wasmtime_environ/types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
use crate::{wasm_unsupported, Tunables, WasmResult};
use alloc::borrow::Cow;
use alloc::boxed::Box;
use core::{fmt, ops::Range};
use cranelift_entity::entity_impl;
use serde_derive::{Deserialize, Serialize};
use smallvec::SmallVec;
/// A trait for things that can trace all type-to-type edges, aka all type
/// indices within this thing.
pub trait TypeTrace {
/// Visit each edge.
///
/// The function can break out of tracing by returning `Err(E)`.
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>;
/// Visit each edge, mutably.
///
/// Allows updating edges.
///
/// The function can break out of tracing by returning `Err(E)`.
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>;
/// Trace all `VMSharedTypeIndex` edges, ignoring other edges.
fn trace_engine_indices<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(VMSharedTypeIndex) -> Result<(), E>,
{
self.trace(&mut |idx| match idx {
EngineOrModuleTypeIndex::Engine(idx) => func(idx),
EngineOrModuleTypeIndex::Module(_) | EngineOrModuleTypeIndex::RecGroup(_) => Ok(()),
})
}
/// Canonicalize `self` by rewriting all type references inside `self` from
/// module-level interned type indices to engine-level interned type
/// indices.
///
/// This produces types that are suitable for usage by the runtime (only
/// contains `VMSharedTypeIndex` type references).
///
/// This does not produce types that are suitable for hash consing types
/// (must have recgroup-relative indices for type indices referencing other
/// types in the same recgroup).
fn canonicalize_for_runtime_usage<F>(&mut self, module_to_engine: &mut F)
where
F: FnMut(ModuleInternedTypeIndex) -> VMSharedTypeIndex,
{
self.trace_mut::<_, ()>(&mut |idx| match idx {
EngineOrModuleTypeIndex::Engine(_) => Ok(()),
EngineOrModuleTypeIndex::Module(module_index) => {
let engine_index = module_to_engine(*module_index);
*idx = EngineOrModuleTypeIndex::Engine(engine_index);
Ok(())
}
EngineOrModuleTypeIndex::RecGroup(_) => {
panic!("should not already be canonicalized for hash consing")
}
})
.unwrap()
}
/// Is this type canonicalized for runtime usage?
fn is_canonicalized_for_runtime_usage(&self) -> bool {
self.trace(&mut |idx| match idx {
EngineOrModuleTypeIndex::Engine(_) => Ok(()),
EngineOrModuleTypeIndex::Module(_) | EngineOrModuleTypeIndex::RecGroup(_) => Err(()),
})
.is_ok()
}
/// Canonicalize `self` by rewriting all type references inside `self` from
/// module-level interned type indices to either engine-level interned type
/// indices or recgroup-relative indices.
///
/// This produces types that are suitable for hash consing and deduplicating
/// recgroups (types may have recgroup-relative indices for references to
/// other types within the same recgroup).
///
/// This does *not* produce types that are suitable for usage by the runtime
/// (only contain `VMSharedTypeIndex` type references).
fn canonicalize_for_hash_consing<F>(
&mut self,
rec_group_range: Range<ModuleInternedTypeIndex>,
module_to_engine: &mut F,
) where
F: FnMut(ModuleInternedTypeIndex) -> VMSharedTypeIndex,
{
self.trace_mut::<_, ()>(&mut |idx| match *idx {
EngineOrModuleTypeIndex::Engine(_) => Ok(()),
EngineOrModuleTypeIndex::Module(module_index) => {
*idx = if rec_group_range.start <= module_index {
// Any module index within the recursion group gets
// translated into a recgroup-relative index.
debug_assert!(module_index < rec_group_range.end);
let relative = module_index.as_u32() - rec_group_range.start.as_u32();
let relative = RecGroupRelativeTypeIndex::from_u32(relative);
EngineOrModuleTypeIndex::RecGroup(relative)
} else {
// Cross-group indices are translated directly into
// `VMSharedTypeIndex`es.
debug_assert!(module_index < rec_group_range.start);
EngineOrModuleTypeIndex::Engine(module_to_engine(module_index))
};
Ok(())
}
EngineOrModuleTypeIndex::RecGroup(_) => {
panic!("should not already be canonicalized for hash consing")
}
})
.unwrap()
}
/// Is this type canonicalized for hash consing?
fn is_canonicalized_for_hash_consing(&self) -> bool {
self.trace(&mut |idx| match idx {
EngineOrModuleTypeIndex::Engine(_) | EngineOrModuleTypeIndex::RecGroup(_) => Ok(()),
EngineOrModuleTypeIndex::Module(_) => Err(()),
})
.is_ok()
}
}
/// WebAssembly value type -- equivalent of `wasmparser::ValType`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum WasmValType {
/// I32 type
I32,
/// I64 type
I64,
/// F32 type
F32,
/// F64 type
F64,
/// V128 type
V128,
/// Reference type
Ref(WasmRefType),
}
impl fmt::Display for WasmValType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
WasmValType::I32 => write!(f, "i32"),
WasmValType::I64 => write!(f, "i64"),
WasmValType::F32 => write!(f, "f32"),
WasmValType::F64 => write!(f, "f64"),
WasmValType::V128 => write!(f, "v128"),
WasmValType::Ref(rt) => write!(f, "{rt}"),
}
}
}
impl TypeTrace for WasmValType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
match self {
WasmValType::Ref(r) => r.trace(func),
WasmValType::I32
| WasmValType::I64
| WasmValType::F32
| WasmValType::F64
| WasmValType::V128 => Ok(()),
}
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
match self {
WasmValType::Ref(r) => r.trace_mut(func),
WasmValType::I32
| WasmValType::I64
| WasmValType::F32
| WasmValType::F64
| WasmValType::V128 => Ok(()),
}
}
}
impl WasmValType {
/// Is this a type that is represented as a `VMGcRef`?
#[inline]
pub fn is_vmgcref_type(&self) -> bool {
match self {
WasmValType::Ref(r) => r.is_vmgcref_type(),
_ => false,
}
}
/// Is this a type that is represented as a `VMGcRef` and is additionally
/// not an `i31`?
///
/// That is, is this a a type that actually refers to an object allocated in
/// a GC heap?
#[inline]
pub fn is_vmgcref_type_and_not_i31(&self) -> bool {
match self {
WasmValType::Ref(r) => r.is_vmgcref_type_and_not_i31(),
_ => false,
}
}
fn trampoline_type(&self) -> Self {
match self {
WasmValType::Ref(r) => WasmValType::Ref(WasmRefType {
nullable: true,
heap_type: r.heap_type.top().into(),
}),
WasmValType::I32
| WasmValType::I64
| WasmValType::F32
| WasmValType::F64
| WasmValType::V128 => *self,
}
}
}
/// WebAssembly reference type -- equivalent of `wasmparser`'s RefType
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct WasmRefType {
/// Whether or not this reference is nullable.
pub nullable: bool,
/// The heap type that this reference contains.
pub heap_type: WasmHeapType,
}
impl TypeTrace for WasmRefType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
self.heap_type.trace(func)
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
self.heap_type.trace_mut(func)
}
}
impl WasmRefType {
/// Shorthand for `externref`
pub const EXTERNREF: WasmRefType = WasmRefType {
nullable: true,
heap_type: WasmHeapType::Extern,
};
/// Shorthand for `funcref`
pub const FUNCREF: WasmRefType = WasmRefType {
nullable: true,
heap_type: WasmHeapType::Func,
};
/// Is this a type that is represented as a `VMGcRef`?
