wasmtime/runtime/component/linker.rs
1#[cfg(feature = "component-model-async")]
2use crate::component::concurrent::Accessor;
3use crate::component::func::HostFunc;
4use crate::component::instance::RuntimeImport;
5use crate::component::matching::{InstanceType, TypeChecker};
6use crate::component::types;
7use crate::component::{
8 Component, ComponentNamedList, Instance, InstancePre, Lift, Lower, ResourceType, Val,
9};
10use crate::hash_map::HashMap;
11use crate::prelude::*;
12use crate::{AsContextMut, Engine, Module, StoreContextMut};
13use alloc::sync::Arc;
14use core::marker;
15#[cfg(feature = "component-model-async")]
16use core::pin::Pin;
17use wasmtime_environ::PrimaryMap;
18use wasmtime_environ::component::{NameMap, NameMapIntern};
19
20/// A type used to instantiate [`Component`]s.
21///
22/// This type is used to both link components together as well as supply host
23/// functionality to components. Values are defined in a [`Linker`] by their
24/// import name and then components are instantiated with a [`Linker`] using the
25/// names provided for name resolution of the component's imports.
26///
27/// # Names and Semver
28///
29/// Names defined in a [`Linker`] correspond to import names in the Component
30/// Model. Names in the Component Model are allowed to be semver-qualified, for
31/// example:
32///
33/// * `wasi:cli/stdout@0.2.0`
34/// * `wasi:http/types@0.2.0-rc-2023-10-25`
35/// * `my:custom/plugin@1.0.0-pre.2`
36///
37/// These version strings are taken into account when looking up names within a
38/// [`Linker`]. You're allowed to define any number of versions within a
39/// [`Linker`] still, for example you can define `a:b/c@0.2.0`, `a:b/c@0.2.1`,
40/// and `a:b/c@0.3.0` all at the same time.
41///
42/// Specifically though when names are looked up within a linker, for example
43/// during instantiation, semver-compatible names are automatically consulted.
44/// This means that if you define `a:b/c@0.2.1` in a [`Linker`] but a component
45/// imports `a:b/c@0.2.0` then that import will resolve to the `0.2.1` version.
46///
47/// This lookup behavior relies on hosts being well-behaved when using Semver,
48/// specifically that interfaces once defined are never changed. This reflects
49/// how Semver works at the Component Model layer, and it's assumed that if
50/// versions are present then hosts are respecting this.
51///
52/// Note that this behavior goes the other direction, too. If a component
53/// imports `a:b/c@0.2.1` and the host has provided `a:b/c@0.2.0` then that
54/// will also resolve correctly. This is because if an API was defined at 0.2.0
55/// and 0.2.1 then it must be the same API.
56///
57/// This behavior is intended to make it easier for hosts to upgrade WASI and
58/// for guests to upgrade WASI. So long as the actual "meat" of the
59/// functionality is defined then it should align correctly and components can
60/// be instantiated.
61pub struct Linker<T: 'static> {
62 engine: Engine,
63 strings: Strings,
64 map: NameMap<usize, Definition>,
65 path: Vec<usize>,
66 allow_shadowing: bool,
67 _marker: marker::PhantomData<fn() -> T>,
68}
69
70impl<T: 'static> Clone for Linker<T> {
71 fn clone(&self) -> Linker<T> {
72 Linker {
73 engine: self.engine.clone(),
74 strings: self.strings.clone(),
75 map: self.map.clone(),
76 path: self.path.clone(),
77 allow_shadowing: self.allow_shadowing,
78 _marker: self._marker,
79 }
80 }
81}
82
83#[derive(Clone, Default)]
84pub struct Strings {
85 string2idx: HashMap<Arc<str>, usize>,
86 strings: Vec<Arc<str>>,
87}
88
89/// Structure representing an "instance" being defined within a linker.
90///
91/// Instances do not need to be actual [`Instance`]s and instead are defined by
92/// a "bag of named items", so each [`LinkerInstance`] can further define items
93/// internally.
