wasmtime_environ/
types.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
use crate::{wasm_unsupported, Tunables, WasmResult};
use alloc::borrow::Cow;
use alloc::boxed::Box;
use core::{fmt, ops::Range};
use cranelift_entity::entity_impl;
use serde_derive::{Deserialize, Serialize};
use smallvec::SmallVec;

/// A trait for things that can trace all type-to-type edges, aka all type
/// indices within this thing.
pub trait TypeTrace {
    /// Visit each edge.
    ///
    /// The function can break out of tracing by returning `Err(E)`.
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>;

    /// Visit each edge, mutably.
    ///
    /// Allows updating edges.
    ///
    /// The function can break out of tracing by returning `Err(E)`.
    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>;

    /// Trace all `VMSharedTypeIndex` edges, ignoring other edges.
    fn trace_engine_indices<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(VMSharedTypeIndex) -> Result<(), E>,
    {
        self.trace(&mut |idx| match idx {
            EngineOrModuleTypeIndex::Engine(idx) => func(idx),
            EngineOrModuleTypeIndex::Module(_) | EngineOrModuleTypeIndex::RecGroup(_) => Ok(()),
        })
    }

    /// Canonicalize `self` by rewriting all type references inside `self` from
    /// module-level interned type indices to engine-level interned type
    /// indices.
    ///
    /// This produces types that are suitable for usage by the runtime (only
    /// contains `VMSharedTypeIndex` type references).
    ///
    /// This does not produce types that are suitable for hash consing types
    /// (must have recgroup-relative indices for type indices referencing other
    /// types in the same recgroup).
    fn canonicalize_for_runtime_usage<F>(&mut self, module_to_engine: &mut F)
    where
        F: FnMut(ModuleInternedTypeIndex) -> VMSharedTypeIndex,
    {
        self.trace_mut::<_, ()>(&mut |idx| match idx {
            EngineOrModuleTypeIndex::Engine(_) => Ok(()),
            EngineOrModuleTypeIndex::Module(module_index) => {
                let engine_index = module_to_engine(*module_index);
                *idx = EngineOrModuleTypeIndex::Engine(engine_index);
                Ok(())
            }
            EngineOrModuleTypeIndex::RecGroup(_) => {
                panic!("should not already be canonicalized for hash consing")
            }
        })
        .unwrap()
    }

    /// Is this type canonicalized for runtime usage?
    fn is_canonicalized_for_runtime_usage(&self) -> bool {
        self.trace(&mut |idx| match idx {
            EngineOrModuleTypeIndex::Engine(_) => Ok(()),
            EngineOrModuleTypeIndex::Module(_) | EngineOrModuleTypeIndex::RecGroup(_) => Err(()),
        })
        .is_ok()
    }

    /// Canonicalize `self` by rewriting all type references inside `self` from
    /// module-level interned type indices to either engine-level interned type
    /// indices or recgroup-relative indices.
    ///
    /// This produces types that are suitable for hash consing and deduplicating
    /// recgroups (types may have recgroup-relative indices for references to
    /// other types within the same recgroup).
    ///
    /// This does *not* produce types that are suitable for usage by the runtime
    /// (only contain `VMSharedTypeIndex` type references).
    fn canonicalize_for_hash_consing<F>(
        &mut self,
        rec_group_range: Range<ModuleInternedTypeIndex>,
        module_to_engine: &mut F,
    ) where
        F: FnMut(ModuleInternedTypeIndex) -> VMSharedTypeIndex,
    {
        self.trace_mut::<_, ()>(&mut |idx| match *idx {
            EngineOrModuleTypeIndex::Engine(_) => Ok(()),
            EngineOrModuleTypeIndex::Module(module_index) => {
                *idx = if rec_group_range.start <= module_index {
                    // Any module index within the recursion group gets
                    // translated into a recgroup-relative index.
                    debug_assert!(module_index < rec_group_range.end);
                    let relative = module_index.as_u32() - rec_group_range.start.as_u32();
                    let relative = RecGroupRelativeTypeIndex::from_u32(relative);
                    EngineOrModuleTypeIndex::RecGroup(relative)
                } else {
                    // Cross-group indices are translated directly into
                    // `VMSharedTypeIndex`es.
                    debug_assert!(module_index < rec_group_range.start);
                    EngineOrModuleTypeIndex::Engine(module_to_engine(module_index))
                };
                Ok(())
            }
            EngineOrModuleTypeIndex::RecGroup(_) => {
                panic!("should not already be canonicalized for hash consing")
            }
        })
        .unwrap()
    }

    /// Is this type canonicalized for hash consing?
    fn is_canonicalized_for_hash_consing(&self) -> bool {
        self.trace(&mut |idx| match idx {
            EngineOrModuleTypeIndex::Engine(_) | EngineOrModuleTypeIndex::RecGroup(_) => Ok(()),
            EngineOrModuleTypeIndex::Module(_) => Err(()),
        })
        .is_ok()
    }
}

/// WebAssembly value type -- equivalent of `wasmparser::ValType`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum WasmValType {
    /// I32 type
    I32,
    /// I64 type
    I64,
    /// F32 type
    F32,
    /// F64 type
    F64,
    /// V128 type
    V128,
    /// Reference type
    Ref(WasmRefType),
}

impl fmt::Display for WasmValType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            WasmValType::I32 => write!(f, "i32"),
            WasmValType::I64 => write!(f, "i64"),
            WasmValType::F32 => write!(f, "f32"),
            WasmValType::F64 => write!(f, "f64"),
            WasmValType::V128 => write!(f, "v128"),
            WasmValType::Ref(rt) => write!(f, "{rt}"),
        }
    }
}

impl TypeTrace for WasmValType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match self {
            WasmValType::Ref(r) => r.trace(func),
            WasmValType::I32
            | WasmValType::I64
            | WasmValType::F32
            | WasmValType::F64
            | WasmValType::V128 => Ok(()),
        }
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match self {
            WasmValType::Ref(r) => r.trace_mut(func),
            WasmValType::I32
            | WasmValType::I64
            | WasmValType::F32
            | WasmValType::F64
            | WasmValType::V128 => Ok(()),
        }
    }
}

impl WasmValType {
    /// Is this a type that is represented as a `VMGcRef`?
    #[inline]
    pub fn is_vmgcref_type(&self) -> bool {
        match self {
            WasmValType::Ref(r) => r.is_vmgcref_type(),
            _ => false,
        }
    }

    /// Is this a type that is represented as a `VMGcRef` and is additionally
    /// not an `i31`?
    ///
    /// That is, is this a a type that actually refers to an object allocated in
    /// a GC heap?
    #[inline]
    pub fn is_vmgcref_type_and_not_i31(&self) -> bool {
        match self {
            WasmValType::Ref(r) => r.is_vmgcref_type_and_not_i31(),
            _ => false,
        }
    }

    fn trampoline_type(&self) -> Self {
        match self {
            WasmValType::Ref(r) => WasmValType::Ref(WasmRefType {
                nullable: true,
                heap_type: r.heap_type.top().into(),
            }),
            WasmValType::I32
            | WasmValType::I64
            | WasmValType::F32
            | WasmValType::F64
            | WasmValType::V128 => *self,
        }
    }
}

