cranelift_codegen/machinst/buffer.rs
1//! In-memory representation of compiled machine code, with labels and fixups to
2//! refer to those labels. Handles constant-pool island insertion and also
3//! veneer insertion for out-of-range jumps.
4//!
5//! This code exists to solve three problems:
6//!
7//! - Branch targets for forward branches are not known until later, when we
8//! emit code in a single pass through the instruction structs.
9//!
10//! - On many architectures, address references or offsets have limited range.
11//! For example, on AArch64, conditional branches can only target code +/- 1MB
12//! from the branch itself.
13//!
14//! - The lowering of control flow from the CFG-with-edges produced by
15//! [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
16//! edge blocks when the register allocator does not need to insert any
17//! spills/reloads/moves in edge blocks, results in many suboptimal branch
18//! patterns. The lowering also pays no attention to block order, and so
19//! two-target conditional forms (cond-br followed by uncond-br) can often by
20//! avoided because one of the targets is the fallthrough. There are several
21//! cases here where we can simplify to use fewer branches.
22//!
23//! This "buffer" implements a single-pass code emission strategy (with a later
24//! "fixup" pass, but only through recorded fixups, not all instructions). The
25//! basic idea is:
26//!
27//! - Emit branches as they are, including two-target (cond/uncond) compound
28//! forms, but with zero offsets and optimistically assuming the target will be
29//! in range. Record the "fixup" for later. Targets are denoted instead by
30//! symbolic "labels" that are then bound to certain offsets in the buffer as
31//! we emit code. (Nominally, there is a label at the start of every basic
32//! block.)
33//!
34//! - As we do this, track the offset in the buffer at which the first label
35//! reference "goes out of range". We call this the "deadline". If we reach the
36//! deadline and we still have not bound the label to which an unresolved branch
37//! refers, we have a problem!
38//!
39//! - To solve this problem, we emit "islands" full of "veneers". An island is
40//! simply a chunk of code inserted in the middle of the code actually produced
41//! by the emitter (e.g., vcode iterating over instruction structs). The emitter
42//! has some awareness of this: it either asks for an island between blocks, so
43//! it is not accidentally executed, or else it emits a branch around the island
44//! when all other options fail (see `Inst::EmitIsland` meta-instruction).
45//!
46//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
47//! that implements a longer-range reference to a label. The idea is that, for
48//! example, a branch with a limited range can branch to a "veneer" instead,
49//! which is simply a branch in a form that can use a longer-range reference. On
50//! AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
51//! can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
52//! conditional branch's label reference can be fixed up with a "veneer" to
53//! achieve a longer range.
54//!
55//! - To implement all of this, we require the backend to provide a `LabelUse`
56//! type that implements a trait. This is nominally an enum that records one of
57//! several kinds of references to an offset in code -- basically, a relocation
58//! type -- and will usually correspond to different instruction formats. The
59//! `LabelUse` implementation specifies the maximum range, how to patch in the
60//! actual label location when known, and how to generate a veneer to extend the
61//! range.
62//!
63//! That satisfies label references, but we still may have suboptimal branch
64//! patterns. To clean up the branches, we do a simple "peephole"-style
65//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
66//! informs the buffer of branches in the code and, in the case of conditionals,
67//! the code that would have been emitted to invert this branch's condition. We
68//! track the "latest branches": these are branches that are contiguous up to
69//! the current offset. (If any code is emitted after a branch, that branch or
70//! run of contiguous branches is no longer "latest".) The latest branches are
71//! those that we can edit by simply truncating the buffer and doing something
72//! else instead.
73//!
74//! To optimize branches, we implement several simple rules, and try to apply
75//! them to the "latest branches" when possible:
76//!
77//! - A branch with a label target, when that label is bound to the ending
78//! offset of the branch (the fallthrough location), can be removed altogether,
79//! because the branch would have no effect).
80//!
81//! - An unconditional branch that starts at a label location, and branches to
82//! another label, results in a "label alias": all references to the label bound
83//! *to* this branch instruction are instead resolved to the *target* of the
84//! branch instruction. This effectively removes empty blocks that just
85//! unconditionally branch to the next block. We call this "branch threading".
86//!
87//! - A conditional followed by an unconditional, when the conditional branches
88//! to the unconditional's fallthrough, results in (i) the truncation of the
89//! unconditional, (ii) the inversion of the condition's condition, and (iii)
90//! replacement of the conditional's target (using the original target of the
91//! unconditional). This is a fancy way of saying "we can flip a two-target
92//! conditional branch's taken/not-taken targets if it works better with our
93//! fallthrough". To make this work, the emitter actually gives the buffer
94//! *both* forms of every conditional branch: the true form is emitted into the
95//! buffer, and the "inverted" machine-code bytes are provided as part of the
96//! branch-fixup metadata.
97//!
98//! - An unconditional B preceded by another unconditional P, when B's label(s) have
99//! been redirected to target(B), can be removed entirely. This is an extension
100//! of the branch-threading optimization, and is valid because if we know there
101//! will be no fallthrough into this branch instruction (the prior instruction
102//! is an unconditional jump), and if we know we have successfully redirected
103//! all labels, then this branch instruction is unreachable. Note that this
104//! works because the redirection happens before the label is ever resolved
105//! (fixups happen at island emission time, at which point latest-branches are
106//! cleared, or at the end of emission), so we are sure to catch and redirect
107//! all possible paths to this instruction.
108//!
109//! # Branch-optimization Correctness
110//!
111//! The branch-optimization mechanism depends on a few data structures with
112//! invariants, which are always held outside the scope of top-level public
113//! methods:
114//!
115//! - The latest-branches list. Each entry describes a span of the buffer
116//! (start/end offsets), the label target, the corresponding fixup-list entry
117//! index, and the bytes (must be the same length) for the inverted form, if
118//! conditional. The list of labels that are bound to the start-offset of this
119//! branch is *complete* (if any label has a resolved offset equal to `start`
120//! and is not an alias, it must appear in this list) and *precise* (no label
121//! in this list can be bound to another offset). No label in this list should
122//! be an alias. No two branch ranges can overlap, and branches are in
123//! ascending-offset order.
124//!
125//! - The labels-at-tail list. This contains all MachLabels that have been bound
126//! to (whose resolved offsets are equal to) the tail offset of the buffer.
127//! No label in this list should be an alias.
128//!
129//! - The label_offsets array, containing the bound offset of a label or
130//! UNKNOWN. No label can be bound at an offset greater than the current
131//! buffer tail.
132//!
133//! - The label_aliases array, containing another label to which a label is
134//! bound or UNKNOWN. A label's resolved offset is the resolved offset
135//! of the label it is aliased to, if this is set.
136//!
137//! We argue below, at each method, how the invariants in these data structures
138//! are maintained (grep for "Post-invariant").
139//!
140//! Given these invariants, we argue why each optimization preserves execution
141//! semantics below (grep for "Preserves execution semantics").
142//!
143//! # Avoiding Quadratic Behavior
144//!
145//! There are two cases where we've had to take some care to avoid
146//! quadratic worst-case behavior:
147//!
148//! - The "labels at this branch" list can grow unboundedly if the
149//! code generator binds many labels at one location. If the count
150//! gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
151//! simply abort an optimization early in a way that is always correct
152//! but is conservative.
153//!
154//! - The fixup list can interact with island emission to create
155//! "quadratic island behavior". In a little more detail, one can hit
156//! this behavior by having some pending fixups (forward label
157//! references) with long-range label-use kinds, and some others
158//! with shorter-range references that nonetheless still are pending
159//! long enough to trigger island generation. In such a case, we
160//! process the fixup list, generate veneers to extend some forward
161//! references' ranges, but leave the other (longer-range) ones
162//! alone. The way this was implemented put them back on a list and
163//! resulted in quadratic behavior.
164//!
165//! To avoid this fixups are split into two lists: one "pending" list and one
166//! final list. The pending list is kept around for handling fixups related to
167//! branches so it can be edited/truncated. When an island is reached, which
168//! starts processing fixups, all pending fixups are flushed into the final
169//! list. The final list is a `BinaryHeap` which enables fixup processing to
170//! only process those which are required during island emission, deferring
171//! all longer-range fixups to later.
172
173use crate::binemit::{Addend, CodeOffset, Reloc};
174use crate::ir::function::FunctionParameters;
175use crate::ir::{ExceptionTag, ExternalName, RelSourceLoc, SourceLoc, TrapCode};
176use crate::isa::unwind::UnwindInst;
177use crate::machinst::{
178 BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
179};
180use crate::trace;
181use crate::{ir, MachInstEmitState};
182use crate::{timing, VCodeConstantData};
183use core::ops::Range;
184use cranelift_control::ControlPlane;
185use cranelift_entity::packed_option::PackedOption;
186use cranelift_entity::{entity_impl, PrimaryMap};
187use smallvec::SmallVec;
188use std::cmp::Ordering;
189use std::collections::BinaryHeap;
190use std::mem;
191use std::string::String;
192use std::vec::Vec;
193
194#[cfg(feature = "enable-serde")]
195use serde::{Deserialize, Serialize};
196
197#[cfg(feature = "enable-serde")]
198pub trait CompilePhase {
199 type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
200 type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
201}
202
203#[cfg(not(feature = "enable-serde"))]
204pub trait CompilePhase {
205 type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
206 type SourceLocType: core::fmt::Debug + PartialEq + Clone;
207}
208
209/// Status of a compiled artifact that needs patching before being used.
210#[derive(Clone, Debug, PartialEq)]
211#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
212pub struct Stencil;
213
214/// Status of a compiled artifact ready to use.
215#[derive(Clone, Debug, PartialEq)]
216pub struct Final;
217
218impl CompilePhase for Stencil {
219 type MachSrcLocType = MachSrcLoc<Stencil>;
220 type SourceLocType = RelSourceLoc;
221}
222
223impl CompilePhase for Final {
224 type MachSrcLocType = MachSrcLoc<Final>;
225 type SourceLocType = SourceLoc;
226}
227
228#[derive(Clone, Copy, Debug, PartialEq, Eq)]
229enum ForceVeneers {
230 Yes,
231 No,
232}
233
234/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
235/// in bulk.
236///
237/// This struct uses `SmallVec`s to support small-ish function bodies without
238/// any heap allocation. As such, it will be several kilobytes large. This is
239/// likely fine as long as it is stack-allocated for function emission then
240/// thrown away; but beware if many buffer objects are retained persistently.
241pub struct MachBuffer<I: VCodeInst> {
242 /// The buffer contents, as raw bytes.
243 data: SmallVec<[u8; 1024]>,
244 /// The required alignment of this buffer.
245 min_alignment: u32,
246 /// Any relocations referring to this code. Note that only *external*
247 /// relocations are tracked here; references to labels within the buffer are
248 /// resolved before emission.
249 relocs: SmallVec<[MachReloc; 16]>,
250 /// Any trap records referring to this code.
251 traps: SmallVec<[MachTrap; 16]>,
252 /// Any call site records referring to this code.
253 call_sites: SmallVec<[MachCallSite; 16]>,
254 /// Any exception-handler records referred to at call sites.
255 exception_handlers: SmallVec<[(PackedOption<ir::ExceptionTag>, MachLabel); 16]>,
256 /// Any source location mappings referring to this code.
257 srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
258 /// Any user stack maps for this code.
259 ///
260 /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
261 /// by code offset, and each stack map covers `span` bytes on the stack.
262 user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
263 /// Any unwind info at a given location.
264 unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
265 /// The current source location in progress (after `start_srcloc()` and
266 /// before `end_srcloc()`). This is a (start_offset, src_loc) tuple.
267 cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
268 /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
269 label_offsets: SmallVec<[CodeOffset; 16]>,
270 /// Label aliases: when one label points to an unconditional jump, and that
271 /// jump points to another label, we can redirect references to the first
272 /// label immediately to the second.
