wasmtime/runtime/component/component.rs
1use crate::component::matching::InstanceType;
2use crate::component::types;
3use crate::component::InstanceExportLookup;
4use crate::prelude::*;
5use crate::runtime::vm::component::ComponentRuntimeInfo;
6#[cfg(feature = "std")]
7use crate::runtime::vm::open_file_for_mmap;
8use crate::runtime::vm::{
9 CompiledModuleId, VMArrayCallFunction, VMFuncRef, VMFunctionBody, VMWasmCallFunction,
10};
11use crate::{
12 code::CodeObject, code_memory::CodeMemory, type_registry::TypeCollection, Engine, Module,
13 ResourcesRequired,
14};
15use crate::{FuncType, ValType};
16use alloc::sync::Arc;
17use core::any::Any;
18use core::ops::Range;
19use core::ptr::NonNull;
20#[cfg(feature = "std")]
21use std::path::Path;
22use wasmtime_environ::component::{
23 AllCallFunc, CompiledComponentInfo, ComponentArtifacts, ComponentTypes, Export, ExportIndex,
24 GlobalInitializer, InstantiateModule, NameMapNoIntern, StaticModuleIndex, TrampolineIndex,
25 TypeComponentIndex, TypeDef, VMComponentOffsets,
26};
27use wasmtime_environ::TypeTrace;
28use wasmtime_environ::{FunctionLoc, HostPtr, ObjectKind, PrimaryMap};
29
30/// A compiled WebAssembly Component.
31///
32/// This structure represents a compiled component that is ready to be
33/// instantiated. This owns a region of virtual memory which contains executable
34/// code compiled from a WebAssembly binary originally. This is the analog of
35/// [`Module`](crate::Module) in the component embedding API.
36///
37/// A [`Component`] can be turned into an
38/// [`Instance`](crate::component::Instance) through a
39/// [`Linker`](crate::component::Linker). [`Component`]s are safe to share
40/// across threads. The compilation model of a component is the same as that of
41/// [a module](crate::Module) which is to say:
42///
43/// * Compilation happens synchronously during [`Component::new`].
44/// * The result of compilation can be saved into storage with
45/// [`Component::serialize`].
46/// * A previously compiled artifact can be parsed with
47/// [`Component::deserialize`].
48/// * No compilation happens at runtime for a component — everything is done
49/// by the time [`Component::new`] returns.
50///
51/// ## Components and `Clone`
52///
53/// Using `clone` on a `Component` is a cheap operation. It will not create an
54/// entirely new component, but rather just a new reference to the existing
55/// component. In other words it's a shallow copy, not a deep copy.
56///
57/// ## Examples
58///
59/// For example usage see the documentation of [`Module`](crate::Module) as
60/// [`Component`] has the same high-level API.
61#[derive(Clone)]
62pub struct Component {
63 inner: Arc<ComponentInner>,
64}
65
66struct ComponentInner {
67 /// Unique id for this component within this process.
68 ///
69 /// Note that this is repurposing ids for modules intentionally as there
70 /// shouldn't be an issue overlapping them.
71 id: CompiledModuleId,
72
73 /// The engine that this component belongs to.
74 engine: Engine,
75
76 /// Component type index
77 ty: TypeComponentIndex,
78
79 /// Core wasm modules that the component defined internally, indexed by the
80 /// compile-time-assigned `ModuleUpvarIndex`.
81 static_modules: PrimaryMap<StaticModuleIndex, Module>,
82
83 /// Code-related information such as the compiled artifact, type
84 /// information, etc.
85 ///
86 /// Note that the `Arc` here is used to share this allocation with internal
87 /// modules.
88 code: Arc<CodeObject>,
89
90 /// Metadata produced during compilation.
91 info: CompiledComponentInfo,
92
93 /// A cached handle to the `wasmtime::FuncType` for the canonical ABI's
94 /// `realloc`, to avoid the need to look up types in the registry and take
95 /// locks when calling `realloc` via `TypedFunc::call_raw`.