94pub struct LinkerInstance<'a, T: 'static> {
95 engine: &'a Engine,
96 path: &'a mut Vec<usize>,
97 path_len: usize,
98 strings: &'a mut Strings,
99 map: &'a mut NameMap<usize, Definition>,
100 allow_shadowing: bool,
101 _marker: marker::PhantomData<fn() -> T>,
102}
103
104#[derive(Clone, Debug)]
105pub(crate) enum Definition {
106 Instance(NameMap<usize, Definition>),
107 Func(Arc<HostFunc>),
108 Module(Module),
109 Resource(ResourceType, Arc<crate::func::HostFunc>),
110}
111
112impl<T: 'static> Linker<T> {
113 /// Creates a new linker for the [`Engine`] specified with no items defined
114 /// within it.
115 pub fn new(engine: &Engine) -> Linker<T> {
116 Linker {
117 engine: engine.clone(),
118 strings: Strings::default(),
119 map: NameMap::default(),
120 allow_shadowing: false,
121 path: Vec::new(),
122 _marker: marker::PhantomData,
123 }
124 }
125
126 /// Returns the [`Engine`] this is connected to.
127 pub fn engine(&self) -> &Engine {
128 &self.engine
129 }
130
131 /// Configures whether or not name-shadowing is allowed.
132 ///
133 /// By default name shadowing is not allowed and it's an error to redefine
134 /// the same name within a linker.
135 pub fn allow_shadowing(&mut self, allow: bool) -> &mut Self {
136 self.allow_shadowing = allow;
137 self
138 }
139
140 /// Returns the "root instance" of this linker, used to define names into
141 /// the root namespace.
142 pub fn root(&mut self) -> LinkerInstance<'_, T> {
143 LinkerInstance {
144 engine: &self.engine,
145 path: &mut self.path,
146 path_len: 0,
147 strings: &mut self.strings,
148 map: &mut self.map,
149 allow_shadowing: self.allow_shadowing,
150 _marker: self._marker,
151 }
152 }
153
154 /// Returns a builder for the named instance specified.
155 ///
156 /// # Errors
157 ///
158 /// Returns an error if `name` is already defined within the linker.
159 pub fn instance(&mut self, name: &str) -> Result<LinkerInstance<'_, T>> {
160 self.root().into_instance(name)
161 }
162
163 fn typecheck<'a>(&'a self, component: &'a Component) -> Result<TypeChecker<'a>> {
164 let mut cx = TypeChecker {
165 engine: &self.engine,
166 types: component.types(),
167 strings: &self.strings,
168 imported_resources: Default::default(),
169 };
170
171 // Walk over the component's list of import names and use that to lookup
172 // the definition within this linker that it corresponds to. When found
173 // perform a typecheck against the component's expected type.
174 let env_component = component.env_component();
175 for (_idx, (name, ty)) in env_component.import_types.iter() {
176 let import = self.map.get(name, &self.strings);
177 cx.definition(ty, import)
178 .with_context(|| format!("component imports {desc} `{name}`, but a matching implementation was not found in the linker", desc = ty.desc()))?;
179 }
180 Ok(cx)
181 }
182
183 /// Returns the [`types::Component`] corresponding to `component` with resource
184 /// types imported by it replaced using imports present in [`Self`].
185 pub fn substituted_component_type(&self, component: &Component) -> Result<types::Component> {
186 let cx = self.typecheck(&component)?;
187 Ok(types::Component::from(
188 component.ty(),
189 &InstanceType {
190 types: cx.types,
191 resources: &cx.imported_resources,
192 },
193 ))
194 }
195
196 /// Performs a "pre-instantiation" to resolve the imports of the
197 /// [`Component`] specified with the items defined within this linker.
198 ///
199 /// This method will perform as much work as possible short of actually
200 /// instantiating an instance. Internally this will use the names defined
201 /// within this linker to satisfy the imports of the [`Component`] provided.
202 /// Additionally this will perform type-checks against the component's
203 /// imports against all items defined within this linker.
204 ///
205 /// Note that unlike internally in components where subtyping at the
206 /// interface-types layer is supported this is not supported here. Items
207 /// defined in this linker must match the component's imports precisely.
208 ///
209 /// # Errors
210 ///
211 /// Returns an error if this linker doesn't define a name that the
212 /// `component` imports or if a name defined doesn't match the type of the
213 /// item imported by the `component` provided.
214 pub fn instantiate_pre(&self, component: &Component) -> Result<InstancePre<T>> {
215 let cx = self.typecheck(&component)?;
216
217 // A successful typecheck resolves all of the imported resources used by
218 // this InstancePre. We keep a clone of this table in the InstancePre
219 // so that we can construct an InstanceType for typechecking.