273 ///
274 /// Invariant: we don't have label-alias cycles. We ensure this by,
275 /// before setting label A to alias label B, resolving B's alias
276 /// target (iteratively until a non-aliased label); if B is already
277 /// aliased to A, then we cannot alias A back to B.
278 label_aliases: SmallVec<[MachLabel; 16]>,
279 /// Constants that must be emitted at some point.
280 pending_constants: SmallVec<[VCodeConstant; 16]>,
281 /// Byte size of all constants in `pending_constants`.
282 pending_constants_size: CodeOffset,
283 /// Traps that must be emitted at some point.
284 pending_traps: SmallVec<[MachLabelTrap; 16]>,
285 /// Fixups that haven't yet been flushed into `fixup_records` below and may
286 /// be related to branches that are chomped. These all get added to
287 /// `fixup_records` during island emission.
288 pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
289 /// The nearest upcoming deadline for entries in `pending_fixup_records`.
290 pending_fixup_deadline: CodeOffset,
291 /// Fixups that must be performed after all code is emitted.
292 fixup_records: BinaryHeap<MachLabelFixup<I>>,
293 /// Latest branches, to facilitate in-place editing for better fallthrough
294 /// behavior and empty-block removal.
295 latest_branches: SmallVec<[MachBranch; 4]>,
296 /// All labels at the current offset (emission tail). This is lazily
297 /// cleared: it is actually accurate as long as the current offset is
298 /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
299 /// be considered as empty.
300 ///
301 /// For correctness, this *must* be complete (i.e., the vector must contain
302 /// all labels whose offsets are resolved to the current tail), because we
303 /// rely on it to update labels when we truncate branches.
304 labels_at_tail: SmallVec<[MachLabel; 4]>,
305 /// The last offset at which `labels_at_tail` is valid. It is conceptually
306 /// always describing the tail of the buffer, but we do not clear
307 /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
308 /// when the offset has grown past this (`labels_at_tail_off`) point.
309 /// Always <= `cur_offset()`.
310 labels_at_tail_off: CodeOffset,
311 /// Metadata about all constants that this function has access to.
312 ///
313 /// This records the size/alignment of all constants (not the actual data)
314 /// along with the last available label generated for the constant. This map
315 /// is consulted when constants are referred to and the label assigned to a
316 /// constant may change over time as well.
317 constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
318 /// All recorded usages of constants as pairs of the constant and where the
319 /// constant needs to be placed within `self.data`. Note that the same
320 /// constant may appear in this array multiple times if it was emitted
321 /// multiple times.
322 used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
323 /// Indicates when a patchable region is currently open, to guard that it's
324 /// not possible to nest patchable regions.
325 open_patchable: bool,
326}
327
328impl MachBufferFinalized<Stencil> {
329 /// Get a finalized machine buffer by applying the function's base source location.
330 pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
331 MachBufferFinalized {
332 data: self.data,
333 relocs: self.relocs,
334 traps: self.traps,
335 call_sites: self.call_sites,
336 exception_handlers: self.exception_handlers,
337 srclocs: self
338 .srclocs
339 .into_iter()
340 .map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
341 .collect(),
342 user_stack_maps: self.user_stack_maps,
343 unwind_info: self.unwind_info,
344 alignment: self.alignment,
345 }
346 }
347}
348
349/// A `MachBuffer` once emission is completed: holds generated code and records,
350/// without fixups. This allows the type to be independent of the backend.
351#[derive(PartialEq, Debug, Clone)]
352#[cfg_attr(
353 feature = "enable-serde",
354 derive(serde_derive::Serialize, serde_derive::Deserialize)
355)]
356pub struct MachBufferFinalized<T: CompilePhase> {
357 /// The buffer contents, as raw bytes.
358 pub(crate) data: SmallVec<[u8; 1024]>,
359 /// Any relocations referring to this code. Note that only *external*
360 /// relocations are tracked here; references to labels within the buffer are
361 /// resolved before emission.
362 pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
363 /// Any trap records referring to this code.
364 pub(crate) traps: SmallVec<[MachTrap; 16]>,
365 /// Any call site records referring to this code.
366 pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
367 /// Any exception-handler records referred to at call sites.
368 pub(crate) exception_handlers: SmallVec<[(PackedOption<ir::ExceptionTag>, CodeOffset); 16]>,
369 /// Any source location mappings referring to this code.
370 pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
371 /// Any user stack maps for this code.
372 ///
373 /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
374 /// by code offset, and each stack map covers `span` bytes on the stack.
375 pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
376 /// Any unwind info at a given location.
377 pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
378 /// The required alignment of this buffer.
379 pub alignment: u32,
380}
381
382const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
383const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
384
385/// Threshold on max length of `labels_at_this_branch` list to avoid
386/// unbounded quadratic behavior (see comment below at use-site).
387const LABEL_LIST_THRESHOLD: usize = 100;
388
389/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
390/// the point at which it is used by emitted code; the buffer records "fixups"
391/// for references to the label, and will come back and patch the code
392/// appropriately when the label's location is eventually known.
393#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
394pub struct MachLabel(u32);
395entity_impl!(MachLabel);
396
397impl MachLabel {
398 /// Get a label for a block. (The first N MachLabels are always reserved for
399 /// the N blocks in the vcode.)
400 pub fn from_block(bindex: BlockIndex) -> MachLabel {
401 MachLabel(bindex.index() as u32)
402 }
403
404 /// Creates a string representing this label, for convenience.
405 pub fn to_string(&self) -> String {
406 format!("label{}", self.0)
407 }
408}
409
410impl Default for MachLabel {
411 fn default() -> Self {
412 UNKNOWN_LABEL
413 }
414}
415
416/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
417/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
418/// the [`OpenPatchRegion`] token in the process.
419pub struct OpenPatchRegion(usize);
420
421/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
422/// of where you might want to use this is for patching instructions that mention constants that
423/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
424/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
425/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
426/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
427/// bytes, and the constants uses can be updated directly.
428pub struct PatchRegion {
429 range: Range<usize>,
430}
431
432impl PatchRegion {
433 /// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
434 pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
435 &mut buffer.data[self.range]
436 }
437}
438
439impl<I: VCodeInst> MachBuffer<I> {
440 /// Create a new section, known to start at `start_offset` and with a size limited to
441 /// `length_limit`.
442 pub fn new() -> MachBuffer<I> {
443 MachBuffer {
444 data: SmallVec::new(),
445 min_alignment: I::function_alignment().minimum,
446 relocs: SmallVec::new(),
447 traps: SmallVec::new(),
448 call_sites: SmallVec::new(),
449 exception_handlers: SmallVec::new(),
450 srclocs: SmallVec::new(),
451 user_stack_maps: SmallVec::new(),
452 unwind_info: SmallVec::new(),
453 cur_srcloc: None,
454 label_offsets: SmallVec::new(),
455 label_aliases: SmallVec::new(),
456 pending_constants: SmallVec::new(),
457 pending_constants_size: 0,
458 pending_traps: SmallVec::new(),
459 pending_fixup_records: SmallVec::new(),
460 pending_fixup_deadline: u32::MAX,
461 fixup_records: Default::default(),
462 latest_branches: SmallVec::new(),
463 labels_at_tail: SmallVec::new(),
464 labels_at_tail_off: 0,
465 constants: Default::default(),
466 used_constants: Default::default(),
467 open_patchable: false,
468 }
469 }
470
471 /// Current offset from start of buffer.
472 pub fn cur_offset(&self) -> CodeOffset {
473 self.data.len() as CodeOffset
474 }
475
476 /// Add a byte.
477 pub fn put1(&mut self, value: u8) {
478 self.data.push(value);
479
480 // Post-invariant: conceptual-labels_at_tail contains a complete and
481 // precise list of labels bound at `cur_offset()`. We have advanced
482 // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
483 // before, it is not anymore (and it cannot become equal, because
484 // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
485 // conceptually empty (even though it is only lazily cleared). No labels
486 // can be bound at this new offset (by invariant on `label_offsets`).
487 // Hence the invariant holds.
488 }
489
490 /// Add 2 bytes.
491 pub fn put2(&mut self, value: u16) {
492 let bytes = value.to_le_bytes();
493 self.data.extend_from_slice(&bytes[..]);
494
495 // Post-invariant: as for `put1()`.
496 }
497
498 /// Add 4 bytes.
499 pub fn put4(&mut self, value: u32) {
500 let bytes = value.to_le_bytes();
501 self.data.extend_from_slice(&bytes[..]);
502
503 // Post-invariant: as for `put1()`.
504 }
505
506 /// Add 8 bytes.
507 pub fn put8(&mut self, value: u64) {
508 let bytes = value.to_le_bytes();
509 self.data.extend_from_slice(&bytes[..]);
510
511 // Post-invariant: as for `put1()`.
512 }
513
514 /// Add a slice of bytes.
515 pub fn put_data(&mut self, data: &[u8]) {
516 self.data.extend_from_slice(data);
517
518 // Post-invariant: as for `put1()`.
519 }
520
521 /// Reserve appended space and return a mutable slice referring to it.
522 pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
523 let off = self.data.len();
524 let new_len = self.data.len() + len;
525 self.data.resize(new_len, 0);
526 &mut self.data[off..]
527
528 // Post-invariant: as for `put1()`.
529 }
530
531 /// Align up to the given alignment.
532 pub fn align_to(&mut self, align_to: CodeOffset) {
533 trace!("MachBuffer: align to {}", align_to);
534 assert!(
535 align_to.is_power_of_two(),
536 "{align_to} is not a power of two"
537 );
538 while self.cur_offset() & (align_to - 1) != 0 {
539 self.put1(0);
540 }
541
542 // Post-invariant: as for `put1()`.
543 }
544
545 /// Begin a region of patchable code. There is one requirement for the
546 /// code that is emitted: It must not introduce any instructions that
547 /// could be chomped (branches are an example of this). In other words,
548 /// you must not call [`MachBuffer::add_cond_branch`] or
549 /// [`MachBuffer::add_uncond_branch`] between calls to this method and
550 /// [`MachBuffer::end_patchable`].
551 pub fn start_patchable(&mut self) -> OpenPatchRegion {
552 assert!(!self.open_patchable, "Patchable regions may not be nested");
553 self.open_patchable = true;
554 OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
555 }
556
557 /// End a region of patchable code, yielding a [`PatchRegion`] value that
558 /// can be consumed later to produce a one-off mutable slice to the
559 /// associated region of the data buffer.
560 pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
561 // No need to assert the state of `open_patchable` here, as we take
562 // ownership of the only `OpenPatchable` value.
563 self.open_patchable = false;
564 let end = usize::try_from(self.cur_offset()).unwrap();
565 PatchRegion { range: open.0..end }
566 }
567
568 /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
569 /// offset yet.
570 pub fn get_label(&mut self) -> MachLabel {
571 let l = self.label_offsets.len() as u32;
572 self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
573 self.label_aliases.push(UNKNOWN_LABEL);
574 trace!("MachBuffer: new label -> {:?}", MachLabel(l));
575 MachLabel(l)
576
577 // Post-invariant: the only mutation is to add a new label; it has no
578 // bound offset yet, so it trivially satisfies all invariants.
579 }
580
581 /// Reserve the first N MachLabels for blocks.
582 pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
583 trace!("MachBuffer: first {} labels are for blocks", blocks);
584 debug_assert!(self.label_offsets.is_empty());
585 self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
586 self.label_aliases.resize(blocks, UNKNOWN_LABEL);
587
588 // Post-invariant: as for `get_label()`.
589 }
590
591 /// Registers metadata in this `MachBuffer` about the `constants` provided.
