wasmtime/runtime/component/linker.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
use crate::component::func::HostFunc;
use crate::component::instance::RuntimeImport;
use crate::component::matching::{InstanceType, TypeChecker};
use crate::component::types;
use crate::component::{
Component, ComponentNamedList, Instance, InstancePre, Lift, Lower, ResourceType, Val,
};
use crate::hash_map::HashMap;
use crate::prelude::*;
use crate::{AsContextMut, Engine, Module, StoreContextMut};
use alloc::sync::Arc;
use core::future::Future;
use core::marker;
use core::pin::Pin;
use wasmtime_environ::component::{NameMap, NameMapIntern};
use wasmtime_environ::PrimaryMap;
/// A type used to instantiate [`Component`]s.
///
/// This type is used to both link components together as well as supply host
/// functionality to components. Values are defined in a [`Linker`] by their
/// import name and then components are instantiated with a [`Linker`] using the
/// names provided for name resolution of the component's imports.
///
/// # Names and Semver
///
/// Names defined in a [`Linker`] correspond to import names in the Component
/// Model. Names in the Component Model are allowed to be semver-qualified, for
/// example:
///
/// * `wasi:cli/stdout@0.2.0`
/// * `wasi:http/types@0.2.0-rc-2023-10-25`
/// * `my:custom/plugin@1.0.0-pre.2`
///
/// These version strings are taken into account when looking up names within a
/// [`Linker`]. You're allowed to define any number of versions within a
/// [`Linker`] still, for example you can define `a:b/c@0.2.0`, `a:b/c@0.2.1`,
/// and `a:b/c@0.3.0` all at the same time.
///
/// Specifically though when names are looked up within a linker, for example
/// during instantiation, semver-compatible names are automatically consulted.
/// This means that if you define `a:b/c@0.2.1` in a [`Linker`] but a component
/// imports `a:b/c@0.2.0` then that import will resolve to the `0.2.1` version.
///
/// This lookup behavior relies on hosts being well-behaved when using Semver,
/// specifically that interfaces once defined are never changed. This reflects
/// how Semver works at the Component Model layer, and it's assumed that if
/// versions are present then hosts are respecting this.
///
/// Note that this behavior goes the other direction, too. If a component
/// imports `a:b/c@0.2.1` and the host has provided `a:b/c@0.2.0` then that
/// will also resolve correctly. This is because if an API was defined at 0.2.0
/// and 0.2.1 then it must be the same API.
///
/// This behavior is intended to make it easier for hosts to upgrade WASI and
/// for guests to upgrade WASI. So long as the actual "meat" of the
/// functionality is defined then it should align correctly and components can
/// be instantiated.
pub struct Linker<T> {
engine: Engine,
strings: Strings,
map: NameMap<usize, Definition>,
path: Vec<usize>,
allow_shadowing: bool,
_marker: marker::PhantomData<fn() -> T>,
}
impl<T> Clone for Linker<T> {
fn clone(&self) -> Linker<T> {
Linker {
engine: self.engine.clone(),
strings: self.strings.clone(),
map: self.map.clone(),
path: self.path.clone(),
allow_shadowing: self.allow_shadowing,
_marker: self._marker,
}
}
}
#[derive(Clone, Default)]
pub struct Strings {
string2idx: HashMap<Arc<str>, usize>,
strings: Vec<Arc<str>>,
}
/// Structure representing an "instance" being defined within a linker.
///
/// Instances do not need to be actual [`Instance`]s and instead are defined by
/// a "bag of named items", so each [`LinkerInstance`] can further define items
/// internally.
pub struct LinkerInstance<'a, T> {
engine: &'a Engine,
path: &'a mut Vec<usize>,
path_len: usize,
strings: &'a mut Strings,
map: &'a mut NameMap<usize, Definition>,
allow_shadowing: bool,
_marker: marker::PhantomData<fn() -> T>,
}
#[derive(Clone)]
pub(crate) enum Definition {
Instance(NameMap<usize, Definition>),
Func(Arc<HostFunc>),
Module(Module),
Resource(ResourceType, Arc<crate::func::HostFunc>),
}
impl<T> Linker<T> {
/// Creates a new linker for the [`Engine`] specified with no items defined
/// within it.
pub fn new(engine: &Engine) -> Linker<T> {
Linker {
engine: engine.clone(),
strings: Strings::default(),
map: NameMap::default(),
allow_shadowing: false,
path: Vec::new(),
_marker: marker::PhantomData,
}
}
/// Returns the [`Engine`] this is connected to.
pub fn engine(&self) -> &Engine {
&self.engine
}
/// Configures whether or not name-shadowing is allowed.