/// WebAssembly reference type -- equivalent of `wasmparser`'s RefType
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub struct WasmRefType {
    /// Whether or not this reference is nullable.
    pub nullable: bool,
    /// The heap type that this reference contains.
    pub heap_type: WasmHeapType,
}

impl TypeTrace for WasmRefType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        self.heap_type.trace(func)
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        self.heap_type.trace_mut(func)
    }
}

impl WasmRefType {
    /// Shorthand for `externref`
    pub const EXTERNREF: WasmRefType = WasmRefType {
        nullable: true,
        heap_type: WasmHeapType::Extern,
    };
    /// Shorthand for `funcref`
    pub const FUNCREF: WasmRefType = WasmRefType {
        nullable: true,
        heap_type: WasmHeapType::Func,
    };

    /// Is this a type that is represented as a `VMGcRef`?
    #[inline]
    pub fn is_vmgcref_type(&self) -> bool {
        self.heap_type.is_vmgcref_type()
    }

    /// Is this a type that is represented as a `VMGcRef` and is additionally
    /// not an `i31`?
    ///
    /// That is, is this a a type that actually refers to an object allocated in
    /// a GC heap?
    #[inline]
    pub fn is_vmgcref_type_and_not_i31(&self) -> bool {
        self.heap_type.is_vmgcref_type_and_not_i31()
    }
}

impl fmt::Display for WasmRefType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Self::FUNCREF => write!(f, "funcref"),
            Self::EXTERNREF => write!(f, "externref"),
            _ => {
                if self.nullable {
                    write!(f, "(ref null {})", self.heap_type)
                } else {
                    write!(f, "(ref {})", self.heap_type)
                }
            }
        }
    }
}

/// An interned type index, either at the module or engine level.
///
/// Roughly equivalent to `wasmparser::UnpackedIndex`, although doesn't have to
/// concern itself with recursion-group-local indices.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum EngineOrModuleTypeIndex {
    /// An index within an engine, canonicalized among all modules that can
    /// interact with each other.
    Engine(VMSharedTypeIndex),

    /// An index within the current Wasm module, canonicalized within just this
    /// current module.
    Module(ModuleInternedTypeIndex),

    /// An index within the containing type's rec group. This is only used when
    /// hashing and canonicalizing rec groups, and should never appear outside
    /// of the engine's type registry.
    RecGroup(RecGroupRelativeTypeIndex),
}

impl From<ModuleInternedTypeIndex> for EngineOrModuleTypeIndex {
    #[inline]
    fn from(i: ModuleInternedTypeIndex) -> Self {
        Self::Module(i)
    }
}

impl From<VMSharedTypeIndex> for EngineOrModuleTypeIndex {
    #[inline]
    fn from(i: VMSharedTypeIndex) -> Self {
        Self::Engine(i)
    }
}

impl From<RecGroupRelativeTypeIndex> for EngineOrModuleTypeIndex {
    #[inline]
    fn from(i: RecGroupRelativeTypeIndex) -> Self {
        Self::RecGroup(i)
    }
}

impl fmt::Display for EngineOrModuleTypeIndex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Engine(i) => write!(f, "(engine {})", i.bits()),
            Self::Module(i) => write!(f, "(module {})", i.as_u32()),
            Self::RecGroup(i) => write!(f, "(recgroup {})", i.as_u32()),
        }
    }
}

impl EngineOrModuleTypeIndex {
    /// Is this an engine-level type index?
    pub fn is_engine_type_index(self) -> bool {
        matches!(self, Self::Engine(_))
    }

    /// Get the underlying engine-level type index, if any.
    pub fn as_engine_type_index(self) -> Option<VMSharedTypeIndex> {
        match self {
            Self::Engine(e) => Some(e),
            Self::RecGroup(_) | Self::Module(_) => None,
        }
    }

    /// Get the underlying engine-level type index, or panic.
    pub fn unwrap_engine_type_index(self) -> VMSharedTypeIndex {
        self.as_engine_type_index()
            .unwrap_or_else(|| panic!("`unwrap_engine_type_index` on {self:?}"))
    }

    /// Is this an module-level type index?
    pub fn is_module_type_index(self) -> bool {
        matches!(self, Self::Module(_))
    }

    /// Get the underlying module-level type index, if any.
    pub fn as_module_type_index(self) -> Option<ModuleInternedTypeIndex> {
        match self {
            Self::Module(e) => Some(e),
            Self::RecGroup(_) | Self::Engine(_) => None,
        }
    }

    /// Get the underlying module-level type index, or panic.
    pub fn unwrap_module_type_index(self) -> ModuleInternedTypeIndex {
        self.as_module_type_index()
            .unwrap_or_else(|| panic!("`unwrap_module_type_index` on {self:?}"))
    }

    /// Is this an recgroup-level type index?
    pub fn is_rec_group_type_index(self) -> bool {
        matches!(self, Self::RecGroup(_))
    }

    /// Get the underlying recgroup-level type index, if any.
    pub fn as_rec_group_type_index(self) -> Option<RecGroupRelativeTypeIndex> {
        match self {
            Self::RecGroup(r) => Some(r),
            Self::Module(_) | Self::Engine(_) => None,
        }
    }

    /// Get the underlying module-level type index, or panic.
    pub fn unwrap_rec_group_type_index(self) -> RecGroupRelativeTypeIndex {
        self.as_rec_group_type_index()
            .unwrap_or_else(|| panic!("`unwrap_rec_group_type_index` on {self:?}"))
    }
}

/// WebAssembly heap type -- equivalent of `wasmparser`'s HeapType
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing variants")]
pub enum WasmHeapType {
    // External types.
    Extern,
    NoExtern,

    // Function types.
    Func,
    ConcreteFunc(EngineOrModuleTypeIndex),
    NoFunc,

    // Internal types.
    Any,
    Eq,
    I31,
    Array,
    ConcreteArray(EngineOrModuleTypeIndex),
    Struct,
    ConcreteStruct(EngineOrModuleTypeIndex),
    None,
}

impl From<WasmHeapTopType> for WasmHeapType {
    #[inline]
    fn from(value: WasmHeapTopType) -> Self {
        match value {
            WasmHeapTopType::Extern => Self::Extern,
            WasmHeapTopType::Any => Self::Any,
            WasmHeapTopType::Func => Self::Func,
        }
    }
}

impl From<WasmHeapBottomType> for WasmHeapType {
    #[inline]
    fn from(value: WasmHeapBottomType) -> Self {
        match value {
            WasmHeapBottomType::NoExtern => Self::NoExtern,
            WasmHeapBottomType::None => Self::None,
            WasmHeapBottomType::NoFunc => Self::NoFunc,
        }
    }
}

impl fmt::Display for WasmHeapType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::Extern => write!(f, "extern"),
            Self::NoExtern => write!(f, "noextern"),
            Self::Func => write!(f, "func"),
            Self::ConcreteFunc(i) => write!(f, "func {i}"),
            Self::NoFunc => write!(f, "nofunc"),
            Self::Any => write!(f, "any"),
            Self::Eq => write!(f, "eq"),
            Self::I31 => write!(f, "i31"),
            Self::Array => write!(f, "array"),
            Self::ConcreteArray(i) => write!(f, "array {i}"),
            Self::Struct => write!(f, "struct"),
            Self::ConcreteStruct(i) => write!(f, "struct {i}"),
            Self::None => write!(f, "none"),
        }
    }
}

impl TypeTrace for WasmHeapType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match *self {
            Self::ConcreteArray(i) => func(i),
            Self::ConcreteFunc(i) => func(i),
            Self::ConcreteStruct(i) => func(i),
            _ => Ok(()),
        }
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match self {
            Self::ConcreteArray(i) => func(i),
            Self::ConcreteFunc(i) => func(i),
            Self::ConcreteStruct(i) => func(i),
            _ => Ok(()),
        }
    }
}

impl WasmHeapType {
    /// Is this a type that is represented as a `VMGcRef`?
    #[inline]
    pub fn is_vmgcref_type(&self) -> bool {
        match self.top() {
            // All `t <: (ref null any)` and `t <: (ref null extern)` are
            // represented as `VMGcRef`s.
            WasmHeapTopType::Any | WasmHeapTopType::Extern => true,

