cranelift_object/
backend.rs

1//! Defines `ObjectModule`.
2
3use anyhow::anyhow;
4use cranelift_codegen::binemit::{Addend, CodeOffset, Reloc};
5use cranelift_codegen::entity::SecondaryMap;
6use cranelift_codegen::ir;
7use cranelift_codegen::isa::{OwnedTargetIsa, TargetIsa};
8use cranelift_control::ControlPlane;
9use cranelift_module::{
10    DataDescription, DataId, FuncId, Init, Linkage, Module, ModuleDeclarations, ModuleError,
11    ModuleReloc, ModuleRelocTarget, ModuleResult,
12};
13use log::info;
14use object::write::{
15    Object, Relocation, SectionId, StandardSection, Symbol, SymbolId, SymbolSection,
16};
17use object::{
18    RelocationEncoding, RelocationFlags, RelocationKind, SectionKind, SymbolFlags, SymbolKind,
19    SymbolScope,
20};
21use std::collections::hash_map::Entry;
22use std::collections::HashMap;
23use std::mem;
24use target_lexicon::PointerWidth;
25
26/// A builder for `ObjectModule`.
27pub struct ObjectBuilder {
28    isa: OwnedTargetIsa,
29    binary_format: object::BinaryFormat,
30    architecture: object::Architecture,
31    flags: object::FileFlags,
32    endian: object::Endianness,
33    name: Vec<u8>,
34    libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
35    per_function_section: bool,
36    per_data_object_section: bool,
37}
38
39impl ObjectBuilder {
40    /// Create a new `ObjectBuilder` using the given Cranelift target, that
41    /// can be passed to [`ObjectModule::new`].
42    ///
43    /// The `libcall_names` function provides a way to translate `cranelift_codegen`'s [`ir::LibCall`]
44    /// enum to symbols. LibCalls are inserted in the IR as part of the legalization for certain
45    /// floating point instructions, and for stack probes. If you don't know what to use for this
46    /// argument, use [`cranelift_module::default_libcall_names`].
47    pub fn new<V: Into<Vec<u8>>>(
48        isa: OwnedTargetIsa,
49        name: V,
50        libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
51    ) -> ModuleResult<Self> {
52        let mut file_flags = object::FileFlags::None;
53        let binary_format = match isa.triple().binary_format {
54            target_lexicon::BinaryFormat::Elf => object::BinaryFormat::Elf,
55            target_lexicon::BinaryFormat::Coff => object::BinaryFormat::Coff,
56            target_lexicon::BinaryFormat::Macho => object::BinaryFormat::MachO,
57            target_lexicon::BinaryFormat::Wasm => {
58                return Err(ModuleError::Backend(anyhow!(
59                    "binary format wasm is unsupported",
60                )))
61            }
62            target_lexicon::BinaryFormat::Unknown => {
63                return Err(ModuleError::Backend(anyhow!("binary format is unknown")))
64            }
65            other => {
66                return Err(ModuleError::Backend(anyhow!(
67                    "binary format {} not recognized",
68                    other
69                )))
70            }
71        };
72        let architecture = match isa.triple().architecture {
73            target_lexicon::Architecture::X86_32(_) => object::Architecture::I386,
74            target_lexicon::Architecture::X86_64 => object::Architecture::X86_64,
75            target_lexicon::Architecture::Arm(_) => object::Architecture::Arm,
76            target_lexicon::Architecture::Aarch64(_) => object::Architecture::Aarch64,
77            target_lexicon::Architecture::Riscv64(_) => {
78                if binary_format != object::BinaryFormat::Elf {
79                    return Err(ModuleError::Backend(anyhow!(
80                        "binary format {:?} is not supported for riscv64",
81                        binary_format,
82                    )));
83                }
84
85                // FIXME(#4994): Get the right float ABI variant from the TargetIsa
86                let mut eflags = object::elf::EF_RISCV_FLOAT_ABI_DOUBLE;
87
88                // Set the RVC eflag if we have the C extension enabled.
