cranelift_codegen/machinst/
buffer.rs

1//! In-memory representation of compiled machine code, with labels and fixups to
2//! refer to those labels. Handles constant-pool island insertion and also
3//! veneer insertion for out-of-range jumps.
4//!
5//! This code exists to solve three problems:
6//!
7//! - Branch targets for forward branches are not known until later, when we
8//!   emit code in a single pass through the instruction structs.
9//!
10//! - On many architectures, address references or offsets have limited range.
11//!   For example, on AArch64, conditional branches can only target code +/- 1MB
12//!   from the branch itself.
13//!
14//! - The lowering of control flow from the CFG-with-edges produced by
15//!   [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
16//!   edge blocks when the register allocator does not need to insert any
17//!   spills/reloads/moves in edge blocks, results in many suboptimal branch
18//!   patterns. The lowering also pays no attention to block order, and so
19//!   two-target conditional forms (cond-br followed by uncond-br) can often by
20//!   avoided because one of the targets is the fallthrough. There are several
21//!   cases here where we can simplify to use fewer branches.
22//!
23//! This "buffer" implements a single-pass code emission strategy (with a later
24//! "fixup" pass, but only through recorded fixups, not all instructions). The
25//! basic idea is:
26//!
27//! - Emit branches as they are, including two-target (cond/uncond) compound
28//!   forms, but with zero offsets and optimistically assuming the target will be
29//!   in range. Record the "fixup" for later. Targets are denoted instead by
30//!   symbolic "labels" that are then bound to certain offsets in the buffer as
31//!   we emit code. (Nominally, there is a label at the start of every basic
32//!   block.)
33//!
34//! - As we do this, track the offset in the buffer at which the first label
35//!   reference "goes out of range". We call this the "deadline". If we reach the
36//!   deadline and we still have not bound the label to which an unresolved branch
37//!   refers, we have a problem!
38//!
39//! - To solve this problem, we emit "islands" full of "veneers". An island is
40//!   simply a chunk of code inserted in the middle of the code actually produced
41//!   by the emitter (e.g., vcode iterating over instruction structs). The emitter
42//!   has some awareness of this: it either asks for an island between blocks, so
43//!   it is not accidentally executed, or else it emits a branch around the island
44//!   when all other options fail (see `Inst::EmitIsland` meta-instruction).
45//!
46//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
47//!   that implements a longer-range reference to a label. The idea is that, for
48//!   example, a branch with a limited range can branch to a "veneer" instead,
49//!   which is simply a branch in a form that can use a longer-range reference. On
50//!   AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
51//!   can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
52//!   conditional branch's label reference can be fixed up with a "veneer" to
53//!   achieve a longer range.
54//!
55//! - To implement all of this, we require the backend to provide a `LabelUse`
56//!   type that implements a trait. This is nominally an enum that records one of
57//!   several kinds of references to an offset in code -- basically, a relocation
58//!   type -- and will usually correspond to different instruction formats. The
59//!   `LabelUse` implementation specifies the maximum range, how to patch in the
60//!   actual label location when known, and how to generate a veneer to extend the
61//!   range.
62//!
63//! That satisfies label references, but we still may have suboptimal branch
64//! patterns. To clean up the branches, we do a simple "peephole"-style
65//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
66//! informs the buffer of branches in the code and, in the case of conditionals,
67//! the code that would have been emitted to invert this branch's condition. We
68//! track the "latest branches": these are branches that are contiguous up to
69//! the current offset. (If any code is emitted after a branch, that branch or
70//! run of contiguous branches is no longer "latest".) The latest branches are
71//! those that we can edit by simply truncating the buffer and doing something
72//! else instead.
73//!
74//! To optimize branches, we implement several simple rules, and try to apply
75//! them to the "latest branches" when possible:
76//!
77//! - A branch with a label target, when that label is bound to the ending
78//!   offset of the branch (the fallthrough location), can be removed altogether,
79//!   because the branch would have no effect).
80//!
81//! - An unconditional branch that starts at a label location, and branches to
82//!   another label, results in a "label alias": all references to the label bound
83//!   *to* this branch instruction are instead resolved to the *target* of the
84//!   branch instruction. This effectively removes empty blocks that just
85//!   unconditionally branch to the next block. We call this "branch threading".
86//!