            // All `t <: (ref null func)` are not.
            WasmHeapTopType::Func => false,
        }
    }

    /// Is this a type that is represented as a `VMGcRef` and is additionally
    /// not an `i31`?
    ///
    /// That is, is this a a type that actually refers to an object allocated in
    /// a GC heap?
    #[inline]
    pub fn is_vmgcref_type_and_not_i31(&self) -> bool {
        self.is_vmgcref_type() && *self != Self::I31
    }

    /// Is this heap type the top of its type hierarchy?
    #[inline]
    pub fn is_top(&self) -> bool {
        *self == Self::from(self.top())
    }

    /// Get this type's top type.
    #[inline]
    pub fn top(&self) -> WasmHeapTopType {
        match self {
            WasmHeapType::Extern | WasmHeapType::NoExtern => WasmHeapTopType::Extern,

            WasmHeapType::Func | WasmHeapType::ConcreteFunc(_) | WasmHeapType::NoFunc => {
                WasmHeapTopType::Func
            }

            WasmHeapType::Any
            | WasmHeapType::Eq
            | WasmHeapType::I31
            | WasmHeapType::Array
            | WasmHeapType::ConcreteArray(_)
            | WasmHeapType::Struct
            | WasmHeapType::ConcreteStruct(_)
            | WasmHeapType::None => WasmHeapTopType::Any,
        }
    }

    /// Is this heap type the bottom of its type hierarchy?
    #[inline]
    pub fn is_bottom(&self) -> bool {
        *self == Self::from(self.bottom())
    }

    /// Get this type's bottom type.
    #[inline]
    pub fn bottom(&self) -> WasmHeapBottomType {
        match self {
            WasmHeapType::Extern | WasmHeapType::NoExtern => WasmHeapBottomType::NoExtern,

            WasmHeapType::Func | WasmHeapType::ConcreteFunc(_) | WasmHeapType::NoFunc => {
                WasmHeapBottomType::NoFunc
            }

            WasmHeapType::Any
            | WasmHeapType::Eq
            | WasmHeapType::I31
            | WasmHeapType::Array
            | WasmHeapType::ConcreteArray(_)
            | WasmHeapType::Struct
            | WasmHeapType::ConcreteStruct(_)
            | WasmHeapType::None => WasmHeapBottomType::None,
        }
    }
}

/// A top heap type.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum WasmHeapTopType {
    /// The common supertype of all external references.
    Extern,
    /// The common supertype of all internal references.
    Any,
    /// The common supertype of all function references.
    Func,
}

/// A bottom heap type.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum WasmHeapBottomType {
    /// The common subtype of all external references.
    NoExtern,
    /// The common subtype of all internal references.
    None,
    /// The common subtype of all function references.
    NoFunc,
}

/// WebAssembly function type -- equivalent of `wasmparser`'s FuncType.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmFuncType {
    params: Box<[WasmValType]>,
    non_i31_gc_ref_params_count: usize,
    returns: Box<[WasmValType]>,
    non_i31_gc_ref_returns_count: usize,
}

impl fmt::Display for WasmFuncType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(func")?;
        if !self.params.is_empty() {
            write!(f, " (param")?;
            for p in self.params.iter() {
                write!(f, " {p}")?;
            }
            write!(f, ")")?;
        }
        if !self.returns.is_empty() {
            write!(f, " (result")?;
            for r in self.returns.iter() {
                write!(f, " {r}")?;
            }
            write!(f, ")")?;
        }
        write!(f, ")")
    }
}

impl TypeTrace for WasmFuncType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        for p in self.params.iter() {
            p.trace(func)?;
        }
        for r in self.returns.iter() {
            r.trace(func)?;
        }
        Ok(())
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        for p in self.params.iter_mut() {
            p.trace_mut(func)?;
        }
        for r in self.returns.iter_mut() {
            r.trace_mut(func)?;
        }
        Ok(())
    }
}

impl WasmFuncType {
    /// Creates a new function type from the provided `params` and `returns`.
    #[inline]
    pub fn new(params: Box<[WasmValType]>, returns: Box<[WasmValType]>) -> Self {
        let non_i31_gc_ref_params_count = params
            .iter()
            .filter(|p| p.is_vmgcref_type_and_not_i31())
            .count();
        let non_i31_gc_ref_returns_count = returns
            .iter()
            .filter(|r| r.is_vmgcref_type_and_not_i31())
            .count();
        WasmFuncType {
            params,
            non_i31_gc_ref_params_count,
            returns,
            non_i31_gc_ref_returns_count,
        }
    }

    /// Function params types.
    #[inline]
    pub fn params(&self) -> &[WasmValType] {
        &self.params
    }

    /// How many `externref`s are in this function's params?
    #[inline]
    pub fn non_i31_gc_ref_params_count(&self) -> usize {
        self.non_i31_gc_ref_params_count
    }

    /// Returns params types.
    #[inline]
    pub fn returns(&self) -> &[WasmValType] {
        &self.returns
    }

    /// How many `externref`s are in this function's returns?
    #[inline]
    pub fn non_i31_gc_ref_returns_count(&self) -> usize {
        self.non_i31_gc_ref_returns_count
    }

    /// Is this function type compatible with trampoline usage in Wasmtime?
    pub fn is_trampoline_type(&self) -> bool {
        self.params().iter().all(|p| *p == p.trampoline_type())
            && self.returns().iter().all(|r| *r == r.trampoline_type())
    }

    /// Get the version of this function type that is suitable for usage as a
    /// trampoline in Wasmtime.
    ///
    /// If this function is suitable for trampoline usage as-is, then a borrowed
    /// `Cow` is returned. If it must be tweaked for trampoline usage, then an
    /// owned `Cow` is returned.
    ///
    /// ## What is a trampoline type?
    ///
    /// All reference types in parameters and results are mapped to their
    /// nullable top type, e.g. `(ref $my_struct_type)` becomes `(ref null
    /// any)`.
    ///
    /// This allows us to share trampolines between functions whose signatures
    /// both map to the same trampoline type. It also allows the host to satisfy
    /// a Wasm module's function import of type `S` with a function of type `T`
    /// where `T <: S`, even when the Wasm module never defines the type `T`
    /// (and might never even be able to!)
    ///
    /// The flip side is that this adds a constraint to our trampolines: they
    /// can only pass references around (e.g. move a reference from one calling
    /// convention's location to another's) and may not actually inspect the
    /// references themselves (unless the trampolines start doing explicit,
    /// fallible downcasts, but if we ever need that, then we might want to
    /// redesign this stuff).
    pub fn trampoline_type(&self) -> Cow<'_, Self> {
        if self.is_trampoline_type() {
            return Cow::Borrowed(self);
        }

        Cow::Owned(Self::new(
            self.params().iter().map(|p| p.trampoline_type()).collect(),
            self.returns().iter().map(|r| r.trampoline_type()).collect(),
        ))
    }
}