#[inline]
pub fn is_vmgcref_type(&self) -> bool {
self.heap_type.is_vmgcref_type()
}
/// Is this a type that is represented as a `VMGcRef` and is additionally
/// not an `i31`?
///
/// That is, is this a a type that actually refers to an object allocated in
/// a GC heap?
#[inline]
pub fn is_vmgcref_type_and_not_i31(&self) -> bool {
self.heap_type.is_vmgcref_type_and_not_i31()
}
}
impl fmt::Display for WasmRefType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Self::FUNCREF => write!(f, "funcref"),
Self::EXTERNREF => write!(f, "externref"),
_ => {
if self.nullable {
write!(f, "(ref null {})", self.heap_type)
} else {
write!(f, "(ref {})", self.heap_type)
}
}
}
}
}
/// An interned type index, either at the module or engine level.
///
/// Roughly equivalent to `wasmparser::UnpackedIndex`, although doesn't have to
/// concern itself with recursion-group-local indices.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum EngineOrModuleTypeIndex {
/// An index within an engine, canonicalized among all modules that can
/// interact with each other.
Engine(VMSharedTypeIndex),
/// An index within the current Wasm module, canonicalized within just this
/// current module.
Module(ModuleInternedTypeIndex),
/// An index within the containing type's rec group. This is only used when
/// hashing and canonicalizing rec groups, and should never appear outside
/// of the engine's type registry.
RecGroup(RecGroupRelativeTypeIndex),
}
impl From<ModuleInternedTypeIndex> for EngineOrModuleTypeIndex {
#[inline]
fn from(i: ModuleInternedTypeIndex) -> Self {
Self::Module(i)
}
}
impl From<VMSharedTypeIndex> for EngineOrModuleTypeIndex {
#[inline]
fn from(i: VMSharedTypeIndex) -> Self {
Self::Engine(i)
}
}
impl From<RecGroupRelativeTypeIndex> for EngineOrModuleTypeIndex {
#[inline]
fn from(i: RecGroupRelativeTypeIndex) -> Self {
Self::RecGroup(i)
}
}
impl fmt::Display for EngineOrModuleTypeIndex {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Engine(i) => write!(f, "(engine {})", i.bits()),
Self::Module(i) => write!(f, "(module {})", i.as_u32()),
Self::RecGroup(i) => write!(f, "(recgroup {})", i.as_u32()),
}
}
}
impl EngineOrModuleTypeIndex {
/// Is this an engine-level type index?
pub fn is_engine_type_index(self) -> bool {
matches!(self, Self::Engine(_))
}
/// Get the underlying engine-level type index, if any.
pub fn as_engine_type_index(self) -> Option<VMSharedTypeIndex> {
match self {
Self::Engine(e) => Some(e),
Self::RecGroup(_) | Self::Module(_) => None,
}
}
/// Get the underlying engine-level type index, or panic.
pub fn unwrap_engine_type_index(self) -> VMSharedTypeIndex {
self.as_engine_type_index()
.unwrap_or_else(|| panic!("`unwrap_engine_type_index` on {self:?}"))
}
/// Is this an module-level type index?
pub fn is_module_type_index(self) -> bool {
matches!(self, Self::Module(_))
}
/// Get the underlying module-level type index, if any.
pub fn as_module_type_index(self) -> Option<ModuleInternedTypeIndex> {
match self {
Self::Module(e) => Some(e),
Self::RecGroup(_) | Self::Engine(_) => None,
}
}
/// Get the underlying module-level type index, or panic.
pub fn unwrap_module_type_index(self) -> ModuleInternedTypeIndex {
self.as_module_type_index()
.unwrap_or_else(|| panic!("`unwrap_module_type_index` on {self:?}"))
}
/// Is this an recgroup-level type index?
pub fn is_rec_group_type_index(self) -> bool {
matches!(self, Self::RecGroup(_))
}
/// Get the underlying recgroup-level type index, if any.
pub fn as_rec_group_type_index(self) -> Option<RecGroupRelativeTypeIndex> {
match self {
Self::RecGroup(r) => Some(r),
Self::Module(_) | Self::Engine(_) => None,
}
}
/// Get the underlying module-level type index, or panic.
pub fn unwrap_rec_group_type_index(self) -> RecGroupRelativeTypeIndex {
self.as_rec_group_type_index()
.unwrap_or_else(|| panic!("`unwrap_rec_group_type_index` on {self:?}"))
}
}
/// WebAssembly heap type -- equivalent of `wasmparser`'s HeapType
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing variants")]
pub enum WasmHeapType {
// External types.
Extern,
NoExtern,
// Function types.
Func,
ConcreteFunc(EngineOrModuleTypeIndex),
NoFunc,
// Internal types.
Any,
Eq,
I31,
Array,
ConcreteArray(EngineOrModuleTypeIndex),
Struct,
ConcreteStruct(EngineOrModuleTypeIndex),
None,
}
impl From<WasmHeapTopType> for WasmHeapType {
#[inline]
fn from(value: WasmHeapTopType) -> Self {
match value {
WasmHeapTopType::Extern => Self::Extern,
WasmHeapTopType::Any => Self::Any,
WasmHeapTopType::Func => Self::Func,
}
}
}
impl From<WasmHeapBottomType> for WasmHeapType {
#[inline]
fn from(value: WasmHeapBottomType) -> Self {
match value {
WasmHeapBottomType::NoExtern => Self::NoExtern,
WasmHeapBottomType::None => Self::None,
WasmHeapBottomType::NoFunc => Self::NoFunc,
}
}
}
impl fmt::Display for WasmHeapType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Extern => write!(f, "extern"),
Self::NoExtern => write!(f, "noextern"),
Self::Func => write!(f, "func"),
Self::ConcreteFunc(i) => write!(f, "func {i}"),
Self::NoFunc => write!(f, "nofunc"),
Self::Any => write!(f, "any"),
Self::Eq => write!(f, "eq"),
Self::I31 => write!(f, "i31"),
Self::Array => write!(f, "array"),
Self::ConcreteArray(i) => write!(f, "array {i}"),
Self::Struct => write!(f, "struct"),
Self::ConcreteStruct(i) => write!(f, "struct {i}"),
Self::None => write!(f, "none"),
}
}
}
impl TypeTrace for WasmHeapType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
match *self {
Self::ConcreteArray(i) => func(i),
Self::ConcreteFunc(i) => func(i),
Self::ConcreteStruct(i) => func(i),
_ => Ok(()),
}
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
match self {
Self::ConcreteArray(i) => func(i),
Self::ConcreteFunc(i) => func(i),
Self::ConcreteStruct(i) => func(i),
_ => Ok(()),
}
}
}
impl WasmHeapType {
/// Is this a type that is represented as a `VMGcRef`?