592 ///
593 /// This will record the size/alignment of all constants which will prepare
594 /// them for emission later on.
595 pub fn register_constants(&mut self, constants: &VCodeConstants) {
596 for (c, val) in constants.iter() {
597 self.register_constant(&c, val);
598 }
599 }
600
601 /// Similar to [`MachBuffer::register_constants`] but registers a
602 /// single constant metadata. This function is useful in
603 /// situations where not all constants are known at the time of
604 /// emission.
605 pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
606 let c2 = self.constants.push(MachBufferConstant {
607 upcoming_label: None,
608 align: data.alignment(),
609 size: data.as_slice().len(),
610 });
611 assert_eq!(*constant, c2);
612 }
613
614 /// Completes constant emission by iterating over `self.used_constants` and
615 /// filling in the "holes" with the constant values provided by `constants`.
616 ///
617 /// Returns the alignment required for this entire buffer. Alignment starts
618 /// at the ISA's minimum function alignment and can be increased due to
619 /// constant requirements.
620 fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
621 let mut alignment = self.min_alignment;
622 for (constant, offset) in mem::take(&mut self.used_constants) {
623 let constant = constants.get(constant);
624 let data = constant.as_slice();
625 self.data[offset as usize..][..data.len()].copy_from_slice(data);
626 alignment = constant.alignment().max(alignment);
627 }
628 alignment
629 }
630
631 /// Returns a label that can be used to refer to the `constant` provided.
632 ///
633 /// This will automatically defer a new constant to be emitted for
634 /// `constant` if it has not been previously emitted. Note that this
635 /// function may return a different label for the same constant at
636 /// different points in time. The label is valid to use only from the
637 /// current location; the MachBuffer takes care to emit the same constant
638 /// multiple times if needed so the constant is always in range.
639 pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
640 let MachBufferConstant {
641 align,
642 size,
643 upcoming_label,
644 } = self.constants[constant];
645 if let Some(label) = upcoming_label {
646 return label;
647 }
648
649 let label = self.get_label();
650 trace!(
651 "defer constant: eventually emit {size} bytes aligned \
652 to {align} at label {label:?}",
653 );
654 self.pending_constants.push(constant);
655 self.pending_constants_size += size as u32;
656 self.constants[constant].upcoming_label = Some(label);
657 label
658 }
659
660 /// Bind a label to the current offset. A label can only be bound once.
661 pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
662 trace!(
663 "MachBuffer: bind label {:?} at offset {}",
664 label,
665 self.cur_offset()
666 );
667 debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
668 debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
669 let offset = self.cur_offset();
670 self.label_offsets[label.0 as usize] = offset;
671 self.lazily_clear_labels_at_tail();
672 self.labels_at_tail.push(label);
673
674 // Invariants hold: bound offset of label is <= cur_offset (in fact it
675 // is equal). If the `labels_at_tail` list was complete and precise
676 // before, it is still, because we have bound this label to the current
677 // offset and added it to the list (which contains all labels at the
678 // current offset).
679
680 self.optimize_branches(ctrl_plane);
681
682 // Post-invariant: by `optimize_branches()` (see argument there).
683 }
684
685 /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
686 /// offset that it applies to.
687 fn lazily_clear_labels_at_tail(&mut self) {
688 let offset = self.cur_offset();
689 if offset > self.labels_at_tail_off {
690 self.labels_at_tail_off = offset;
691 self.labels_at_tail.clear();
692 }
693
694 // Post-invariant: either labels_at_tail_off was at cur_offset, and
695 // state is untouched, or was less than cur_offset, in which case the
696 // labels_at_tail list was conceptually empty, and is now actually
697 // empty.
698 }
699
700 /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
701 pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
702 let mut iters = 0;
703 while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
704 label = self.label_aliases[label.0 as usize];
705 // To protect against an infinite loop (despite our assurances to
706 // ourselves that the invariants make this impossible), assert out
707 // after 1M iterations. The number of basic blocks is limited
708 // in most contexts anyway so this should be impossible to hit with
709 // a legitimate input.
710 iters += 1;
711 assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
712 }
713 self.label_offsets[label.0 as usize]
714
715 // Post-invariant: no mutations.
716 }
717
718 /// Emit a reference to the given label with the given reference type (i.e.,
719 /// branch-instruction format) at the current offset. This is like a
720 /// relocation, but handled internally.
721 ///
722 /// This can be called before the branch is actually emitted; fixups will
723 /// not happen until an island is emitted or the buffer is finished.
724 pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
725 trace!(
726 "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
727 offset,
728 label,
729 kind
730 );
731
732 // Add the fixup, and update the worst-case island size based on a
733 // veneer for this label use.
734 let fixup = MachLabelFixup {
735 label,
736 offset,
737 kind,
738 };
739 self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
740 self.pending_fixup_records.push(fixup);
741
742 // Post-invariant: no mutations to branches/labels data structures.
743 }
744
745 /// Inform the buffer of an unconditional branch at the given offset,
746 /// targeting the given label. May be used to optimize branches.
747 /// The last added label-use must correspond to this branch.
748 /// This must be called when the current offset is equal to `start`; i.e.,
749 /// before actually emitting the branch. This implies that for a branch that
750 /// uses a label and is eligible for optimizations by the MachBuffer, the
751 /// proper sequence is:
752 ///
753 /// - Call `use_label_at_offset()` to emit the fixup record.
754 /// - Call `add_uncond_branch()` to make note of the branch.
755 /// - Emit the bytes for the branch's machine code.
756 ///
757 /// Additional requirement: no labels may be bound between `start` and `end`
758 /// (exclusive on both ends).
759 pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
760 debug_assert!(
761 !self.open_patchable,
762 "Branch instruction inserted within a patchable region"
763 );
764 assert!(self.cur_offset() == start);
765 debug_assert!(end > start);
766 assert!(!self.pending_fixup_records.is_empty());
767 let fixup = self.pending_fixup_records.len() - 1;
768 self.lazily_clear_labels_at_tail();
769 self.latest_branches.push(MachBranch {
770 start,
771 end,
772 target,
773 fixup,
774 inverted: None,
775 labels_at_this_branch: self.labels_at_tail.clone(),
776 });
777
778 // Post-invariant: we asserted branch start is current tail; the list of
779 // labels at branch is cloned from list of labels at current tail.
780 }
781
782 /// Inform the buffer of a conditional branch at the given offset,
783 /// targeting the given label. May be used to optimize branches.
784 /// The last added label-use must correspond to this branch.
785 ///
786 /// Additional requirement: no labels may be bound between `start` and `end`
787 /// (exclusive on both ends).
788 pub fn add_cond_branch(
789 &mut self,
790 start: CodeOffset,
791 end: CodeOffset,
792 target: MachLabel,
793 inverted: &[u8],
794 ) {
795 debug_assert!(
796 !self.open_patchable,
797 "Branch instruction inserted within a patchable region"
798 );
799 assert!(self.cur_offset() == start);
800 debug_assert!(end > start);
801 assert!(!self.pending_fixup_records.is_empty());
802 debug_assert!(
803 inverted.len() == (end - start) as usize,
804 "branch length = {}, but inverted length = {}",
805 end - start,
806 inverted.len()
807 );
808 let fixup = self.pending_fixup_records.len() - 1;
809 let inverted = Some(SmallVec::from(inverted));
810 self.lazily_clear_labels_at_tail();
811 self.latest_branches.push(MachBranch {
812 start,
813 end,
814 target,
815 fixup,
816 inverted,
817 labels_at_this_branch: self.labels_at_tail.clone(),
818 });
819
820 // Post-invariant: we asserted branch start is current tail; labels at
821 // branch list is cloned from list of labels at current tail.
822 }
823
824 fn truncate_last_branch(&mut self) {
825 debug_assert!(
826 !self.open_patchable,
827 "Branch instruction truncated within a patchable region"
828 );
829
830 self.lazily_clear_labels_at_tail();
831 // Invariants hold at this point.
832
833 let b = self.latest_branches.pop().unwrap();
834 assert!(b.end == self.cur_offset());
835
836 // State:
837 // [PRE CODE]
838 // Offset b.start, b.labels_at_this_branch:
839 // [BRANCH CODE]
840 // cur_off, self.labels_at_tail -->
841 // (end of buffer)
842 self.data.truncate(b.start as usize);
843 self.pending_fixup_records.truncate(b.fixup);
844 while let Some(last_srcloc) = self.srclocs.last_mut() {
845 if last_srcloc.end <= b.start {
846 break;
847 }
848 if last_srcloc.start < b.start {
849 last_srcloc.end = b.start;
850 break;
851 }
852 self.srclocs.pop();
853 }
854 // State:
855 // [PRE CODE]
856 // cur_off, Offset b.start, b.labels_at_this_branch:
857 // (end of buffer)
858 //
859 // self.labels_at_tail --> (past end of buffer)
860 let cur_off = self.cur_offset();
861 self.labels_at_tail_off = cur_off;
862 // State:
863 // [PRE CODE]
864 // cur_off, Offset b.start, b.labels_at_this_branch,
865 // self.labels_at_tail:
866 // (end of buffer)
867 //
868 // resolve_label_offset(l) for l in labels_at_tail:
869 // (past end of buffer)
870
871 trace!(
872 "truncate_last_branch: truncated {:?}; off now {}",
873 b,
874 cur_off
875 );
876
877 // Fix up resolved label offsets for labels at tail.
878 for &l in &self.labels_at_tail {
879 self.label_offsets[l.0 as usize] = cur_off;
880 }
881 // Old labels_at_this_branch are now at cur_off.
882 self.labels_at_tail
883 .extend(b.labels_at_this_branch.into_iter());
884
885 // Post-invariant: this operation is defined to truncate the buffer,
886 // which moves cur_off backward, and to move labels at the end of the
887 // buffer back to the start-of-branch offset.
888 //
889 // latest_branches satisfies all invariants:
890 // - it has no branches past the end of the buffer (branches are in
891 // order, we removed the last one, and we truncated the buffer to just
892 // before the start of that branch)
893 // - no labels were moved to lower offsets than the (new) cur_off, so
894 // the labels_at_this_branch list for any other branch need not change.
895 //
896 // labels_at_tail satisfies all invariants:
897 // - all labels that were at the tail after the truncated branch are
898 // moved backward to just before the branch, which becomes the new tail;
899 // thus every element in the list should remain (ensured by `.extend()`
900 // above).
901 // - all labels that refer to the new tail, which is the start-offset of
902 // the truncated branch, must be present. The `labels_at_this_branch`
903 // list in the truncated branch's record is a complete and precise list
904 // of exactly these labels; we append these to labels_at_tail.
905 // - labels_at_tail_off is at cur_off after truncation occurs, so the
906 // list is valid (not to be lazily cleared).
907 //
908 // The stated operation was performed:
909 // - For each label at the end of the buffer prior to this method, it
910 // now resolves to the new (truncated) end of the buffer: it must have
911 // been in `labels_at_tail` (this list is precise and complete, and
912 // the tail was at the end of the truncated branch on entry), and we
913 // iterate over this list and set `label_offsets` to the new tail.
914 // None of these labels could have been an alias (by invariant), so
915 // `label_offsets` is authoritative for each.
916 // - No other labels will be past the end of the buffer, because of the
917 // requirement that no labels be bound to the middle of branch ranges
918 // (see comments to `add_{cond,uncond}_branch()`).
919 // - The buffer is truncated to just before the last branch, and the
920 // fixup record referring to that last branch is removed.
921 }
922
923 /// Performs various optimizations on branches pointing at the current label.
924 pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
925 if ctrl_plane.get_decision() {
926 return;
927 }
928
929 self.lazily_clear_labels_at_tail();
930 // Invariants valid at this point.