///
/// By default name shadowing is not allowed and it's an error to redefine
/// the same name within a linker.
pub fn allow_shadowing(&mut self, allow: bool) -> &mut Self {
self.allow_shadowing = allow;
self
}
/// Returns the "root instance" of this linker, used to define names into
/// the root namespace.
pub fn root(&mut self) -> LinkerInstance<'_, T> {
LinkerInstance {
engine: &self.engine,
path: &mut self.path,
path_len: 0,
strings: &mut self.strings,
map: &mut self.map,
allow_shadowing: self.allow_shadowing,
_marker: self._marker,
}
}
/// Returns a builder for the named instance specified.
///
/// # Errors
///
/// Returns an error if `name` is already defined within the linker.
pub fn instance(&mut self, name: &str) -> Result<LinkerInstance<'_, T>> {
self.root().into_instance(name)
}
fn typecheck<'a>(&'a self, component: &'a Component) -> Result<TypeChecker<'a>> {
let mut cx = TypeChecker {
types: component.types(),
strings: &self.strings,
imported_resources: Default::default(),
};
// Walk over the component's list of import names and use that to lookup
// the definition within this linker that it corresponds to. When found
// perform a typecheck against the component's expected type.
let env_component = component.env_component();
for (_idx, (name, ty)) in env_component.import_types.iter() {
let import = self.map.get(name, &self.strings);
cx.definition(ty, import)
.with_context(|| format!("component imports {desc} `{name}`, but a matching implementation was not found in the linker", desc = ty.desc()))?;
}
Ok(cx)
}
/// Returns the [`types::Component`] corresponding to `component` with resource
/// types imported by it replaced using imports present in [`Self`].
pub fn substituted_component_type(&self, component: &Component) -> Result<types::Component> {
let cx = self.typecheck(&component)?;
Ok(types::Component::from(
component.ty(),
&InstanceType {
types: cx.types,
resources: &cx.imported_resources,
},
))
}
/// Performs a "pre-instantiation" to resolve the imports of the
/// [`Component`] specified with the items defined within this linker.
///
/// This method will perform as much work as possible short of actually
/// instantiating an instance. Internally this will use the names defined
/// within this linker to satisfy the imports of the [`Component`] provided.
/// Additionally this will perform type-checks against the component's
/// imports against all items defined within this linker.
///
/// Note that unlike internally in components where subtyping at the
/// interface-types layer is supported this is not supported here. Items
/// defined in this linker must match the component's imports precisely.
///
/// # Errors
///
/// Returns an error if this linker doesn't define a name that the
/// `component` imports or if a name defined doesn't match the type of the
/// item imported by the `component` provided.
pub fn instantiate_pre(&self, component: &Component) -> Result<InstancePre<T>> {
self.typecheck(&component)?;
// Now that all imports are known to be defined and satisfied by this
// linker a list of "flat" import items (aka no instances) is created
// using the import map within the component created at
// component-compile-time.
let env_component = component.env_component();
let mut imports = PrimaryMap::with_capacity(env_component.imports.len());
for (idx, (import, names)) in env_component.imports.iter() {
let (root, _) = &env_component.import_types[*import];
// This is the flattening process where we go from a definition
// optionally through a list of exported names to get to the final
// item.
let mut cur = self.map.get(root, &self.strings).unwrap();
for name in names {
cur = match cur {
Definition::Instance(map) => map.get(&name, &self.strings).unwrap(),
_ => unreachable!(),
};
}
let import = match cur {
Definition::Module(m) => RuntimeImport::Module(m.clone()),
Definition::Func(f) => RuntimeImport::Func(f.clone()),
Definition::Resource(t, dtor) => RuntimeImport::Resource {
ty: *t,
_dtor: dtor.clone(),
dtor_funcref: component.resource_drop_func_ref(dtor),
},
// This is guaranteed by the compilation process that "leaf"
// runtime imports are never instances.