89                let has_c = isa
90                    .isa_flags()
91                    .iter()
92                    .filter(|f| f.name == "has_zca" || f.name == "has_zcd")
93                    .all(|f| f.as_bool().unwrap_or_default());
94                if has_c {
95                    eflags |= object::elf::EF_RISCV_RVC;
96                }
97
98                file_flags = object::FileFlags::Elf {
99                    os_abi: object::elf::ELFOSABI_NONE,
100                    abi_version: 0,
101                    e_flags: eflags,
102                };
103                object::Architecture::Riscv64
104            }
105            target_lexicon::Architecture::S390x => object::Architecture::S390x,
106            architecture => {
107                return Err(ModuleError::Backend(anyhow!(
108                    "target architecture {:?} is unsupported",
109                    architecture,
110                )))
111            }
112        };
113        let endian = match isa.triple().endianness().unwrap() {
114            target_lexicon::Endianness::Little => object::Endianness::Little,
115            target_lexicon::Endianness::Big => object::Endianness::Big,
116        };
117        Ok(Self {
118            isa,
119            binary_format,
120            architecture,
121            flags: file_flags,
122            endian,
123            name: name.into(),
124            libcall_names,
125            per_function_section: false,
126            per_data_object_section: false,
127        })
128    }
129
130    /// Set if every function should end up in their own section.
131    pub fn per_function_section(&mut self, per_function_section: bool) -> &mut Self {
132        self.per_function_section = per_function_section;
133        self
134    }
135
136    /// Set if every data object should end up in their own section.
137    pub fn per_data_object_section(&mut self, per_data_object_section: bool) -> &mut Self {
138        self.per_data_object_section = per_data_object_section;
139        self
140    }
141}
142
143/// An `ObjectModule` implements `Module` and emits ".o" files using the `object` library.
144///
145/// See the `ObjectBuilder` for a convenient way to construct `ObjectModule` instances.
146pub struct ObjectModule {
147    isa: OwnedTargetIsa,
148    object: Object<'static>,
149    declarations: ModuleDeclarations,
150    functions: SecondaryMap<FuncId, Option<(SymbolId, bool)>>,
151    data_objects: SecondaryMap<DataId, Option<(SymbolId, bool)>>,
152    relocs: Vec<SymbolRelocs>,
153    libcalls: HashMap<ir::LibCall, SymbolId>,
154    libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
155    known_symbols: HashMap<ir::KnownSymbol, SymbolId>,
156    known_labels: HashMap<(FuncId, CodeOffset), SymbolId>,
157    per_function_section: bool,
158    per_data_object_section: bool,
159}
160
161impl ObjectModule {
162    /// Create a new `ObjectModule` using the given Cranelift target.
163    pub fn new(builder: ObjectBuilder) -> Self {
164        let mut object = Object::new(builder.binary_format, builder.architecture, builder.endian);
165        object.flags = builder.flags;
166        object.set_subsections_via_symbols();
167        object.add_file_symbol(builder.name);
168        Self {
169            isa: builder.isa,
170            object,
171            declarations: ModuleDeclarations::default(),
172            functions: SecondaryMap::new(),
173            data_objects: SecondaryMap::new(),
174            relocs: Vec::new(),
175            libcalls: HashMap::new(),
176            libcall_names: builder.libcall_names,
177            known_symbols: HashMap::new(),
178            known_labels: HashMap::new(),
179            per_function_section: builder.per_function_section,
180            per_data_object_section: builder.per_data_object_section,
181        }
182    }
183}
184
185fn validate_symbol(name: &str) -> ModuleResult<()> {
186    // null bytes are not allowed in symbol names and will cause the `object`
187    // crate to panic. Let's return a clean error instead.