931
932 trace!(
933 "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
934 self.latest_branches,
935 self.labels_at_tail,
936 self.pending_fixup_records
937 );
938
939 // We continue to munch on branches at the tail of the buffer until no
940 // more rules apply. Note that the loop only continues if a branch is
941 // actually truncated (or if labels are redirected away from a branch),
942 // so this always makes progress.
943 while let Some(b) = self.latest_branches.last() {
944 let cur_off = self.cur_offset();
945 trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
946 // If there has been any code emission since the end of the last branch or
947 // label definition, then there's nothing we can edit (because we
948 // don't move code once placed, only back up and overwrite), so
949 // clear the records and finish.
950 if b.end < cur_off {
951 break;
952 }
953
954 // If the "labels at this branch" list on this branch is
955 // longer than a threshold, don't do any simplification,
956 // and let the branch remain to separate those labels from
957 // the current tail. This avoids quadratic behavior (see
958 // #3468): otherwise, if a long string of "goto next;
959 // next:" patterns are emitted, all of the labels will
960 // coalesce into a long list of aliases for the current
961 // buffer tail. We must track all aliases of the current
962 // tail for correctness, but we are also allowed to skip
963 // optimization (removal) of any branch, so we take the
964 // escape hatch here and let it stand. In effect this
965 // "spreads" the many thousands of labels in the
966 // pathological case among an actual (harmless but
967 // suboptimal) instruction once per N labels.
968 if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
969 break;
970 }
971
972 // Invariant: we are looking at a branch that ends at the tail of
973 // the buffer.
974
975 // For any branch, conditional or unconditional:
976 // - If the target is a label at the current offset, then remove
977 // the conditional branch, and reset all labels that targeted
978 // the current offset (end of branch) to the truncated
979 // end-of-code.
980 //
981 // Preserves execution semantics: a branch to its own fallthrough
982 // address is equivalent to a no-op; in both cases, nextPC is the
983 // fallthrough.
984 if self.resolve_label_offset(b.target) == cur_off {
985 trace!("branch with target == cur off; truncating");
986 self.truncate_last_branch();
987 continue;
988 }
989
990 // If latest is an unconditional branch:
991 //
992 // - If the branch's target is not its own start address, then for
993 // each label at the start of branch, make the label an alias of the
994 // branch target, and remove the label from the "labels at this
995 // branch" list.
996 //
997 // - Preserves execution semantics: an unconditional branch's
998 // only effect is to set PC to a new PC; this change simply
999 // collapses one step in the step-semantics.
1000 //
1001 // - Post-invariant: the labels that were bound to the start of
1002 // this branch become aliases, so they must not be present in any
1003 // labels-at-this-branch list or the labels-at-tail list. The
1004 // labels are removed form the latest-branch record's
1005 // labels-at-this-branch list, and are never placed in the
1006 // labels-at-tail list. Furthermore, it is correct that they are
1007 // not in either list, because they are now aliases, and labels
1008 // that are aliases remain aliases forever.
1009 //
1010 // - If there is a prior unconditional branch that ends just before
1011 // this one begins, and this branch has no labels bound to its
1012 // start, then we can truncate this branch, because it is entirely
1013 // unreachable (we have redirected all labels that make it
1014 // reachable otherwise). Do so and continue around the loop.
1015 //
1016 // - Preserves execution semantics: the branch is unreachable,
1017 // because execution can only flow into an instruction from the
1018 // prior instruction's fallthrough or from a branch bound to that
1019 // instruction's start offset. Unconditional branches have no
1020 // fallthrough, so if the prior instruction is an unconditional
1021 // branch, no fallthrough entry can happen. The
1022 // labels-at-this-branch list is complete (by invariant), so if it
1023 // is empty, then the instruction is entirely unreachable. Thus,
1024 // it can be removed.
1025 //
1026 // - Post-invariant: ensured by truncate_last_branch().
1027 //
1028 // - If there is a prior conditional branch whose target label
1029 // resolves to the current offset (branches around the
1030 // unconditional branch), then remove the unconditional branch,
1031 // and make the target of the unconditional the target of the
1032 // conditional instead.
1033 //
1034 // - Preserves execution semantics: previously we had:
1035 //
1036 // L1:
1037 // cond_br L2
1038 // br L3
1039 // L2:
1040 // (end of buffer)
1041 //
1042 // by removing the last branch, we have:
1043 //
1044 // L1:
1045 // cond_br L2
1046 // L2:
1047 // (end of buffer)
1048 //
1049 // we then fix up the records for the conditional branch to
1050 // have:
1051 //
1052 // L1:
1053 // cond_br.inverted L3
1054 // L2:
1055 //
1056 // In the original code, control flow reaches L2 when the
1057 // conditional branch's predicate is true, and L3 otherwise. In
1058 // the optimized code, the same is true.
1059 //
1060 // - Post-invariant: all edits to latest_branches and
1061 // labels_at_tail are performed by `truncate_last_branch()`,
1062 // which maintains the invariants at each step.
1063
1064 if b.is_uncond() {
1065 // Set any label equal to current branch's start as an alias of
1066 // the branch's target, if the target is not the branch itself
1067 // (i.e., an infinite loop).
1068 //
1069 // We cannot perform this aliasing if the target of this branch
1070 // ultimately aliases back here; if so, we need to keep this
1071 // branch, so break out of this loop entirely (and clear the
1072 // latest-branches list below).
1073 //
1074 // Note that this check is what prevents cycles from forming in
1075 // `self.label_aliases`. To see why, consider an arbitrary start
1076 // state:
1077 //
1078 // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
1079 // Ln, which is not aliased.
1080 //
1081 // We would create a cycle if we assigned label_aliases[Ln]
1082 // = L1. Note that the below assignment is the only write
1083 // to label_aliases.
1084 //
1085 // By our other invariants, we have that Ln (`l` below)
1086 // resolves to the offset `b.start`, because it is in the
1087 // set `b.labels_at_this_branch`.
1088 //
1089 // If L1 were already aliased, through some arbitrarily deep
1090 // chain, to Ln, then it must also resolve to this offset
1091 // `b.start`.
1092 //
1093 // By checking the resolution of `L1` against this offset,
1094 // and aborting this branch-simplification if they are
1095 // equal, we prevent the below assignment from ever creating
1096 // a cycle.
1097 if self.resolve_label_offset(b.target) != b.start {
1098 let redirected = b.labels_at_this_branch.len();
1099 for &l in &b.labels_at_this_branch {
1100 trace!(
1101 " -> label at start of branch {:?} redirected to target {:?}",
1102 l,
1103 b.target
1104 );
1105 self.label_aliases[l.0 as usize] = b.target;
1106 // NOTE: we continue to ensure the invariant that labels
1107 // pointing to tail of buffer are in `labels_at_tail`
1108 // because we already ensured above that the last branch
1109 // cannot have a target of `cur_off`; so we never have
1110 // to put the label into `labels_at_tail` when moving it
1111 // here.
1112 }
1113 // Maintain invariant: all branches have been redirected
1114 // and are no longer pointing at the start of this branch.
1115 let mut_b = self.latest_branches.last_mut().unwrap();
1116 mut_b.labels_at_this_branch.clear();
1117
1118 if redirected > 0 {
1119 trace!(" -> after label redirects, restarting loop");
1120 continue;
1121 }
1122 } else {
1123 break;
1124 }
1125
1126 let b = self.latest_branches.last().unwrap();
1127
1128 // Examine any immediately preceding branch.
1129 if self.latest_branches.len() > 1 {
1130 let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
1131 trace!(" -> more than one branch; prev_b = {:?}", prev_b);
1132 // This uncond is immediately after another uncond; we
1133 // should have already redirected labels to this uncond away
1134 // (but check to be sure); so we can truncate this uncond.
1135 if prev_b.is_uncond()
1136 && prev_b.end == b.start
1137 && b.labels_at_this_branch.is_empty()
1138 {
1139 trace!(" -> uncond follows another uncond; truncating");
1140 self.truncate_last_branch();
1141 continue;
1142 }
1143
1144 // This uncond is immediately after a conditional, and the
1145 // conditional's target is the end of this uncond, and we've
1146 // already redirected labels to this uncond away; so we can
1147 // truncate this uncond, flip the sense of the conditional, and
1148 // set the conditional's target (in `latest_branches` and in
1149 // `fixup_records`) to the uncond's target.
1150 if prev_b.is_cond()
1151 && prev_b.end == b.start
1152 && self.resolve_label_offset(prev_b.target) == cur_off
1153 {
1154 trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
1155 // Save the target of the uncond (this becomes the
1156 // target of the cond), and truncate the uncond.
1157 let target = b.target;
1158 let data = prev_b.inverted.clone().unwrap();
1159 self.truncate_last_branch();
1160
1161 // Mutate the code and cond branch.
1162 let off_before_edit = self.cur_offset();
1163 let prev_b = self.latest_branches.last_mut().unwrap();
1164 let not_inverted = SmallVec::from(
1165 &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
1166 );
1167
1168 // Low-level edit: replaces bytes of branch with
1169 // inverted form. cur_off remains the same afterward, so
1170 // we do not need to modify label data structures.
1171 self.data.truncate(prev_b.start as usize);
1172 self.data.extend_from_slice(&data[..]);
1173
1174 // Save the original code as the inversion of the
1175 // inverted branch, in case we later edit this branch
1176 // again.
1177 prev_b.inverted = Some(not_inverted);
1178 self.pending_fixup_records[prev_b.fixup].label = target;
1179 trace!(" -> reassigning target of condbr to {:?}", target);
1180 prev_b.target = target;
1181 debug_assert_eq!(off_before_edit, self.cur_offset());
1182 continue;
1183 }
1184 }
1185 }
1186
1187 // If we couldn't do anything with the last branch, then break.
1188 break;
1189 }
1190
1191 self.purge_latest_branches();
1192
1193 trace!(
1194 "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
1195 self.latest_branches,
1196 self.labels_at_tail,
1197 self.pending_fixup_records
1198 );
1199 }
1200
1201 fn purge_latest_branches(&mut self) {
1202 // All of our branch simplification rules work only if a branch ends at
1203 // the tail of the buffer, with no following code; and branches are in
1204 // order in latest_branches; so if the last entry ends prior to
1205 // cur_offset, then clear all entries.
1206 let cur_off = self.cur_offset();
1207 if let Some(l) = self.latest_branches.last() {
1208 if l.end < cur_off {
1209 trace!("purge_latest_branches: removing branch {:?}", l);
1210 self.latest_branches.clear();
1211 }
1212 }
1213
1214 // Post-invariant: no invariant requires any branch to appear in
1215 // `latest_branches`; it is always optional. The list-clear above thus
1216 // preserves all semantics.
1217 }
1218
1219 /// Emit a trap at some point in the future with the specified code and
1220 /// stack map.
1221 ///
1222 /// This function returns a [`MachLabel`] which will be the future address
1223 /// of the trap. Jumps should refer to this label, likely by using the
1224 /// [`MachBuffer::use_label_at_offset`] method, to get a relocation
1225 /// patched in once the address of the trap is known.
1226 ///
1227 /// This will batch all traps into the end of the function.
1228 pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
1229 let label = self.get_label();
1230 self.pending_traps.push(MachLabelTrap {
1231 label,
1232 code,
1233 loc: self.cur_srcloc.map(|(_start, loc)| loc),
1234 });
1235 label
1236 }
1237
1238 /// Is an island needed within the next N bytes?
1239 pub fn island_needed(&self, distance: CodeOffset) -> bool {
1240 let deadline = match self.fixup_records.peek() {
1241 Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
1242 None => self.pending_fixup_deadline,
1243 };
1244 deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
1245 }
1246
1247 /// Returns the maximal offset that islands can reach if `distance` more
1248 /// bytes are appended.