/// Represents storage types introduced in the GC spec for array and struct fields.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub enum WasmStorageType {
    /// The storage type is i8.
    I8,
    /// The storage type is i16.
    I16,
    /// The storage type is a value type.
    Val(WasmValType),
}

impl fmt::Display for WasmStorageType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            WasmStorageType::I8 => write!(f, "i8"),
            WasmStorageType::I16 => write!(f, "i16"),
            WasmStorageType::Val(v) => fmt::Display::fmt(v, f),
        }
    }
}

impl TypeTrace for WasmStorageType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match self {
            WasmStorageType::I8 | WasmStorageType::I16 => Ok(()),
            WasmStorageType::Val(v) => v.trace(func),
        }
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match self {
            WasmStorageType::I8 | WasmStorageType::I16 => Ok(()),
            WasmStorageType::Val(v) => v.trace_mut(func),
        }
    }
}

/// The type of a struct field or array element.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmFieldType {
    /// The field's element type.
    pub element_type: WasmStorageType,

    /// Whether this field can be mutated or not.
    pub mutable: bool,
}

impl fmt::Display for WasmFieldType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.mutable {
            write!(f, "(mut {})", self.element_type)
        } else {
            fmt::Display::fmt(&self.element_type, f)
        }
    }
}

impl TypeTrace for WasmFieldType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        self.element_type.trace(func)
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        self.element_type.trace_mut(func)
    }
}

/// A concrete array type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmArrayType(pub WasmFieldType);

impl fmt::Display for WasmArrayType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(array {})", self.0)
    }
}

impl TypeTrace for WasmArrayType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        self.0.trace(func)
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        self.0.trace_mut(func)
    }
}

/// A concrete struct type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmStructType {
    /// The fields that make up this struct type.
    pub fields: Box<[WasmFieldType]>,
}

impl fmt::Display for WasmStructType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(struct")?;
        for ty in self.fields.iter() {
            write!(f, " {ty}")?;
        }
        write!(f, ")")
    }
}

impl TypeTrace for WasmStructType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        for f in self.fields.iter() {
            f.trace(func)?;
        }
        Ok(())
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        for f in self.fields.iter_mut() {
            f.trace_mut(func)?;
        }
        Ok(())
    }
}

#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing type")]
pub struct WasmCompositeType {
    /// The type defined inside the composite type.
    pub inner: WasmCompositeInnerType,
    /// Is the composite type shared? This is part of the
    /// shared-everything-threads proposal.
    pub shared: bool,
}

impl fmt::Display for WasmCompositeType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.shared {
            write!(f, "(shared ")?;
        }
        fmt::Display::fmt(&self.inner, f)?;
        if self.shared {
            write!(f, ")")?;
        }
        Ok(())
    }
}

/// A function, array, or struct type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing variants")]
pub enum WasmCompositeInnerType {
    Array(WasmArrayType),
    Func(WasmFuncType),
    Struct(WasmStructType),
}

impl fmt::Display for WasmCompositeInnerType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Array(ty) => fmt::Display::fmt(ty, f),
            Self::Func(ty) => fmt::Display::fmt(ty, f),
            Self::Struct(ty) => fmt::Display::fmt(ty, f),
        }
    }
}

#[allow(missing_docs, reason = "self-describing functions")]
impl WasmCompositeInnerType {
    #[inline]
    pub fn is_array(&self) -> bool {
        matches!(self, Self::Array(_))
    }

    #[inline]
    pub fn as_array(&self) -> Option<&WasmArrayType> {
        match self {
            Self::Array(f) => Some(f),
            _ => None,
        }
    }

    #[inline]
    pub fn unwrap_array(&self) -> &WasmArrayType {
        self.as_array().unwrap()
    }

    #[inline]
    pub fn is_func(&self) -> bool {
        matches!(self, Self::Func(_))
    }

    #[inline]
    pub fn as_func(&self) -> Option<&WasmFuncType> {
        match self {
            Self::Func(f) => Some(f),
            _ => None,
        }
    }

    #[inline]
    pub fn unwrap_func(&self) -> &WasmFuncType {
        self.as_func().unwrap()
    }

    #[inline]
    pub fn is_struct(&self) -> bool {
        matches!(self, Self::Struct(_))
    }

    #[inline]
    pub fn as_struct(&self) -> Option<&WasmStructType> {
        match self {
            Self::Struct(f) => Some(f),
            _ => None,
        }
    }

    #[inline]
    pub fn unwrap_struct(&self) -> &WasmStructType {
        self.as_struct().unwrap()
    }
}

impl TypeTrace for WasmCompositeType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match &self.inner {
            WasmCompositeInnerType::Array(a) => a.trace(func),
            WasmCompositeInnerType::Func(f) => f.trace(func),
            WasmCompositeInnerType::Struct(a) => a.trace(func),
        }
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match &mut self.inner {
            WasmCompositeInnerType::Array(a) => a.trace_mut(func),
            WasmCompositeInnerType::Func(f) => f.trace_mut(func),
            WasmCompositeInnerType::Struct(a) => a.trace_mut(func),
        }
    }
}

/// A concrete, user-defined (or host-defined) Wasm type.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmSubType {
    /// Whether this type is forbidden from being the supertype of any other
    /// type.
    pub is_final: bool,

    /// This type's supertype, if any.
    pub supertype: Option<EngineOrModuleTypeIndex>,

    /// The array, function, or struct that is defined.
    pub composite_type: WasmCompositeType,
}

impl fmt::Display for WasmSubType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.is_final && self.supertype.is_none() {
            fmt::Display::fmt(&self.composite_type, f)
        } else {
            write!(f, "(sub")?;
            if self.is_final {
                write!(f, " final")?;
            }
            if let Some(sup) = self.supertype {
                write!(f, " {sup}")?;
            }
            write!(f, " {})", self.composite_type)
        }
    }
}

/// Implicitly define all of these helper functions to handle only unshared
/// types; essentially, these act like `is_unshared_*` functions until shared
/// support is implemented.
#[allow(missing_docs, reason = "self-describing functions")]
impl WasmSubType {
    #[inline]
    pub fn is_func(&self) -> bool {
        self.composite_type.inner.is_func() && !self.composite_type.shared
    }

    #[inline]
    pub fn as_func(&self) -> Option<&WasmFuncType> {
        if self.composite_type.shared {
            None
        } else {
            self.composite_type.inner.as_func()
        }
    }

    #[inline]
    pub fn unwrap_func(&self) -> &WasmFuncType {
        assert!(!self.composite_type.shared);
        self.composite_type.inner.unwrap_func()
    }

    #[inline]
    pub fn is_array(&self) -> bool {
        self.composite_type.inner.is_array() && !self.composite_type.shared
    }

    #[inline]
    pub fn as_array(&self) -> Option<&WasmArrayType> {
        if self.composite_type.shared {
            None
        } else {
            self.composite_type.inner.as_array()
        }
    }

    #[inline]
    pub fn unwrap_array(&self) -> &WasmArrayType {
        assert!(!self.composite_type.shared);
        self.composite_type.inner.unwrap_array()
    }

    #[inline]
    pub fn is_struct(&self) -> bool {
        self.composite_type.inner.is_struct() && !self.composite_type.shared
    }

    #[inline]
    pub fn as_struct(&self) -> Option<&WasmStructType> {
        if self.composite_type.shared {
            None
        } else {
            self.composite_type.inner.as_struct()
        }
    }

    #[inline]
    pub fn unwrap_struct(&self) -> &WasmStructType {
        assert!(!self.composite_type.shared);
        self.composite_type.inner.unwrap_struct()
    }
}

impl TypeTrace for WasmSubType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        if let Some(sup) = self.supertype {
            func(sup)?;
        }
        self.composite_type.trace(func)
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        if let Some(sup) = self.supertype.as_mut() {
            func(sup)?;
        }
        self.composite_type.trace_mut(func)
    }
}