96 realloc_func_type: Arc<dyn Any + Send + Sync>,
97}
98
99pub(crate) struct AllCallFuncPointers {
100 pub wasm_call: NonNull<VMWasmCallFunction>,
101 pub array_call: NonNull<VMArrayCallFunction>,
102}
103
104impl Component {
105 /// Compiles a new WebAssembly component from the in-memory list of bytes
106 /// provided.
107 ///
108 /// The `bytes` provided can either be the binary or text format of a
109 /// [WebAssembly component]. Note that the text format requires the `wat`
110 /// feature of this crate to be enabled. This API does not support
111 /// streaming compilation.
112 ///
113 /// This function will synchronously validate the entire component,
114 /// including all core modules, and then compile all components, modules,
115 /// etc., found within the provided bytes.
116 ///
117 /// [WebAssembly component]: https://github.com/WebAssembly/component-model/blob/main/design/mvp/Binary.md
118 ///
119 /// # Errors
120 ///
121 /// This function may fail and return an error. Errors may include
122 /// situations such as:
123 ///
124 /// * The binary provided could not be decoded because it's not a valid
125 /// WebAssembly binary
126 /// * The WebAssembly binary may not validate (e.g. contains type errors)
127 /// * Implementation-specific limits were exceeded with a valid binary (for
128 /// example too many locals)
129 /// * The wasm binary may use features that are not enabled in the
130 /// configuration of `engine`
131 /// * If the `wat` feature is enabled and the input is text, then it may be
132 /// rejected if it fails to parse.
133 ///
134 /// The error returned should contain full information about why compilation
135 /// failed.
136 ///
137 /// # Examples
138 ///
139 /// The `new` function can be invoked with a in-memory array of bytes:
140 ///
141 /// ```no_run
142 /// # use wasmtime::*;
143 /// # use wasmtime::component::Component;
144 /// # fn main() -> anyhow::Result<()> {
145 /// # let engine = Engine::default();
146 /// # let wasm_bytes: Vec<u8> = Vec::new();
147 /// let component = Component::new(&engine, &wasm_bytes)?;
148 /// # Ok(())
149 /// # }
150 /// ```
151 ///
152 /// Or you can also pass in a string to be parsed as the wasm text
153 /// format:
154 ///
155 /// ```
156 /// # use wasmtime::*;
157 /// # use wasmtime::component::Component;
158 /// # fn main() -> anyhow::Result<()> {
159 /// # let engine = Engine::default();
160 /// let component = Component::new(&engine, "(component (core module))")?;
161 /// # Ok(())
162 /// # }
163 #[cfg(any(feature = "cranelift", feature = "winch"))]
164 pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Component> {
165 crate::CodeBuilder::new(engine)
166 .wasm_binary_or_text(bytes.as_ref(), None)?
167 .compile_component()
168 }
169
170 /// Compiles a new WebAssembly component from a wasm file on disk pointed
171 /// to by `file`.
172 ///
173 /// This is a convenience function for reading the contents of `file` on
174 /// disk and then calling [`Component::new`].
175 #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
176 pub fn from_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Component> {
177 crate::CodeBuilder::new(engine)
178 .wasm_binary_or_text_file(file.as_ref())?
179 .compile_component()
180 }
181
182 /// Compiles a new WebAssembly component from the in-memory wasm image
183 /// provided.
184 ///
185 /// This function is the same as [`Component::new`] except that it does not
186 /// accept the text format of WebAssembly. Even if the `wat` feature
187 /// is enabled an error will be returned here if `binary` is the text
188 /// format.
189 ///
190 /// For more information on semantics and errors see [`Component::new`].
191 #[cfg(any(feature = "cranelift", feature = "winch"))]
192 pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result<Component> {
193 crate::CodeBuilder::new(engine)
194 .wasm_binary(binary, None)?
195 .compile_component()
196 }
197
198 /// Same as [`Module::deserialize`], but for components.
199 ///
200 /// Note that the bytes referenced here must contain contents previously
201 /// produced by [`Engine::precompile_component`] or
202 /// [`Component::serialize`].
203 ///
204 /// For more information see the [`Module::deserialize`] method.
205 ///
206 /// # Unsafety
207 ///
208 /// The unsafety of this method is the same as that of the
209 /// [`Module::deserialize`] method.