220 let imported_resources = cx.imported_resources.clone();
221
222 // Now that all imports are known to be defined and satisfied by this
223 // linker a list of "flat" import items (aka no instances) is created
224 // using the import map within the component created at
225 // component-compile-time.
226 let env_component = component.env_component();
227 let mut imports = PrimaryMap::with_capacity(env_component.imports.len());
228 for (idx, (import, names)) in env_component.imports.iter() {
229 let (root, _) = &env_component.import_types[*import];
230
231 // This is the flattening process where we go from a definition
232 // optionally through a list of exported names to get to the final
233 // item.
234 let mut cur = self.map.get(root, &self.strings).unwrap();
235 for name in names {
236 cur = match cur {
237 Definition::Instance(map) => map.get(&name, &self.strings).unwrap(),
238 _ => unreachable!(),
239 };
240 }
241 let import = match cur {
242 Definition::Module(m) => RuntimeImport::Module(m.clone()),
243 Definition::Func(f) => RuntimeImport::Func(f.clone()),
244 Definition::Resource(t, dtor) => RuntimeImport::Resource {
245 ty: *t,
246 dtor: dtor.clone(),
247 dtor_funcref: component.resource_drop_func_ref(dtor),
248 },
249
250 // This is guaranteed by the compilation process that "leaf"
251 // runtime imports are never instances.
252 Definition::Instance(_) => unreachable!(),
253 };
254 let i = imports.push(import);
255 assert_eq!(i, idx);
256 }
257 Ok(unsafe {
258 InstancePre::new_unchecked(component.clone(), Arc::new(imports), imported_resources)
259 })
260 }
261
262 /// Instantiates the [`Component`] provided into the `store` specified.
263 ///
264 /// This function will use the items defined within this [`Linker`] to
265 /// satisfy the imports of the [`Component`] provided as necessary. For more
266 /// information about this see [`Linker::instantiate_pre`] as well.
267 ///
268 /// # Errors
269 ///
270 /// Returns an error if this [`Linker`] doesn't define an import that
271 /// `component` requires or if it is of the wrong type. Additionally this
272 /// can return an error if something goes wrong during instantiation such as
273 /// a runtime trap or a runtime limit being exceeded.
274 pub fn instantiate(
275 &self,
276 mut store: impl AsContextMut<Data = T>,
277 component: &Component,
278 ) -> Result<Instance> {
279 let store = store.as_context_mut();
280 store.0.validate_sync_call()?;
281 self.instantiate_pre(component)?.instantiate(store)
282 }
283
284 /// Instantiates the [`Component`] provided into the `store` specified.
285 ///
286 /// This is exactly like [`Linker::instantiate`] except for [asynchronous
287 /// execution](crate#async).
288 ///
289 /// # Errors
290 ///
291 /// Returns an error if this [`Linker`] doesn't define an import that
292 /// `component` requires or if it is of the wrong type. Additionally this
293 /// can return an error if something goes wrong during instantiation such as
294 /// a runtime trap or a runtime limit being exceeded.
295 #[cfg(feature = "async")]
296 pub async fn instantiate_async(
297 &self,
298 store: impl AsContextMut<Data = T>,
299 component: &Component,
300 ) -> Result<Instance>
301 where
302 T: Send,
303 {
304 self.instantiate_pre(component)?
305 .instantiate_async(store)
306 .await
307 }
308
309 /// Implement any imports of the given [`Component`] with a function which traps.
310 ///
311 /// By default a [`Linker`] will error when unknown imports are encountered when instantiating a [`Component`].
312 /// This changes this behavior from an instant error to a trap that will happen if the import is called.
313 pub fn define_unknown_imports_as_traps(&mut self, component: &Component) -> Result<()> {
314 use wasmtime_environ::component::ComponentTypes;
315 use wasmtime_environ::component::TypeDef;
316 // Recursively stub out all imports of the component with a function that traps.
317 fn stub_item<T>(
318 linker: &mut LinkerInstance<T>,
319 item_name: &str,
320 item_def: &TypeDef,
321 parent_instance: Option<&str>,
322 types: &ComponentTypes,
323 ) -> Result<()> {
324 // Skip if the item isn't an instance and has already been defined in the linker.