Definition::Instance(_) => unreachable!(),
};
let i = imports.push(import);
assert_eq!(i, idx);
}
Ok(unsafe { InstancePre::new_unchecked(component.clone(), imports) })
}
/// Instantiates the [`Component`] provided into the `store` specified.
///
/// This function will use the items defined within this [`Linker`] to
/// satisfy the imports of the [`Component`] provided as necessary. For more
/// information about this see [`Linker::instantiate_pre`] as well.
///
/// # Errors
///
/// Returns an error if this [`Linker`] doesn't define an import that
/// `component` requires or if it is of the wrong type. Additionally this
/// can return an error if something goes wrong during instantiation such as
/// a runtime trap or a runtime limit being exceeded.
pub fn instantiate(
&self,
store: impl AsContextMut<Data = T>,
component: &Component,
) -> Result<Instance> {
assert!(
!store.as_context().async_support(),
"must use async instantiation when async support is enabled"
);
self.instantiate_pre(component)?.instantiate(store)
}
/// Instantiates the [`Component`] provided into the `store` specified.
///
/// This is exactly like [`Linker::instantiate`] except for async stores.
///
/// # Errors
///
/// Returns an error if this [`Linker`] doesn't define an import that
/// `component` requires or if it is of the wrong type. Additionally this
/// can return an error if something goes wrong during instantiation such as
/// a runtime trap or a runtime limit being exceeded.
#[cfg(feature = "async")]
pub async fn instantiate_async(
&self,
store: impl AsContextMut<Data = T>,
component: &Component,
) -> Result<Instance>
where
T: Send,
{
assert!(
store.as_context().async_support(),
"must use sync instantiation when async support is disabled"
);
self.instantiate_pre(component)?
.instantiate_async(store)
.await
}
/// Implement any imports of the given [`Component`] with a function which traps.
///
/// By default a [`Linker`] will error when unknown imports are encountered when instantiating a [`Component`].
/// This changes this behavior from an instant error to a trap that will happen if the import is called.
pub fn define_unknown_imports_as_traps(&mut self, component: &Component) -> Result<()> {
use wasmtime_environ::component::ComponentTypes;
use wasmtime_environ::component::TypeDef;
// Recursively stub out all imports of the component with a function that traps.
fn stub_item<T>(
linker: &mut LinkerInstance<T>,
item_name: &str,
item_def: &TypeDef,
parent_instance: Option<&str>,
types: &ComponentTypes,
) -> Result<()> {
// Skip if the item isn't an instance and has already been defined in the linker.
if !matches!(item_def, TypeDef::ComponentInstance(_)) && linker.get(item_name).is_some()
{
return Ok(());
}
match item_def {
TypeDef::ComponentFunc(_) => {
let fully_qualified_name = parent_instance
.map(|parent| format!("{parent}#{item_name}"))
.unwrap_or_else(|| item_name.to_owned());
linker.func_new(&item_name, move |_, _, _| {
bail!("unknown import: `{fully_qualified_name}` has not been defined")
})?;
}
TypeDef::ComponentInstance(i) => {
let instance = &types[*i];
let mut linker_instance = linker.instance(item_name)?;
for (export_name, export) in instance.exports.iter() {
stub_item(
&mut linker_instance,
export_name,
export,
Some(item_name),
types,
)?;
}
}
TypeDef::Resource(_) => {
let ty = crate::component::ResourceType::host::<()>();
linker.resource(item_name, ty, |_, _| Ok(()))?;
}
TypeDef::Component(_) | TypeDef::Module(_) => {
bail!("unable to define {} imports as traps", item_def.desc())
}
_ => {}
}
Ok(())
}
for (_, (import_name, import_type)) in &component.env_component().import_types {
stub_item(
&mut self.root(),
import_name,
import_type,
None,
component.types(),
)?;
}
Ok(())
}
}
impl<T> LinkerInstance<'_, T> {
fn as_mut(&mut self) -> LinkerInstance<'_, T> {
LinkerInstance {
engine: self.engine,
path: self.path,
path_len: self.path_len,
strings: self.strings,
map: self.map,
allow_shadowing: self.allow_shadowing,
_marker: self._marker,
}
}
/// Defines a new host-provided function into this [`Linker`].