210 ///
211 /// [`Module::deserialize`]: crate::Module::deserialize
212 pub unsafe fn deserialize(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Component> {
213 let code = engine.load_code_bytes(bytes.as_ref(), ObjectKind::Component)?;
214 Component::from_parts(engine, code, None)
215 }
216
217 /// Same as [`Module::deserialize_raw`], but for components.
218 ///
219 /// See [`Component::deserialize`] for additional information; this method
220 /// works identically except that it will not create a copy of the provided
221 /// memory but will use it directly.
222 ///
223 /// # Unsafety
224 ///
225 /// All of the safety notes from [`Component::deserialize`] apply here as well
226 /// with the additional constraint that the code memory provide by `memory`
227 /// lives for as long as the module and is nevery externally modified for
228 /// the lifetime of the deserialized module.
229 pub unsafe fn deserialize_raw(engine: &Engine, memory: NonNull<[u8]>) -> Result<Component> {
230 let code = engine.load_code_raw(memory, ObjectKind::Component)?;
231 Component::from_parts(engine, code, None)
232 }
233
234 /// Same as [`Module::deserialize_file`], but for components.
235 ///
236 /// Note that the file referenced here must contain contents previously
237 /// produced by [`Engine::precompile_component`] or
238 /// [`Component::serialize`].
239 ///
240 /// For more information see the [`Module::deserialize_file`] method.
241 ///
242 /// # Unsafety
243 ///
244 /// The unsafety of this method is the same as that of the
245 /// [`Module::deserialize_file`] method.
246 ///
247 /// [`Module::deserialize_file`]: crate::Module::deserialize_file
248 #[cfg(feature = "std")]
249 pub unsafe fn deserialize_file(engine: &Engine, path: impl AsRef<Path>) -> Result<Component> {
250 let file = open_file_for_mmap(path.as_ref())?;
251 let code = engine
252 .load_code_file(file, ObjectKind::Component)
253 .with_context(|| format!("failed to load code for: {}", path.as_ref().display()))?;
254 Component::from_parts(engine, code, None)
255 }
256
257 /// Returns the type of this component as a [`types::Component`].
258 ///
259 /// This method enables runtime introspection of the type of a component
260 /// before instantiation, if necessary.
261 ///
262 /// ## Component types and Resources
263 ///
264 /// An important point to note here is that the precise type of imports and
265 /// exports of a component change when it is instantiated with respect to
266 /// resources. For example a [`Component`] represents an un-instantiated
267 /// component meaning that its imported resources are represented as abstract
268 /// resource types. These abstract types are not equal to any other
269 /// component's types.
270 ///
271 /// For example:
272 ///
273 /// ```
274 /// # use wasmtime::Engine;
275 /// # use wasmtime::component::Component;
276 /// # use wasmtime::component::types::ComponentItem;
277 /// # fn main() -> wasmtime::Result<()> {
278 /// # let engine = Engine::default();
279 /// let a = Component::new(&engine, r#"
280 /// (component (import "x" (type (sub resource))))
281 /// "#)?;
282 /// let b = Component::new(&engine, r#"
283 /// (component (import "x" (type (sub resource))))
284 /// "#)?;
285 ///
286 /// let (_, a_ty) = a.component_type().imports(&engine).next().unwrap();
287 /// let (_, b_ty) = b.component_type().imports(&engine).next().unwrap();
288 ///
289 /// let a_ty = match a_ty {
290 /// ComponentItem::Resource(ty) => ty,
291 /// _ => unreachable!(),
292 /// };
293 /// let b_ty = match b_ty {
294 /// ComponentItem::Resource(ty) => ty,
295 /// _ => unreachable!(),
296 /// };
297 /// assert!(a_ty != b_ty);
298 /// # Ok(())
299 /// # }
300 /// ```
301 ///
302 /// Additionally, however, these abstract types are "substituted" during
303 /// instantiation meaning that a component type will appear to have changed
304 /// once it is instantiated.