188    if name.contains("\0") {
189        return Err(ModuleError::Backend(anyhow::anyhow!(
190            "Symbol {:?} has a null byte, which is disallowed",
191            name
192        )));
193    }
194    Ok(())
195}
196
197impl Module for ObjectModule {
198    fn isa(&self) -> &dyn TargetIsa {
199        &*self.isa
200    }
201
202    fn declarations(&self) -> &ModuleDeclarations {
203        &self.declarations
204    }
205
206    fn declare_function(
207        &mut self,
208        name: &str,
209        linkage: Linkage,
210        signature: &ir::Signature,
211    ) -> ModuleResult<FuncId> {
212        validate_symbol(name)?;
213
214        let (id, linkage) = self
215            .declarations
216            .declare_function(name, linkage, signature)?;
217
218        let (scope, weak) = translate_linkage(linkage);
219
220        if let Some((function, _defined)) = self.functions[id] {
221            let symbol = self.object.symbol_mut(function);
222            symbol.scope = scope;
223            symbol.weak = weak;
224        } else {
225            let symbol_id = self.object.add_symbol(Symbol {
226                name: name.as_bytes().to_vec(),
227                value: 0,
228                size: 0,
229                kind: SymbolKind::Text,
230                scope,
231                weak,
232                section: SymbolSection::Undefined,
233                flags: SymbolFlags::None,
234            });
235            self.functions[id] = Some((symbol_id, false));
236        }
237
238        Ok(id)
239    }
240
241    fn declare_anonymous_function(&mut self, signature: &ir::Signature) -> ModuleResult<FuncId> {
242        let id = self.declarations.declare_anonymous_function(signature)?;
243
244        let symbol_id = self.object.add_symbol(Symbol {
245            name: self
246                .declarations
247                .get_function_decl(id)
248                .linkage_name(id)
249                .into_owned()
250                .into_bytes(),
251            value: 0,
252            size: 0,
253            kind: SymbolKind::Text,
254            scope: SymbolScope::Compilation,
255            weak: false,
256            section: SymbolSection::Undefined,
257            flags: SymbolFlags::None,
258        });
259        self.functions[id] = Some((symbol_id, false));
260
261        Ok(id)
262    }
263
264    fn declare_data(
265        &mut self,
266        name: &str,
267        linkage: Linkage,
268        writable: bool,
269        tls: bool,
270    ) -> ModuleResult<DataId> {
271        validate_symbol(name)?;
272
273        let (id, linkage) = self
274            .declarations
275            .declare_data(name, linkage, writable, tls)?;
276
277        // Merging declarations with conflicting values for tls is not allowed, so it is safe to use
278        // the passed in tls value here.
279        let kind = if tls {
280            SymbolKind::Tls
281        } else {
282            SymbolKind::Data
283        };
284        let (scope, weak) = translate_linkage(linkage);
285
286        if let Some((data, _defined)) = self.data_objects[id] {
287            let symbol = self.object.symbol_mut(data);
288            symbol.kind = kind;
289            symbol.scope = scope;
290            symbol.weak = weak;
291        } else {
292            let symbol_id = self.object.add_symbol(Symbol {
293                name: name.as_bytes().to_vec(),
294                value: 0,
295                size: 0,
296                kind,
297                scope,
298                weak,
299                section: SymbolSection::Undefined,
300                flags: SymbolFlags::None,
301            });
302            self.data_objects[id] = Some((symbol_id, false));
303        }
304
305        Ok(id)
306    }
307
308    fn declare_anonymous_data(&mut self, writable: bool, tls: bool) -> ModuleResult<DataId> {
309        let id = self.declarations.declare_anonymous_data(writable, tls)?;
310
311        let kind = if tls {
312            SymbolKind::Tls
313        } else {
314            SymbolKind::Data
315        };
316
317        let symbol_id = self.object.add_symbol(Symbol {
318            name: self
319                .declarations
320                .get_data_decl(id)
321                .linkage_name(id)
322                .into_owned()
323                .into_bytes(),
324            value: 0,
325            size: 0,
326            kind,
327            scope: SymbolScope::Compilation,
328            weak: false,
329            section: SymbolSection::Undefined,
330            flags: SymbolFlags::None,
331        });
332        self.data_objects[id] = Some((symbol_id, false));
333
334        Ok(id)
335    }
336
337    fn define_function_with_control_plane(
338        &mut self,
339        func_id: FuncId,
340        ctx: &mut cranelift_codegen::Context,
341        ctrl_plane: &mut ControlPlane,
342    ) -> ModuleResult<()> {
343        info!("defining function {}: {}", func_id, ctx.func.display());
344
345        let res = ctx.compile(self.isa(), ctrl_plane)?;
346        let alignment = res.buffer.alignment as u64;
347
348        let buffer = &ctx.compiled_code().unwrap().buffer;
349        let relocs = buffer
350            .relocs()
351            .iter()
352            .map(|reloc| {
353                self.process_reloc(&ModuleReloc::from_mach_reloc(&reloc, &ctx.func, func_id))
354            })
355            .collect::<Vec<_>>();
356        self.define_function_inner(func_id, alignment, buffer.data(), relocs)
357    }
358
359    fn define_function_bytes(
360        &mut self,
361        func_id: FuncId,
362        alignment: u64,
363        bytes: &[u8],