///
/// This method is used to give host functions to wasm components. The
/// `func` provided will be callable from linked components with the type
/// signature dictated by `Params` and `Return`. The `Params` is a tuple of
/// types that will come from wasm and `Return` is a value coming from the
/// host going back to wasm.
///
/// Additionally the `func` takes a
/// [`StoreContextMut`](crate::StoreContextMut) as its first parameter.
///
/// Note that `func` must be an `Fn` and must also be `Send + Sync +
/// 'static`. Shared state within a func is typically accessed with the `T`
/// type parameter from [`Store<T>`](crate::Store) which is accessible
/// through the leading [`StoreContextMut<'_, T>`](crate::StoreContextMut)
/// argument which can be provided to the `func` given here.
//
// TODO: needs more words and examples
pub fn func_wrap<F, Params, Return>(&mut self, name: &str, func: F) -> Result<()>
where
F: Fn(StoreContextMut<T>, Params) -> Result<Return> + Send + Sync + 'static,
Params: ComponentNamedList + Lift + 'static,
Return: ComponentNamedList + Lower + 'static,
{
self.insert(name, Definition::Func(HostFunc::from_closure(func)))?;
Ok(())
}
/// Defines a new host-provided async function into this [`Linker`].
///
/// This is exactly like [`Self::func_wrap`] except it takes an async
/// host function.
#[cfg(feature = "async")]
pub fn func_wrap_async<Params, Return, F>(&mut self, name: &str, f: F) -> Result<()>
where
F: for<'a> Fn(
StoreContextMut<'a, T>,
Params,
) -> Box<dyn Future<Output = Result<Return>> + Send + 'a>
+ Send
+ Sync
+ 'static,
Params: ComponentNamedList + Lift + 'static,
Return: ComponentNamedList + Lower + 'static,
{
assert!(
self.engine.config().async_support,
"cannot use `func_wrap_async` without enabling async support in the config"
);
let ff = move |mut store: StoreContextMut<'_, T>, params: Params| -> Result<Return> {
let async_cx = store.as_context_mut().0.async_cx().expect("async cx");
let mut future = Pin::from(f(store.as_context_mut(), params));
unsafe { async_cx.block_on(future.as_mut()) }?
};
self.func_wrap(name, ff)
}
/// Defines a new host-provided async function into this [`LinkerInstance`].
///
/// This allows the caller to register host functions with the
/// LinkerInstance such that multiple calls to such functions can run
/// concurrently. This isn't possible with the existing func_wrap_async
/// method because it takes a function which returns a future that owns a
/// unique reference to the Store, meaning the Store can't be used for
/// anything else until the future resolves.
///
/// Ideally, we'd have a way to thread a `StoreContextMut<T>` through an
/// arbitrary `Future` such that it has access to the `Store` only while
/// being polled (i.e. between, but not across, await points). However,
/// there's currently no way to express that in async Rust, so we make do
/// with a more awkward scheme: each function registered using
/// `func_wrap_concurrent` gets access to the `Store` twice: once before
/// doing any concurrent operations (i.e. before awaiting) and once
/// afterward. This allows multiple calls to proceed concurrently without
/// any one of them monopolizing the store.
#[cfg(feature = "component-model-async")]
pub fn func_wrap_concurrent<Params, Return, F, N, FN>(&mut self, name: &str, f: F) -> Result<()>
where
N: FnOnce(StoreContextMut<T>) -> Result<Return> + Send + Sync + 'static,
FN: Future<Output = N> + Send + Sync + 'static,
F: Fn(StoreContextMut<T>, Params) -> FN + Send + Sync + 'static,
Params: ComponentNamedList + Lift + 'static,
Return: ComponentNamedList + Lower + Send + Sync + 'static,
{
assert!(
self.engine.config().async_support,
"cannot use `func_wrap_concurrent` without enabling async support in the config"
);
_ = (name, f);
todo!()
}
/// Define a new host-provided function using dynamically typed values.
///
/// The `name` provided is the name of the function to define and the
/// `func` provided is the host-defined closure to invoke when this
/// function is called.
