [`Val`] entries that say what type they are. Additionally the
557    /// third argument, `&mut [Val]`, is the expected number of results. Note
558    /// that the expected types of the results cannot be learned during the
559    /// execution of `func`. Learning that would require runtime introspection
560    /// of a component.
561    ///
562    /// Return values, stored in the third argument of `&mut [Val]`, are
563    /// type-checked at runtime to ensure that they have the appropriate type.
564    /// A trap will be raised if they do not have the right type.
565    ///
566    /// # Examples
567    ///
568    /// ```
569    /// use wasmtime::{Store, Engine};
570    /// use wasmtime::component::{Component, Linker, Val};
571    ///
572    /// # fn main() -> wasmtime::Result<()> {
573    /// let engine = Engine::default();
574    /// let component = Component::new(
575    ///     &engine,
576    ///     r#"
577    ///         (component
578    ///             (import "thunk" (func $thunk))
579    ///             (import "is-even" (func $is-even (param "x" u32) (result bool)))
580    ///
581    ///             (core module $m
582    ///                 (import "" "thunk" (func $thunk))
583    ///                 (import "" "is-even" (func $is-even (param i32) (result i32)))
584    ///
585    ///                 (func (export "run")
586    ///                     call $thunk
587    ///
588    ///                     (call $is-even (i32.const 1))
589    ///                     if unreachable end
590    ///
591    ///                     (call $is-even (i32.const 2))
592    ///                     i32.eqz
593    ///                     if unreachable end
594    ///                 )
595    ///             )
596    ///             (core func $thunk (canon lower (func $thunk)))
597    ///             (core func $is-even (canon lower (func $is-even)))
598    ///             (core instance $i (instantiate $m
599    ///                 (with "" (instance
600    ///                     (export "thunk" (func $thunk))
601    ///                     (export "is-even" (func $is-even))
602    ///                 ))
603    ///             ))
604    ///
605    ///             (func (export "run") (canon lift (core func $i "run")))
606    ///         )
607    ///     "#,
608    /// )?;
609    ///
610    /// let mut linker = Linker::<()>::new(&engine);
611    ///
612    /// // Sample function that takes no arguments.
613    /// linker.root().func_new("thunk", |_store, _ty, params, results| {
614    ///     assert!(params.is_empty());
615    ///     assert!(results.is_empty());
616    ///     println!("Look ma, host hands!");
617    ///     Ok(())
618    /// })?;
619    ///
620    /// // This function takes one argument and returns one result.
621    /// linker.root().func_new("is-even", |_store, _ty, params, results| {
622    ///     assert_eq!(params.len(), 1);
623    ///     let param = match params[0] {
624    ///         Val::U32(n) => n,
625    ///         _ => panic!("unexpected type"),
626    ///     };
627    ///
628    ///     assert_eq!(results.len(), 1);
629    ///     results[0] = Val::Bool(param % 2 == 0);
630    ///     Ok(())
631    /// })?;
632    ///
633    /// let mut store = Store::new(&engine, ());
634    /// let instance = linker.instantiate(&mut store, &component)?;
635    /// let run = instance.get_typed_func::<(), ()>(&mut store, "run")?;
636    /// run.call(&mut store, ())?;
637    /// # Ok(())
638    /// # }
639    /// ```
640    pub fn func_new(
641        &mut self,
642        name: &str,
643        func: impl Fn(StoreContextMut<'_, T>, types::ComponentFunc, &[Val], &mut [Val]) -> Result<()>
644        + Send
645        + Sync
646        + 'static,
647    ) -> Result<()> {
648        self.insert(name, Definition::Func(HostFunc::func_new(func)))?;
649        Ok(())
650    }
651
652    /// Define a new host-provided async function using dynamic types.
653    ///
654    /// As [`Self::func_wrap_async`] is a dual of [`Self::func_wrap`], this
655    /// function is the dual of [`Self::func_new`].