/// A recursive type group.
///
/// Types within a recgroup can have forward references to each other, which
/// allows for cyclic types, for example a function `$f` that returns a
/// reference to a function `$g` which returns a reference to a function `$f`:
///
/// ```ignore
/// (rec (type (func $f (result (ref null $g))))
///      (type (func $g (result (ref null $f)))))
/// ```
#[derive(Debug, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct WasmRecGroup {
    /// The types inside of this recgroup.
    pub types: Box<[WasmSubType]>,
}

impl TypeTrace for WasmRecGroup {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        for ty in self.types.iter() {
            ty.trace(func)?;
        }
        Ok(())
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        for ty in self.types.iter_mut() {
            ty.trace_mut(func)?;
        }
        Ok(())
    }
}

/// Index type of a function (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct FuncIndex(u32);
entity_impl!(FuncIndex);

/// Index type of a defined function inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedFuncIndex(u32);
entity_impl!(DefinedFuncIndex);

/// Index type of a defined table inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedTableIndex(u32);
entity_impl!(DefinedTableIndex);

/// Index type of a defined memory inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedMemoryIndex(u32);
entity_impl!(DefinedMemoryIndex);

/// Index type of a defined memory inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct OwnedMemoryIndex(u32);
entity_impl!(OwnedMemoryIndex);

/// Index type of a defined global inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DefinedGlobalIndex(u32);
entity_impl!(DefinedGlobalIndex);

/// Index type of a table (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct TableIndex(u32);
entity_impl!(TableIndex);

/// Index type of a global variable (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct GlobalIndex(u32);
entity_impl!(GlobalIndex);

/// Index type of a linear memory (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct MemoryIndex(u32);
entity_impl!(MemoryIndex);

/// Index type of a canonicalized recursive type group inside a WebAssembly
/// module (as opposed to canonicalized within the whole engine).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct ModuleInternedRecGroupIndex(u32);
entity_impl!(ModuleInternedRecGroupIndex);

/// Index type of a canonicalized recursive type group inside the whole engine
/// (as opposed to canonicalized within just a single Wasm module).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct EngineInternedRecGroupIndex(u32);
entity_impl!(EngineInternedRecGroupIndex);

/// Index type of a type (imported or defined) inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct TypeIndex(u32);
entity_impl!(TypeIndex);

/// A canonicalized type index referencing a type within a single recursion
/// group from another type within that same recursion group.
///
/// This is only suitable for use when hash consing and deduplicating rec
/// groups.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct RecGroupRelativeTypeIndex(u32);
entity_impl!(RecGroupRelativeTypeIndex);

/// A canonicalized type index for a type within a single WebAssembly module.
///
/// Note that this is deduplicated only at the level of a single WebAssembly
/// module, not at the level of a whole store or engine. This means that these
/// indices are only unique within the context of a single Wasm module, and
/// therefore are not suitable for runtime type checks (which, in general, may
/// involve entities defined in different modules).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct ModuleInternedTypeIndex(u32);
entity_impl!(ModuleInternedTypeIndex);

/// A canonicalized type index into an engine's shared type registry.
///
/// This is canonicalized/deduped at the level of a whole engine, across all the
/// modules loaded into that engine, not just at the level of a single
/// particular module. This means that `VMSharedTypeIndex` is usable for
/// e.g. checking that function signatures match during an indirect call
/// (potentially to a function defined in a different module) at runtime.
#[repr(transparent)] // Used directly by JIT code.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct VMSharedTypeIndex(u32);
entity_impl!(VMSharedTypeIndex);

impl VMSharedTypeIndex {
    /// Create a new `VMSharedTypeIndex`.
    #[inline]
    pub fn new(value: u32) -> Self {
        assert_ne!(
            value,
            u32::MAX,
            "u32::MAX is reserved for the default value"
        );
        Self(value)
    }

    /// Returns the underlying bits of the index.
    #[inline]
    pub fn bits(&self) -> u32 {
        self.0
    }
}

impl Default for VMSharedTypeIndex {
    #[inline]
    fn default() -> Self {
        Self(u32::MAX)
    }
}

/// Index type of a passive data segment inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct DataIndex(u32);
entity_impl!(DataIndex);

/// Index type of a passive element segment inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct ElemIndex(u32);
entity_impl!(ElemIndex);

/// Index type of an event inside the WebAssembly module.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct TagIndex(u32);
entity_impl!(TagIndex);

/// Index into the global list of modules found within an entire component.
///
/// Module translations are saved on the side to get fully compiled after
/// the original component has finished being translated.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub struct StaticModuleIndex(u32);
entity_impl!(StaticModuleIndex);

/// An index of an entity.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug, Serialize, Deserialize)]
pub enum EntityIndex {
    /// Function index.
    Function(FuncIndex),
    /// Table index.
    Table(TableIndex),
    /// Memory index.
    Memory(MemoryIndex),
    /// Global index.
    Global(GlobalIndex),
}

impl From<FuncIndex> for EntityIndex {
    fn from(idx: FuncIndex) -> EntityIndex {
        EntityIndex::Function(idx)
    }
}

impl From<TableIndex> for EntityIndex {
    fn from(idx: TableIndex) -> EntityIndex {
        EntityIndex::Table(idx)
    }
}

impl From<MemoryIndex> for EntityIndex {
    fn from(idx: MemoryIndex) -> EntityIndex {
        EntityIndex::Memory(idx)
    }
}

impl From<GlobalIndex> for EntityIndex {
    fn from(idx: GlobalIndex) -> EntityIndex {
        EntityIndex::Global(idx)
    }
}

/// A type of an item in a wasm module where an item is typically something that
/// can be exported.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum EntityType {
    /// A global variable with the specified content type
    Global(Global),
    /// A linear memory with the specified limits
    Memory(Memory),
    /// An event definition.
    Tag(Tag),
    /// A table with the specified element type and limits
    Table(Table),
    /// A function type where the index points to the type section and records a
    /// function signature.
    Function(EngineOrModuleTypeIndex),
}

impl TypeTrace for EntityType {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match self {
            Self::Global(g) => g.trace(func),
            Self::Table(t) => t.trace(func),
            Self::Function(idx) => func(*idx),
            Self::Memory(_) | Self::Tag(_) => Ok(()),
        }
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        match self {
            Self::Global(g) => g.trace_mut(func),
            Self::Table(t) => t.trace_mut(func),
            Self::Function(idx) => func(idx),
            Self::Memory(_) | Self::Tag(_) => Ok(()),
        }
    }
}

impl EntityType {
    /// Assert that this entity is a global
    pub fn unwrap_global(&self) -> &Global {
        match self {
            EntityType::Global(g) => g,
            _ => panic!("not a global"),
        }
    }

    /// Assert that this entity is a memory
    pub fn unwrap_memory(&self) -> &Memory {
        match self {
            EntityType::Memory(g) => g,
            _ => panic!("not a memory"),
        }
    }

    /// Assert that this entity is a tag
    pub fn unwrap_tag(&self) -> &Tag {
        match self {
            EntityType::Tag(g) => g,
            _ => panic!("not a tag"),
        }
    }

    /// Assert that this entity is a table
    pub fn unwrap_table(&self) -> &Table {
        match self {
            EntityType::Table(g) => g,
            _ => panic!("not a table"),
        }
    }

    /// Assert that this entity is a function
    pub fn unwrap_func(&self) -> EngineOrModuleTypeIndex {
        match self {
            EntityType::Function(g) => *g,
            _ => panic!("not a func"),
        }
    }
}