///
/// This function is the "dynamic" version of defining a host function as
/// compared to [`LinkerInstance::func_wrap`]. With
/// [`LinkerInstance::func_wrap`] a function's type is statically known but
/// with this method the `func` argument's type isn't known ahead of time.
/// That means that `func` can be by imported component so long as it's
/// imported as a matching name.
///
/// Type information will be available at execution time, however. For
/// example when `func` is invoked the second argument, a `&[Val]` list,
/// contains [`Val`] entries that say what type they are. Additionally the
/// third argument, `&mut [Val]`, is the expected number of results. Note
/// that the expected types of the results cannot be learned during the
/// execution of `func`. Learning that would require runtime introspection
/// of a component.
///
/// Return values, stored in the third argument of `&mut [Val]`, are
/// type-checked at runtime to ensure that they have the appropriate type.
/// A trap will be raised if they do not have the right type.
///
/// # Examples
///
/// ```
/// use wasmtime::{Store, Engine};
/// use wasmtime::component::{Component, Linker, Val};
///
/// # fn main() -> wasmtime::Result<()> {
/// let engine = Engine::default();
/// let component = Component::new(
/// &engine,
/// r#"
/// (component
/// (import "thunk" (func $thunk))
/// (import "is-even" (func $is-even (param "x" u32) (result bool)))
///
/// (core module $m
/// (import "" "thunk" (func $thunk))
/// (import "" "is-even" (func $is-even (param i32) (result i32)))
///
/// (func (export "run")
/// call $thunk
///
/// (call $is-even (i32.const 1))
/// if unreachable end
///
/// (call $is-even (i32.const 2))
/// i32.eqz
/// if unreachable end
/// )
/// )
/// (core func $thunk (canon lower (func $thunk)))
/// (core func $is-even (canon lower (func $is-even)))
/// (core instance $i (instantiate $m
/// (with "" (instance
/// (export "thunk" (func $thunk))
/// (export "is-even" (func $is-even))
/// ))
/// ))
///
/// (func (export "run") (canon lift (core func $i "run")))
/// )
/// "#,
/// )?;
///
/// let mut linker = Linker::<()>::new(&engine);
///
/// // Sample function that takes no arguments.
/// linker.root().func_new("thunk", |_store, params, results| {
/// assert!(params.is_empty());
/// assert!(results.is_empty());
/// println!("Look ma, host hands!");
/// Ok(())
/// })?;
///
/// // This function takes one argument and returns one result.
/// linker.root().func_new("is-even", |_store, params, results| {
/// assert_eq!(params.len(), 1);
/// let param = match params[0] {
/// Val::U32(n) => n,
/// _ => panic!("unexpected type"),
/// };
///
/// assert_eq!(results.len(), 1);
/// results[0] = Val::Bool(param % 2 == 0);
/// Ok(())
/// })?;
///
/// let mut store = Store::new(&engine, ());
/// let instance = linker.instantiate(&mut store, &component)?;
/// let run = instance.get_typed_func::<(), ()>(&mut store, "run")?;
/// run.call(&mut store, ())?;
/// # Ok(())
/// # }
/// ```
pub fn func_new(
&mut self,
name: &str,
func: impl Fn(StoreContextMut<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
) -> Result<()> {
self.insert(name, Definition::Func(HostFunc::new_dynamic(func)))?;
Ok(())
}
/// Define a new host-provided async function using dynamic types.
///
/// This is exactly like [`Self::func_new`] except it takes an async
/// host function.
#[cfg(feature = "async")]
pub fn func_new_async<F>(&mut self, name: &str, f: F) -> Result<()>
where
F: for<'a> Fn(
StoreContextMut<'a, T>,
&'a [Val],
&'a mut [Val],
) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
+ Send
+ Sync
+ 'static,
{
assert!(
self.engine.config().async_support,
"cannot use `func_new_async` without enabling async support in the config"
);
let ff = move |mut store: StoreContextMut<'_, T>, params: &[Val], results: &mut [Val]| {
let async_cx = store.as_context_mut().0.async_cx().expect("async cx");
let mut future = Pin::from(f(store.as_context_mut(), params, results));
unsafe { async_cx.block_on(future.as_mut()) }?
};
self.func_new(name, ff)
}
/// Defines a [`Module`] within this instance.