87//! - A conditional followed by an unconditional, when the conditional branches
88//!   to the unconditional's fallthrough, results in (i) the truncation of the
89//!   unconditional, (ii) the inversion of the condition's condition, and (iii)
90//!   replacement of the conditional's target (using the original target of the
91//!   unconditional). This is a fancy way of saying "we can flip a two-target
92//!   conditional branch's taken/not-taken targets if it works better with our
93//!   fallthrough". To make this work, the emitter actually gives the buffer
94//!   *both* forms of every conditional branch: the true form is emitted into the
95//!   buffer, and the "inverted" machine-code bytes are provided as part of the
96//!   branch-fixup metadata.
97//!
98//! - An unconditional B preceded by another unconditional P, when B's label(s) have
99//!   been redirected to target(B), can be removed entirely. This is an extension
100//!   of the branch-threading optimization, and is valid because if we know there
101//!   will be no fallthrough into this branch instruction (the prior instruction
102//!   is an unconditional jump), and if we know we have successfully redirected
103//!   all labels, then this branch instruction is unreachable. Note that this
104//!   works because the redirection happens before the label is ever resolved
105//!   (fixups happen at island emission time, at which point latest-branches are
106//!   cleared, or at the end of emission), so we are sure to catch and redirect
107//!   all possible paths to this instruction.
108//!
109//! # Branch-optimization Correctness
110//!
111//! The branch-optimization mechanism depends on a few data structures with
112//! invariants, which are always held outside the scope of top-level public
113//! methods:
114//!
115//! - The latest-branches list. Each entry describes a span of the buffer
116//!   (start/end offsets), the label target, the corresponding fixup-list entry
117//!   index, and the bytes (must be the same length) for the inverted form, if
118//!   conditional. The list of labels that are bound to the start-offset of this
119//!   branch is *complete* (if any label has a resolved offset equal to `start`
120//!   and is not an alias, it must appear in this list) and *precise* (no label
121//!   in this list can be bound to another offset). No label in this list should
122//!   be an alias.  No two branch ranges can overlap, and branches are in
123//!   ascending-offset order.
124//!
125//! - The labels-at-tail list. This contains all MachLabels that have been bound
126//!   to (whose resolved offsets are equal to) the tail offset of the buffer.
127//!   No label in this list should be an alias.
128//!
129//! - The label_offsets array, containing the bound offset of a label or
130//!   UNKNOWN. No label can be bound at an offset greater than the current
131//!   buffer tail.
132//!
133//! - The label_aliases array, containing another label to which a label is
134//!   bound or UNKNOWN. A label's resolved offset is the resolved offset
135//!   of the label it is aliased to, if this is set.
136//!
137//! We argue below, at each method, how the invariants in these data structures
138//! are maintained (grep for "Post-invariant").
139//!
140//! Given these invariants, we argue why each optimization preserves execution
141//! semantics below (grep for "Preserves execution semantics").
142//!
143//! # Avoiding Quadratic Behavior
144//!
145//! There are two cases where we've had to take some care to avoid
146//! quadratic worst-case behavior:
147//!
148//! - The "labels at this branch" list can grow unboundedly if the
149//!   code generator binds many labels at one location. If the count
150//!   gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
151//!   simply abort an optimization early in a way that is always correct
152//!   but is conservative.
153//!
154//! - The fixup list can interact with island emission to create
155//!   "quadratic island behavior". In a little more detail, one can hit
156//!   this behavior by having some pending fixups (forward label
157//!   references) with long-range label-use kinds, and some others
158//!   with shorter-range references that nonetheless still are pending
159//!   long enough to trigger island generation. In such a case, we
160//!   process the fixup list, generate veneers to extend some forward
161//!   references' ranges, but leave the other (longer-range) ones
162//!   alone. The way this was implemented put them back on a list and
163//!   resulted in quadratic behavior.
164//!
165//!   To avoid this fixups are split into two lists: one "pending" list and one
166//!   final list. The pending list is kept around for handling fixups related to
167//!   branches so it can be edited/truncated. When an island is reached, which
168//!   starts processing fixups, all pending fixups are flushed into the final
169//!   list. The final list is a `BinaryHeap` which enables fixup processing to
170//!   only process those which are required during island emission, deferring
171//!   all longer-range fixups to later.