#[inline]
pub fn is_vmgcref_type(&self) -> bool {
match self.top() {
// All `t <: (ref null any)` and `t <: (ref null extern)` are
// represented as `VMGcRef`s.
WasmHeapTopType::Any | WasmHeapTopType::Extern => true,
// All `t <: (ref null func)` are not.
WasmHeapTopType::Func => false,
}
}
/// Is this a type that is represented as a `VMGcRef` and is additionally
/// not an `i31`?
///
/// That is, is this a a type that actually refers to an object allocated in
/// a GC heap?
#[inline]
pub fn is_vmgcref_type_and_not_i31(&self) -> bool {
self.is_vmgcref_type() && *self != Self::I31
}
/// Is this heap type the top of its type hierarchy?
#[inline]
pub fn is_top(&self) -> bool {
*self == Self::from(self.top())
}
/// Get this type's top type.
#[inline]
pub fn top(&self) -> WasmHeapTopType {
match self {
WasmHeapType::Extern | WasmHeapType::NoExtern => WasmHeapTopType::Extern,
WasmHeapType::Func | WasmHeapType::ConcreteFunc(_) | WasmHeapType::NoFunc => {
WasmHeapTopType::Func
}
WasmHeapType::Any
| WasmHeapType::Eq
| WasmHeapType::I31
| WasmHeapType::Array
| WasmHeapType::ConcreteArray(_)
| WasmHeapType::Struct
| WasmHeapType::ConcreteStruct(_)
| WasmHeapType::None => WasmHeapTopType::Any,
}
}
/// Is this heap type the bottom of its type hierarchy?
#[inline]
pub fn is_bottom(&self) -> bool {
*self == Self::from(self.bottom())
}
/// Get this type's bottom type.
#[inline]
pub fn bottom(&self) -> WasmHeapBottomType {
match self {
WasmHeapType::Extern | WasmHeapType::NoExtern => WasmHeapBottomType::NoExtern,
WasmHeapType::Func | WasmHeapType::ConcreteFunc(_) | WasmHeapType::NoFunc => {
WasmHeapBottomType::NoFunc
}
WasmHeapType::Any
| WasmHeapType::Eq
| WasmHeapType::I31
| WasmHeapType::Array
| WasmHeapType::ConcreteArray(_)
| WasmHeapType::Struct
| WasmHeapType::ConcreteStruct(_)
| WasmHeapType::None => WasmHeapBottomType::None,
}
}
}
/// A top heap type.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum WasmHeapTopType {
/// The common supertype of all external references.
Extern,
/// The common supertype of all internal references.
Any,
/// The common supertype of all function references.
Func,
}
/// A bottom heap type.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum WasmHeapBottomType {
/// The common subtype of all external references.
NoExtern,
/// The common subtype of all internal references.
None,
/// The common subtype of all function references.
NoFunc,
}
/// WebAssembly function type -- equivalent of `wasmparser`'s FuncType.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmFuncType {
params: Box<[WasmValType]>,
non_i31_gc_ref_params_count: usize,
returns: Box<[WasmValType]>,
non_i31_gc_ref_returns_count: usize,
}
impl fmt::Display for WasmFuncType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(func")?;
if !self.params.is_empty() {
write!(f, " (param")?;
for p in self.params.iter() {
write!(f, " {p}")?;
}
write!(f, ")")?;
}
if !self.returns.is_empty() {
write!(f, " (result")?;
for r in self.returns.iter() {
write!(f, " {r}")?;
}
write!(f, ")")?;
}
write!(f, ")")
}
}
impl TypeTrace for WasmFuncType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
for p in self.params.iter() {
p.trace(func)?;
}
for r in self.returns.iter() {
r.trace(func)?;
}
Ok(())
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
for p in self.params.iter_mut() {
p.trace_mut(func)?;
}
for r in self.returns.iter_mut() {
r.trace_mut(func)?;
}
Ok(())
}
}
impl WasmFuncType {
/// Creates a new function type from the provided `params` and `returns`.
#[inline]
pub fn new(params: Box<[WasmValType]>, returns: Box<[WasmValType]>) -> Self {
let non_i31_gc_ref_params_count = params
.iter()
.filter(|p| p.is_vmgcref_type_and_not_i31())
.count();
let non_i31_gc_ref_returns_count = returns
.iter()
.filter(|r| r.is_vmgcref_type_and_not_i31())
.count();
WasmFuncType {
params,
non_i31_gc_ref_params_count,
returns,
non_i31_gc_ref_returns_count,
}
}
/// Function params types.
#[inline]
pub fn params(&self) -> &[WasmValType] {
&self.params
}
/// How many `externref`s are in this function's params?
#[inline]
pub fn non_i31_gc_ref_params_count(&self) -> usize {
self.non_i31_gc_ref_params_count
}
/// Returns params types.
#[inline]
pub fn returns(&self) -> &[WasmValType] {
&self.returns
}
/// How many `externref`s are in this function's returns?
#[inline]
pub fn non_i31_gc_ref_returns_count(&self) -> usize {
self.non_i31_gc_ref_returns_count
}
/// Is this function type compatible with trampoline usage in Wasmtime?
pub fn is_trampoline_type(&self) -> bool {
self.params().iter().all(|p| *p == p.trampoline_type())
&& self.returns().iter().all(|r| *r == r.trampoline_type())
}
/// Get the version of this function type that is suitable for usage as a
/// trampoline in Wasmtime.
///
/// If this function is suitable for trampoline usage as-is, then a borrowed
/// `Cow` is returned. If it must be tweaked for trampoline usage, then an
/// owned `Cow` is returned.
///
/// ## What is a trampoline type?
///
/// All reference types in parameters and results are mapped to their
/// nullable top type, e.g. `(ref $my_struct_type)` becomes `(ref null
/// any)`.
///
/// This allows us to share trampolines between functions whose signatures
/// both map to the same trampoline type. It also allows the host to satisfy
/// a Wasm module's function import of type `S` with a function of type `T`
/// where `T <: S`, even when the Wasm module never defines the type `T`
/// (and might never even be able to!)
///
/// The flip side is that this adds a constraint to our trampolines: they
/// can only pass references around (e.g. move a reference from one calling
/// convention's location to another's) and may not actually inspect the
/// references themselves (unless the trampolines start doing explicit,
/// fallible downcasts, but if we ever need that, then we might want to
/// redesign this stuff).
pub fn trampoline_type(&self) -> Cow<'_, Self> {
if self.is_trampoline_type() {
return Cow::Borrowed(self);
}
Cow::Owned(Self::new(
self.params().iter().map(|p| p.trampoline_type()).collect(),
self.returns().iter().map(|r| r.trampoline_type()).collect(),
))
}
}
/// Represents storage types introduced in the GC spec for array and struct fields.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub enum WasmStorageType {
/// The storage type is i8.
I8,
/// The storage type is i16.
I16,
/// The storage type is a value type.