325 if !matches!(item_def, TypeDef::ComponentInstance(_)) && linker.get(item_name).is_some()
326 {
327 return Ok(());
328 }
329
330 match item_def {
331 TypeDef::ComponentFunc(_) => {
332 let fully_qualified_name = parent_instance
333 .map(|parent| format!("{parent}#{item_name}"))
334 .unwrap_or_else(|| item_name.to_owned());
335 linker.func_new(&item_name, move |_, _, _, _| {
336 bail!("unknown import: `{fully_qualified_name}` has not been defined")
337 })?;
338 }
339 TypeDef::ComponentInstance(i) => {
340 let instance = &types[*i];
341 let mut linker_instance = linker.instance(item_name)?;
342 for (export_name, export) in instance.exports.iter() {
343 stub_item(
344 &mut linker_instance,
345 export_name,
346 export,
347 Some(item_name),
348 types,
349 )?;
350 }
351 }
352 TypeDef::Resource(_) => {
353 let ty = crate::component::ResourceType::host::<()>();
354 linker.resource(item_name, ty, |_, _| Ok(()))?;
355 }
356 TypeDef::Component(_) | TypeDef::Module(_) => {
357 bail!("unable to define {} imports as traps", item_def.desc())
358 }
359 _ => {}
360 }
361 Ok(())
362 }
363
364 for (_, (import_name, import_type)) in &component.env_component().import_types {
365 stub_item(
366 &mut self.root(),
367 import_name,
368 import_type,
369 None,
370 component.types(),
371 )?;
372 }
373 Ok(())
374 }
375}
376
377impl<T: 'static> LinkerInstance<'_, T> {
378 fn as_mut(&mut self) -> LinkerInstance<'_, T> {
379 LinkerInstance {
380 engine: self.engine,
381 path: self.path,
382 path_len: self.path_len,
383 strings: self.strings,
384 map: self.map,
385 allow_shadowing: self.allow_shadowing,
386 _marker: self._marker,
387 }
388 }
389
390 /// Defines a new host-provided function into this [`LinkerInstance`].
391 ///
392 /// This method is used to give host functions to wasm components. The
393 /// `func` provided will be callable from linked components with the type
394 /// signature dictated by `Params` and `Return`. The `Params` is a tuple of
395 /// types that will come from wasm and `Return` is a value coming from the
396 /// host going back to wasm.
397 ///
398 /// Additionally the `func` takes a
399 /// [`StoreContextMut`](crate::StoreContextMut) as its first parameter.
400 ///
401 /// Note that `func` must be an `Fn` and must also be `Send + Sync +
402 /// 'static`. Shared state within a func is typically accessed with the `T`
403 /// type parameter from [`Store<T>`](crate::Store) which is accessible
404 /// through the leading [`StoreContextMut<'_, T>`](crate::StoreContextMut)
405 /// argument which can be provided to the `func` given here.
406 ///
407 /// # Blocking / Async Behavior
408 ///
409 /// The host function `func` provided here is a blocking function from the
410 /// perspective of WebAssembly. WebAssembly, and Rust, will be blocked until
411 /// `func` completes.
412 ///
413 /// To define a function which is async on the host, but blocking to the
414 /// guest, see the [`func_wrap_async`] method.
415 ///
416 /// [`func_wrap_async`]: LinkerInstance::func_wrap_async
417 //
418 // TODO: needs more words and examples
419 pub fn func_wrap<F, Params, Return>(&mut self, name: &str, func: F) -> Result<()>
420 where
421 F: Fn(StoreContextMut<T>, Params) -> Result<Return> + Send + Sync + 'static,
422 Params: ComponentNamedList + Lift + 'static,
423 Return: ComponentNamedList + Lower + 'static,
424 {
425 self.insert(name, Definition::Func(HostFunc::func_wrap(func)))?;
426 Ok(())
427 }
428
429 /// Defines a new host-provided async function into this [`LinkerInstance`].
430 ///
431 /// This function is similar to [`Self::func_wrap`] except it takes an async
432 /// host function instead of a blocking host function. The `F` function here
433 /// is intended to be:
434 ///
435 /// ```ignore
436 /// F: AsyncFn(StoreContextMut<'_, T>, Params) -> Result<Return>
437 /// ```
438 ///
439 /// however the returned future must be `Send` which is not possible to
440 /// bound at this time. This will be switched to an async closure once Rust
441 /// supports it.