172
173use crate::binemit::{Addend, CodeOffset, Reloc};
174use crate::ir::function::FunctionParameters;
175use crate::ir::{ExceptionTag, ExternalName, RelSourceLoc, SourceLoc, TrapCode};
176use crate::isa::unwind::UnwindInst;
177use crate::machinst::{
178    BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
179};
180use crate::trace;
181use crate::{MachInstEmitState, ir};
182use crate::{VCodeConstantData, timing};
183use core::ops::Range;
184use cranelift_control::ControlPlane;
185use cranelift_entity::packed_option::PackedOption;
186use cranelift_entity::{PrimaryMap, entity_impl};
187use smallvec::SmallVec;
188use std::cmp::Ordering;
189use std::collections::BinaryHeap;
190use std::mem;
191use std::string::String;
192use std::vec::Vec;
193
194#[cfg(feature = "enable-serde")]
195use serde::{Deserialize, Serialize};
196
197#[cfg(feature = "enable-serde")]
198pub trait CompilePhase {
199    type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
200    type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
201}
202
203#[cfg(not(feature = "enable-serde"))]
204pub trait CompilePhase {
205    type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
206    type SourceLocType: core::fmt::Debug + PartialEq + Clone;
207}
208
209/// Status of a compiled artifact that needs patching before being used.
210#[derive(Clone, Debug, PartialEq)]
211#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
212pub struct Stencil;
213
214/// Status of a compiled artifact ready to use.
215#[derive(Clone, Debug, PartialEq)]
216pub struct Final;
217
218impl CompilePhase for Stencil {
219    type MachSrcLocType = MachSrcLoc<Stencil>;
220    type SourceLocType = RelSourceLoc;
221}
222
223impl CompilePhase for Final {
224    type MachSrcLocType = MachSrcLoc<Final>;
225    type SourceLocType = SourceLoc;
226}
227
228#[derive(Clone, Copy, Debug, PartialEq, Eq)]
229enum ForceVeneers {
230    Yes,
231    No,
232}
233
234/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
235/// in bulk.
236///
237/// This struct uses `SmallVec`s to support small-ish function bodies without
238/// any heap allocation. As such, it will be several kilobytes large. This is
239/// likely fine as long as it is stack-allocated for function emission then
240/// thrown away; but beware if many buffer objects are retained persistently.
241pub struct MachBuffer<I: VCodeInst> {
242    /// The buffer contents, as raw bytes.
243    data: SmallVec<[u8; 1024]>,
244    /// The required alignment of this buffer.
245    min_alignment: u32,
246    /// Any relocations referring to this code. Note that only *external*
247    /// relocations are tracked here; references to labels within the buffer are
248    /// resolved before emission.
249    relocs: SmallVec<[MachReloc; 16]>,
250    /// Any trap records referring to this code.
251    traps: SmallVec<[MachTrap; 16]>,
252    /// Any call site records referring to this code.
253    call_sites: SmallVec<[MachCallSite; 16]>,
254    /// Any exception-handler records referred to at call sites.
255    exception_handlers: SmallVec<[(PackedOption<ir::ExceptionTag>, MachLabel); 16]>,
256    /// Any source location mappings referring to this code.
257    srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
258    /// Any user stack maps for this code.
259    ///
260    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
261    /// by code offset, and each stack map covers `span` bytes on the stack.
262    user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
263    /// Any unwind info at a given location.
264    unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
265    /// The current source location in progress (after `start_srcloc()` and
266    /// before `end_srcloc()`).  This is a (start_offset, src_loc) tuple.
267    cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
268    /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
269    label_offsets: SmallVec<[CodeOffset; 16]>,
270    /// Label aliases: when one label points to an unconditional jump, and that
271    /// jump points to another label, we can redirect references to the first
272    /// label immediately to the second.
273    ///
274    /// Invariant: we don't have label-alias cycles. We ensure this by,
275    /// before setting label A to alias label B, resolving B's alias
276    /// target (iteratively until a non-aliased label); if B is already
277    /// aliased to A, then we cannot alias A back to B.
278    label_aliases: SmallVec<[MachLabel; 16]>,
279    /// Constants that must be emitted at some point.
280    pending_constants: SmallVec<[VCodeConstant; 16]>,
281    /// Byte size of all constants in `pending_constants`.
282    pending_constants_size: CodeOffset,
283    /// Traps that must be emitted at some point.
284    pending_traps: SmallVec<[MachLabelTrap; 16]>,
285    /// Fixups that haven't yet been flushed into `fixup_records` below and may
286    /// be related to branches that are chomped. These all get added to
287    /// `fixup_records` during island emission.
288    pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
289    /// The nearest upcoming deadline for entries in `pending_fixup_records`.
290    pending_fixup_deadline: CodeOffset,
291    /// Fixups that must be performed after all code is emitted.
292    fixup_records: BinaryHeap<MachLabelFixup<I>>,
293    /// Latest branches, to facilitate in-place editing for better fallthrough
294    /// behavior and empty-block removal.
295    latest_branches: SmallVec<[MachBranch; 4]>,
296    /// All labels at the current offset (emission tail). This is lazily
297    /// cleared: it is actually accurate as long as the current offset is
298    /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
299    /// be considered as empty.