656    ///
657    /// For documentation on blocking behavior see [`Self::func_wrap_async`].
658    #[cfg(feature = "async")]
659    pub fn func_new_async<F>(&mut self, name: &str, func: F) -> Result<()>
660    where
661        F: for<'a> Fn(
662                StoreContextMut<'a, T>,
663                types::ComponentFunc,
664                &'a [Val],
665                &'a mut [Val],
666            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
667            + Send
668            + Sync
669            + 'static,
670    {
671        self.insert(name, Definition::Func(HostFunc::func_new_async(func)))?;
672        Ok(())
673    }
674
675    /// Define a new host-provided async function using dynamic types.
676    ///
677    /// As [`Self::func_wrap_concurrent`] is a dual of [`Self::func_wrap`], this
678    /// function is the dual of [`Self::func_new`].
679    ///
680    /// For documentation on async/blocking behavior see
681    /// [`Self::func_wrap_concurrent`].
682    #[cfg(feature = "component-model-async")]
683    pub fn func_new_concurrent<F>(&mut self, name: &str, f: F) -> Result<()>
684    where
685        T: 'static,
686        F: for<'a> Fn(
687                &'a Accessor<T>,
688                types::ComponentFunc,
689                &'a [Val],
690                &'a mut [Val],
691            ) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'a>>
692            + Send
693            + Sync
694            + 'static,
695    {
696        if !self.engine.tunables().concurrency_support {
697            bail!("concurrent host functions require `Config::concurrency_support`");
698        }
699        self.insert(name, Definition::Func(HostFunc::func_new_concurrent(f)))?;
700        Ok(())
701    }
702
703    /// Defines a [`Module`] within this instance.
704    ///
705    /// This can be used to provide a core wasm [`Module`] as an import to a
706    /// component. The [`Module`] provided is saved within the linker for the
707    /// specified `name` in this instance.
708    pub fn module(&mut self, name: &str, module: &Module) -> Result<()> {
709        self.insert(name, Definition::Module(module.clone()))?;
710        Ok(())
711    }
712
713    /// Defines a new resource of a given [`ResourceType`] in this linker.
714    ///
715    /// This function is used to specify resources defined in the host.
716    ///
717    /// The `name` argument is the name to define the resource within this
718    /// linker.
719    ///
720    /// The `dtor` provided is a destructor that will get invoked when an owned
721    /// version of this resource is destroyed from the guest. Note that this
722    /// destructor is not called when a host-owned resource is destroyed as it's
723    /// assumed the host knows how to handle destroying its own resources.
724    ///
725    /// The `dtor` closure is provided the store state as the first argument
726    /// along with the representation of the resource that was just destroyed.
727    ///
728    /// [`Resource<U>`]: crate::component::Resource
729    ///
730    /// # Errors
731    ///
732    /// The provided `dtor` closure returns an error if something goes wrong
733    /// when a guest calls the `dtor` to drop a `Resource<T>` such as
734    /// a runtime trap or a runtime limit being exceeded.
735    pub fn resource(
736        &mut self,
737        name: &str,
738        ty: ResourceType,
739        dtor: impl Fn(StoreContextMut<'_, T>, u32) -> Result<()> + Send + Sync + 'static,
740    ) -> Result<()> {
741        let dtor = Arc::new(crate::func::HostFunc::wrap(
742            &self.engine,
743            move |mut cx: crate::Caller<'_, T>, (param,): (u32,)| dtor(cx.as_context_mut(), param),
744        ));
745        self.insert(name, Definition::Resource(ty, dtor))?;
746        Ok(())
747    }
748
749    /// Identical to [`Self::resource`], except that it takes an async destructor.