Val(WasmValType),
}
impl fmt::Display for WasmStorageType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
WasmStorageType::I8 => write!(f, "i8"),
WasmStorageType::I16 => write!(f, "i16"),
WasmStorageType::Val(v) => fmt::Display::fmt(v, f),
}
}
}
impl TypeTrace for WasmStorageType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
match self {
WasmStorageType::I8 | WasmStorageType::I16 => Ok(()),
WasmStorageType::Val(v) => v.trace(func),
}
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
match self {
WasmStorageType::I8 | WasmStorageType::I16 => Ok(()),
WasmStorageType::Val(v) => v.trace_mut(func),
}
}
}
/// The type of a struct field or array element.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmFieldType {
/// The field's element type.
pub element_type: WasmStorageType,
/// Whether this field can be mutated or not.
pub mutable: bool,
}
impl fmt::Display for WasmFieldType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.mutable {
write!(f, "(mut {})", self.element_type)
} else {
fmt::Display::fmt(&self.element_type, f)
}
}
}
impl TypeTrace for WasmFieldType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
self.element_type.trace(func)
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
self.element_type.trace_mut(func)
}
}
/// A concrete array type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmArrayType(pub WasmFieldType);
impl fmt::Display for WasmArrayType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(array {})", self.0)
}
}
impl TypeTrace for WasmArrayType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
self.0.trace(func)
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
self.0.trace_mut(func)
}
}
/// A concrete struct type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmStructType {
/// The fields that make up this struct type.
pub fields: Box<[WasmFieldType]>,
}
impl fmt::Display for WasmStructType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(struct")?;
for ty in self.fields.iter() {
write!(f, " {ty}")?;
}
write!(f, ")")
}
}
impl TypeTrace for WasmStructType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
for f in self.fields.iter() {
f.trace(func)?;
}
Ok(())
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
for f in self.fields.iter_mut() {
f.trace_mut(func)?;
}
Ok(())
}
}
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing type")]
pub struct WasmCompositeType {
/// The type defined inside the composite type.
pub inner: WasmCompositeInnerType,
/// Is the composite type shared? This is part of the
/// shared-everything-threads proposal.
pub shared: bool,
}
impl fmt::Display for WasmCompositeType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.shared {
write!(f, "(shared ")?;
}
fmt::Display::fmt(&self.inner, f)?;
if self.shared {
write!(f, ")")?;
}
Ok(())
}
}
/// A function, array, or struct type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing variants")]
pub enum WasmCompositeInnerType {
Array(WasmArrayType),
Func(WasmFuncType),
Struct(WasmStructType),
}
impl fmt::Display for WasmCompositeInnerType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Array(ty) => fmt::Display::fmt(ty, f),
Self::Func(ty) => fmt::Display::fmt(ty, f),
Self::Struct(ty) => fmt::Display::fmt(ty, f),
}
}
}
#[allow(missing_docs, reason = "self-describing functions")]
impl WasmCompositeInnerType {
#[inline]
pub fn is_array(&self) -> bool {
matches!(self, Self::Array(_))
}
#[inline]
pub fn as_array(&self) -> Option<&WasmArrayType> {
match self {
Self::Array(f) => Some(f),
_ => None,
}
}
#[inline]
pub fn unwrap_array(&self) -> &WasmArrayType {
self.as_array().unwrap()
}
#[inline]
pub fn is_func(&self) -> bool {
matches!(self, Self::Func(_))
}
#[inline]
pub fn as_func(&self) -> Option<&WasmFuncType> {
match self {
Self::Func(f) => Some(f),
_ => None,
}
}
#[inline]
pub fn unwrap_func(&self) -> &WasmFuncType {
self.as_func().unwrap()
}
#[inline]
pub fn is_struct(&self) -> bool {
matches!(self, Self::Struct(_))
}
#[inline]
pub fn as_struct(&self) -> Option<&WasmStructType> {
match self {
Self::Struct(f) => Some(f),
_ => None,
}
}
#[inline]
pub fn unwrap_struct(&self) -> &WasmStructType {
self.as_struct().unwrap()
}
}
impl TypeTrace for WasmCompositeType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
match &self.inner {
WasmCompositeInnerType::Array(a) => a.trace(func),
WasmCompositeInnerType::Func(f) => f.trace(func),
WasmCompositeInnerType::Struct(a) => a.trace(func),
}
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
match &mut self.inner {
WasmCompositeInnerType::Array(a) => a.trace_mut(func),
WasmCompositeInnerType::Func(f) => f.trace_mut(func),
WasmCompositeInnerType::Struct(a) => a.trace_mut(func),
}
}
}
/// A concrete, user-defined (or host-defined) Wasm type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmSubType {
/// Whether this type is forbidden from being the supertype of any other
/// type.
pub is_final: bool,
/// This type's supertype, if any.
pub supertype: Option<EngineOrModuleTypeIndex>,
/// The array, function, or struct that is defined.
pub composite_type: WasmCompositeType,
}
impl fmt::Display for WasmSubType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.is_final && self.supertype.is_none() {
fmt::Display::fmt(&self.composite_type, f)
} else {
write!(f, "(sub")?;
if self.is_final {
write!(f, " final")?;
}
if let Some(sup) = self.supertype {
write!(f, " {sup}")?;
}
write!(f, " {})", self.composite_type)
}
}
}
/// Implicitly define all of these helper functions to handle only unshared
/// types; essentially, these act like `is_unshared_*` functions until shared
/// support is implemented.
#[allow(missing_docs, reason = "self-describing functions")]
impl WasmSubType {
#[inline]
pub fn is_func(&self) -> bool {
self.composite_type.inner.is_func() && !self.composite_type.shared
}
#[inline]
pub fn as_func(&self) -> Option<&WasmFuncType> {
if self.composite_type.shared {
None
} else {
self.composite_type.inner.as_func()
}
}
#[inline]
pub fn unwrap_func(&self) -> &WasmFuncType {
assert!(!self.composite_type.shared);
self.composite_type.inner.unwrap_func()
}
#[inline]
pub fn is_array(&self) -> bool {
self.composite_type.inner.is_array() && !self.composite_type.shared
}
#[inline]
pub fn as_array(&self) -> Option<&WasmArrayType> {
if self.composite_type.shared {
None
} else {
self.composite_type.inner.as_array()
}
}
#[inline]
pub fn unwrap_array(&self) -> &WasmArrayType {
assert!(!self.composite_type.shared);
self.composite_type.inner.unwrap_array()
}
#[inline]
pub fn is_struct(&self) -> bool {
self.composite_type.inner.is_struct() && !self.composite_type.shared
}
#[inline]
pub fn as_struct(&self) -> Option<&WasmStructType> {
if self.composite_type.shared {
None
} else {
self.composite_type.inner.as_struct()
}
}
#[inline]
pub fn unwrap_struct(&self) -> &WasmStructType {
assert!(!self.composite_type.shared);
self.composite_type.inner.unwrap_struct()
}
}
impl TypeTrace for WasmSubType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
if let Some(sup) = self.supertype {
func(sup)?;
}
self.composite_type.trace(func)
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
if let Some(sup) = self.supertype.as_mut() {
func(sup)?;
}
self.composite_type.trace_mut(func)
}
}
/// A recursive type group.