300    ///
301    /// For correctness, this *must* be complete (i.e., the vector must contain
302    /// all labels whose offsets are resolved to the current tail), because we
303    /// rely on it to update labels when we truncate branches.
304    labels_at_tail: SmallVec<[MachLabel; 4]>,
305    /// The last offset at which `labels_at_tail` is valid. It is conceptually
306    /// always describing the tail of the buffer, but we do not clear
307    /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
308    /// when the offset has grown past this (`labels_at_tail_off`) point.
309    /// Always <= `cur_offset()`.
310    labels_at_tail_off: CodeOffset,
311    /// Metadata about all constants that this function has access to.
312    ///
313    /// This records the size/alignment of all constants (not the actual data)
314    /// along with the last available label generated for the constant. This map
315    /// is consulted when constants are referred to and the label assigned to a
316    /// constant may change over time as well.
317    constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
318    /// All recorded usages of constants as pairs of the constant and where the
319    /// constant needs to be placed within `self.data`. Note that the same
320    /// constant may appear in this array multiple times if it was emitted
321    /// multiple times.
322    used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
323    /// Indicates when a patchable region is currently open, to guard that it's
324    /// not possible to nest patchable regions.
325    open_patchable: bool,
326}
327
328impl MachBufferFinalized<Stencil> {
329    /// Get a finalized machine buffer by applying the function's base source location.
330    pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
331        MachBufferFinalized {
332            data: self.data,
333            relocs: self.relocs,
334            traps: self.traps,
335            call_sites: self.call_sites,
336            exception_handlers: self.exception_handlers,
337            srclocs: self
338                .srclocs
339                .into_iter()
340                .map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
341                .collect(),
342            user_stack_maps: self.user_stack_maps,
343            unwind_info: self.unwind_info,
344            alignment: self.alignment,
345        }
346    }
347}
348
349/// A `MachBuffer` once emission is completed: holds generated code and records,
350/// without fixups. This allows the type to be independent of the backend.
351#[derive(PartialEq, Debug, Clone)]
352#[cfg_attr(
353    feature = "enable-serde",
354    derive(serde_derive::Serialize, serde_derive::Deserialize)
355)]
356pub struct MachBufferFinalized<T: CompilePhase> {
357    /// The buffer contents, as raw bytes.
358    pub(crate) data: SmallVec<[u8; 1024]>,
359    /// Any relocations referring to this code. Note that only *external*
360    /// relocations are tracked here; references to labels within the buffer are
361    /// resolved before emission.
362    pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
363    /// Any trap records referring to this code.
364    pub(crate) traps: SmallVec<[MachTrap; 16]>,
365    /// Any call site records referring to this code.
366    pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
367    /// Any exception-handler records referred to at call sites.
368    pub(crate) exception_handlers: SmallVec<[(PackedOption<ir::ExceptionTag>, CodeOffset); 16]>,
369    /// Any source location mappings referring to this code.
370    pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
371    /// Any user stack maps for this code.
372    ///
373    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
374    /// by code offset, and each stack map covers `span` bytes on the stack.
375    pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
376    /// Any unwind info at a given location.
377    pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
378    /// The required alignment of this buffer.
379    pub alignment: u32,
380}
381
382const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
383const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
384
385/// Threshold on max length of `labels_at_this_branch` list to avoid
386/// unbounded quadratic behavior (see comment below at use-site).
387const LABEL_LIST_THRESHOLD: usize = 100;
388
389/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
390/// the point at which it is used by emitted code; the buffer records "fixups"
391/// for references to the label, and will come back and patch the code
392/// appropriately when the label's location is eventually known.
393#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
394pub struct MachLabel(u32);
395entity_impl!(MachLabel);
396
397impl MachLabel {
398    /// Get a label for a block. (The first N MachLabels are always reserved for
399    /// the N blocks in the vcode.)
400    pub fn from_block(bindex: BlockIndex) -> MachLabel {
401        MachLabel(bindex.index() as u32)
402    }
403
404    /// Creates a string representing this label, for convenience.
405    pub fn to_string(&self) -> String {
406        format!("label{}", self.0)
407    }
408}
409
410impl Default for MachLabel {
411    fn default() -> Self {
412        UNKNOWN_LABEL
413    }
414}
415
416/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
417/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
418/// the [`OpenPatchRegion`] token in the process.
419pub struct OpenPatchRegion(usize);
420
421/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
422/// of where you might want to use this is for patching instructions that mention constants that
423/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
424/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
425/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
426/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
427/// bytes, and the constants uses can be updated directly.