364        relocs: &[ModuleReloc],
365    ) -> ModuleResult<()> {
366        let relocs = relocs
367            .iter()
368            .map(|reloc| self.process_reloc(reloc))
369            .collect();
370        self.define_function_inner(func_id, alignment, bytes, relocs)
371    }
372
373    fn define_data(&mut self, data_id: DataId, data: &DataDescription) -> ModuleResult<()> {
374        let decl = self.declarations.get_data_decl(data_id);
375        if !decl.linkage.is_definable() {
376            return Err(ModuleError::InvalidImportDefinition(
377                decl.linkage_name(data_id).into_owned(),
378            ));
379        }
380
381        let &mut (symbol, ref mut defined) = self.data_objects[data_id].as_mut().unwrap();
382        if *defined {
383            return Err(ModuleError::DuplicateDefinition(
384                decl.linkage_name(data_id).into_owned(),
385            ));
386        }
387        *defined = true;
388
389        let &DataDescription {
390            ref init,
391            function_decls: _,
392            data_decls: _,
393            function_relocs: _,
394            data_relocs: _,
395            ref custom_segment_section,
396            align,
397        } = data;
398
399        let pointer_reloc = match self.isa.triple().pointer_width().unwrap() {
400            PointerWidth::U16 => unimplemented!("16bit pointers"),
401            PointerWidth::U32 => Reloc::Abs4,
402            PointerWidth::U64 => Reloc::Abs8,
403        };
404        let relocs = data
405            .all_relocs(pointer_reloc)
406            .map(|record| self.process_reloc(&record))
407            .collect::<Vec<_>>();
408
409        let section = if custom_segment_section.is_none() {
410            let section_kind = if let Init::Zeros { .. } = *init {
411                if decl.tls {
412                    StandardSection::UninitializedTls
413                } else {
414                    StandardSection::UninitializedData
415                }
416            } else if decl.tls {
417                StandardSection::Tls
418            } else if decl.writable {
419                StandardSection::Data
420            } else if relocs.is_empty() {
421                StandardSection::ReadOnlyData
422            } else {
423                StandardSection::ReadOnlyDataWithRel
424            };
425            if self.per_data_object_section {
426                // FIXME pass empty symbol name once add_subsection produces `.text` as section name
427                // instead of `.text.` when passed an empty symbol name. (object#748) Until then
428                // pass `subsection` to produce `.text.subsection` as section name to reduce
429                // confusion.
430                self.object.add_subsection(section_kind, b"subsection")
431            } else {
432                self.object.section_id(section_kind)
433            }
434        } else {
435            if decl.tls {
436                return Err(cranelift_module::ModuleError::Backend(anyhow::anyhow!(
437                    "Custom section not supported for TLS"
438                )));
439            }
440            let (seg, sec) = &custom_segment_section.as_ref().unwrap();
441            self.object.add_section(
442                seg.clone().into_bytes(),
443                sec.clone().into_bytes(),
444                if decl.writable {
445                    SectionKind::Data
446                } else if relocs.is_empty() {
447                    SectionKind::ReadOnlyData
448                } else {
449                    SectionKind::ReadOnlyDataWithRel
450                },
451            )
452        };
453
454        let align = std::cmp::max(align.unwrap_or(1), self.isa.symbol_alignment());
455        let offset = match *init {
456            Init::Uninitialized => {
457                panic!("data is not initialized yet");
458            }
459            Init::Zeros { size } => self
460                .object
461                .add_symbol_bss(symbol, section, size as u64, align),
462            Init::Bytes { ref contents } => self
463                .object
464                .add_symbol_data(symbol, section, &contents, align),
465        };
466        if !relocs.is_empty() {
467            self.relocs.push(SymbolRelocs {
468                section,
469                offset,
470                relocs,
471            });
472        }
473        Ok(())
474    }
475}
476
477impl ObjectModule {
478    fn define_function_inner(
479        &mut self,
480        func_id: FuncId,
481        alignment: u64,
482        bytes: &[u8],
483        relocs: Vec<ObjectRelocRecord>,
484    ) -> Result<(), ModuleError> {
485        info!("defining function {} with bytes", func_id);
486        let decl = self.declarations.get_function_decl(func_id);
487        let decl_name = decl.linkage_name(func_id);
488        if !decl.linkage.is_definable() {
489            return Err(ModuleError::InvalidImportDefinition(decl_name.into_owned()));
490        }
491
492        let &mut (symbol, ref mut defined) = self.functions[func_id].as_mut().unwrap();
493        if *defined {
494            return Err(ModuleError::DuplicateDefinition(decl_name.into_owned()));
495        }
496        *defined = true;
497
498        let align = alignment.max(self.isa.symbol_alignment());
499        let section = if self.per_function_section {
500            // FIXME pass empty symbol name once add_subsection produces `.text` as section name
501            // instead of `.text.` when passed an empty symbol name. (object#748) Until then pass
502            // `subsection` to produce `.text.subsection` as section name to reduce confusion.