///
/// Types within a recgroup can have forward references to each other, which
/// allows for cyclic types, for example a function `$f` that returns a
/// reference to a function `$g` which returns a reference to a function `$f`:
///
/// ```ignore
/// (rec (type (func $f (result (ref null $g))))
/// (type (func $g (result (ref null $f)))))
/// ```
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmRecGroup {
/// The types inside of this recgroup.
pub types: Box<[WasmSubType]>,
}
impl TypeTrace for WasmRecGroup {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
for ty in self.types.iter() {
ty.trace(func)?;
}
Ok(())
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
for ty in self.types.iter_mut() {
ty.trace_mut(func)?;
}
Ok(())
}
}
/// Index type of a function (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct FuncIndex(u32);
entity_impl!(FuncIndex);
/// Index type of a defined function inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedFuncIndex(u32);
entity_impl!(DefinedFuncIndex);
/// Index type of a defined table inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedTableIndex(u32);
entity_impl!(DefinedTableIndex);
/// Index type of a defined memory inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedMemoryIndex(u32);
entity_impl!(DefinedMemoryIndex);
/// Index type of a defined memory inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct OwnedMemoryIndex(u32);
entity_impl!(OwnedMemoryIndex);
/// Index type of a defined global inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedGlobalIndex(u32);
entity_impl!(DefinedGlobalIndex);
/// Index type of a table (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct TableIndex(u32);
entity_impl!(TableIndex);
/// Index type of a global variable (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct GlobalIndex(u32);
entity_impl!(GlobalIndex);
/// Index type of a linear memory (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct MemoryIndex(u32);
entity_impl!(MemoryIndex);
/// Index type of a canonicalized recursive type group inside a WebAssembly
/// module (as opposed to canonicalized within the whole engine).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct ModuleInternedRecGroupIndex(u32);
entity_impl!(ModuleInternedRecGroupIndex);
/// Index type of a canonicalized recursive type group inside the whole engine
/// (as opposed to canonicalized within just a single Wasm module).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct EngineInternedRecGroupIndex(u32);
entity_impl!(EngineInternedRecGroupIndex);
/// Index type of a type (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct TypeIndex(u32);
entity_impl!(TypeIndex);
/// A canonicalized type index referencing a type within a single recursion
/// group from another type within that same recursion group.
///
/// This is only suitable for use when hash consing and deduplicating rec
/// groups.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct RecGroupRelativeTypeIndex(u32);
entity_impl!(RecGroupRelativeTypeIndex);
/// A canonicalized type index for a type within a single WebAssembly module.
///
/// Note that this is deduplicated only at the level of a single WebAssembly
/// module, not at the level of a whole store or engine. This means that these
/// indices are only unique within the context of a single Wasm module, and
/// therefore are not suitable for runtime type checks (which, in general, may
/// involve entities defined in different modules).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct ModuleInternedTypeIndex(u32);
entity_impl!(ModuleInternedTypeIndex);
/// A canonicalized type index into an engine's shared type registry.
///
/// This is canonicalized/deduped at the level of a whole engine, across all the
/// modules loaded into that engine, not just at the level of a single
/// particular module. This means that `VMSharedTypeIndex` is usable for
/// e.g. checking that function signatures match during an indirect call
/// (potentially to a function defined in a different module) at runtime.
#[repr(transparent)] // Used directly by JIT code.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct VMSharedTypeIndex(u32);
entity_impl!(VMSharedTypeIndex);
impl VMSharedTypeIndex {
/// Create a new `VMSharedTypeIndex`.
#[inline]
pub fn new(value: u32) -> Self {
assert_ne!(
value,
u32::MAX,
"u32::MAX is reserved for the default value"
);
Self(value)
}
/// Returns the underlying bits of the index.
#[inline]
pub fn bits(&self) -> u32 {
self.0
}
}
impl Default for VMSharedTypeIndex {
#[inline]
fn default() -> Self {
Self(u32::MAX)
}
}
/// Index type of a passive data segment inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DataIndex(u32);
entity_impl!(DataIndex);
/// Index type of a passive element segment inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct ElemIndex(u32);
entity_impl!(ElemIndex);
/// Index type of an event inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct TagIndex(u32);
entity_impl!(TagIndex);
/// Index into the global list of modules found within an entire component.
///
/// Module translations are saved on the side to get fully compiled after
/// the original component has finished being translated.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct StaticModuleIndex(u32);
entity_impl!(StaticModuleIndex);
/// An index of an entity.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub enum EntityIndex {
/// Function index.
Function(FuncIndex),
/// Table index.
Table(TableIndex),
/// Memory index.
Memory(MemoryIndex),
/// Global index.
Global(GlobalIndex),
}
impl From<FuncIndex> for EntityIndex {
fn from(idx: FuncIndex) -> EntityIndex {
EntityIndex::Function(idx)
}
}
impl From<TableIndex> for EntityIndex {
fn from(idx: TableIndex) -> EntityIndex {
EntityIndex::Table(idx)
}
}
impl From<MemoryIndex> for EntityIndex {
fn from(idx: MemoryIndex) -> EntityIndex {
EntityIndex::Memory(idx)
}
}
impl From<GlobalIndex> for EntityIndex {
fn from(idx: GlobalIndex) -> EntityIndex {
EntityIndex::Global(idx)
}
}
/// A type of an item in a wasm module where an item is typically something that
/// can be exported.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum EntityType {
/// A global variable with the specified content type
Global(Global),
/// A linear memory with the specified limits
Memory(Memory),
/// An event definition.
Tag(Tag),
/// A table with the specified element type and limits
Table(Table),
/// A function type where the index points to the type section and records a
/// function signature.
Function(EngineOrModuleTypeIndex),
}
impl TypeTrace for EntityType {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
match self {
Self::Global(g) => g.trace(func),
Self::Table(t) => t.trace(func),
Self::Function(idx) => func(*idx),
Self::Memory(_) | Self::Tag(_) => Ok(()),
}
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
match self {
Self::Global(g) => g.trace_mut(func),
Self::Table(t) => t.trace_mut(func),
Self::Function(idx) => func(idx),
Self::Memory(_) | Self::Tag(_) => Ok(()),
}
}
}
impl EntityType {
/// Assert that this entity is a global
pub fn unwrap_global(&self) -> &Global {
match self {
EntityType::Global(g) => g,
_ => panic!("not a global"),
}
}
/// Assert that this entity is a memory
pub fn unwrap_memory(&self) -> &Memory {
match self {
EntityType::Memory(g) => g,
_ => panic!("not a memory"),
}
}
/// Assert that this entity is a tag
pub fn unwrap_tag(&self) -> &Tag {
match self {
EntityType::Tag(g) => g,
_ => panic!("not a tag"),
}
}
/// Assert that this entity is a table
pub fn unwrap_table(&self) -> &Table {
match self {
EntityType::Table(g) => g,
_ => panic!("not a table"),
}
}
/// Assert that this entity is a function
pub fn unwrap_func(&self) -> EngineOrModuleTypeIndex {
match self {
EntityType::Function(g) => *g,
_ => panic!("not a func"),
}
}
}
/// A WebAssembly global.