/// A WebAssembly global.
///
/// Note that we record both the original Wasm type and the Cranelift IR type
/// used to represent it. This is because multiple different kinds of Wasm types
/// might be represented with the same Cranelift IR type. For example, both a
/// Wasm `i64` and a `funcref` might be represented with a Cranelift `i64` on
/// 64-bit architectures, and when GC is not required for func refs.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Global {
    /// The Wasm type of the value stored in the global.
    pub wasm_ty: crate::WasmValType,
    /// A flag indicating whether the value may change at runtime.
    pub mutability: bool,
}

impl TypeTrace for Global {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        let Global {
            wasm_ty,
            mutability: _,
        } = self;
        wasm_ty.trace(func)
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        let Global {
            wasm_ty,
            mutability: _,
        } = self;
        wasm_ty.trace_mut(func)
    }
}

/// A constant expression.
///
/// These are used to initialize globals, table elements, etc...
#[derive(Clone, Debug, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct ConstExpr {
    ops: SmallVec<[ConstOp; 2]>,
}

impl ConstExpr {
    /// Create a new const expression from the given opcodes.
    ///
    /// Does not do any validation that the const expression is well-typed.
    ///
    /// Panics if given zero opcodes.
    pub fn new(ops: impl IntoIterator<Item = ConstOp>) -> Self {
        let ops = ops.into_iter().collect::<SmallVec<[ConstOp; 2]>>();
        assert!(!ops.is_empty());
        ConstExpr { ops }
    }

    /// Create a new const expression from a `wasmparser` const expression.
    ///
    /// Returns the new const expression as well as the escaping function
    /// indices that appeared in `ref.func` instructions, if any.
    pub fn from_wasmparser(
        expr: wasmparser::ConstExpr<'_>,
    ) -> WasmResult<(Self, SmallVec<[FuncIndex; 1]>)> {
        let mut iter = expr
            .get_operators_reader()
            .into_iter_with_offsets()
            .peekable();

        let mut ops = SmallVec::<[ConstOp; 2]>::new();
        let mut escaped = SmallVec::<[FuncIndex; 1]>::new();
        while let Some(res) = iter.next() {
            let (op, offset) = res?;

            // If we reach an `end` instruction, and there are no more
            // instructions after that, then we are done reading this const
            // expression.
            if matches!(op, wasmparser::Operator::End) && iter.peek().is_none() {
                break;
            }

            // Track any functions that appear in `ref.func` so that callers can
            // make sure to flag them as escaping.
            if let wasmparser::Operator::RefFunc { function_index } = &op {
                escaped.push(FuncIndex::from_u32(*function_index));
            }

            ops.push(ConstOp::from_wasmparser(op, offset)?);
        }
        Ok((Self { ops }, escaped))
    }

    /// Get the opcodes that make up this const expression.
    pub fn ops(&self) -> &[ConstOp] {
        &self.ops
    }

    /// Is this ConstExpr a provably nonzero integer value?
    ///
    /// This must be conservative: if the expression *might* be zero,
    /// it must return `false`. It is always allowed to return `false`
    /// for some expression kind that we don't support. However, if it
    /// returns `true`, the expression must be actually nonzero.
    ///
    /// We use this for certain table optimizations that rely on
    /// knowing for sure that index 0 is not referenced.
    pub fn provably_nonzero_i32(&self) -> bool {
        assert!(self.ops.len() > 0);
        if self.ops.len() > 1 {
            // Compound expressions not yet supported: conservatively
            // return `false` (we can't prove nonzero).
            return false;
        }
        // Exactly one op at this point.
        match self.ops[0] {
            // An actual zero value -- definitely not nonzero!
            ConstOp::I32Const(0) => false,
            // Any other constant value -- provably nonzero, if above
            // did not match.
            ConstOp::I32Const(_) => true,
            // Anything else: we can't prove anything.
            _ => false,
        }
    }
}

/// The subset of Wasm opcodes that are constant.
#[allow(missing_docs, reason = "self-describing variants")]
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub enum ConstOp {
    I32Const(i32),
    I64Const(i64),
    F32Const(u32),
    F64Const(u64),
    V128Const(u128),
    GlobalGet(GlobalIndex),
    RefI31,
    RefNull,
    RefFunc(FuncIndex),
    I32Add,
    I32Sub,
    I32Mul,
    I64Add,
    I64Sub,
    I64Mul,
    StructNew {
        struct_type_index: TypeIndex,
    },
    StructNewDefault {
        struct_type_index: TypeIndex,
    },
    ArrayNew {
        array_type_index: TypeIndex,
    },
    ArrayNewDefault {
        array_type_index: TypeIndex,
    },
    ArrayNewFixed {
        array_type_index: TypeIndex,
        array_size: u32,
    },
}

impl ConstOp {
    /// Convert a `wasmparser::Operator` to a `ConstOp`.
    pub fn from_wasmparser(op: wasmparser::Operator<'_>, offset: usize) -> WasmResult<Self> {
        use wasmparser::Operator as O;
        Ok(match op {
            O::I32Const { value } => Self::I32Const(value),
            O::I64Const { value } => Self::I64Const(value),
            O::F32Const { value } => Self::F32Const(value.bits()),
            O::F64Const { value } => Self::F64Const(value.bits()),
            O::V128Const { value } => Self::V128Const(u128::from_le_bytes(*value.bytes())),
            O::RefNull { hty: _ } => Self::RefNull,
            O::RefFunc { function_index } => Self::RefFunc(FuncIndex::from_u32(function_index)),
            O::GlobalGet { global_index } => Self::GlobalGet(GlobalIndex::from_u32(global_index)),
            O::RefI31 => Self::RefI31,
            O::I32Add => Self::I32Add,
            O::I32Sub => Self::I32Sub,
            O::I32Mul => Self::I32Mul,
            O::I64Add => Self::I64Add,
            O::I64Sub => Self::I64Sub,
            O::I64Mul => Self::I64Mul,
            O::StructNew { struct_type_index } => Self::StructNew {
                struct_type_index: TypeIndex::from_u32(struct_type_index),
            },
            O::StructNewDefault { struct_type_index } => Self::StructNewDefault {
                struct_type_index: TypeIndex::from_u32(struct_type_index),
            },
            O::ArrayNew { array_type_index } => Self::ArrayNew {
                array_type_index: TypeIndex::from_u32(array_type_index),
            },
            O::ArrayNewDefault { array_type_index } => Self::ArrayNewDefault {
                array_type_index: TypeIndex::from_u32(array_type_index),
            },
            O::ArrayNewFixed {
                array_type_index,
                array_size,
            } => Self::ArrayNewFixed {
                array_type_index: TypeIndex::from_u32(array_type_index),
                array_size,
            },
            op => {
                return Err(wasm_unsupported!(
                    "unsupported opcode in const expression at offset {offset:#x}: {op:?}",
                ));
            }
        })
    }
}

/// The type that can be used to index into [Memory] and [Table].
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing variants")]
pub enum IndexType {
    I32,
    I64,
}

/// The size range of resizeable storage associated with [Memory] types and [Table] types.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
#[allow(missing_docs, reason = "self-describing fields")]
pub struct Limits {
    pub min: u64,
    pub max: Option<u64>,
}