428pub struct PatchRegion {
429    range: Range<usize>,
430}
431
432impl PatchRegion {
433    /// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
434    pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
435        &mut buffer.data[self.range]
436    }
437}
438
439impl<I: VCodeInst> MachBuffer<I> {
440    /// Create a new section, known to start at `start_offset` and with a size limited to
441    /// `length_limit`.
442    pub fn new() -> MachBuffer<I> {
443        MachBuffer {
444            data: SmallVec::new(),
445            min_alignment: I::function_alignment().minimum,
446            relocs: SmallVec::new(),
447            traps: SmallVec::new(),
448            call_sites: SmallVec::new(),
449            exception_handlers: SmallVec::new(),
450            srclocs: SmallVec::new(),
451            user_stack_maps: SmallVec::new(),
452            unwind_info: SmallVec::new(),
453            cur_srcloc: None,
454            label_offsets: SmallVec::new(),
455            label_aliases: SmallVec::new(),
456            pending_constants: SmallVec::new(),
457            pending_constants_size: 0,
458            pending_traps: SmallVec::new(),
459            pending_fixup_records: SmallVec::new(),
460            pending_fixup_deadline: u32::MAX,
461            fixup_records: Default::default(),
462            latest_branches: SmallVec::new(),
463            labels_at_tail: SmallVec::new(),
464            labels_at_tail_off: 0,
465            constants: Default::default(),
466            used_constants: Default::default(),
467            open_patchable: false,
468        }
469    }
470
471    /// Current offset from start of buffer.
472    pub fn cur_offset(&self) -> CodeOffset {
473        self.data.len() as CodeOffset
474    }
475
476    /// Add a byte.
477    pub fn put1(&mut self, value: u8) {
478        self.data.push(value);
479
480        // Post-invariant: conceptual-labels_at_tail contains a complete and
481        // precise list of labels bound at `cur_offset()`. We have advanced
482        // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
483        // before, it is not anymore (and it cannot become equal, because
484        // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
485        // conceptually empty (even though it is only lazily cleared). No labels
486        // can be bound at this new offset (by invariant on `label_offsets`).
487        // Hence the invariant holds.
488    }
489
490    /// Add 2 bytes.
491    pub fn put2(&mut self, value: u16) {
492        let bytes = value.to_le_bytes();
493        self.data.extend_from_slice(&bytes[..]);
494
495        // Post-invariant: as for `put1()`.
496    }
497
498    /// Add 4 bytes.
499    pub fn put4(&mut self, value: u32) {
500        let bytes = value.to_le_bytes();
501        self.data.extend_from_slice(&bytes[..]);
502
503        // Post-invariant: as for `put1()`.
504    }
505
506    /// Add 8 bytes.
507    pub fn put8(&mut self, value: u64) {
508        let bytes = value.to_le_bytes();
509        self.data.extend_from_slice(&bytes[..]);
510
511        // Post-invariant: as for `put1()`.
512    }
513
514    /// Add a slice of bytes.
515    pub fn put_data(&mut self, data: &[u8]) {
516        self.data.extend_from_slice(data);
517
518        // Post-invariant: as for `put1()`.
519    }
520
521    /// Reserve appended space and return a mutable slice referring to it.
522    pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
523        let off = self.data.len();
524        let new_len = self.data.len() + len;
525        self.data.resize(new_len, 0);
526        &mut self.data[off..]
527
528        // Post-invariant: as for `put1()`.
529    }
530
531    /// Align up to the given alignment.
532    pub fn align_to(&mut self, align_to: CodeOffset) {
533        trace!("MachBuffer: align to {}", align_to);
534        assert!(
535            align_to.is_power_of_two(),
536            "{align_to} is not a power of two"
537        );
538        while self.cur_offset() & (align_to - 1) != 0 {
539            self.put1(0);
540        }
541
542        // Post-invariant: as for `put1()`.
543    }
544
545    /// Begin a region of patchable code. There is one requirement for the
546    /// code that is emitted: It must not introduce any instructions that
547    /// could be chomped (branches are an example of this). In other words,
548    /// you must not call [`MachBuffer::add_cond_branch`] or
549    /// [`MachBuffer::add_uncond_branch`] between calls to this method and
550    /// [`MachBuffer::end_patchable`].
551    pub fn start_patchable(&mut self) -> OpenPatchRegion {
552        assert!(!self.open_patchable, "Patchable regions may not be nested");
553        self.open_patchable = true;
554        OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
555    }
556
557    /// End a region of patchable code, yielding a [`PatchRegion`] value that
558    /// can be consumed later to produce a one-off mutable slice to the
559    /// associated region of the data buffer.