///
/// Note that we record both the original Wasm type and the Cranelift IR type
/// used to represent it. This is because multiple different kinds of Wasm types
/// might be represented with the same Cranelift IR type. For example, both a
/// Wasm `i64` and a `funcref` might be represented with a Cranelift `i64` on
/// 64-bit architectures, and when GC is not required for func refs.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Global {
/// The Wasm type of the value stored in the global.
pub wasm_ty: crate::WasmValType,
/// A flag indicating whether the value may change at runtime.
pub mutability: bool,
}
impl TypeTrace for Global {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
let Global {
wasm_ty,
mutability: _,
} = self;
wasm_ty.trace(func)
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
let Global {
wasm_ty,
mutability: _,
} = self;
wasm_ty.trace_mut(func)
}
}
/// A constant expression.
///
/// These are used to initialize globals, table elements, etc...
#[derive(Clone, Debug, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct ConstExpr {
ops: SmallVec<[ConstOp; 2]>,
}
impl ConstExpr {
/// Create a new const expression from the given opcodes.
///
/// Does not do any validation that the const expression is well-typed.
///
/// Panics if given zero opcodes.
pub fn new(ops: impl IntoIterator<Item = ConstOp>) -> Self {
let ops = ops.into_iter().collect::<SmallVec<[ConstOp; 2]>>();
assert!(!ops.is_empty());
ConstExpr { ops }
}
/// Create a new const expression from a `wasmparser` const expression.
///
/// Returns the new const expression as well as the escaping function
/// indices that appeared in `ref.func` instructions, if any.
pub fn from_wasmparser(
expr: wasmparser::ConstExpr<'_>,
) -> WasmResult<(Self, SmallVec<[FuncIndex; 1]>)> {
let mut iter = expr
.get_operators_reader()
.into_iter_with_offsets()
.peekable();
let mut ops = SmallVec::<[ConstOp; 2]>::new();
let mut escaped = SmallVec::<[FuncIndex; 1]>::new();
while let Some(res) = iter.next() {
let (op, offset) = res?;
// If we reach an `end` instruction, and there are no more
// instructions after that, then we are done reading this const
// expression.
if matches!(op, wasmparser::Operator::End) && iter.peek().is_none() {
break;
}
// Track any functions that appear in `ref.func` so that callers can
// make sure to flag them as escaping.
if let wasmparser::Operator::RefFunc { function_index } = &op {
escaped.push(FuncIndex::from_u32(*function_index));
}
ops.push(ConstOp::from_wasmparser(op, offset)?);
}
Ok((Self { ops }, escaped))
}
/// Get the opcodes that make up this const expression.
pub fn ops(&self) -> &[ConstOp] {
&self.ops
}
/// Is this ConstExpr a provably nonzero integer value?
///
/// This must be conservative: if the expression *might* be zero,
/// it must return `false`. It is always allowed to return `false`
/// for some expression kind that we don't support. However, if it
/// returns `true`, the expression must be actually nonzero.
///
/// We use this for certain table optimizations that rely on
/// knowing for sure that index 0 is not referenced.
pub fn provably_nonzero_i32(&self) -> bool {
assert!(self.ops.len() > 0);
if self.ops.len() > 1 {
// Compound expressions not yet supported: conservatively
// return `false` (we can't prove nonzero).
return false;
}
// Exactly one op at this point.
match self.ops[0] {
// An actual zero value -- definitely not nonzero!
ConstOp::I32Const(0) => false,
// Any other constant value -- provably nonzero, if above
// did not match.
ConstOp::I32Const(_) => true,
// Anything else: we can't prove anything.
_ => false,
}
}
}
/// The subset of Wasm opcodes that are constant.
#[allow(missing_docs, reason = "self-describing variants")]
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub enum ConstOp {
I32Const(i32),
I64Const(i64),
F32Const(u32),
F64Const(u64),
V128Const(u128),
GlobalGet(GlobalIndex),
RefI31,
RefNull,
RefFunc(FuncIndex),
I32Add,
I32Sub,
I32Mul,
I64Add,
I64Sub,
I64Mul,
StructNew {
struct_type_index: TypeIndex,
},
StructNewDefault {
struct_type_index: TypeIndex,
},
ArrayNew {
array_type_index: TypeIndex,
},
ArrayNewDefault {
array_type_index: TypeIndex,
},
ArrayNewFixed {
array_type_index: TypeIndex,
array_size: u32,
},
}
impl ConstOp {
/// Convert a `wasmparser::Operator` to a `ConstOp`.
pub fn from_wasmparser(op: wasmparser::Operator<'_>, offset: usize) -> WasmResult<Self> {
use wasmparser::Operator as O;
Ok(match op {
O::I32Const { value } => Self::I32Const(value),
O::I64Const { value } => Self::I64Const(value),
O::F32Const { value } => Self::F32Const(value.bits()),
O::F64Const { value } => Self::F64Const(value.bits()),
O::V128Const { value } => Self::V128Const(u128::from_le_bytes(*value.bytes())),
O::RefNull { hty: _ } => Self::RefNull,
O::RefFunc { function_index } => Self::RefFunc(FuncIndex::from_u32(function_index)),
O::GlobalGet { global_index } => Self::GlobalGet(GlobalIndex::from_u32(global_index)),
O::RefI31 => Self::RefI31,
O::I32Add => Self::I32Add,
O::I32Sub => Self::I32Sub,
O::I32Mul => Self::I32Mul,
O::I64Add => Self::I64Add,
O::I64Sub => Self::I64Sub,
O::I64Mul => Self::I64Mul,
O::StructNew { struct_type_index } => Self::StructNew {
struct_type_index: TypeIndex::from_u32(struct_type_index),
},
O::StructNewDefault { struct_type_index } => Self::StructNewDefault {
struct_type_index: TypeIndex::from_u32(struct_type_index),
},
O::ArrayNew { array_type_index } => Self::ArrayNew {
array_type_index: TypeIndex::from_u32(array_type_index),
},
O::ArrayNewDefault { array_type_index } => Self::ArrayNewDefault {
array_type_index: TypeIndex::from_u32(array_type_index),
},
O::ArrayNewFixed {
array_type_index,
array_size,
} => Self::ArrayNewFixed {
array_type_index: TypeIndex::from_u32(array_type_index),
array_size,
},
op => {
return Err(wasm_unsupported!(
"unsupported opcode in const expression at offset {offset:#x}: {op:?}",
));
}
})
}
}
/// The type that can be used to index into [Memory] and [Table].
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing variants")]
pub enum IndexType {
I32,
I64,
}
/// The size range of resizeable storage associated with [Memory] types and [Table] types.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing fields")]
pub struct Limits {
pub min: u64,
pub max: Option<u64>,
}
/// WebAssembly table.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Table {
/// The type of the index used to access the table.
pub idx_type: IndexType,
/// Tables are constrained by limits for their minimum and optionally maximum size.