503            self.object
504                .add_subsection(StandardSection::Text, b"subsection")
505        } else {
506            self.object.section_id(StandardSection::Text)
507        };
508        let offset = self.object.add_symbol_data(symbol, section, bytes, align);
509
510        if !relocs.is_empty() {
511            self.relocs.push(SymbolRelocs {
512                section,
513                offset,
514                relocs,
515            });
516        }
517
518        Ok(())
519    }
520
521    /// Finalize all relocations and output an object.
522    pub fn finish(mut self) -> ObjectProduct {
523        let symbol_relocs = mem::take(&mut self.relocs);
524        for symbol in symbol_relocs {
525            for &ObjectRelocRecord {
526                offset,
527                ref name,
528                flags,
529                addend,
530            } in &symbol.relocs
531            {
532                let target_symbol = self.get_symbol(name);
533                self.object
534                    .add_relocation(
535                        symbol.section,
536                        Relocation {
537                            offset: symbol.offset + u64::from(offset),
538                            flags,
539                            symbol: target_symbol,
540                            addend,
541                        },
542                    )
543                    .unwrap();
544            }
545        }
546
547        // Indicate that this object has a non-executable stack.
548        if self.object.format() == object::BinaryFormat::Elf {
549            self.object.add_section(
550                vec![],
551                ".note.GNU-stack".as_bytes().to_vec(),
552                SectionKind::Linker,
553            );
554        }
555
556        ObjectProduct {
557            object: self.object,
558            functions: self.functions,
559            data_objects: self.data_objects,
560        }
561    }
562
563    /// This should only be called during finish because it creates
564    /// symbols for missing libcalls.
565    fn get_symbol(&mut self, name: &ModuleRelocTarget) -> SymbolId {
566        match *name {
567            ModuleRelocTarget::User { .. } => {
568                if ModuleDeclarations::is_function(name) {
569                    let id = FuncId::from_name(name);
570                    self.functions[id].unwrap().0
571                } else {
572                    let id = DataId::from_name(name);
573                    self.data_objects[id].unwrap().0
574                }
575            }
576            ModuleRelocTarget::LibCall(ref libcall) => {
577                let name = (self.libcall_names)(*libcall);
578                if let Some(symbol) = self.object.symbol_id(name.as_bytes()) {
579                    symbol
580                } else if let Some(symbol) = self.libcalls.get(libcall) {
581                    *symbol
582                } else {
583                    let symbol = self.object.add_symbol(Symbol {
584                        name: name.as_bytes().to_vec(),
585                        value: 0,
586                        size: 0,
587                        kind: SymbolKind::Text,
588                        scope: SymbolScope::Unknown,
589                        weak: false,
590                        section: SymbolSection::Undefined,
591                        flags: SymbolFlags::None,
592                    });
593                    self.libcalls.insert(*libcall, symbol);
594                    symbol
595                }
596            }
597            // These are "magic" names well-known to the linker.
598            // They require special treatment.