560    pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
561        // No need to assert the state of `open_patchable` here, as we take
562        // ownership of the only `OpenPatchable` value.
563        self.open_patchable = false;
564        let end = usize::try_from(self.cur_offset()).unwrap();
565        PatchRegion { range: open.0..end }
566    }
567
568    /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
569    /// offset yet.
570    pub fn get_label(&mut self) -> MachLabel {
571        let l = self.label_offsets.len() as u32;
572        self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
573        self.label_aliases.push(UNKNOWN_LABEL);
574        trace!("MachBuffer: new label -> {:?}", MachLabel(l));
575        MachLabel(l)
576
577        // Post-invariant: the only mutation is to add a new label; it has no
578        // bound offset yet, so it trivially satisfies all invariants.
579    }
580
581    /// Reserve the first N MachLabels for blocks.
582    pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
583        trace!("MachBuffer: first {} labels are for blocks", blocks);
584        debug_assert!(self.label_offsets.is_empty());
585        self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
586        self.label_aliases.resize(blocks, UNKNOWN_LABEL);
587
588        // Post-invariant: as for `get_label()`.
589    }
590
591    /// Registers metadata in this `MachBuffer` about the `constants` provided.
592    ///
593    /// This will record the size/alignment of all constants which will prepare
594    /// them for emission later on.
595    pub fn register_constants(&mut self, constants: &VCodeConstants) {
596        for (c, val) in constants.iter() {
597            self.register_constant(&c, val);
598        }
599    }
600
601    /// Similar to [`MachBuffer::register_constants`] but registers a
602    /// single constant metadata. This function is useful in
603    /// situations where not all constants are known at the time of
604    /// emission.
605    pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
606        let c2 = self.constants.push(MachBufferConstant {
607            upcoming_label: None,
608            align: data.alignment(),
609            size: data.as_slice().len(),
610        });
611        assert_eq!(*constant, c2);
612    }
613
614    /// Completes constant emission by iterating over `self.used_constants` and
615    /// filling in the "holes" with the constant values provided by `constants`.
616    ///
617    /// Returns the alignment required for this entire buffer. Alignment starts
618    /// at the ISA's minimum function alignment and can be increased due to
619    /// constant requirements.
620    fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
621        let mut alignment = self.min_alignment;
622        for (constant, offset) in mem::take(&mut self.used_constants) {
623            let constant = constants.get(constant);
624            let data = constant.as_slice();
625            self.data[offset as usize..][..data.len()].copy_from_slice(data);
626            alignment = constant.alignment().max(alignment);
627        }
628        alignment
629    }
630
631    /// Returns a label that can be used to refer to the `constant` provided.
632    ///
633    /// This will automatically defer a new constant to be emitted for
634    /// `constant` if it has not been previously emitted. Note that this
635    /// function may return a different label for the same constant at
636    /// different points in time. The label is valid to use only from the
637    /// current location; the MachBuffer takes care to emit the same constant
638    /// multiple times if needed so the constant is always in range.
639    pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
640        let MachBufferConstant {
641            align,
642            size,
643            upcoming_label,
644        } = self.constants[constant];
645        if let Some(label) = upcoming_label {
646            return label;
647        }
648
649        let label = self.get_label();
650        trace!(
651            "defer constant: eventually emit {size} bytes aligned \
652             to {align} at label {label:?}",
653        );
654        self.pending_constants.push(constant);
655        self.pending_constants_size += size as u32;
656        self.constants[constant].upcoming_label = Some(label);
657        label
658    }
659
660    /// Bind a label to the current offset. A label can only be bound once.
661    pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
662        trace!(
663            "MachBuffer: bind label {:?} at offset {}",
664            label,
665            self.cur_offset()
666        );
667        debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
668        debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
669        let offset = self.cur_offset();
670        self.label_offsets[label.0 as usize] = offset;
671        self.lazily_clear_labels_at_tail();
672        self.labels_at_tail.push(label);
673
674        // Invariants hold: bound offset of label is <= cur_offset (in fact it
675        // is equal). If the `labels_at_tail` list was complete and precise
676        // before, it is still, because we have bound this label to the current
677        // offset and added it to the list (which contains all labels at the
678        // current offset).
679
680        self.optimize_branches(ctrl_plane);
681
682        // Post-invariant: by `optimize_branches()` (see argument there).
683    }
684
685    /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
686    /// offset that it applies to.