/// WebAssembly table.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Table {
    /// The type of the index used to access the table.
    pub idx_type: IndexType,
    /// Tables are constrained by limits for their minimum and optionally maximum size.
    /// The limits are given in numbers of entries.
    pub limits: Limits,
    /// The table elements' Wasm type.
    pub ref_type: WasmRefType,
}

impl TypeTrace for Table {
    fn trace<F, E>(&self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        let Table {
            ref_type: wasm_ty,
            idx_type: _,
            limits: _,
        } = self;
        wasm_ty.trace(func)
    }

    fn trace_mut<F, E>(&mut self, func: &mut F) -> Result<(), E>
    where
        F: FnMut(&mut EngineOrModuleTypeIndex) -> Result<(), E>,
    {
        let Table {
            ref_type: wasm_ty,
            idx_type: _,
            limits: _,
        } = self;
        wasm_ty.trace_mut(func)
    }
}

/// WebAssembly linear memory.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Memory {
    /// The type of the index used to access the memory.
    pub idx_type: IndexType,
    /// The limits constrain the minimum and optionally the maximum size of a memory.
    /// The limits are given in units of page size.
    pub limits: Limits,
    /// Whether the memory may be shared between multiple threads.
    pub shared: bool,
    /// The log2 of this memory's page size, in bytes.
    ///
    /// By default the page size is 64KiB (0x10000; 2**16; 1<<16; 65536) but the
    /// custom-page-sizes proposal allows opting into a page size of `1`.
    pub page_size_log2: u8,
}

/// Maximum size, in bytes, of 32-bit memories (4G)
pub const WASM32_MAX_SIZE: u64 = 1 << 32;

impl Memory {
    /// WebAssembly page sizes are 64KiB by default.
    pub const DEFAULT_PAGE_SIZE: u32 = 0x10000;

    /// WebAssembly page sizes are 64KiB (or `2**16`) by default.
    pub const DEFAULT_PAGE_SIZE_LOG2: u8 = {
        let log2 = 16;
        assert!(1 << log2 == Memory::DEFAULT_PAGE_SIZE);
        log2
    };

    /// Returns the minimum size, in bytes, that this memory must be.
    ///
    /// # Errors
    ///
    /// Returns an error if the calculation of the minimum size overflows the
    /// `u64` return type. This means that the memory can't be allocated but
    /// it's deferred to the caller to how to deal with that.
    pub fn minimum_byte_size(&self) -> Result<u64, SizeOverflow> {
        self.limits
            .min
            .checked_mul(self.page_size())
            .ok_or(SizeOverflow)
    }

    /// Returns the maximum size, in bytes, that this memory is allowed to be.
    ///
    /// Note that the return value here is not an `Option` despite the maximum
    /// size of a linear memory being optional in wasm. If a maximum size
    /// is not present in the memory's type then a maximum size is selected for
    /// it. For example the maximum size of a 32-bit memory is `1<<32`. The
    /// maximum size of a 64-bit linear memory is chosen to be a value that
    /// won't ever be allowed at runtime.
    ///
    /// # Errors
    ///
    /// Returns an error if the calculation of the maximum size overflows the
    /// `u64` return type. This means that the memory can't be allocated but
    /// it's deferred to the caller to how to deal with that.
    pub fn maximum_byte_size(&self) -> Result<u64, SizeOverflow> {
        match self.limits.max {
            Some(max) => max.checked_mul(self.page_size()).ok_or(SizeOverflow),
            None => {
                let min = self.minimum_byte_size()?;
                Ok(min.max(self.max_size_based_on_index_type()))
            }
        }
    }

    /// Get the size of this memory's pages, in bytes.
    pub fn page_size(&self) -> u64 {
        debug_assert!(
            self.page_size_log2 == 16 || self.page_size_log2 == 0,
            "invalid page_size_log2: {}; must be 16 or 0",
            self.page_size_log2
        );
        1 << self.page_size_log2
    }

    /// Returns the maximum size memory is allowed to be only based on the
    /// index type used by this memory.
    ///
    /// For example 32-bit linear memories return `1<<32` from this method.
    pub fn max_size_based_on_index_type(&self) -> u64 {
        match self.idx_type {
            IndexType::I64 =>
            // Note that the true maximum size of a 64-bit linear memory, in
            // bytes, cannot be represented in a `u64`. That would require a u65
            // to store `1<<64`. Despite that no system can actually allocate a
            // full 64-bit linear memory so this is instead emulated as "what if
            // the kernel fit in a single Wasm page of linear memory". Shouldn't
            // ever actually be possible but it provides a number to serve as an
            // effective maximum.
            {
                0_u64.wrapping_sub(self.page_size())
            }
            IndexType::I32 => WASM32_MAX_SIZE,
        }
    }

    /// Returns whether this memory can be implemented with virtual memory on
    /// a host with `host_page_size_log2`.
    ///
    /// When this function returns `true` then it means that signals such as
    /// SIGSEGV on the host are compatible with wasm and can be used to
    /// represent out-of-bounds memory accesses.
    ///
    /// When this function returns `false` then it means that this memory must,
    /// for example, have explicit bounds checks. This additionally means that
    /// virtual memory traps (e.g. SIGSEGV) cannot be relied on to implement
    /// linear memory semantics.
    pub fn can_use_virtual_memory(&self, tunables: &Tunables, host_page_size_log2: u8) -> bool {
        tunables.signals_based_traps && self.page_size_log2 >= host_page_size_log2
    }

    /// Returns whether this memory is a candidate for bounds check elision
    /// given the configuration and host page size.
    ///
    /// This function determines whether the given compilation configuration and
    /// hos enables possible bounds check elision for this memory. Bounds checks
    /// can only be elided if [`Memory::can_use_virtual_memory`] returns `true`
    /// for example but there are additionally requirements on the index size of
    /// this memory and the memory reservation in `tunables`.
    ///
    /// Currently the only case that supports bounds check elision is when all
    /// of these apply:
    ///
    /// * When [`Memory::can_use_virtual_memory`] returns `true`.
    /// * This is a 32-bit linear memory (e.g. not 64-bit)
    /// * `tunables.memory_reservation` is in excess of 4GiB
    ///
    /// In this situation all computable addresses fall within the reserved
    /// space (modulo static offsets factoring in guard pages) so bounds checks
    /// may be elidable.
    pub fn can_elide_bounds_check(&self, tunables: &Tunables, host_page_size_log2: u8) -> bool {
        self.can_use_virtual_memory(tunables, host_page_size_log2)
            && self.idx_type == IndexType::I32
            && tunables.memory_reservation >= (1 << 32)
    }

    /// Returns the static size of this heap in bytes at runtime, if available.
    ///
    /// This is only computable when the minimum size equals the maximum size.
    pub fn static_heap_size(&self) -> Option<u64> {
        let min = self.minimum_byte_size().ok()?;
        let max = self.maximum_byte_size().ok()?;
        if min == max {
            Some(min)
        } else {
            None
        }
    }

    /// Returs whether or not the base pointer of this memory is allowed to be
    /// relocated at runtime.
    ///
    /// When this function returns `false` then it means that after the initial
    /// allocation the base pointer is constant for the entire lifetime of a
    /// memory. This can enable compiler optimizations, for example.
    pub fn memory_may_move(&self, tunables: &Tunables) -> bool {
        // Shared memories cannot ever relocate their base pointer so the
        // settings configured in the engine must be appropriate for them ahead
        // of time.
        if self.shared {
            return false;
        }

        // If movement is disallowed in engine configuration, then the answer is
        // "no".
        if !tunables.memory_may_move {
            return false;
        }

        // If the maximum size of this memory is above the threshold of the
        // initial memory reservation then the memory may move.
        let max = self.maximum_byte_size().unwrap_or(u64::MAX);
        max > tunables.memory_reservation
    }
}