///
/// This can be used to provide a core wasm [`Module`] as an import to a
/// component. The [`Module`] provided is saved within the linker for the
/// specified `name` in this instance.
pub fn module(&mut self, name: &str, module: &Module) -> Result<()> {
self.insert(name, Definition::Module(module.clone()))?;
Ok(())
}
/// Defines a new resource of a given [`ResourceType`] in this linker.
///
/// This function is used to specify resources defined in the host.
///
/// The `name` argument is the name to define the resource within this
/// linker.
///
/// The `dtor` provided is a destructor that will get invoked when an owned
/// version of this resource is destroyed from the guest. Note that this
/// destructor is not called when a host-owned resource is destroyed as it's
/// assumed the host knows how to handle destroying its own resources.
///
/// The `dtor` closure is provided the store state as the first argument
/// along with the representation of the resource that was just destroyed.
///
/// [`Resource<U>`]: crate::component::Resource
///
/// # Errors
///
/// The provided `dtor` closure returns an error if something goes wrong
/// when a guest calls the `dtor` to drop a `Resource<T>` such as
/// a runtime trap or a runtime limit being exceeded.
pub fn resource(
&mut self,
name: &str,
ty: ResourceType,
dtor: impl Fn(StoreContextMut<'_, T>, u32) -> Result<()> + Send + Sync + 'static,
) -> Result<()> {
let dtor = Arc::new(crate::func::HostFunc::wrap_inner(
&self.engine,
move |mut cx: crate::Caller<'_, T>, (param,): (u32,)| dtor(cx.as_context_mut(), param),
));
self.insert(name, Definition::Resource(ty, dtor))?;
Ok(())
}
/// Identical to [`Self::resource`], except that it takes an async destructor.
#[cfg(feature = "async")]
pub fn resource_async<F>(&mut self, name: &str, ty: ResourceType, dtor: F) -> Result<()>
where
F: for<'a> Fn(
StoreContextMut<'a, T>,
u32,
) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
+ Send
+ Sync
+ 'static,
{
assert!(
self.engine.config().async_support,
"cannot use `resource_async` without enabling async support in the config"
);
let dtor = Arc::new(crate::func::HostFunc::wrap_inner(
&self.engine,
move |mut cx: crate::Caller<'_, T>, (param,): (u32,)| {
let async_cx = cx.as_context_mut().0.async_cx().expect("async cx");
let mut future = Pin::from(dtor(cx.as_context_mut(), param));
match unsafe { async_cx.block_on(future.as_mut()) } {
Ok(Ok(())) => Ok(()),
Ok(Err(trap)) | Err(trap) => Err(trap),
}
},
));
self.insert(name, Definition::Resource(ty, dtor))?;
Ok(())
}
/// Defines a nested instance within this instance.
///
/// This can be used to describe arbitrarily nested levels of instances
/// within a linker to satisfy nested instance exports of components.
pub fn instance(&mut self, name: &str) -> Result<LinkerInstance<'_, T>> {
self.as_mut().into_instance(name)
}
/// Same as [`LinkerInstance::instance`] except with different lifetime
/// parameters.
pub fn into_instance(mut self, name: &str) -> Result<Self> {
let name = self.insert(name, Definition::Instance(NameMap::default()))?;
self.map = match self.map.raw_get_mut(&name) {
Some(Definition::Instance(map)) => map,
_ => unreachable!(),
};
self.path.truncate(self.path_len);
self.path.push(name);
self.path_len += 1;
Ok(self)
}
fn insert(&mut self, name: &str, item: Definition) -> Result<usize> {
self.map
.insert(name, self.strings, self.allow_shadowing, item)
}
fn get(&self, name: &str) -> Option<&Definition> {
self.map.get(name, self.strings)
}
}
impl NameMapIntern for Strings {
type Key = usize;
fn intern(&mut self, string: &str) -> usize {
if let Some(idx) = self.string2idx.get(string) {
return *idx;
}
let string: Arc<str> = string.into();
let idx = self.strings.len();
self.strings.push(string.clone());
self.string2idx.insert(string, idx);
idx
}
fn lookup(&self, string: &str) -> Option<usize> {
self.string2idx.get(string).cloned()
}
}