750    #[cfg(feature = "async")]
751    pub fn resource_async<F>(&mut self, name: &str, ty: ResourceType, dtor: F) -> Result<()>
752    where
753        T: Send,
754        F: Fn(StoreContextMut<'_, T>, u32) -> Box<dyn Future<Output = Result<()>> + Send + '_>
755            + Send
756            + Sync
757            + 'static,
758    {
759        let dtor = Arc::new(crate::func::HostFunc::wrap_async(
760            &self.engine,
761            move |cx: crate::Caller<'_, T>, (param,): (u32,)| dtor(cx.into(), param),
762        ));
763        self.insert(name, Definition::Resource(ty, dtor))?;
764        Ok(())
765    }
766
767    /// Identical to [`Self::resource`], except that it takes a concurrent destructor.
768    #[cfg(feature = "component-model-async")]
769    pub fn resource_concurrent<F>(&mut self, name: &str, ty: ResourceType, dtor: F) -> Result<()>
770    where
771        T: Send + 'static,
772        F: Fn(&Accessor<T>, u32) -> Pin<Box<dyn Future<Output = Result<()>> + Send + '_>>
773            + Send
774            + Sync
775            + 'static,
776    {
777        if !self.engine.tunables().concurrency_support {
778            bail!("concurrent host functions require `Config::concurrency_support`");
779        }
780        // TODO: This isn't really concurrent -- it requires exclusive access to
781        // the store for the duration of the call, preventing guest code from
782        // running until it completes.  We should make it concurrent and clean
783        // up the implementation to avoid using e.g. `Accessor::new` and
784        // `tls::set` directly.
785        let dtor = Arc::new(dtor);
786        let dtor = Arc::new(crate::func::HostFunc::wrap_async(
787            &self.engine,
788            move |mut cx: crate::Caller<'_, T>, (param,): (u32,)| {
789                let dtor = dtor.clone();
790                Box::new(async move {
791                    let mut store = cx.as_context_mut();
792                    let accessor =
793                        &Accessor::new(crate::store::StoreToken::new(store.as_context_mut()));
794                    let mut future = std::pin::pin!(dtor(accessor, param));
795                    std::future::poll_fn(|cx| {
796                        crate::component::concurrent::tls::set(store.0, || future.as_mut().poll(cx))
797                    })
798                    .await
799                })
800            },
801        ));
802        self.insert(name, Definition::Resource(ty, dtor))?;
803        Ok(())
804    }
805
806    /// Defines a nested instance within this instance.
807    ///
808    /// This can be used to describe arbitrarily nested levels of instances
809    /// within a linker to satisfy nested instance exports of components.
810    pub fn instance(&mut self, name: &str) -> Result<LinkerInstance<'_, T>> {
811        self.as_mut().into_instance(name)
812    }
813
814    /// Same as [`LinkerInstance::instance`] except with different lifetime
815    /// parameters.
816    pub fn into_instance(mut self, name: &str) -> Result<Self> {
817        let name = self.insert(name, Definition::Instance(NameMap::default()))?;
818        self.map = match self.map.raw_get_mut(&name) {
819            Some(Definition::Instance(map)) => map,
820            _ => unreachable!(),
821        };
822        self.path.truncate(self.path_len);
823        self.path.push(name);
824        self.path_len += 1;
825        Ok(self)
826    }
827
828    fn insert(&mut self, name: &str, item: Definition) -> Result<usize> {
829        self.map
830            .insert(name, self.strings, self.allow_shadowing, item)
831    }
832
833    fn get(&self, name: &str) -> Option<&Definition> {
834        self.map.get(name, self.strings)
835    }
836}
837
838impl NameMapIntern for Strings {
839    type Key = usize;
840
841    fn intern(&mut self, string: &str) -> usize {
842        if let Some(idx) = self.string2idx.get(string) {
843            return *idx;
844        }
845        let string: Arc<str> = string.into();
846        let idx = self.strings.len();
847        self.strings.push(string.clone());
848        self.string2idx.insert(string, idx);
849        idx
850    }
851
852    fn lookup(&self, string: &str) -> Option<usize> {
853        self.string2idx.get(string).cloned()
854    }
855}