305 ///
306 /// ```
307 /// # use wasmtime::{Engine, Store};
308 /// # use wasmtime::component::{Component, Linker, ResourceType};
309 /// # use wasmtime::component::types::ComponentItem;
310 /// # fn main() -> wasmtime::Result<()> {
311 /// # let engine = Engine::default();
312 /// // Here this component imports a resource and then exports it as-is
313 /// // which means that the export is equal to the import.
314 /// let a = Component::new(&engine, r#"
315 /// (component
316 /// (import "x" (type $x (sub resource)))
317 /// (export "x" (type $x))
318 /// )
319 /// "#)?;
320 ///
321 /// let (_, import) = a.component_type().imports(&engine).next().unwrap();
322 /// let (_, export) = a.component_type().exports(&engine).next().unwrap();
323 ///
324 /// let import = match import {
325 /// ComponentItem::Resource(ty) => ty,
326 /// _ => unreachable!(),
327 /// };
328 /// let export = match export {
329 /// ComponentItem::Resource(ty) => ty,
330 /// _ => unreachable!(),
331 /// };
332 /// assert_eq!(import, export);
333 ///
334 /// // However after instantiation the resource type "changes"
335 /// let mut store = Store::new(&engine, ());
336 /// let mut linker = Linker::new(&engine);
337 /// linker.root().resource("x", ResourceType::host::<()>(), |_, _| Ok(()))?;
338 /// let instance = linker.instantiate(&mut store, &a)?;
339 /// let instance_ty = instance.get_resource(&mut store, "x").unwrap();
340 ///
341 /// // Here `instance_ty` is not the same as either `import` or `export`,
342 /// // but it is equal to what we provided as an import.
343 /// assert!(instance_ty != import);
344 /// assert!(instance_ty != export);
345 /// assert!(instance_ty == ResourceType::host::<()>());
346 /// # Ok(())
347 /// # }
348 /// ```
349 ///
350 /// Finally, each instantiation of an exported resource from a component is
351 /// considered "fresh" for all instantiations meaning that different
352 /// instantiations will have different exported resource types:
353 ///
354 /// ```
355 /// # use wasmtime::{Engine, Store};
356 /// # use wasmtime::component::{Component, Linker};
357 /// # fn main() -> wasmtime::Result<()> {
358 /// # let engine = Engine::default();
359 /// let a = Component::new(&engine, r#"
360 /// (component
361 /// (type $x (resource (rep i32)))
362 /// (export "x" (type $x))
363 /// )
364 /// "#)?;
365 ///
366 /// let mut store = Store::new(&engine, ());
367 /// let linker = Linker::new(&engine);
368 /// let instance1 = linker.instantiate(&mut store, &a)?;
369 /// let instance2 = linker.instantiate(&mut store, &a)?;
370 ///
371 /// let x1 = instance1.get_resource(&mut store, "x").unwrap();
372 /// let x2 = instance2.get_resource(&mut store, "x").unwrap();
373 ///
374 /// // Despite these two resources being the same export of the same
375 /// // component they come from two different instances meaning that their
376 /// // types will be unique.
377 /// assert!(x1 != x2);
378 /// # Ok(())
379 /// # }
380 /// ```
381 pub fn component_type(&self) -> types::Component {
382 self.with_uninstantiated_instance_type(|ty| types::Component::from(self.inner.ty, ty))
383 }
384
385 fn with_uninstantiated_instance_type<R>(&self, f: impl FnOnce(&InstanceType<'_>) -> R) -> R {
386 let resources = Arc::new(PrimaryMap::new());
387 f(&InstanceType {
388 types: self.types(),
389 resources: &resources,
390 })
391 }
392
393 /// Final assembly step for a component from its in-memory representation.
394 ///
395 /// If the `artifacts` are specified as `None` here then they will be
396 /// deserialized from `code_memory`.
397 pub(crate) fn from_parts(
398 engine: &Engine,
399 code_memory: Arc<CodeMemory>,
400 artifacts: Option<ComponentArtifacts>,
401 ) -> Result<Component> {
402 let ComponentArtifacts {
403 ty,
404 info,
405 mut types,
406 mut static_modules,
407 } = match artifacts {
408 Some(artifacts) => artifacts,
409 None => postcard::from_bytes(code_memory.wasmtime_info())?,
410 };
411
412 // Validate that the component can be used with the current instance
413 // allocator.