599            ModuleRelocTarget::KnownSymbol(ref known_symbol) => {
600                if let Some(symbol) = self.known_symbols.get(known_symbol) {
601                    *symbol
602                } else {
603                    let symbol = self.object.add_symbol(match known_symbol {
604                        ir::KnownSymbol::ElfGlobalOffsetTable => Symbol {
605                            name: b"_GLOBAL_OFFSET_TABLE_".to_vec(),
606                            value: 0,
607                            size: 0,
608                            kind: SymbolKind::Data,
609                            scope: SymbolScope::Unknown,
610                            weak: false,
611                            section: SymbolSection::Undefined,
612                            flags: SymbolFlags::None,
613                        },
614                        ir::KnownSymbol::CoffTlsIndex => Symbol {
615                            name: b"_tls_index".to_vec(),
616                            value: 0,
617                            size: 32,
618                            kind: SymbolKind::Tls,
619                            scope: SymbolScope::Unknown,
620                            weak: false,
621                            section: SymbolSection::Undefined,
622                            flags: SymbolFlags::None,
623                        },
624                    });
625                    self.known_symbols.insert(*known_symbol, symbol);
626                    symbol
627                }
628            }
629
630            ModuleRelocTarget::FunctionOffset(func_id, offset) => {
631                match self.known_labels.entry((func_id, offset)) {
632                    Entry::Occupied(o) => *o.get(),
633                    Entry::Vacant(v) => {
634                        let func_symbol_id = self.functions[func_id].unwrap().0;
635                        let func_symbol = self.object.symbol(func_symbol_id);
636
637                        let name = format!(".L{}_{}", func_id.as_u32(), offset);
638                        let symbol_id = self.object.add_symbol(Symbol {
639                            name: name.as_bytes().to_vec(),
640                            value: func_symbol.value + offset as u64,
641                            size: 0,
642                            kind: SymbolKind::Label,
643                            scope: SymbolScope::Compilation,
644                            weak: false,
645                            section: SymbolSection::Section(func_symbol.section.id().unwrap()),
646                            flags: SymbolFlags::None,
647                        });
648
649                        v.insert(symbol_id);
650                        symbol_id
651                    }
652                }
653            }
654        }
655    }
656
657    fn process_reloc(&self, record: &ModuleReloc) -> ObjectRelocRecord {
658        let flags = match record.kind {
659            Reloc::Abs4 => RelocationFlags::Generic {
660                kind: RelocationKind::Absolute,
661                encoding: RelocationEncoding::Generic,
662                size: 32,
663            },
664            Reloc::Abs8 => RelocationFlags::Generic {
665                kind: RelocationKind::Absolute,
666                encoding: RelocationEncoding::Generic,
667                size: 64,
668            },
669            Reloc::X86PCRel4 => RelocationFlags::Generic {
670                kind: RelocationKind::Relative,
671                encoding: RelocationEncoding::Generic,
672                size: 32,
673            },
674            Reloc::X86CallPCRel4 => RelocationFlags::Generic {
675                kind: RelocationKind::Relative,
676                encoding: RelocationEncoding::X86Branch,
677                size: 32,
678            },
679            // TODO: Get Cranelift to tell us when we can use
680            // R_X86_64_GOTPCRELX/R_X86_64_REX_GOTPCRELX.
681            Reloc::X86CallPLTRel4 => RelocationFlags::Generic {
682                kind: RelocationKind::PltRelative,
683                encoding: RelocationEncoding::X86Branch,
684                size: 32,
685            },
686            Reloc::X86SecRel => RelocationFlags::Generic {
687                kind: RelocationKind::SectionOffset,
688                encoding: RelocationEncoding::Generic,
689                size: 32,
690            },
691            Reloc::X86GOTPCRel4 => RelocationFlags::Generic {
692                kind: RelocationKind::GotRelative,
693                encoding: RelocationEncoding::Generic,
694                size: 32,
695            },
696            Reloc::Arm64Call => RelocationFlags::Generic {
697                kind: RelocationKind::Relative,
698                encoding: RelocationEncoding::AArch64Call,
699                size: 26,
700            },
701            Reloc::ElfX86_64TlsGd => {
702                assert_eq!(
703                    self.object.format(),
704                    object::BinaryFormat::Elf,