442 ///
443 /// # Blocking / Async Behavior
444 ///
445 /// The function defined which WebAssembly calls will still appear as
446 /// blocking from the perspective of WebAssembly itself. The host, however,
447 /// can perform asynchronous operations without blocking the thread
448 /// performing a call.
449 ///
450 /// When defining host functions with this function, WebAssembly is invoked
451 /// on a separate stack within a Wasmtime-managed fiber (through the
452 /// `call_async`-style of invocation). This means that if the future
453 /// returned by `F` is not immediately ready then the fiber will be
454 /// suspended to block WebAssembly but not the host. When the future
455 /// becomes ready again the fiber will be resumed to continue execution
456 /// within WebAssembly.
457 ///
458 /// [`func_wrap_async`]: LinkerInstance::func_wrap_async
459 #[cfg(feature = "async")]
460 pub fn func_wrap_async<Params, Return, F>(&mut self, name: &str, f: F) -> Result<()>
461 where
462 F: Fn(
463 StoreContextMut<'_, T>,
464 Params,
465 ) -> Box<dyn Future<Output = Result<Return>> + Send + '_>
466 + Send
467 + Sync
468 + 'static,
469 Params: ComponentNamedList + Lift + 'static,
470 Return: ComponentNamedList + Lower + 'static,
471 {
472 self.insert(name, Definition::Func(HostFunc::func_wrap_async(f)))?;
473 Ok(())
474 }
475
476 /// Defines a new host-provided async function into this [`LinkerInstance`].
477 ///
478 /// This function defines a host function available to call from
479 /// WebAssembly. WebAssembly may additionally make multiple invocations of
480 /// this function concurrently all at the same time. This function requires
481 /// the [`Config::wasm_component_model_async`] feature to be enabled.
482 ///
483 /// The function `f` provided will be invoked when called by WebAssembly.
484 /// WebAssembly components may then call `f` multiple times while previous
485 /// invocations of `f` are already running. Additionally while `f` is
486 /// running other host functions may be invoked.
487 ///
488 /// The `F` function here is intended to be:
489 ///
490 /// ```ignore
491 /// F: AsyncFn(&Accessor<T>, Params) -> Result<Return>
492 /// ```
493 ///
494 /// however the returned future must be `Send` which is not possible to
495 /// bound at this time. This will be switched to an async closure once Rust
496 /// supports it.
497 ///
498 /// The closure `f` is provided an [`Accessor`] which can be used to acquire
499 /// temporary, blocking, access to a [`StoreContextMut`] (through
500 /// [`Access`](crate::component::Access]). This models how a store is not
501 /// available to `f` across `await` points but it is temporarily available
502 /// while actively being polled.
503 ///
504 /// # Blocking / Async Behavior
505 ///
506 /// Unlike [`Self::func_wrap`] and [`Self::func_wrap_async`] this function
507 /// is asynchronous even from the perspective of guest WebAssembly. This
508 /// means that if `f` is not immediately resolved then the call from
509 /// WebAssembly will still return immediately (assuming it was lowered with
510 /// `async`). The closure `f` should not block the current thread and
511 /// should only perform blocking via `async` meaning that `f` won't block
512 /// either WebAssembly nor the host.
513 ///
514 /// Note that WebAssembly components can lower host functions both with and
515 /// without `async`. That means that even if a host function is defined in
516 /// the "concurrent" mode here a guest may still lower it synchronously. In
517 /// this situation Wasmtime will manage blocking the guest while the closure
518 /// `f` provided here completes. If a guest lowers this function with
519 /// `async`, though, then no blocking will happen.