/// The limits are given in numbers of entries.
pub limits: Limits,
/// The table elements' Wasm type.
pub ref_type: WasmRefType,
}
impl TypeTrace for Table {
fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
where
F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
{
let Table {
ref_type: wasm_ty,
idx_type: _,
limits: _,
} = self;
wasm_ty.trace(func)
}
fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
where
F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
{
let Table {
ref_type: wasm_ty,
idx_type: _,
limits: _,
} = self;
wasm_ty.trace_mut(func)
}
}
/// WebAssembly linear memory.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Memory {
/// The type of the index used to access the memory.
pub idx_type: IndexType,
/// The limits constrain the minimum and optionally the maximum size of a memory.
/// The limits are given in units of page size.
pub limits: Limits,
/// Whether the memory may be shared between multiple threads.
pub shared: bool,
/// The log2 of this memory's page size, in bytes.
///
/// By default the page size is 64KiB (0x10000; 2**16; 1<<16; 65536) but the
/// custom-page-sizes proposal allows opting into a page size of `1`.
pub page_size_log2: u8,
}
/// Maximum size, in bytes, of 32-bit memories (4G)
pub const WASM32_MAX_SIZE: u64 = 1 << 32;
impl Memory {
/// WebAssembly page sizes are 64KiB by default.
pub const DEFAULT_PAGE_SIZE: u32 = 0x10000;
/// WebAssembly page sizes are 64KiB (or `2**16`) by default.
pub const DEFAULT_PAGE_SIZE_LOG2: u8 = {
let log2 = 16;
assert!(1 << log2 == Memory::DEFAULT_PAGE_SIZE);
log2
};
/// Returns the minimum size, in bytes, that this memory must be.
///
/// # Errors
///
/// Returns an error if the calculation of the minimum size overflows the
/// `u64` return type. This means that the memory can't be allocated but
/// it's deferred to the caller to how to deal with that.
pub fn minimum_byte_size(&self) -> Result<u64, SizeOverflow> {
self.limits
.min
.checked_mul(self.page_size())
.ok_or(SizeOverflow)
}
/// Returns the maximum size, in bytes, that this memory is allowed to be.
///
/// Note that the return value here is not an `Option` despite the maximum
/// size of a linear memory being optional in wasm. If a maximum size
/// is not present in the memory's type then a maximum size is selected for
/// it. For example the maximum size of a 32-bit memory is `1<<32`. The
/// maximum size of a 64-bit linear memory is chosen to be a value that
/// won't ever be allowed at runtime.
///
/// # Errors
///
/// Returns an error if the calculation of the maximum size overflows the
/// `u64` return type. This means that the memory can't be allocated but
/// it's deferred to the caller to how to deal with that.
pub fn maximum_byte_size(&self) -> Result<u64, SizeOverflow> {
match self.limits.max {
Some(max) => max.checked_mul(self.page_size()).ok_or(SizeOverflow),
None => {
let min = self.minimum_byte_size()?;
Ok(min.max(self.max_size_based_on_index_type()))
}
}
}
/// Get the size of this memory's pages, in bytes.
pub fn page_size(&self) -> u64 {
debug_assert!(
self.page_size_log2 == 16 || self.page_size_log2 == 0,
"invalid page_size_log2: {}; must be 16 or 0",
self.page_size_log2
);
1 << self.page_size_log2
}
/// Returns the maximum size memory is allowed to be only based on the
/// index type used by this memory.
///
/// For example 32-bit linear memories return `1<<32` from this method.
pub fn max_size_based_on_index_type(&self) -> u64 {
match self.idx_type {
IndexType::I64 =>
// Note that the true maximum size of a 64-bit linear memory, in
// bytes, cannot be represented in a `u64`. That would require a u65
// to store `1<<64`. Despite that no system can actually allocate a
// full 64-bit linear memory so this is instead emulated as "what if
// the kernel fit in a single Wasm page of linear memory". Shouldn't
// ever actually be possible but it provides a number to serve as an
// effective maximum.
{
0_u64.wrapping_sub(self.page_size())
}
IndexType::I32 => WASM32_MAX_SIZE,
}
}
/// Returns whether this memory can be implemented with virtual memory on
/// a host with `host_page_size_log2`.
///
/// When this function returns `true` then it means that signals such as
/// SIGSEGV on the host are compatible with wasm and can be used to
/// represent out-of-bounds memory accesses.
///
/// When this function returns `false` then it means that this memory must,
/// for example, have explicit bounds checks. This additionally means that
/// virtual memory traps (e.g. SIGSEGV) cannot be relied on to implement
/// linear memory semantics.
pub fn can_use_virtual_memory(&self, tunables: &Tunables, host_page_size_log2: u8) -> bool {
tunables.signals_based_traps && self.page_size_log2 >= host_page_size_log2
}
/// Returns whether this memory is a candidate for bounds check elision
/// given the configuration and host page size.
///
/// This function determines whether the given compilation configuration and
/// hos enables possible bounds check elision for this memory. Bounds checks
/// can only be elided if [`Memory::can_use_virtual_memory`] returns `true`
/// for example but there are additionally requirements on the index size of
/// this memory and the memory reservation in `tunables`.
///
/// Currently the only case that supports bounds check elision is when all
/// of these apply:
///
/// * When [`Memory::can_use_virtual_memory`] returns `true`.
/// * This is a 32-bit linear memory (e.g. not 64-bit)
/// * `tunables.memory_reservation` is in excess of 4GiB
///
/// In this situation all computable addresses fall within the reserved
/// space (modulo static offsets factoring in guard pages) so bounds checks
/// may be elidable.
pub fn can_elide_bounds_check(&self, tunables: &Tunables, host_page_size_log2: u8) -> bool {
self.can_use_virtual_memory(tunables, host_page_size_log2)
&& self.idx_type == IndexType::I32
&& tunables.memory_reservation >= (1 << 32)
}
/// Returns the static size of this heap in bytes at runtime, if available.
///
/// This is only computable when the minimum size equals the maximum size.
pub fn static_heap_size(&self) -> Option<u64> {
let min = self.minimum_byte_size().ok()?;
let max = self.maximum_byte_size().ok()?;
if min == max {
Some(min)
} else {
None
}
}
/// Returs whether or not the base pointer of this memory is allowed to be
/// relocated at runtime.