414 engine.allocator().validate_component(
415 &info.component,
416 &VMComponentOffsets::new(HostPtr, &info.component),
417 &|module_index| &static_modules[module_index].module,
418 )?;
419
420 // Create a signature registration with the `Engine` for all trampolines
421 // and core wasm types found within this component, both for the
422 // component and for all included core wasm modules.
423 let signatures = engine.register_and_canonicalize_types(
424 types.module_types_mut(),
425 static_modules.iter_mut().map(|(_, m)| &mut m.module),
426 );
427 types.canonicalize_for_runtime_usage(&mut |idx| signatures.shared_type(idx).unwrap());
428
429 // Assemble the `CodeObject` artifact which is shared by all core wasm
430 // modules as well as the final component.
431 let types = Arc::new(types);
432 let code = Arc::new(CodeObject::new(code_memory, signatures, types.into()));
433
434 // Convert all information about static core wasm modules into actual
435 // `Module` instances by converting each `CompiledModuleInfo`, the
436 // `types` type information, and the code memory to a runtime object.
437 let static_modules = static_modules
438 .into_iter()
439 .map(|(_, info)| Module::from_parts_raw(engine, code.clone(), info, false))
440 .collect::<Result<_>>()?;
441
442 let realloc_func_type = Arc::new(FuncType::new(
443 engine,
444 [ValType::I32, ValType::I32, ValType::I32, ValType::I32],
445 [ValType::I32],
446 )) as _;
447
448 Ok(Component {
449 inner: Arc::new(ComponentInner {
450 id: CompiledModuleId::new(),
451 engine: engine.clone(),
452 ty,
453 static_modules,
454 code,
455 info,
456 realloc_func_type,
457 }),
458 })
459 }
460
461 pub(crate) fn ty(&self) -> TypeComponentIndex {
462 self.inner.ty
463 }
464
465 pub(crate) fn env_component(&self) -> &wasmtime_environ::component::Component {
466 &self.inner.info.component
467 }
468
469 pub(crate) fn static_module(&self, idx: StaticModuleIndex) -> &Module {
470 &self.inner.static_modules[idx]
471 }
472
473 #[cfg_attr(not(feature = "profiling"), allow(dead_code))]
474 pub(crate) fn static_modules(&self) -> impl Iterator<Item = &Module> {
475 self.inner.static_modules.values()
476 }
477
478 #[inline]
479 pub(crate) fn types(&self) -> &Arc<ComponentTypes> {
480 self.inner.component_types()
481 }
482
483 pub(crate) fn signatures(&self) -> &TypeCollection {
484 self.inner.code.signatures()
485 }
486
487 pub(crate) fn text(&self) -> &[u8] {
488 self.inner.code.code_memory().text()
489 }
490
491 pub(crate) fn trampoline_ptrs(&self, index: TrampolineIndex) -> AllCallFuncPointers {
492 let AllCallFunc {
493 wasm_call,
494 array_call,
495 } = &self.inner.info.trampolines[index];
496 AllCallFuncPointers {
497 wasm_call: self.func(wasm_call).cast(),
498 array_call: self.func(array_call).cast(),
499 }
500 }
501
502 fn func(&self, loc: &FunctionLoc) -> NonNull<VMFunctionBody> {
503 let text = self.text();
504 let trampoline = &text[loc.start as usize..][..loc.length as usize];
505 NonNull::new(trampoline.as_ptr() as *mut VMFunctionBody).unwrap()
506 }
507
508 pub(crate) fn code_object(&self) -> &Arc<CodeObject> {
509 &self.inner.code
510 }
511
512 /// Same as [`Module::serialize`], except for a component.
513 ///
514 /// Note that the artifact produced here must be passed to
515 /// [`Component::deserialize`] and is not compatible for use with
516 /// [`Module`].
517 ///
518 /// [`Module::serialize`]: crate::Module::serialize
519 /// [`Module`]: crate::Module
520 pub fn serialize(&self) -> Result<Vec<u8>> {
521 Ok(self.code_object().code_memory().mmap().to_vec())
522 }
523
524 pub(crate) fn runtime_info(&self) -> Arc<dyn ComponentRuntimeInfo> {
525 self.inner.clone()
526 }
527
528 /// Creates a new `VMFuncRef` with all fields filled out for the destructor
529 /// specified.