687    fn lazily_clear_labels_at_tail(&mut self) {
688        let offset = self.cur_offset();
689        if offset > self.labels_at_tail_off {
690            self.labels_at_tail_off = offset;
691            self.labels_at_tail.clear();
692        }
693
694        // Post-invariant: either labels_at_tail_off was at cur_offset, and
695        // state is untouched, or was less than cur_offset, in which case the
696        // labels_at_tail list was conceptually empty, and is now actually
697        // empty.
698    }
699
700    /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
701    pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
702        let mut iters = 0;
703        while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
704            label = self.label_aliases[label.0 as usize];
705            // To protect against an infinite loop (despite our assurances to
706            // ourselves that the invariants make this impossible), assert out
707            // after 1M iterations. The number of basic blocks is limited
708            // in most contexts anyway so this should be impossible to hit with
709            // a legitimate input.
710            iters += 1;
711            assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
712        }
713        self.label_offsets[label.0 as usize]
714
715        // Post-invariant: no mutations.
716    }
717
718    /// Emit a reference to the given label with the given reference type (i.e.,
719    /// branch-instruction format) at the current offset.  This is like a
720    /// relocation, but handled internally.
721    ///
722    /// This can be called before the branch is actually emitted; fixups will
723    /// not happen until an island is emitted or the buffer is finished.
724    pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
725        trace!(
726            "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
727            offset, label, kind
728        );
729
730        // Add the fixup, and update the worst-case island size based on a
731        // veneer for this label use.
732        let fixup = MachLabelFixup {
733            label,
734            offset,
735            kind,
736        };
737        self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
738        self.pending_fixup_records.push(fixup);
739
740        // Post-invariant: no mutations to branches/labels data structures.
741    }
742
743    /// Inform the buffer of an unconditional branch at the given offset,
744    /// targeting the given label. May be used to optimize branches.
745    /// The last added label-use must correspond to this branch.
746    /// This must be called when the current offset is equal to `start`; i.e.,
747    /// before actually emitting the branch. This implies that for a branch that
748    /// uses a label and is eligible for optimizations by the MachBuffer, the
749    /// proper sequence is:
750    ///
751    /// - Call `use_label_at_offset()` to emit the fixup record.
752    /// - Call `add_uncond_branch()` to make note of the branch.
753    /// - Emit the bytes for the branch's machine code.
754    ///
755    /// Additional requirement: no labels may be bound between `start` and `end`
756    /// (exclusive on both ends).
757    pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
758        debug_assert!(
759            !self.open_patchable,
760            "Branch instruction inserted within a patchable region"
761        );
762        assert!(self.cur_offset() == start);
763        debug_assert!(end > start);
764        assert!(!self.pending_fixup_records.is_empty());
765        let fixup = self.pending_fixup_records.len() - 1;
766        self.lazily_clear_labels_at_tail();
767        self.latest_branches.push(MachBranch {
768            start,
769            end,
770            target,
771            fixup,
772            inverted: None,
773            labels_at_this_branch: self.labels_at_tail.clone(),
774        });
775
776        // Post-invariant: we asserted branch start is current tail; the list of
777        // labels at branch is cloned from list of labels at current tail.
778    }
779
780    /// Inform the buffer of a conditional branch at the given offset,
781    /// targeting the given label. May be used to optimize branches.
782    /// The last added label-use must correspond to this branch.
783    ///
784    /// Additional requirement: no labels may be bound between `start` and `end`
785    /// (exclusive on both ends).
786    pub fn add_cond_branch(
787        &mut self,
788        start: CodeOffset,
789        end: CodeOffset,
790        target: MachLabel,
791        inverted: &[u8],
792    ) {
793        debug_assert!(
794            !self.open_patchable,
795            "Branch instruction inserted within a patchable region"
796        );
797        assert!(self.cur_offset() == start);
798        debug_assert!(end > start);
799        assert!(!self.pending_fixup_records.is_empty());
800        debug_assert!(
801            inverted.len() == (end - start) as usize,
802            "branch length = {}, but inverted length = {}",
803            end - start,
804            inverted.len()
805        );
806        let fixup = self.pending_fixup_records.len() - 1;
807        let inverted = Some(SmallVec::from(inverted));
808        self.lazily_clear_labels_at_tail();
809        self.latest_branches.push(MachBranch {
810            start,
811            end,
812            target,
813            fixup,
814            inverted,
815            labels_at_this_branch: self.labels_at_tail.clone(),
816        });
817
818        // Post-invariant: we asserted branch start is current tail; labels at
819        // branch list is cloned from list of labels at current tail.
820    }
821
822    fn truncate_last_branch(&mut self) {
823        debug_assert!(
824            !self.open_patchable,
825            "Branch instruction truncated within a patchable region"
826        );
827
828        self.lazily_clear_labels_at_tail();
829        // Invariants hold at this point.