705                    "ElfX86_64TlsGd is not supported for this file format"
706                );
707                RelocationFlags::Elf {
708                    r_type: object::elf::R_X86_64_TLSGD,
709                }
710            }
711            Reloc::MachOX86_64Tlv => {
712                assert_eq!(
713                    self.object.format(),
714                    object::BinaryFormat::MachO,
715                    "MachOX86_64Tlv is not supported for this file format"
716                );
717                RelocationFlags::MachO {
718                    r_type: object::macho::X86_64_RELOC_TLV,
719                    r_pcrel: true,
720                    r_length: 2,
721                }
722            }
723            Reloc::MachOAarch64TlsAdrPage21 => {
724                assert_eq!(
725                    self.object.format(),
726                    object::BinaryFormat::MachO,
727                    "MachOAarch64TlsAdrPage21 is not supported for this file format"
728                );
729                RelocationFlags::MachO {
730                    r_type: object::macho::ARM64_RELOC_TLVP_LOAD_PAGE21,
731                    r_pcrel: true,
732                    r_length: 2,
733                }
734            }
735            Reloc::MachOAarch64TlsAdrPageOff12 => {
736                assert_eq!(
737                    self.object.format(),
738                    object::BinaryFormat::MachO,
739                    "MachOAarch64TlsAdrPageOff12 is not supported for this file format"
740                );
741                RelocationFlags::MachO {
742                    r_type: object::macho::ARM64_RELOC_TLVP_LOAD_PAGEOFF12,
743                    r_pcrel: false,
744                    r_length: 2,
745                }
746            }
747            Reloc::Aarch64TlsDescAdrPage21 => {
748                assert_eq!(
749                    self.object.format(),
750                    object::BinaryFormat::Elf,
751                    "Aarch64TlsDescAdrPage21 is not supported for this file format"
752                );
753                RelocationFlags::Elf {
754                    r_type: object::elf::R_AARCH64_TLSDESC_ADR_PAGE21,
755                }
756            }
757            Reloc::Aarch64TlsDescLd64Lo12 => {
758                assert_eq!(
759                    self.object.format(),
760                    object::BinaryFormat::Elf,
761                    "Aarch64TlsDescLd64Lo12 is not supported for this file format"
762                );
763                RelocationFlags::Elf {
764                    r_type: object::elf::R_AARCH64_TLSDESC_LD64_LO12,
765                }
766            }
767            Reloc::Aarch64TlsDescAddLo12 => {
768                assert_eq!(
769                    self.object.format(),
770                    object::BinaryFormat::Elf,
771                    "Aarch64TlsDescAddLo12 is not supported for this file format"
772                );
773                RelocationFlags::Elf {
774                    r_type: object::elf::R_AARCH64_TLSDESC_ADD_LO12,
775                }
776            }
777            Reloc::Aarch64TlsDescCall => {
778                assert_eq!(
779                    self.object.format(),
780                    object::BinaryFormat::Elf,
781                    "Aarch64TlsDescCall is not supported for this file format"
782                );
783                RelocationFlags::Elf {
784                    r_type: object::elf::R_AARCH64_TLSDESC_CALL,
785                }
786            }
787
788            Reloc::Aarch64AdrGotPage21 => match self.object.format() {
789                object::BinaryFormat::Elf => RelocationFlags::Elf {
790                    r_type: object::elf::R_AARCH64_ADR_GOT_PAGE,
791                },
792                object::BinaryFormat::MachO => RelocationFlags::MachO {
793                    r_type: object::macho::ARM64_RELOC_GOT_LOAD_PAGE21,
794                    r_pcrel: true,
795                    r_length: 2,
796                },
797                _ => unimplemented!("Aarch64AdrGotPage21 is not supported for this file format"),
798            },
799            Reloc::Aarch64Ld64GotLo12Nc => match self.object.format() {
800                object::BinaryFormat::Elf => RelocationFlags::Elf {
801                    r_type: object::elf::R_AARCH64_LD64_GOT_LO12_NC,
802                },
803                object::BinaryFormat::MachO => RelocationFlags::MachO {
804                    r_type: object::macho::ARM64_RELOC_GOT_LOAD_PAGEOFF12,
805                    r_pcrel: false,
806                    r_length: 2,
807                },
808                _ => unimplemented!("Aarch64Ld64GotLo12Nc is not supported for this file format"),
809            },
810            Reloc::S390xPCRel32Dbl => RelocationFlags::Generic {
811                kind: RelocationKind::Relative,
812                encoding: RelocationEncoding::S390xDbl,
813                size: 32,
814            },
815            Reloc::S390xPLTRel32Dbl => RelocationFlags::Generic {