530 ///
531 /// The `dtor`'s own `VMFuncRef` won't have `wasm_call` filled out but this
532 /// component may have `resource_drop_wasm_to_native_trampoline` filled out
533 /// if necessary in which case it's filled in here.
534 pub(crate) fn resource_drop_func_ref(&self, dtor: &crate::func::HostFunc) -> VMFuncRef {
535 // Host functions never have their `wasm_call` filled in at this time.
536 assert!(dtor.func_ref().wasm_call.is_none());
537
538 // Note that if `resource_drop_wasm_to_native_trampoline` is not present
539 // then this can't be called by the component, so it's ok to leave it
540 // blank.
541 let wasm_call = self
542 .inner
543 .info
544 .resource_drop_wasm_to_array_trampoline
545 .as_ref()
546 .map(|i| self.func(i).cast().into());
547 VMFuncRef {
548 wasm_call,
549 ..*dtor.func_ref()
550 }
551 }
552
553 /// Returns a summary of the resources required to instantiate this
554 /// [`Component`][crate::component::Component].
555 ///
556 /// Note that when a component imports and instantiates another component or
557 /// core module, we cannot determine ahead of time how many resources
558 /// instantiating this component will require, and therefore this method
559 /// will return `None` in these scenarios.
560 ///
561 /// Potential uses of the returned information:
562 ///
563 /// * Determining whether your pooling allocator configuration supports
564 /// instantiating this component.
565 ///
566 /// * Deciding how many of which `Component` you want to instantiate within
567 /// a fixed amount of resources, e.g. determining whether to create 5
568 /// instances of component X or 10 instances of component Y.
569 ///
570 /// # Example
571 ///
572 /// ```
573 /// # fn main() -> wasmtime::Result<()> {
574 /// use wasmtime::{Config, Engine, component::Component};
575 ///
576 /// let mut config = Config::new();
577 /// config.wasm_multi_memory(true);
578 /// config.wasm_component_model(true);
579 /// let engine = Engine::new(&config)?;
580 ///
581 /// let component = Component::new(&engine, &r#"
582 /// (component
583 /// ;; Define a core module that uses two memories.
584 /// (core module $m
585 /// (memory 1)
586 /// (memory 6)
587 /// )
588 ///
589 /// ;; Instantiate that core module three times.
590 /// (core instance $i1 (instantiate (module $m)))
591 /// (core instance $i2 (instantiate (module $m)))
592 /// (core instance $i3 (instantiate (module $m)))
593 /// )
594 /// "#)?;
595 ///
596 /// let resources = component.resources_required()
597 /// .expect("this component does not import any core modules or instances");
598 ///
599 /// // Instantiating the component will require allocating two memories per
600 /// // core instance, and there are three instances, so six total memories.
601 /// assert_eq!(resources.num_memories, 6);
602 /// assert_eq!(resources.max_initial_memory_size, Some(6));
603 ///
604 /// // The component doesn't need any tables.
605 /// assert_eq!(resources.num_tables, 0);
606 /// assert_eq!(resources.max_initial_table_size, None);
607 /// # Ok(()) }
608 /// ```
609 pub fn resources_required(&self) -> Option<ResourcesRequired> {
610 let mut resources = ResourcesRequired {
611 num_memories: 0,
612 max_initial_memory_size: None,
613 num_tables: 0,
614 max_initial_table_size: None,
615 };
616 for init in &self.env_component().initializers {
617 match init {
618 GlobalInitializer::InstantiateModule(inst) => match inst {
619 InstantiateModule::Static(index, _) => {
620 let module = self.static_module(*index);
621 resources.add(&module.resources_required());
622 }
623 InstantiateModule::Import(_, _) => {
624 // We can't statically determine the resources required
625 // to instantiate this component.