1249 ///
1250 /// This is used to determine if veneers need insertions since jumps that
1251 /// can't reach past this point must get a veneer of some form.
1252 fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
1253 // Assume that all fixups will require veneers and that the veneers are
1254 // the worst-case size for each platform. This is an over-generalization
1255 // to avoid iterating over the `fixup_records` list or maintaining
1256 // information about it as we go along.
1257 let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
1258 as u32)
1259 * (I::LabelUse::worst_case_veneer_size())
1260 + self.pending_constants_size
1261 + (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
1262 self.cur_offset()
1263 .saturating_add(distance)
1264 .saturating_add(island_worst_case_size)
1265 }
1266
1267 /// Emit all pending constants and required pending veneers.
1268 ///
1269 /// Should only be called if `island_needed()` returns true, i.e., if we
1270 /// actually reach a deadline. It's not necessarily a problem to do so
1271 /// otherwise but it may result in unnecessary work during emission.
1272 pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
1273 self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
1274 }
1275
1276 /// Same as `emit_island`, but an internal API with a `force_veneers`
1277 /// argument to force all veneers to always get emitted for debugging.
1278 fn emit_island_maybe_forced(
1279 &mut self,
1280 force_veneers: ForceVeneers,
1281 distance: CodeOffset,
1282 ctrl_plane: &mut ControlPlane,
1283 ) {
1284 // We're going to purge fixups, so no latest-branch editing can happen
1285 // anymore.
1286 self.latest_branches.clear();
1287
1288 // End the current location tracking since anything emitted during this
1289 // function shouldn't be attributed to whatever the current source
1290 // location is.
1291 //
1292 // Note that the current source location, if it's set right now, will be
1293 // restored at the end of this island emission.
1294 let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
1295 if cur_loc.is_some() {
1296 self.end_srcloc();
1297 }
1298
1299 let forced_threshold = self.worst_case_end_of_island(distance);
1300
1301 // First flush out all traps/constants so we have more labels in case
1302 // fixups are applied against these labels.
1303 //
1304 // Note that traps are placed first since this typically happens at the
1305 // end of the function and for disassemblers we try to keep all the code
1306 // contiguously together.
1307 for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
1308 // If this trap has source information associated with it then
1309 // emit this information for the trap instruction going out now too.
1310 if let Some(loc) = loc {
1311 self.start_srcloc(loc);
1312 }
1313 self.align_to(I::LabelUse::ALIGN);
1314 self.bind_label(label, ctrl_plane);
1315 self.add_trap(code);
1316 self.put_data(I::TRAP_OPCODE);
1317 if loc.is_some() {
1318 self.end_srcloc();
1319 }
1320 }
1321
1322 for constant in mem::take(&mut self.pending_constants) {
1323 let MachBufferConstant { align, size, .. } = self.constants[constant];
1324 let label = self.constants[constant].upcoming_label.take().unwrap();
1325 self.align_to(align);
1326 self.bind_label(label, ctrl_plane);
1327 self.used_constants.push((constant, self.cur_offset()));
1328 self.get_appended_space(size);
1329 }
1330
1331 // Either handle all pending fixups because they're ready or move them
1332 // onto the `BinaryHeap` tracking all pending fixups if they aren't
1333 // ready.
1334 assert!(self.latest_branches.is_empty());
1335 for fixup in mem::take(&mut self.pending_fixup_records) {
1336 if self.should_apply_fixup(&fixup, forced_threshold) {
1337 self.handle_fixup(fixup, force_veneers, forced_threshold);
1338 } else {
1339 self.fixup_records.push(fixup);
1340 }
1341 }
1342 self.pending_fixup_deadline = u32::MAX;
1343 while let Some(fixup) = self.fixup_records.peek() {
1344 trace!("emit_island: fixup {:?}", fixup);
1345
1346 // If this fixup shouldn't be applied, that means its label isn't
1347 // defined yet and there'll be remaining space to apply a veneer if
1348 // necessary in the future after this island. In that situation
1349 // because `fixup_records` is sorted by deadline this loop can
1350 // exit.
1351 if !self.should_apply_fixup(fixup, forced_threshold) {
1352 break;
1353 }
1354
1355 let fixup = self.fixup_records.pop().unwrap();
1356 self.handle_fixup(fixup, force_veneers, forced_threshold);
1357 }
1358
1359 if let Some(loc) = cur_loc {
1360 self.start_srcloc(loc);
1361 }
1362 }
1363
1364 fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
1365 let label_offset = self.resolve_label_offset(fixup.label);
1366 label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
1367 }
1368
1369 fn handle_fixup(
1370 &mut self,
1371 fixup: MachLabelFixup<I>,
1372 force_veneers: ForceVeneers,
1373 forced_threshold: CodeOffset,
1374 ) {
1375 let MachLabelFixup {
1376 label,
1377 offset,
1378 kind,
1379 } = fixup;
1380 let start = offset as usize;
1381 let end = (offset + kind.patch_size()) as usize;
1382 let label_offset = self.resolve_label_offset(label);
1383
1384 if label_offset != UNKNOWN_LABEL_OFFSET {
1385 // If the offset of the label for this fixup is known then
1386 // we're going to do something here-and-now. We're either going
1387 // to patch the original offset because it's an in-bounds jump,
1388 // or we're going to generate a veneer, patch the fixup to jump
1389 // to the veneer, and then keep going.
1390 //
1391 // If the label comes after the original fixup, then we should
1392 // be guaranteed that the jump is in-bounds. Otherwise there's
1393 // a bug somewhere because this method wasn't called soon
1394 // enough. All forward-jumps are tracked and should get veneers
1395 // before their deadline comes and they're unable to jump
1396 // further.
1397 //
1398 // Otherwise if the label is before the fixup, then that's a
1399 // backwards jump. If it's past the maximum negative range
1400 // then we'll emit a veneer that to jump forward to which can
1401 // then jump backwards.
1402 let veneer_required = if label_offset >= offset {
1403 assert!((label_offset - offset) <= kind.max_pos_range());
1404 false
1405 } else {
1406 (offset - label_offset) > kind.max_neg_range()
1407 };
1408 trace!(
1409 " -> label_offset = {}, known, required = {} (pos {} neg {})",
1410 label_offset,
1411 veneer_required,
1412 kind.max_pos_range(),
1413 kind.max_neg_range()
1414 );
1415
1416 if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
1417 self.emit_veneer(label, offset, kind);
1418 } else {
1419 let slice = &mut self.data[start..end];
1420 trace!("patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}");
1421 kind.patch(slice, offset, label_offset);
1422 }
1423 } else {
1424 // If the offset of this label is not known at this time then
1425 // that means that a veneer is required because after this
1426 // island the target can't be in range of the original target.
1427 assert!(forced_threshold - offset > kind.max_pos_range());
1428 self.emit_veneer(label, offset, kind);
1429 }
1430 }
1431
1432 /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
1433 ///
1434 /// This will generate extra machine code, using `kind`, to get a
1435 /// larger-jump-kind than `kind` allows. The code at `offset` is then
1436 /// patched to jump to our new code, and then the new code is enqueued for
1437 /// a fixup to get processed at some later time.
1438 fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
1439 // If this `kind` doesn't support a veneer then that's a bug in the
1440 // backend because we need to implement support for such a veneer.
1441 assert!(
1442 kind.supports_veneer(),
1443 "jump beyond the range of {kind:?} but a veneer isn't supported",
1444 );
1445
1446 // Allocate space for a veneer in the island.
1447 self.align_to(I::LabelUse::ALIGN);
1448 let veneer_offset = self.cur_offset();
1449 trace!("making a veneer at {}", veneer_offset);
1450 let start = offset as usize;
1451 let end = (offset + kind.patch_size()) as usize;
1452 let slice = &mut self.data[start..end];
1453 // Patch the original label use to refer to the veneer.
1454 trace!(
1455 "patching original at offset {} to veneer offset {}",
1456 offset,
1457 veneer_offset
1458 );
1459 kind.patch(slice, offset, veneer_offset);
1460 // Generate the veneer.
1461 let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
1462 let (veneer_fixup_off, veneer_label_use) =
1463 kind.generate_veneer(veneer_slice, veneer_offset);
1464 trace!(
1465 "generated veneer; fixup offset {}, label_use {:?}",
1466 veneer_fixup_off,
1467 veneer_label_use
1468 );
1469 // Register a new use of `label` with our new veneer fixup and
1470 // offset. This'll recalculate deadlines accordingly and
1471 // enqueue this fixup to get processed at some later
1472 // time.
1473 self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
1474 }
1475
1476 fn finish_emission_maybe_forcing_veneers(
1477 &mut self,
1478 force_veneers: ForceVeneers,
1479 ctrl_plane: &mut ControlPlane,
1480 ) {
1481 while !self.pending_constants.is_empty()
1482 || !self.pending_traps.is_empty()
1483 || !self.fixup_records.is_empty()
1484 || !self.pending_fixup_records.is_empty()
1485 {
1486 // `emit_island()` will emit any pending veneers and constants, and
1487 // as a side-effect, will also take care of any fixups with resolved
1488 // labels eagerly.
1489 self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
1490 }
1491
1492 // Ensure that all labels have been fixed up after the last island is emitted. This is a
1493 // full (release-mode) assert because an unresolved label means the emitted code is
1494 // incorrect.
1495 assert!(self.fixup_records.is_empty());
1496 assert!(self.pending_fixup_records.is_empty());
1497 }
1498
1499 /// Finish any deferred emissions and/or fixups.
1500 pub fn finish(
1501 mut self,
1502 constants: &VCodeConstants,
1503 ctrl_plane: &mut ControlPlane,
1504 ) -> MachBufferFinalized<Stencil> {
1505 let _tt = timing::vcode_emit_finish();
1506
1507 self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
1508
1509 let alignment = self.finish_constants(constants);
1510
1511 // Resolve all labels to their offsets.
1512 let finalized_relocs = self
1513 .relocs
1514 .iter()
1515 .map(|reloc| FinalizedMachReloc {
1516 offset: reloc.offset,
1517 kind: reloc.kind,
1518 addend: reloc.addend,
1519 target: match &reloc.target {
1520 RelocTarget::ExternalName(name) => {
1521 FinalizedRelocTarget::ExternalName(name.clone())
1522 }
1523 RelocTarget::Label(label) => {
1524 FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
1525 }
1526 },
1527 })
1528 .collect();
1529
1530 let finalized_exception_handlers = self
1531 .exception_handlers
1532 .iter()
1533 .map(|(tag, label)| (*tag, self.resolve_label_offset(*label)))
1534 .collect();
1535
1536 let mut srclocs = self.srclocs;
1537 srclocs.sort_by_key(|entry| entry.start);
1538
1539 MachBufferFinalized {
1540 data: self.data,
1541 relocs: finalized_relocs,
1542 traps: self.traps,
1543 call_sites: self.call_sites,
1544 exception_handlers: finalized_exception_handlers,
1545 srclocs,
1546 user_stack_maps: self.user_stack_maps,
1547 unwind_info: self.unwind_info,
1548 alignment,
1549 }
1550 }
1551
1552 /// Add an external relocation at the given offset.
1553 pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
1554 &mut self,
1555 offset: CodeOffset,
1556 kind: Reloc,
1557 target: &T,
1558 addend: Addend,
1559 ) {
1560 let target: RelocTarget = target.clone().into();
1561 // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
1562 // generate a label-use statement to track whether an island is possibly
1563 // needed to escape this function to actually get to the external name.
1564 // This is most likely to come up on AArch64 where calls between
1565 // functions use a 26-bit signed offset which gives +/- 64MB. This means
1566 // that if a function is 128MB in size and there's a call in the middle
1567 // it's impossible to reach the actual target. Also, while it's
1568 // technically possible to jump to the start of a function and then jump
1569 // further, island insertion below always inserts islands after
1570 // previously appended code so for Cranelift's own implementation this
1571 // is also a problem for 64MB functions on AArch64 which start with a
1572 // call instruction, those won't be able to escape.