#[derive(Copy, Clone, Debug)]
#[allow(missing_docs, reason = "self-describing error struct")]
pub struct SizeOverflow;

impl fmt::Display for SizeOverflow {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("size overflow calculating memory size")
    }
}

impl core::error::Error for SizeOverflow {}

impl From<wasmparser::MemoryType> for Memory {
    fn from(ty: wasmparser::MemoryType) -> Memory {
        let idx_type = match ty.memory64 {
            false => IndexType::I32,
            true => IndexType::I64,
        };
        let limits = Limits {
            min: ty.initial,
            max: ty.maximum,
        };
        let page_size_log2 = u8::try_from(ty.page_size_log2.unwrap_or(16)).unwrap();
        debug_assert!(
            page_size_log2 == 16 || page_size_log2 == 0,
            "invalid page_size_log2: {page_size_log2}; must be 16 or 0"
        );
        Memory {
            idx_type,
            limits,
            shared: ty.shared,
            page_size_log2,
        }
    }
}

/// WebAssembly event.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Tag {
    /// The event signature type.
    pub ty: TypeIndex,
}

impl From<wasmparser::TagType> for Tag {
    fn from(ty: wasmparser::TagType) -> Tag {
        match ty.kind {
            wasmparser::TagKind::Exception => Tag {
                ty: TypeIndex::from_u32(ty.func_type_idx),
            },
        }
    }
}

/// Helpers used to convert a `wasmparser` type to a type in this crate.
#[allow(missing_docs, reason = "self-describing functions")]
pub trait TypeConvert {
    /// Converts a wasmparser table type into a wasmtime type
    fn convert_global_type(&self, ty: &wasmparser::GlobalType) -> Global {
        Global {
            wasm_ty: self.convert_valtype(ty.content_type),
            mutability: ty.mutable,
        }
    }

    /// Converts a wasmparser table type into a wasmtime type
    fn convert_table_type(&self, ty: &wasmparser::TableType) -> WasmResult<Table> {
        let idx_type = match ty.table64 {
            false => IndexType::I32,
            true => IndexType::I64,
        };
        let limits = Limits {
            min: ty.initial.try_into().unwrap(),
            max: ty.maximum.map(|i| i.try_into().unwrap()),
        };
        Ok(Table {
            idx_type,
            limits,
            ref_type: self.convert_ref_type(ty.element_type),
        })
    }

    fn convert_sub_type(&self, ty: &wasmparser::SubType) -> WasmSubType {
        WasmSubType {
            is_final: ty.is_final,
            supertype: ty.supertype_idx.map(|i| self.lookup_type_index(i.unpack())),
            composite_type: self.convert_composite_type(&ty.composite_type),
        }
    }

    fn convert_composite_type(&self, ty: &wasmparser::CompositeType) -> WasmCompositeType {
        let inner = match &ty.inner {
            wasmparser::CompositeInnerType::Func(f) => {
                WasmCompositeInnerType::Func(self.convert_func_type(f))
            }
            wasmparser::CompositeInnerType::Array(a) => {
                WasmCompositeInnerType::Array(self.convert_array_type(a))
            }
            wasmparser::CompositeInnerType::Struct(s) => {
                WasmCompositeInnerType::Struct(self.convert_struct_type(s))
            }
            wasmparser::CompositeInnerType::Cont(_) => {
                unimplemented!("continuation types")
            }
        };
        WasmCompositeType {
            inner,
            shared: ty.shared,
        }
    }

    fn convert_struct_type(&self, ty: &wasmparser::StructType) -> WasmStructType {
        WasmStructType {
            fields: ty
                .fields
                .iter()
                .map(|f| self.convert_field_type(f))
                .collect(),
        }
    }

    fn convert_array_type(&self, ty: &wasmparser::ArrayType) -> WasmArrayType {
        WasmArrayType(self.convert_field_type(&ty.0))
    }

    fn convert_field_type(&self, ty: &wasmparser::FieldType) -> WasmFieldType {
        WasmFieldType {
            element_type: self.convert_storage_type(&ty.element_type),
            mutable: ty.mutable,
        }
    }

    fn convert_storage_type(&self, ty: &wasmparser::StorageType) -> WasmStorageType {
        match ty {
            wasmparser::StorageType::I8 => WasmStorageType::I8,
            wasmparser::StorageType::I16 => WasmStorageType::I16,
            wasmparser::StorageType::Val(v) => WasmStorageType::Val(self.convert_valtype(*v)),
        }
    }

    /// Converts a wasmparser function type to a wasmtime type
    fn convert_func_type(&self, ty: &wasmparser::FuncType) -> WasmFuncType {
        let params = ty
            .params()
            .iter()
            .map(|t| self.convert_valtype(*t))
            .collect();
        let results = ty
            .results()
            .iter()
            .map(|t| self.convert_valtype(*t))
            .collect();
        WasmFuncType::new(params, results)
    }

    /// Converts a wasmparser value type to a wasmtime type
    fn convert_valtype(&self, ty: wasmparser::ValType) -> WasmValType {
        match ty {
            wasmparser::ValType::I32 => WasmValType::I32,
            wasmparser::ValType::I64 => WasmValType::I64,
            wasmparser::ValType::F32 => WasmValType::F32,
            wasmparser::ValType::F64 => WasmValType::F64,
            wasmparser::ValType::V128 => WasmValType::V128,
            wasmparser::ValType::Ref(t) => WasmValType::Ref(self.convert_ref_type(t)),
        }
    }

    /// Converts a wasmparser reference type to a wasmtime type
    fn convert_ref_type(&self, ty: wasmparser::RefType) -> WasmRefType {
        WasmRefType {
            nullable: ty.is_nullable(),
            heap_type: self.convert_heap_type(ty.heap_type()),
        }
    }

    /// Converts a wasmparser heap type to a wasmtime type
    fn convert_heap_type(&self, ty: wasmparser::HeapType) -> WasmHeapType {
        match ty {
            wasmparser::HeapType::Concrete(i) => self.lookup_heap_type(i),
            wasmparser::HeapType::Abstract { ty, shared: false } => match ty {
                wasmparser::AbstractHeapType::Extern => WasmHeapType::Extern,
                wasmparser::AbstractHeapType::NoExtern => WasmHeapType::NoExtern,
                wasmparser::AbstractHeapType::Func => WasmHeapType::Func,
                wasmparser::AbstractHeapType::NoFunc => WasmHeapType::NoFunc,
                wasmparser::AbstractHeapType::Any => WasmHeapType::Any,
                wasmparser::AbstractHeapType::Eq => WasmHeapType::Eq,
                wasmparser::AbstractHeapType::I31 => WasmHeapType::I31,
                wasmparser::AbstractHeapType::Array => WasmHeapType::Array,
                wasmparser::AbstractHeapType::Struct => WasmHeapType::Struct,
                wasmparser::AbstractHeapType::None => WasmHeapType::None,

                wasmparser::AbstractHeapType::Exn
                | wasmparser::AbstractHeapType::NoExn
                | wasmparser::AbstractHeapType::Cont
                | wasmparser::AbstractHeapType::NoCont => {
                    unimplemented!("unsupported heap type {ty:?}");
                }
            },
            _ => unimplemented!("unsupported heap type {ty:?}"),
        }
    }

    /// Converts the specified type index from a heap type into a canonicalized
    /// heap type.
    fn lookup_heap_type(&self, index: wasmparser::UnpackedIndex) -> WasmHeapType;

    /// Converts the specified type index from a heap type into a canonicalized
    /// heap type.
    fn lookup_type_index(&self, index: wasmparser::UnpackedIndex) -> EngineOrModuleTypeIndex;
}