626 return None;
627 }
628 },
629 GlobalInitializer::LowerImport { .. }
630 | GlobalInitializer::ExtractMemory(_)
631 | GlobalInitializer::ExtractTable(_)
632 | GlobalInitializer::ExtractRealloc(_)
633 | GlobalInitializer::ExtractCallback(_)
634 | GlobalInitializer::ExtractPostReturn(_)
635 | GlobalInitializer::Resource(_) => {}
636 }
637 }
638 Some(resources)
639 }
640
641 /// Returns the range, in the host's address space, that this module's
642 /// compiled code resides at.
643 ///
644 /// For more information see
645 /// [`Module::image_range`](crate::Module::image_range).
646 pub fn image_range(&self) -> Range<*const u8> {
647 self.inner.code.code_memory().mmap().image_range()
648 }
649
650 /// Force initialization of copy-on-write images to happen here-and-now
651 /// instead of when they're requested during first instantiation.
652 ///
653 /// When [copy-on-write memory
654 /// initialization](crate::Config::memory_init_cow) is enabled then Wasmtime
655 /// will lazily create the initialization image for a component. This method
656 /// can be used to explicitly dictate when this initialization happens.
657 ///
658 /// Note that this largely only matters on Linux when memfd is used.
659 /// Otherwise the copy-on-write image typically comes from disk and in that
660 /// situation the creation of the image is trivial as the image is always
661 /// sourced from disk. On Linux, though, when memfd is used a memfd is
662 /// created and the initialization image is written to it.
663 ///
664 /// Also note that this method is not required to be called, it's available
665 /// as a performance optimization if required but is otherwise handled
666 /// automatically.
667 pub fn initialize_copy_on_write_image(&self) -> Result<()> {
668 for (_, module) in self.inner.static_modules.iter() {
669 module.initialize_copy_on_write_image()?;
670 }
671 Ok(())
672 }
673
674 /// Looks up a specific export of this component by `name` optionally nested
675 /// within the `instance` provided.
676 ///
677 /// This method is primarily used to acquire a [`ComponentExportIndex`]
678 /// which can be used with [`Instance`](crate::component::Instance) when
679 /// looking up exports. Export lookup with [`ComponentExportIndex`] can
680 /// skip string lookups at runtime and instead use a more efficient
681 /// index-based lookup.
682 ///
683 /// This method takes a few arguments:
684 ///
685 /// * `engine` - the engine that was used to compile this component.
686 /// * `instance` - an optional "parent instance" for the export being looked
687 /// up. If this is `None` then the export is looked up on the root of the
688 /// component itself, and otherwise the export is looked up on the
689 /// `instance` specified. Note that `instance` must have come from a
690 /// previous invocation of this method.
691 /// * `name` - the name of the export that's being looked up.
692 ///
693 /// If the export is located then two values are returned: a
694 /// [`types::ComponentItem`] which enables introspection about the type of
695 /// the export and a [`ComponentExportIndex`]. The index returned notably
696 /// implements the [`InstanceExportLookup`] trait which enables using it
697 /// with [`Instance::get_func`](crate::component::Instance::get_func) for
698 /// example.
699 ///
700 /// # Examples
701 ///
702 /// ```
703 /// use wasmtime::{Engine, Store};
704 /// use wasmtime::component::{Component, Linker};
705 /// use wasmtime::component::types::ComponentItem;
706 ///
707 /// # fn main() -> wasmtime::Result<()> {
708 /// let engine = Engine::default();
709 /// let component = Component::new(
710 /// &engine,
711 /// r#"
712 /// (component
713 /// (core module $m
714 /// (func (export "f"))
715 /// )
716 /// (core instance $i (instantiate $m))
717 /// (func (export "f")
718 /// (canon lift (core func $i "f")))
719 /// )
720 /// "#,
721 /// )?;
722 ///
723 /// // Perform a lookup of the function "f" before instantiaton.
724 /// let (ty, export) = component.export_index(None, "f").unwrap();
725 /// assert!(matches!(ty, ComponentItem::ComponentFunc(_)));
726 ///
727 /// // After instantiation use `export` to lookup the function in question
728 /// // which notably does not do a string lookup at runtime.
729 /// let mut store = Store::new(&engine, ());
730 /// let instance = Linker::new(&engine).instantiate(&mut store, &component)?;
731 /// let func = instance.get_typed_func::<(), ()>(&mut store, &export)?;
732 /// // ...