1573 //
1574 // Ideally what needs to happen here is that a `LabelUse` is
1575 // transparently generated (or call-sites of this function are audited
1576 // to generate a `LabelUse` instead) and tracked internally. The actual
1577 // relocation would then change over time if and when a veneer is
1578 // inserted, where the relocation here would be patched by this
1579 // `MachBuffer` to jump to the veneer. The problem, though, is that all
1580 // this still needs to end up, in the case of a singular function,
1581 // generating a final relocation pointing either to this particular
1582 // relocation or to the veneer inserted. Additionally
1583 // `MachBuffer` needs the concept of a label which will never be
1584 // resolved, so `emit_island` doesn't trip over not actually ever
1585 // knowning what some labels are. Currently the loop in
1586 // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
1587 // loop.
1588 //
1589 // For now this means that because relocs aren't tracked at all that
1590 // AArch64 functions have a rough size limits of 64MB. For now that's
1591 // somewhat reasonable and the failure mode is a panic in `MachBuffer`
1592 // when a relocation can't otherwise be resolved later, so it shouldn't
1593 // actually result in any memory unsafety or anything like that.
1594 self.relocs.push(MachReloc {
1595 offset,
1596 kind,
1597 target,
1598 addend,
1599 });
1600 }
1601
1602 /// Add an external relocation at the current offset.
1603 pub fn add_reloc<T: Into<RelocTarget> + Clone>(
1604 &mut self,
1605 kind: Reloc,
1606 target: &T,
1607 addend: Addend,
1608 ) {
1609 self.add_reloc_at_offset(self.data.len() as CodeOffset, kind, target, addend);
1610 }
1611
1612 /// Add a trap record at the current offset.
1613 pub fn add_trap(&mut self, code: TrapCode) {
1614 self.traps.push(MachTrap {
1615 offset: self.data.len() as CodeOffset,
1616 code,
1617 });
1618 }
1619
1620 /// Add a call-site record at the current offset, optionally with exception handlers.
1621 pub fn add_call_site(
1622 &mut self,
1623 exception_handlers: &[(PackedOption<ExceptionTag>, MachLabel)],
1624 ) {
1625 let start = u32::try_from(self.exception_handlers.len()).unwrap();
1626 self.exception_handlers
1627 .extend(exception_handlers.into_iter().copied());
1628 let end = u32::try_from(self.exception_handlers.len()).unwrap();
1629 self.call_sites.push(MachCallSite {
1630 ret_addr: self.data.len() as CodeOffset,
1631 exception_handler_range: start..end,
1632 });
1633 }
1634
1635 /// Add an unwind record at the current offset.
1636 pub fn add_unwind(&mut self, unwind: UnwindInst) {
1637 self.unwind_info.push((self.cur_offset(), unwind));
1638 }
1639
1640 /// Set the `SourceLoc` for code from this offset until the offset at the
1641 /// next call to `end_srcloc()`.
1642 /// Returns the current [CodeOffset] and [RelSourceLoc].
1643 pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
1644 let cur = (self.cur_offset(), loc);
1645 self.cur_srcloc = Some(cur);
1646 cur
1647 }
1648
1649 /// Mark the end of the `SourceLoc` segment started at the last
1650 /// `start_srcloc()` call.
1651 pub fn end_srcloc(&mut self) {
1652 let (start, loc) = self
1653 .cur_srcloc
1654 .take()
1655 .expect("end_srcloc() called without start_srcloc()");
1656 let end = self.cur_offset();
1657 // Skip zero-length extends.
1658 debug_assert!(end >= start);
1659 if end > start {
1660 self.srclocs.push(MachSrcLoc { start, end, loc });
1661 }
1662 }
1663
1664 /// Push a user stack map onto this buffer.
1665 ///
1666 /// The stack map is associated with the given `return_addr` code
1667 /// offset. This must be the PC for the instruction just *after* this stack
1668 /// map's associated instruction. For example in the sequence `call $foo;
1669 /// add r8, rax`, the `return_addr` must be the offset of the start of the
1670 /// `add` instruction.
1671 ///
1672 /// Stack maps must be pushed in sorted `return_addr` order.
1673 pub fn push_user_stack_map(
1674 &mut self,
1675 emit_state: &I::State,
1676 return_addr: CodeOffset,
1677 mut stack_map: ir::UserStackMap,
1678 ) {
1679 let span = emit_state.frame_layout().active_size();
1680 trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
1681
1682 debug_assert!(
1683 self.user_stack_maps
1684 .last()
1685 .map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
1686 "pushed stack maps out of order: {} is not less than {}",
1687 self.user_stack_maps.last().unwrap().0,
1688 return_addr,
1689 );
1690
1691 stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
1692 self.user_stack_maps.push((return_addr, span, stack_map));
1693 }
1694
1695 /// Increase the alignment of the buffer to the given alignment if bigger
1696 /// than the current alignment.
1697 pub fn set_log2_min_function_alignment(&mut self, align_to: u8) {
1698 self.min_alignment = self.min_alignment.max(
1699 1u32.checked_shl(u32::from(align_to))
1700 .expect("log2_min_function_alignment too large"),
1701 );
1702 }
1703}
1704
1705impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
1706 fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
1707 for b in iter {
1708 self.put1(b);
1709 }
1710 }
1711}
1712
1713impl<T: CompilePhase> MachBufferFinalized<T> {
1714 /// Get a list of source location mapping tuples in sorted-by-start-offset order.
1715 pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
1716 &self.srclocs[..]
1717 }
1718
1719 /// Get the total required size for the code.
1720 pub fn total_size(&self) -> CodeOffset {
1721 self.data.len() as CodeOffset
1722 }
1723
1724 /// Return the code in this mach buffer as a hex string for testing purposes.
1725 pub fn stringify_code_bytes(&self) -> String {
1726 // This is pretty lame, but whatever ..
1727 use std::fmt::Write;
1728 let mut s = String::with_capacity(self.data.len() * 2);
1729 for b in &self.data {
1730 write!(&mut s, "{b:02X}").unwrap();
1731 }
1732 s
1733 }
1734
1735 /// Get the code bytes.
1736 pub fn data(&self) -> &[u8] {
1737 // N.B.: we emit every section into the .text section as far as
1738 // the `CodeSink` is concerned; we do not bother to segregate
1739 // the contents into the actual program text, the jumptable and the
1740 // rodata (constant pool). This allows us to generate code assuming
1741 // that these will not be relocated relative to each other, and avoids
1742 // having to designate each section as belonging in one of the three
1743 // fixed categories defined by `CodeSink`. If this becomes a problem
1744 // later (e.g. because of memory permissions or similar), we can
1745 // add this designation and segregate the output; take care, however,
1746 // to add the appropriate relocations in this case.
1747
1748 &self.data[..]
1749 }
1750
1751 /// Get the list of external relocations for this code.
1752 pub fn relocs(&self) -> &[FinalizedMachReloc] {
1753 &self.relocs[..]
1754 }
1755
1756 /// Get the list of trap records for this code.
1757 pub fn traps(&self) -> &[MachTrap] {
1758 &self.traps[..]
1759 }
1760
1761 /// Get the user stack map metadata for this code.
1762 pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
1763 &self.user_stack_maps
1764 }
1765
1766 /// Take this buffer's user strack map metadata.
1767 pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
1768 mem::take(&mut self.user_stack_maps)
1769 }
1770
1771 /// Get the list of call sites for this code, along with
1772 /// associated exception handlers.
1773 ///
1774 /// Each item yielded by the returned iterator is a struct with:
1775 ///
1776 /// - The call site metadata record, with a `ret_addr` field
1777 /// directly accessible and denoting the offset of the return
1778 /// address into this buffer's code.
1779 /// - The slice of pairs of exception tags and code offsets
1780 /// denoting exception-handler entry points associated with this
1781 /// call site.
1782 pub fn call_sites(&self) -> impl Iterator<Item = FinalizedMachCallSite<'_>> + '_ {
1783 self.call_sites.iter().map(|call_site| {
1784 let range = call_site.exception_handler_range.clone();
1785 let range = usize::try_from(range.start).unwrap()..usize::try_from(range.end).unwrap();
1786 FinalizedMachCallSite {
1787 ret_addr: call_site.ret_addr,
1788 exception_handlers: &self.exception_handlers[range],
1789 }
1790 })
1791 }
1792}
1793
1794/// Metadata about a constant.
1795struct MachBufferConstant {
1796 /// A label which has not yet been bound which can be used for this
1797 /// constant.
1798 ///
1799 /// This is lazily created when a label is requested for a constant and is
1800 /// cleared when a constant is emitted.
1801 upcoming_label: Option<MachLabel>,
1802 /// Required alignment.
1803 align: CodeOffset,
1804 /// The byte size of this constant.
1805 size: usize,
1806}
1807
1808/// A trap that is deferred to the next time an island is emitted for either
1809/// traps, constants, or fixups.
1810struct MachLabelTrap {
1811 /// This label will refer to the trap's offset.
1812 label: MachLabel,
1813 /// The code associated with this trap.
1814 code: TrapCode,
1815 /// An optional source location to assign for this trap.
1816 loc: Option<RelSourceLoc>,
1817}
1818
1819/// A fixup to perform on the buffer once code is emitted. Fixups always refer
1820/// to labels and patch the code based on label offsets. Hence, they are like
1821/// relocations, but internal to one buffer.
1822#[derive(Debug)]
1823struct MachLabelFixup<I: VCodeInst> {
1824 /// The label whose offset controls this fixup.
1825 label: MachLabel,
1826 /// The offset to fix up / patch to refer to this label.
1827 offset: CodeOffset,
1828 /// The kind of fixup. This is architecture-specific; each architecture may have,
1829 /// e.g., several types of branch instructions, each with differently-sized
1830 /// offset fields and different places within the instruction to place the
1831 /// bits.
1832 kind: I::LabelUse,
1833}
1834
1835impl<I: VCodeInst> MachLabelFixup<I> {
1836 fn deadline(&self) -> CodeOffset {
1837 self.offset.saturating_add(self.kind.max_pos_range())
1838 }
1839}
1840
1841impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
1842 fn eq(&self, other: &Self) -> bool {
1843 self.deadline() == other.deadline()
1844 }
1845}
1846
1847impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
1848
1849impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
1850 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1851 Some(self.cmp(other))
1852 }
1853}
1854
1855impl<I: VCodeInst> Ord for MachLabelFixup<I> {
1856 fn cmp(&self, other: &Self) -> Ordering {
1857 other.deadline().cmp(&self.deadline())
1858 }
1859}
1860
1861/// A relocation resulting from a compilation.
1862#[derive(Clone, Debug, PartialEq)]
1863#[cfg_attr(
1864 feature = "enable-serde",
1865 derive(serde_derive::Serialize, serde_derive::Deserialize)
1866)]
1867pub struct MachRelocBase<T> {
1868 /// The offset at which the relocation applies, *relative to the
1869 /// containing section*.
1870 pub offset: CodeOffset,
1871 /// The kind of relocation.
1872 pub kind: Reloc,
1873 /// The external symbol / name to which this relocation refers.
1874 pub target: T,
1875 /// The addend to add to the symbol value.
1876 pub addend: i64,
1877}
1878
1879type MachReloc = MachRelocBase<RelocTarget>;
1880
1881/// A relocation resulting from a compilation.
1882pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
1883
1884/// A Relocation target
1885#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1886pub enum RelocTarget {
1887 /// Points to an [ExternalName] outside the current function.
1888 ExternalName(ExternalName),
1889 /// Points to a [MachLabel] inside this function.