520 ///
521 /// [`Config::wasm_component_model_async`]: crate::Config::wasm_component_model_async
522 /// [`func_wrap_async`]: LinkerInstance::func_wrap_async
523 #[cfg(feature = "component-model-async")]
524 pub fn func_wrap_concurrent<Params, Return, F>(&mut self, name: &str, f: F) -> Result<()>
525 where
526 T: 'static,
527 F: Fn(&Accessor<T>, Params) -> Pin<Box<dyn Future<Output = Result<Return>> + Send + '_>>
528 + Send
529 + Sync
530 + 'static,
531 Params: ComponentNamedList + Lift + 'static,
532 Return: ComponentNamedList + Lower + 'static,
533 {
534 if !self.engine.tunables().concurrency_support {
535 bail!("concurrent host functions require `Config::concurrency_support`");
536 }
537 self.insert(name, Definition::Func(HostFunc::func_wrap_concurrent(f)))?;
538 Ok(())
539 }
540
541 /// Define a new host-provided function using dynamically typed values.
542 ///
543 /// The `name` provided is the name of the function to define and the
544 /// `func` provided is the host-defined closure to invoke when this
545 /// function is called.
546 ///
547 /// This function is the "dynamic" version of defining a host function as
548 /// compared to [`LinkerInstance::func_wrap`]. With
549 /// [`LinkerInstance::func_wrap`] a function's type is statically known but
550 /// with this method the `func` argument's type isn't known ahead of time.
551 /// That means that `func` can be by imported component so long as it's
552 /// imported as a matching name.
553 ///
554 /// Type information will be available at execution time, however. For
555 /// example when `func` is invoked the second argument, a `&[Val]` list,
556 /// contains [`Val`] entries that say what type they are. Additionally the
557 /// third argument, `&mut [Val]`, is the expected number of results. Note
558 /// that the expected types of the results cannot be learned during the
559 /// execution of `func`. Learning that would require runtime introspection
560 /// of a component.
561 ///
562 /// Return values, stored in the third argument of `&mut [Val]`, are
563 /// type-checked at runtime to ensure that they have the appropriate type.
564 /// A trap will be raised if they do not have the right type.
565 ///
566 /// # Examples
567 ///
568 /// ```
569 /// use wasmtime::{Store, Engine};
570 /// use wasmtime::component::{Component, Linker, Val};
571 ///
572 /// # fn main() -> wasmtime::Result<()> {
573 /// let engine = Engine::default();
574 /// let component = Component::new(
575 /// &engine,
576 /// r#"
577 /// (component
578 /// (import "thunk" (func $thunk))
579 /// (import "is-even" (func $is-even (param "x" u32) (result bool)))
580 ///
581 /// (core module $m
582 /// (import "" "thunk" (func $thunk))
583 /// (import "" "is-even" (func $is-even (param i32) (result i32)))
584 ///
585 /// (func (export "run")
586 /// call $thunk
587 ///
588 /// (call $is-even (i32.const 1))
589 /// if unreachable end
590 ///
591 /// (call $is-even (i32.const 2))
592 /// i32.eqz
593 /// if unreachable end
594 /// )
595 /// )
596 /// (core func $thunk (canon lower (func $thunk)))
597 /// (core func $is-even (canon lower (func $is-even)))
598 /// (core instance $i (instantiate $m
599 /// (with "" (instance
600 /// (export "thunk" (func $thunk))
601 /// (export "is-even" (func $is-even))
602 /// ))
603 /// ))
604 ///
605 /// (func (export "run") (canon lift (core func $i "run")))
606 /// )
607 /// "#,
608 /// )?;
609 ///
610 /// let mut linker = Linker::<()>::new(&engine);
611 ///
612 /// // Sample function that takes no arguments.
613 /// linker.root().func_new("thunk", |_store, _ty, params, results| {
614 /// assert!(params.is_empty());
615 /// assert!(results.is_empty());
616 /// println!("Look ma, host hands!");
617 /// Ok(())
618 /// })?;
619 ///
620 /// // This function takes one argument and returns one result.
621 /// linker.root().func_new("is-even", |_store, _ty, params, results| {
622 /// assert_eq!(params.len(), 1);
623 /// let param = match params[0] {
624 /// Val::U32(n) => n,
625 /// _ => panic!("unexpected type"),
626 /// };
627 ///
628 /// assert_eq!(results.len(), 1);
629 /// results[0] = Val::Bool(param % 2 == 0);
630 /// Ok(())
631 /// })?;
632 ///
633 /// let mut store = Store::new(&engine, ());
634 /// let instance = linker.instantiate(&mut store, &component)?;
635 /// let run = instance.get_typed_func::<(), ()>(&mut store, "run")?;
636 /// run.call(&mut store, ())?;
637 /// # Ok(())
638 /// # }
639 /// ```
640 pub fn func_new(
641 &mut self,
642 name: &str,
643 func: impl Fn(StoreContextMut<'_, T>, types::ComponentFunc, &[Val], &mut [Val]) -> Result<()>
644 + Send
645 + Sync
646 + 'static,
647 ) -> Result<()> {
648 self.insert(name, Definition::Func(HostFunc::func_new(func)))?;
649 Ok(())
650 }
651
652 /// Define a new host-provided async function using dynamic types.