816                kind: RelocationKind::PltRelative,
817                encoding: RelocationEncoding::S390xDbl,
818                size: 32,
819            },
820            Reloc::S390xTlsGd64 => {
821                assert_eq!(
822                    self.object.format(),
823                    object::BinaryFormat::Elf,
824                    "S390xTlsGd64 is not supported for this file format"
825                );
826                RelocationFlags::Elf {
827                    r_type: object::elf::R_390_TLS_GD64,
828                }
829            }
830            Reloc::S390xTlsGdCall => {
831                assert_eq!(
832                    self.object.format(),
833                    object::BinaryFormat::Elf,
834                    "S390xTlsGdCall is not supported for this file format"
835                );
836                RelocationFlags::Elf {
837                    r_type: object::elf::R_390_TLS_GDCALL,
838                }
839            }
840            Reloc::RiscvCallPlt => {
841                assert_eq!(
842                    self.object.format(),
843                    object::BinaryFormat::Elf,
844                    "RiscvCallPlt is not supported for this file format"
845                );
846                RelocationFlags::Elf {
847                    r_type: object::elf::R_RISCV_CALL_PLT,
848                }
849            }
850            Reloc::RiscvTlsGdHi20 => {
851                assert_eq!(
852                    self.object.format(),
853                    object::BinaryFormat::Elf,
854                    "RiscvTlsGdHi20 is not supported for this file format"
855                );
856                RelocationFlags::Elf {
857                    r_type: object::elf::R_RISCV_TLS_GD_HI20,
858                }
859            }
860            Reloc::RiscvPCRelLo12I => {
861                assert_eq!(
862                    self.object.format(),
863                    object::BinaryFormat::Elf,
864                    "RiscvPCRelLo12I is not supported for this file format"
865                );
866                RelocationFlags::Elf {
867                    r_type: object::elf::R_RISCV_PCREL_LO12_I,
868                }
869            }
870            Reloc::RiscvGotHi20 => {
871                assert_eq!(
872                    self.object.format(),
873                    object::BinaryFormat::Elf,
874                    "RiscvGotHi20 is not supported for this file format"
875                );
876                RelocationFlags::Elf {
877                    r_type: object::elf::R_RISCV_GOT_HI20,
878                }
879            }
880            // FIXME
881            reloc => unimplemented!("{:?}", reloc),
882        };
883
884        ObjectRelocRecord {
885            offset: record.offset,
886            name: record.name.clone(),
887            flags,
888            addend: record.addend,
889        }
890    }
891}
892
893fn translate_linkage(linkage: Linkage) -> (SymbolScope, bool) {
894    let scope = match linkage {
895        Linkage::Import => SymbolScope::Unknown,
896        Linkage::Local => SymbolScope::Compilation,
897        Linkage::Hidden => SymbolScope::Linkage,
898        Linkage::Export | Linkage::Preemptible => SymbolScope::Dynamic,
899    };
900    // TODO: this matches rustc_codegen_cranelift, but may be wrong.
901    let weak = linkage == Linkage::Preemptible;
902    (scope, weak)
903}
904
905/// This is the output of `ObjectModule`'s
906/// [`finish`](../struct.ObjectModule.html#method.finish) function.
907/// It contains the generated `Object` and other information produced during
908/// compilation.
909pub struct ObjectProduct {
910    /// Object artifact with all functions and data from the module defined.
911    pub object: Object<'static>,
912    /// Symbol IDs for functions (both declared and defined).
913    pub functions: SecondaryMap<FuncId, Option<(SymbolId, bool)>>,
914    /// Symbol IDs for data objects (both declared and defined).
915    pub data_objects: SecondaryMap<DataId, Option<(SymbolId, bool)>>,
916}
917
918impl ObjectProduct {
919    /// Return the `SymbolId` for the given function.
920    #[inline]
921    pub fn function_symbol(&self, id: FuncId) -> SymbolId {
922        self.functions[id].unwrap().0
923    }
924
925    /// Return the `SymbolId` for the given data object.
926    #[inline]
927    pub fn data_symbol(&self, id: DataId) -> SymbolId {
928        self.data_objects[id].unwrap().0
929    }
930
931    /// Write the object bytes in memory.
932    #[inline]
933    pub fn emit(self) -> Result<Vec<u8>, object::write::Error> {
934        self.object.write()
935    }
936}
937
938#[derive(Clone)]
939struct SymbolRelocs {
940    section: SectionId,
941    offset: u64,
942    relocs: Vec<ObjectRelocRecord>,
943}
944
945#[derive(Clone)]
946struct ObjectRelocRecord {
947    offset: CodeOffset,
948    name: ModuleRelocTarget,
949    flags: RelocationFlags,
950    addend: Addend,
951}