1890 /// This is different from [MachLabelFixup] in that both the relocation and the
1891 /// label will be emitted and are only resolved at link time.
1892 ///
1893 /// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
1894 Label(MachLabel),
1895}
1896
1897impl From<ExternalName> for RelocTarget {
1898 fn from(name: ExternalName) -> Self {
1899 Self::ExternalName(name)
1900 }
1901}
1902
1903impl From<MachLabel> for RelocTarget {
1904 fn from(label: MachLabel) -> Self {
1905 Self::Label(label)
1906 }
1907}
1908
1909/// A Relocation target
1910#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1911#[cfg_attr(
1912 feature = "enable-serde",
1913 derive(serde_derive::Serialize, serde_derive::Deserialize)
1914)]
1915pub enum FinalizedRelocTarget {
1916 /// Points to an [ExternalName] outside the current function.
1917 ExternalName(ExternalName),
1918 /// Points to a [CodeOffset] from the start of the current function.
1919 Func(CodeOffset),
1920}
1921
1922impl FinalizedRelocTarget {
1923 /// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
1924 /// output.
1925 pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
1926 match self {
1927 FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
1928 FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
1929 }
1930 }
1931}
1932
1933/// A trap record resulting from a compilation.
1934#[derive(Clone, Debug, PartialEq)]
1935#[cfg_attr(
1936 feature = "enable-serde",
1937 derive(serde_derive::Serialize, serde_derive::Deserialize)
1938)]
1939pub struct MachTrap {
1940 /// The offset at which the trap instruction occurs, *relative to the
1941 /// containing section*.
1942 pub offset: CodeOffset,
1943 /// The trap code.
1944 pub code: TrapCode,
1945}
1946
1947/// A call site record resulting from a compilation.
1948#[derive(Clone, Debug, PartialEq)]
1949#[cfg_attr(
1950 feature = "enable-serde",
1951 derive(serde_derive::Serialize, serde_derive::Deserialize)
1952)]
1953pub struct MachCallSite {
1954 /// The offset of the call's return address, *relative to the
1955 /// start of the buffer*.
1956 pub ret_addr: CodeOffset,
1957
1958 /// Range in `exception_handlers` corresponding to the exception
1959 /// handlers for this callsite.
1960 exception_handler_range: Range<u32>,
1961}
1962
1963/// A call site record resulting from a compilation.
1964#[derive(Clone, Debug, PartialEq)]
1965pub struct FinalizedMachCallSite<'a> {
1966 /// The offset of the call's return address, *relative to the
1967 /// start of the buffer*.
1968 pub ret_addr: CodeOffset,
1969
1970 /// Exception handlers at this callsite, with target offsets
1971 /// *relative to the start of the buffer*.
1972 pub exception_handlers: &'a [(PackedOption<ir::ExceptionTag>, CodeOffset)],
1973}
1974
1975/// A source-location mapping resulting from a compilation.
1976#[derive(PartialEq, Debug, Clone)]
1977#[cfg_attr(
1978 feature = "enable-serde",
1979 derive(serde_derive::Serialize, serde_derive::Deserialize)
1980)]
1981pub struct MachSrcLoc<T: CompilePhase> {
1982 /// The start of the region of code corresponding to a source location.
1983 /// This is relative to the start of the function, not to the start of the
1984 /// section.
1985 pub start: CodeOffset,
1986 /// The end of the region of code corresponding to a source location.
1987 /// This is relative to the start of the section, not to the start of the
1988 /// section.
1989 pub end: CodeOffset,
1990 /// The source location.
1991 pub loc: T::SourceLocType,
1992}
1993
1994impl MachSrcLoc<Stencil> {
1995 fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
1996 MachSrcLoc {
1997 start: self.start,
1998 end: self.end,
1999 loc: self.loc.expand(base_srcloc),
2000 }
2001 }
2002}
2003
2004/// Record of branch instruction in the buffer, to facilitate editing.
2005#[derive(Clone, Debug)]
2006struct MachBranch {
2007 start: CodeOffset,
2008 end: CodeOffset,
2009 target: MachLabel,
2010 fixup: usize,
2011 inverted: Option<SmallVec<[u8; 8]>>,
2012 /// All labels pointing to the start of this branch. For correctness, this
2013 /// *must* be complete (i.e., must contain all labels whose resolved offsets
2014 /// are at the start of this branch): we rely on being able to redirect all
2015 /// labels that could jump to this branch before removing it, if it is
2016 /// otherwise unreachable.
2017 labels_at_this_branch: SmallVec<[MachLabel; 4]>,
2018}
2019
2020impl MachBranch {
2021 fn is_cond(&self) -> bool {
2022 self.inverted.is_some()
2023 }
2024 fn is_uncond(&self) -> bool {
2025 self.inverted.is_none()
2026 }
2027}
2028
2029/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
2030///
2031/// Note that `MachBuffer` was primarily written for intra-function references
2032/// of jumps between basic blocks, but it's also quite usable for entire text
2033/// sections and resolving references between functions themselves. This
2034/// builder interprets "blocks" as labeled functions for the purposes of
2035/// resolving labels internally in the buffer.
2036pub struct MachTextSectionBuilder<I: VCodeInst> {
2037 buf: MachBuffer<I>,
2038 next_func: usize,
2039 force_veneers: ForceVeneers,
2040}
2041
2042impl<I: VCodeInst> MachTextSectionBuilder<I> {
2043 /// Creates a new text section builder which will have `num_funcs` functions
2044 /// pushed into it.
2045 pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
2046 let mut buf = MachBuffer::new();
2047 buf.reserve_labels_for_blocks(num_funcs);
2048 MachTextSectionBuilder {
2049 buf,
2050 next_func: 0,
2051 force_veneers: ForceVeneers::No,
2052 }
2053 }
2054}
2055
2056impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
2057 fn append(
2058 &mut self,
2059 labeled: bool,
2060 func: &[u8],
2061 align: u32,
2062 ctrl_plane: &mut ControlPlane,
2063 ) -> u64 {
2064 // Conditionally emit an island if it's necessary to resolve jumps
2065 // between functions which are too far away.
2066 let size = func.len() as u32;
2067 if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
2068 self.buf
2069 .emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
2070 }
2071
2072 self.buf.align_to(align);
2073 let pos = self.buf.cur_offset();
2074 if labeled {
2075 self.buf.bind_label(
2076 MachLabel::from_block(BlockIndex::new(self.next_func)),
2077 ctrl_plane,
2078 );
2079 self.next_func += 1;
2080 }
2081 self.buf.put_data(func);
2082 u64::from(pos)
2083 }
2084
2085 fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
2086 crate::trace!(
2087 "Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
2088 );
2089 let label = MachLabel::from_block(BlockIndex::new(target));
2090 let offset = u32::try_from(offset).unwrap();
2091 match I::LabelUse::from_reloc(reloc, addend) {
2092 Some(label_use) => {
2093 self.buf.use_label_at_offset(offset, label, label_use);
2094 true
2095 }
2096 None => false,
2097 }
2098 }
2099
2100 fn force_veneers(&mut self) {
2101 self.force_veneers = ForceVeneers::Yes;
2102 }
2103
2104 fn write(&mut self, offset: u64, data: &[u8]) {
2105 self.buf.data[offset.try_into().unwrap()..][..data.len()].copy_from_slice(data);
2106 }
2107
2108 fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
2109 // Double-check all functions were pushed.
2110 assert_eq!(self.next_func, self.buf.label_offsets.len());
2111
2112 // Finish up any veneers, if necessary.
2113 self.buf
2114 .finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
2115
2116 // We don't need the data any more, so return it to the caller.
2117 mem::take(&mut self.buf.data).into_vec()
2118 }
2119}
2120
2121// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
2122#[cfg(all(test, feature = "arm64"))]
2123mod test {
2124 use cranelift_entity::EntityRef as _;
2125
2126 use super::*;
2127 use crate::ir::UserExternalNameRef;
2128 use crate::isa::aarch64::inst::{xreg, OperandSize};
2129 use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
2130 use crate::machinst::{MachInstEmit, MachInstEmitState};
2131 use crate::settings;
2132
2133 fn label(n: u32) -> MachLabel {
2134 MachLabel::from_block(BlockIndex::new(n as usize))
2135 }
2136 fn target(n: u32) -> BranchTarget {
2137 BranchTarget::Label(label(n))
2138 }
2139
2140 #[test]
2141 fn test_elide_jump_to_next() {
2142 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2143 let mut buf = MachBuffer::new();
2144 let mut state = <Inst as MachInstEmit>::State::default();
2145 let constants = Default::default();
2146
2147 buf.reserve_labels_for_blocks(2);
2148 buf.bind_label(label(0), state.ctrl_plane_mut());
2149 let inst = Inst::Jump { dest: target(1) };
2150 inst.emit(&mut buf, &info, &mut state);
2151 buf.bind_label(label(1), state.ctrl_plane_mut());
2152 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2153 assert_eq!(0, buf.total_size());
2154 }
2155
2156 #[test]
2157 fn test_elide_trivial_jump_blocks() {
2158 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2159 let mut buf = MachBuffer::new();
2160 let mut state = <Inst as MachInstEmit>::State::default();
2161 let constants = Default::default();
2162
2163 buf.reserve_labels_for_blocks(4);
2164
2165 buf.bind_label(label(0), state.ctrl_plane_mut());
2166 let inst = Inst::CondBr {
2167 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2168 taken: target(1),
2169 not_taken: target(2),
2170 };
2171 inst.emit(&mut buf, &info, &mut state);
2172
2173 buf.bind_label(label(1), state.ctrl_plane_mut());
2174 let inst = Inst::Jump { dest: target(3) };
2175 inst.emit(&mut buf, &info, &mut state);
2176
2177 buf.bind_label(label(2), state.ctrl_plane_mut());
2178 let inst = Inst::Jump { dest: target(3) };
2179 inst.emit(&mut buf, &info, &mut state);
2180
2181 buf.bind_label(label(3), state.ctrl_plane_mut());
2182
2183 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2184 assert_eq!(0, buf.total_size());
2185 }
2186
2187 #[test]
2188 fn test_flip_cond() {
2189 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2190 let mut buf = MachBuffer::new();
2191 let mut state = <Inst as MachInstEmit>::State::default();
2192 let constants = Default::default();
2193
2194 buf.reserve_labels_for_blocks(4);
2195
2196 buf.bind_label(label(0), state.ctrl_plane_mut());
2197 let inst = Inst::CondBr {
2198 kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2199 taken: target(1),
2200 not_taken: target(2),
2201 };
2202 inst.emit(&mut buf, &info, &mut state);
2203
2204 buf.bind_label(label(1), state.ctrl_plane_mut());
2205 let inst = Inst::Nop4;
2206 inst.emit(&mut buf, &info, &mut state);
2207
2208 buf.bind_label(label(2), state.ctrl_plane_mut());
2209 let inst = Inst::Udf {
2210 trap_code: TrapCode::STACK_OVERFLOW,
2211 };
2212 inst.emit(&mut buf, &info, &mut state);
2213
2214 buf.bind_label(label(3), state.ctrl_plane_mut());
2215
2216 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2217
2218 let mut buf2 = MachBuffer::new();
2219 let mut state = Default::default();
2220 let inst = Inst::TrapIf {
2221 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2222 trap_code: TrapCode::STACK_OVERFLOW,
2223 };
2224 inst.emit(&mut buf2, &info, &mut state);
2225 let inst = Inst::Nop4;
2226 inst.emit(&mut buf2, &info, &mut state);
2227
2228 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2229
2230 assert_eq!(buf.data, buf2.data);
2231 }
2232
2233 #[test]
2234 fn test_island() {
2235 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2236 let mut buf = MachBuffer::new();
2237 let mut state = <Inst as MachInstEmit>::State::default();
2238 let constants = Default::default();
2239
2240 buf.reserve_labels_for_blocks(4);
2241
2242 buf.bind_label(label(0), state.ctrl_plane_mut());
2243 let inst = Inst::CondBr {
2244 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2245 taken: target(2),
2246 not_taken: target(3),
2247 };
2248 inst.emit(&mut buf, &info, &mut state);
2249
2250 buf.bind_label(label(1), state.ctrl_plane_mut());
2251 while buf.cur_offset() < 2000000 {
2252 if buf.island_needed(0) {
2253 buf.emit_island(0, state.ctrl_plane_mut());
2254 }
2255 let inst = Inst::Nop4;
2256 inst.emit(&mut buf, &info, &mut state);
2257 }
2258
2259 buf.bind_label(label(2), state.ctrl_plane_mut());
2260 let inst = Inst::Nop4;
2261 inst.emit(&mut buf, &info, &mut state);
2262
2263 buf.bind_label(label(3), state.ctrl_plane_mut());
2264 let inst = Inst::Nop4;
2265 inst.emit(&mut buf, &info, &mut state);
2266
2267 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2268
2269 assert_eq!(2000000 + 8, buf.total_size());
2270
2271 let mut buf2 = MachBuffer::new();
2272 let mut state = Default::default();
2273 let inst = Inst::CondBr {
2274 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2275
2276 // This conditionally taken branch has a 19-bit constant, shifted
2277 // to the left by two, giving us a 21-bit range in total. Half of
2278 // this range positive so the we should be around 1 << 20 bytes
2279 // away for our jump target.