653 ///
654 /// As [`Self::func_wrap_async`] is a dual of [`Self::func_wrap`], this
655 /// function is the dual of [`Self::func_new`].
656 ///
657 /// For documentation on blocking behavior see [`Self::func_wrap_async`].
658 #[cfg(feature = "async")]
659 pub fn func_new_async<F>(&mut self, name: &str, func: F) -> Result<()>
660 where
661 F: for<'a> Fn(
662 StoreContextMut<'a, T>,
663 types::ComponentFunc,
664 &'a [Val],
665 &'a mut [Val],
666 ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
667 + Send
668 + Sync
669 + 'static,
670 {
671 self.insert(name, Definition::Func(HostFunc::func_new_async(func)))?;
672 Ok(())
673 }
674
675 /// Define a new host-provided async function using dynamic types.
676 ///
677 /// As [`Self::func_wrap_concurrent`] is a dual of [`Self::func_wrap`], this
678 /// function is the dual of [`Self::func_new`].
679 ///
680 /// For documentation on async/blocking behavior see
681 /// [`Self::func_wrap_concurrent`].
682 #[cfg(feature = "component-model-async")]
683 pub fn func_new_concurrent<F>(&mut self, name: &str, f: F) -> Result<()>
684 where
685 T: 'static,
686 F: for<'a> Fn(
687 &'a Accessor<T>,
688 types::ComponentFunc,
689 &'a [Val],
690 &'a mut [Val],
691 ) -> Pin<Box<dyn Future<Output = Result<()>> + Send + 'a>>
692 + Send
693 + Sync
694 + 'static,
695 {
696 if !self.engine.tunables().concurrency_support {
697 bail!("concurrent host functions require `Config::concurrency_support`");
698 }
699 self.insert(name, Definition::Func(HostFunc::func_new_concurrent(f)))?;
700 Ok(())
701 }
702
703 /// Defines a [`Module`] within this instance.
704 ///
705 /// This can be used to provide a core wasm [`Module`] as an import to a
706 /// component. The [`Module`] provided is saved within the linker for the
707 /// specified `name` in this instance.
708 pub fn module(&mut self, name: &str, module: &Module) -> Result<()> {
709 self.insert(name, Definition::Module(module.clone()))?;
710 Ok(())
711 }
712
713 /// Defines a new resource of a given [`ResourceType`] in this linker.
714 ///
715 /// This function is used to specify resources defined in the host.
716 ///
717 /// The `name` argument is the name to define the resource within this
718 /// linker.
719 ///
720 /// The `dtor` provided is a destructor that will get invoked when an owned
721 /// version of this resource is destroyed from the guest. Note that this
722 /// destructor is not called when a host-owned resource is destroyed as it's
723 /// assumed the host knows how to handle destroying its own resources.
724 ///
725 /// The `dtor` closure is provided the store state as the first argument
726 /// along with the representation of the resource that was just destroyed.
727 ///
728 /// [`Resource<U>`]: crate::component::Resource
729 ///
730 /// # Errors
731 ///
732 /// The provided `dtor` closure returns an error if something goes wrong
733 /// when a guest calls the `dtor` to drop a `Resource<T>` such as
734 /// a runtime trap or a runtime limit being exceeded.
735 pub fn resource(
736 &mut self,
737 name: &str,
738 ty: ResourceType,
739 dtor: impl Fn(StoreContextMut<'_, T>, u32) -> Result<()> + Send + Sync + 'static,
740 ) -> Result<()> {
741 let dtor = Arc::new(crate::func::HostFunc::wrap(
742 &self.engine,
743 move |mut cx: crate::Caller<'_, T>, (param,): (u32,)| dtor(cx.as_context_mut(), param),
744 ));
745 self.insert(name, Definition::Resource(ty, dtor))?;
746 Ok(())
747 }
748
749 /// Identical to [`Self::resource`], except that it takes an async destructor.