///
/// When this function returns `false` then it means that after the initial
/// allocation the base pointer is constant for the entire lifetime of a
/// memory. This can enable compiler optimizations, for example.
pub fn memory_may_move(&self, tunables: &Tunables) -> bool {
// Shared memories cannot ever relocate their base pointer so the
// settings configured in the engine must be appropriate for them ahead
// of time.
if self.shared {
return false;
}
// If movement is disallowed in engine configuration, then the answer is
// "no".
if !tunables.memory_may_move {
return false;
}
// If the maximum size of this memory is above the threshold of the
// initial memory reservation then the memory may move.
let max = self.maximum_byte_size().unwrap_or(u64::MAX);
max > tunables.memory_reservation
}
}
#[derive(Copy, Clone, Debug)]
#[allow(missing_docs, reason = "self-describing error struct")]
pub struct SizeOverflow;
impl fmt::Display for SizeOverflow {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("size overflow calculating memory size")
}
}
impl core::error::Error for SizeOverflow {}
impl From<wasmparser::MemoryType> for Memory {
fn from(ty: wasmparser::MemoryType) -> Memory {
let idx_type = match ty.memory64 {
false => IndexType::I32,
true => IndexType::I64,
};
let limits = Limits {
min: ty.initial,
max: ty.maximum,
};
let page_size_log2 = u8::try_from(ty.page_size_log2.unwrap_or(16)).unwrap();
debug_assert!(
page_size_log2 == 16 || page_size_log2 == 0,
"invalid page_size_log2: {page_size_log2}; must be 16 or 0"
);
Memory {
idx_type,
limits,
shared: ty.shared,
page_size_log2,
}
}
}
/// WebAssembly event.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Tag {
/// The event signature type.
pub ty: TypeIndex,
}
impl From<wasmparser::TagType> for Tag {
fn from(ty: wasmparser::TagType) -> Tag {
match ty.kind {
wasmparser::TagKind::Exception => Tag {
ty: TypeIndex::from_u32(ty.func_type_idx),
},
}
}
}
/// Helpers used to convert a `wasmparser` type to a type in this crate.
#[allow(missing_docs, reason = "self-describing functions")]
pub trait TypeConvert {
/// Converts a wasmparser table type into a wasmtime type
fn convert_global_type(&self, ty: &wasmparser::GlobalType) -> Global {
Global {
wasm_ty: self.convert_valtype(ty.content_type),
mutability: ty.mutable,
}
}
/// Converts a wasmparser table type into a wasmtime type
fn convert_table_type(&self, ty: &wasmparser::TableType) -> WasmResult<Table> {
let idx_type = match ty.table64 {
false => IndexType::I32,
true => IndexType::I64,
};
let limits = Limits {
min: ty.initial.try_into().unwrap(),
max: ty.maximum.map(|i| i.try_into().unwrap()),
};
Ok(Table {
idx_type,
limits,
ref_type: self.convert_ref_type(ty.element_type),
})
}
fn convert_sub_type(&self, ty: &wasmparser::SubType) -> WasmSubType {
WasmSubType {
is_final: ty.is_final,
supertype: ty.supertype_idx.map(|i| self.lookup_type_index(i.unpack())),
composite_type: self.convert_composite_type(&ty.composite_type),
}
}
fn convert_composite_type(&self, ty: &wasmparser::CompositeType) -> WasmCompositeType {
let inner = match &ty.inner {
wasmparser::CompositeInnerType::Func(f) => {
WasmCompositeInnerType::Func(self.convert_func_type(f))
}
wasmparser::CompositeInnerType::Array(a) => {
WasmCompositeInnerType::Array(self.convert_array_type(a))
}
wasmparser::CompositeInnerType::Struct(s) => {
WasmCompositeInnerType::Struct(self.convert_struct_type(s))
}
wasmparser::CompositeInnerType::Cont(_) => {
unimplemented!("continuation types")
}
};
WasmCompositeType {
inner,
shared: ty.shared,
}
}
fn convert_struct_type(&self, ty: &wasmparser::StructType) -> WasmStructType {
WasmStructType {
fields: ty
.fields
.iter()
.map(|f| self.convert_field_type(f))
.collect(),
}
}
fn convert_array_type(&self, ty: &wasmparser::ArrayType) -> WasmArrayType {
WasmArrayType(self.convert_field_type(&ty.0))
}
fn convert_field_type(&self, ty: &wasmparser::FieldType) -> WasmFieldType {
WasmFieldType {
element_type: self.convert_storage_type(&ty.element_type),
mutable: ty.mutable,
}
}
fn convert_storage_type(&self, ty: &wasmparser::StorageType) -> WasmStorageType {
match ty {
wasmparser::StorageType::I8 => WasmStorageType::I8,
wasmparser::StorageType::I16 => WasmStorageType::I16,
wasmparser::StorageType::Val(v) => WasmStorageType::Val(self.convert_valtype(*v)),
}
}
/// Converts a wasmparser function type to a wasmtime type
fn convert_func_type(&self, ty: &wasmparser::FuncType) -> WasmFuncType {
let params = ty
.params()
.iter()
.map(|t| self.convert_valtype(*t))
.collect();
let results = ty
.results()
.iter()
.map(|t| self.convert_valtype(*t))
.collect();
WasmFuncType::new(params, results)
}
/// Converts a wasmparser value type to a wasmtime type
fn convert_valtype(&self, ty: wasmparser::ValType) -> WasmValType {
match ty {
wasmparser::ValType::I32 => WasmValType::I32,
wasmparser::ValType::I64 => WasmValType::I64,
wasmparser::ValType::F32 => WasmValType::F32,
wasmparser::ValType::F64 => WasmValType::F64,
wasmparser::ValType::V128 => WasmValType::V128,
wasmparser::ValType::Ref(t) => WasmValType::Ref(self.convert_ref_type(t)),
}
}
/// Converts a wasmparser reference type to a wasmtime type
fn convert_ref_type(&self, ty: wasmparser::RefType) -> WasmRefType {
WasmRefType {
nullable: ty.is_nullable(),
heap_type: self.convert_heap_type(ty.heap_type()),
}
}
/// Converts a wasmparser heap type to a wasmtime type
fn convert_heap_type(&self, ty: wasmparser::HeapType) -> WasmHeapType {
match ty {
wasmparser::HeapType::Concrete(i) => self.lookup_heap_type(i),
wasmparser::HeapType::Abstract { ty, shared: false } => match ty {
wasmparser::AbstractHeapType::Extern => WasmHeapType::Extern,
wasmparser::AbstractHeapType::NoExtern => WasmHeapType::NoExtern,
wasmparser::AbstractHeapType::Func => WasmHeapType::Func,
wasmparser::AbstractHeapType::NoFunc => WasmHeapType::NoFunc,
wasmparser::AbstractHeapType::Any => WasmHeapType::Any,
wasmparser::AbstractHeapType::Eq => WasmHeapType::Eq,
wasmparser::AbstractHeapType::I31 => WasmHeapType::I31,
wasmparser::AbstractHeapType::Array => WasmHeapType::Array,
wasmparser::AbstractHeapType::Struct => WasmHeapType::Struct,
wasmparser::AbstractHeapType::None => WasmHeapType::None,
wasmparser::AbstractHeapType::Exn
| wasmparser::AbstractHeapType::NoExn
| wasmparser::AbstractHeapType::Cont
| wasmparser::AbstractHeapType::NoCont => {
unimplemented!("unsupported heap type {ty:?}");
}
},
_ => unimplemented!("unsupported heap type {ty:?}"),
}
}
/// Converts the specified type index from a heap type into a canonicalized
/// heap type.
fn lookup_heap_type(&self, index: wasmparser::UnpackedIndex) -> WasmHeapType;
/// Converts the specified type index from a heap type into a canonicalized
/// heap type.
fn lookup_type_index(&self, index: wasmparser::UnpackedIndex) -> EngineOrModuleTypeIndex;
}