733 /// # Ok(())
734 /// # }
735 /// ```
736 pub fn export_index(
737 &self,
738 instance: Option<&ComponentExportIndex>,
739 name: &str,
740 ) -> Option<(types::ComponentItem, ComponentExportIndex)> {
741 let info = self.env_component();
742 let index = self.lookup_export_index(instance, name)?;
743 let ty = match info.export_items[index] {
744 Export::Instance { ty, .. } => TypeDef::ComponentInstance(ty),
745 Export::LiftedFunction { ty, .. } => TypeDef::ComponentFunc(ty),
746 Export::ModuleStatic { ty, .. } | Export::ModuleImport { ty, .. } => {
747 TypeDef::Module(ty)
748 }
749 Export::Type(ty) => ty,
750 };
751 let item = self.with_uninstantiated_instance_type(|instance| {
752 types::ComponentItem::from(&self.inner.engine, &ty, instance)
753 });
754 Some((
755 item,
756 ComponentExportIndex {
757 id: self.inner.id,
758 index,
759 },
760 ))
761 }
762
763 pub(crate) fn lookup_export_index(
764 &self,
765 instance: Option<&ComponentExportIndex>,
766 name: &str,
767 ) -> Option<ExportIndex> {
768 let info = self.env_component();
769 let exports = match instance {
770 Some(idx) => {
771 if idx.id != self.inner.id {
772 return None;
773 }
774 match &info.export_items[idx.index] {
775 Export::Instance { exports, .. } => exports,
776 _ => return None,
777 }
778 }
779 None => &info.exports,
780 };
781 exports.get(name, &NameMapNoIntern).copied()
782 }
783
784 pub(crate) fn id(&self) -> CompiledModuleId {
785 self.inner.id
786 }
787
788 /// Returns the [`Engine`] that this [`Component`] was compiled by.
789 pub fn engine(&self) -> &Engine {
790 &self.inner.engine
791 }
792}
793
794/// A value which represents a known export of a component.
795///
796/// This is the return value of [`Component::export_index`] and implements the
797/// [`InstanceExportLookup`] trait to work with lookups like
798/// [`Instance::get_func`](crate::component::Instance::get_func).
799#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
800pub struct ComponentExportIndex {
801 pub(crate) id: CompiledModuleId,
802 pub(crate) index: ExportIndex,
803}
804
805impl InstanceExportLookup for ComponentExportIndex {
806 fn lookup(&self, component: &Component) -> Option<ExportIndex> {
807 if component.inner.id == self.id {
808 Some(self.index)
809 } else {
810 None
811 }
812 }
813}
814
815impl ComponentRuntimeInfo for ComponentInner {
816 fn component(&self) -> &wasmtime_environ::component::Component {
817 &self.info.component
818 }
819
820 fn component_types(&self) -> &Arc<ComponentTypes> {
821 match self.code.types() {
822 crate::code::Types::Component(types) => types,
823 // The only creator of a `Component` is itself which uses the other
824 // variant, so this shouldn't be possible.
825 crate::code::Types::Module(_) => unreachable!(),
826 }
827 }
828
829 fn realloc_func_type(&self) -> &Arc<dyn Any + Send + Sync> {
830 &self.realloc_func_type
831 }
832}
833
834#[cfg(test)]
835mod tests {
836 use crate::component::Component;
837 use crate::{Config, Engine};
838 use wasmtime_environ::MemoryInitialization;
839
840 #[test]
841 fn cow_on_by_default() {
842 let mut config = Config::new();
843 config.wasm_component_model(true);
844 let engine = Engine::new(&config).unwrap();
845 let component = Component::new(
846 &engine,
847 r#"
848 (component
849 (core module
850 (memory 1)
851 (data (i32.const 100) "abcd")
852 )
853 )
854 "#,
855 )
856 .unwrap();
857
858 for (_, module) in component.inner.static_modules.iter() {
859 let init = &module.env_module().memory_initialization;
860 assert!(matches!(init, MemoryInitialization::Static { .. }));
861 }
862 }
863}