750 #[cfg(feature = "async")]
751 pub fn resource_async<F>(&mut self, name: &str, ty: ResourceType, dtor: F) -> Result<()>
752 where
753 T: Send,
754 F: Fn(StoreContextMut<'_, T>, u32) -> Box<dyn Future<Output = Result<()>> + Send + '_>
755 + Send
756 + Sync
757 + 'static,
758 {
759 let dtor = Arc::new(crate::func::HostFunc::wrap_async(
760 &self.engine,
761 move |cx: crate::Caller<'_, T>, (param,): (u32,)| dtor(cx.into(), param),
762 ));
763 self.insert(name, Definition::Resource(ty, dtor))?;
764 Ok(())
765 }
766
767 /// Identical to [`Self::resource`], except that it takes a concurrent destructor.
768 #[cfg(feature = "component-model-async")]
769 pub fn resource_concurrent<F>(&mut self, name: &str, ty: ResourceType, dtor: F) -> Result<()>
770 where
771 T: Send + 'static,
772 F: Fn(&Accessor<T>, u32) -> Pin<Box<dyn Future<Output = Result<()>> + Send + '_>>
773 + Send
774 + Sync
775 + 'static,
776 {
777 if !self.engine.tunables().concurrency_support {
778 bail!("concurrent host functions require `Config::concurrency_support`");
779 }
780 // TODO: This isn't really concurrent -- it requires exclusive access to
781 // the store for the duration of the call, preventing guest code from
782 // running until it completes. We should make it concurrent and clean
783 // up the implementation to avoid using e.g. `Accessor::new` and
784 // `tls::set` directly.
785 let dtor = Arc::new(dtor);
786 let dtor = Arc::new(crate::func::HostFunc::wrap_async(
787 &self.engine,
788 move |mut cx: crate::Caller<'_, T>, (param,): (u32,)| {
789 let dtor = dtor.clone();
790 Box::new(async move {
791 let mut store = cx.as_context_mut();
792 let accessor =
793 &Accessor::new(crate::store::StoreToken::new(store.as_context_mut()));
794 let mut future = std::pin::pin!(dtor(accessor, param));
795 std::future::poll_fn(|cx| {
796 crate::component::concurrent::tls::set(store.0, || future.as_mut().poll(cx))
797 })
798 .await
799 })
800 },
801 ));
802 self.insert(name, Definition::Resource(ty, dtor))?;
803 Ok(())
804 }
805
806 /// Defines a nested instance within this instance.
807 ///
808 /// This can be used to describe arbitrarily nested levels of instances
809 /// within a linker to satisfy nested instance exports of components.
810 pub fn instance(&mut self, name: &str) -> Result<LinkerInstance<'_, T>> {
811 self.as_mut().into_instance(name)
812 }
813
814 /// Same as [`LinkerInstance::instance`] except with different lifetime
815 /// parameters.
816 pub fn into_instance(mut self, name: &str) -> Result<Self> {
817 let name = self.insert(name, Definition::Instance(NameMap::default()))?;
818 self.map = match self.map.raw_get_mut(&name) {
819 Some(Definition::Instance(map)) => map,
820 _ => unreachable!(),
821 };
822 self.path.truncate(self.path_len);
823 self.path.push(name);
824 self.path_len += 1;
825 Ok(self)
826 }
827
828 fn insert(&mut self, name: &str, item: Definition) -> Result<usize> {
829 self.map
830 .insert(name, self.strings, self.allow_shadowing, item)
831 }
832
833 fn get(&self, name: &str) -> Option<&Definition> {
834 self.map.get(name, self.strings)
835 }
836}
837
838impl NameMapIntern for Strings {
839 type Key = usize;
840
841 fn intern(&mut self, string: &str) -> usize {
842 if let Some(idx) = self.string2idx.get(string) {
843 return *idx;
844 }
845 let string: Arc<str> = string.into();
846 let idx = self.strings.len();
847 self.strings.push(string.clone());
848 self.string2idx.insert(string, idx);
849 idx
850 }
851
852 fn lookup(&self, string: &str) -> Option<usize> {
853 self.string2idx.get(string).cloned()
854 }
855}