2280 //
2281 // There are two pending fixups by the time we reach this point,
2282 // one for this 19-bit jump and one for the unconditional 26-bit
2283 // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
2284 // veneer is 20 bytes large, which means that pessimistically
2285 // assuming we'll need two veneers. Currently each veneer is
2286 // pessimistically assumed to be the maximal size which means we
2287 // need 40 bytes of extra space, meaning that the actual island
2288 // should come 40-bytes before the deadline.
2289 taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
2290
2291 // This branch is in-range so no veneers should be needed, it should
2292 // go directly to the target.
2293 not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
2294 };
2295 inst.emit(&mut buf2, &info, &mut state);
2296
2297 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2298
2299 assert_eq!(&buf.data[0..8], &buf2.data[..]);
2300 }
2301
2302 #[test]
2303 fn test_island_backward() {
2304 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2305 let mut buf = MachBuffer::new();
2306 let mut state = <Inst as MachInstEmit>::State::default();
2307 let constants = Default::default();
2308
2309 buf.reserve_labels_for_blocks(4);
2310
2311 buf.bind_label(label(0), state.ctrl_plane_mut());
2312 let inst = Inst::Nop4;
2313 inst.emit(&mut buf, &info, &mut state);
2314
2315 buf.bind_label(label(1), state.ctrl_plane_mut());
2316 let inst = Inst::Nop4;
2317 inst.emit(&mut buf, &info, &mut state);
2318
2319 buf.bind_label(label(2), state.ctrl_plane_mut());
2320 while buf.cur_offset() < 2000000 {
2321 let inst = Inst::Nop4;
2322 inst.emit(&mut buf, &info, &mut state);
2323 }
2324
2325 buf.bind_label(label(3), state.ctrl_plane_mut());
2326 let inst = Inst::CondBr {
2327 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2328 taken: target(0),
2329 not_taken: target(1),
2330 };
2331 inst.emit(&mut buf, &info, &mut state);
2332
2333 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2334
2335 assert_eq!(2000000 + 12, buf.total_size());
2336
2337 let mut buf2 = MachBuffer::new();
2338 let mut state = Default::default();
2339 let inst = Inst::CondBr {
2340 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2341 taken: BranchTarget::ResolvedOffset(8),
2342 not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
2343 };
2344 inst.emit(&mut buf2, &info, &mut state);
2345 let inst = Inst::Jump {
2346 dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
2347 };
2348 inst.emit(&mut buf2, &info, &mut state);
2349
2350 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2351
2352 assert_eq!(&buf.data[2000000..], &buf2.data[..]);
2353 }
2354
2355 #[test]
2356 fn test_multiple_redirect() {
2357 // label0:
2358 // cbz x0, label1
2359 // b label2
2360 // label1:
2361 // b label3
2362 // label2:
2363 // nop
2364 // nop
2365 // b label0
2366 // label3:
2367 // b label4
2368 // label4:
2369 // b label5
2370 // label5:
2371 // b label7
2372 // label6:
2373 // nop
2374 // label7:
2375 // ret
2376 //
2377 // -- should become:
2378 //
2379 // label0:
2380 // cbz x0, label7
2381 // label2:
2382 // nop
2383 // nop
2384 // b label0
2385 // label6:
2386 // nop
2387 // label7:
2388 // ret
2389
2390 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2391 let mut buf = MachBuffer::new();
2392 let mut state = <Inst as MachInstEmit>::State::default();
2393 let constants = Default::default();
2394
2395 buf.reserve_labels_for_blocks(8);
2396
2397 buf.bind_label(label(0), state.ctrl_plane_mut());
2398 let inst = Inst::CondBr {
2399 kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2400 taken: target(1),
2401 not_taken: target(2),
2402 };
2403 inst.emit(&mut buf, &info, &mut state);
2404
2405 buf.bind_label(label(1), state.ctrl_plane_mut());
2406 let inst = Inst::Jump { dest: target(3) };
2407 inst.emit(&mut buf, &info, &mut state);
2408
2409 buf.bind_label(label(2), state.ctrl_plane_mut());
2410 let inst = Inst::Nop4;
2411 inst.emit(&mut buf, &info, &mut state);
2412 inst.emit(&mut buf, &info, &mut state);
2413 let inst = Inst::Jump { dest: target(0) };
2414 inst.emit(&mut buf, &info, &mut state);
2415
2416 buf.bind_label(label(3), state.ctrl_plane_mut());
2417 let inst = Inst::Jump { dest: target(4) };
2418 inst.emit(&mut buf, &info, &mut state);
2419
2420 buf.bind_label(label(4), state.ctrl_plane_mut());
2421 let inst = Inst::Jump { dest: target(5) };
2422 inst.emit(&mut buf, &info, &mut state);
2423
2424 buf.bind_label(label(5), state.ctrl_plane_mut());
2425 let inst = Inst::Jump { dest: target(7) };
2426 inst.emit(&mut buf, &info, &mut state);
2427
2428 buf.bind_label(label(6), state.ctrl_plane_mut());
2429 let inst = Inst::Nop4;
2430 inst.emit(&mut buf, &info, &mut state);
2431
2432 buf.bind_label(label(7), state.ctrl_plane_mut());
2433 let inst = Inst::Ret {};
2434 inst.emit(&mut buf, &info, &mut state);
2435
2436 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2437
2438 let golden_data = vec![
2439 0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
2440 0x1f, 0x20, 0x03, 0xd5, // nop
2441 0x1f, 0x20, 0x03, 0xd5, // nop
2442 0xfd, 0xff, 0xff, 0x17, // b 0
2443 0x1f, 0x20, 0x03, 0xd5, // nop
2444 0xc0, 0x03, 0x5f, 0xd6, // ret
2445 ];
2446
2447 assert_eq!(&golden_data[..], &buf.data[..]);
2448 }
2449
2450 #[test]
2451 fn test_handle_branch_cycle() {
2452 // label0:
2453 // b label1
2454 // label1:
2455 // b label2
2456 // label2:
2457 // b label3
2458 // label3:
2459 // b label4
2460 // label4:
2461 // b label1 // note: not label0 (to make it interesting).
2462 //
2463 // -- should become:
2464 //
2465 // label0, label1, ..., label4:
2466 // b label0
2467 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2468 let mut buf = MachBuffer::new();
2469 let mut state = <Inst as MachInstEmit>::State::default();
2470 let constants = Default::default();
2471
2472 buf.reserve_labels_for_blocks(5);
2473
2474 buf.bind_label(label(0), state.ctrl_plane_mut());
2475 let inst = Inst::Jump { dest: target(1) };
2476 inst.emit(&mut buf, &info, &mut state);
2477
2478 buf.bind_label(label(1), state.ctrl_plane_mut());
2479 let inst = Inst::Jump { dest: target(2) };
2480 inst.emit(&mut buf, &info, &mut state);
2481
2482 buf.bind_label(label(2), state.ctrl_plane_mut());
2483 let inst = Inst::Jump { dest: target(3) };
2484 inst.emit(&mut buf, &info, &mut state);
2485
2486 buf.bind_label(label(3), state.ctrl_plane_mut());
2487 let inst = Inst::Jump { dest: target(4) };
2488 inst.emit(&mut buf, &info, &mut state);
2489
2490 buf.bind_label(label(4), state.ctrl_plane_mut());
2491 let inst = Inst::Jump { dest: target(1) };
2492 inst.emit(&mut buf, &info, &mut state);
2493
2494 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2495
2496 let golden_data = vec![
2497 0x00, 0x00, 0x00, 0x14, // b 0
2498 ];
2499
2500 assert_eq!(&golden_data[..], &buf.data[..]);
2501 }
2502
2503 #[test]
2504 fn metadata_records() {
2505 let mut buf = MachBuffer::<Inst>::new();
2506 let ctrl_plane = &mut Default::default();
2507 let constants = Default::default();
2508
2509 buf.reserve_labels_for_blocks(3);
2510
2511 buf.bind_label(label(0), ctrl_plane);
2512 buf.put1(1);
2513 buf.add_trap(TrapCode::HEAP_OUT_OF_BOUNDS);
2514 buf.put1(2);
2515 buf.add_trap(TrapCode::INTEGER_OVERFLOW);
2516 buf.add_trap(TrapCode::INTEGER_DIVISION_BY_ZERO);
2517 buf.add_call_site(&[
2518 (None.into(), label(1)),
2519 (Some(ExceptionTag::new(42)).into(), label(2)),
2520 ]);
2521 buf.add_reloc(
2522 Reloc::Abs4,
2523 &ExternalName::User(UserExternalNameRef::new(0)),
2524 0,
2525 );
2526 buf.put1(3);
2527 buf.add_reloc(
2528 Reloc::Abs8,
2529 &ExternalName::User(UserExternalNameRef::new(1)),
2530 1,
2531 );
2532 buf.put1(4);
2533 buf.bind_label(label(1), ctrl_plane);
2534 buf.put1(0xff);
2535 buf.bind_label(label(2), ctrl_plane);
2536 buf.put1(0xff);
2537
2538 let buf = buf.finish(&constants, ctrl_plane);
2539
2540 assert_eq!(buf.data(), &[1, 2, 3, 4, 0xff, 0xff]);
2541 assert_eq!(
2542 buf.traps()
2543 .iter()
2544 .map(|trap| (trap.offset, trap.code))
2545 .collect::<Vec<_>>(),
2546 vec![
2547 (1, TrapCode::HEAP_OUT_OF_BOUNDS),
2548 (2, TrapCode::INTEGER_OVERFLOW),
2549 (2, TrapCode::INTEGER_DIVISION_BY_ZERO)
2550 ]
2551 );
2552 let call_sites: Vec<_> = buf.call_sites().collect();
2553 assert_eq!(call_sites[0].ret_addr, 2);
2554 assert_eq!(
2555 call_sites[0].exception_handlers,
2556 &[(None.into(), 4), (Some(ExceptionTag::new(42)).into(), 5)]
2557 );
2558 assert_eq!(
2559 buf.relocs()
2560 .iter()
2561 .map(|reloc| (reloc.offset, reloc.kind))
2562 .collect::<Vec<_>>(),
2563 vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
2564 );
2565 }
2566}