830
831        let b = self.latest_branches.pop().unwrap();
832        assert!(b.end == self.cur_offset());
833
834        // State:
835        //    [PRE CODE]
836        //  Offset b.start, b.labels_at_this_branch:
837        //    [BRANCH CODE]
838        //  cur_off, self.labels_at_tail -->
839        //    (end of buffer)
840        self.data.truncate(b.start as usize);
841        self.pending_fixup_records.truncate(b.fixup);
842        while let Some(last_srcloc) = self.srclocs.last_mut() {
843            if last_srcloc.end <= b.start {
844                break;
845            }
846            if last_srcloc.start < b.start {
847                last_srcloc.end = b.start;
848                break;
849            }
850            self.srclocs.pop();
851        }
852        // State:
853        //    [PRE CODE]
854        //  cur_off, Offset b.start, b.labels_at_this_branch:
855        //    (end of buffer)
856        //
857        //  self.labels_at_tail -->  (past end of buffer)
858        let cur_off = self.cur_offset();
859        self.labels_at_tail_off = cur_off;
860        // State:
861        //    [PRE CODE]
862        //  cur_off, Offset b.start, b.labels_at_this_branch,
863        //  self.labels_at_tail:
864        //    (end of buffer)
865        //
866        // resolve_label_offset(l) for l in labels_at_tail:
867        //    (past end of buffer)
868
869        trace!(
870            "truncate_last_branch: truncated {:?}; off now {}",
871            b, cur_off
872        );
873
874        // Fix up resolved label offsets for labels at tail.
875        for &l in &self.labels_at_tail {
876            self.label_offsets[l.0 as usize] = cur_off;
877        }
878        // Old labels_at_this_branch are now at cur_off.
879        self.labels_at_tail.extend(b.labels_at_this_branch);
880
881        // Post-invariant: this operation is defined to truncate the buffer,
882        // which moves cur_off backward, and to move labels at the end of the
883        // buffer back to the start-of-branch offset.
884        //
885        // latest_branches satisfies all invariants:
886        // - it has no branches past the end of the buffer (branches are in
887        //   order, we removed the last one, and we truncated the buffer to just
888        //   before the start of that branch)
889        // - no labels were moved to lower offsets than the (new) cur_off, so
890        //   the labels_at_this_branch list for any other branch need not change.
891        //
892        // labels_at_tail satisfies all invariants:
893        // - all labels that were at the tail after the truncated branch are
894        //   moved backward to just before the branch, which becomes the new tail;
895        //   thus every element in the list should remain (ensured by `.extend()`
896        //   above).
897        // - all labels that refer to the new tail, which is the start-offset of
898        //   the truncated branch, must be present. The `labels_at_this_branch`
899        //   list in the truncated branch's record is a complete and precise list
900        //   of exactly these labels; we append these to labels_at_tail.
901        // - labels_at_tail_off is at cur_off after truncation occurs, so the
902        //   list is valid (not to be lazily cleared).
903        //
904        // The stated operation was performed:
905        // - For each label at the end of the buffer prior to this method, it
906        //   now resolves to the new (truncated) end of the buffer: it must have
907        //   been in `labels_at_tail` (this list is precise and complete, and
908        //   the tail was at the end of the truncated branch on entry), and we
909        //   iterate over this list and set `label_offsets` to the new tail.
910        //   None of these labels could have been an alias (by invariant), so
911        //   `label_offsets` is authoritative for each.
912        // - No other labels will be past the end of the buffer, because of the
913        //   requirement that no labels be bound to the middle of branch ranges
914        //   (see comments to `add_{cond,uncond}_branch()`).
915        // - The buffer is truncated to just before the last branch, and the
916        //   fixup record referring to that last branch is removed.
917    }
918
919    /// Performs various optimizations on branches pointing at the current label.
920    pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
921        if ctrl_plane.get_decision() {
922            return;
923        }
924
925        self.lazily_clear_labels_at_tail();
926        // Invariants valid at this point.
927
928        trace!(
929            "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
930            self.latest_branches, self.labels_at_tail, self.pending_fixup_records
931        );
932
933        // We continue to munch on branches at the tail of the buffer until no
934        // more rules apply. Note that the loop only continues if a branch is
935        // actually truncated (or if labels are redirected away from a branch),
936        // so this always makes progress.
937        while let Some(b) = self.latest_branches.last() {
938            let cur_off = self.cur_offset();
939            trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
940            // If there has been any code emission since the end of the last branch or
941            // label definition, then there's nothing we can edit (because we
942            // don't move code once placed, only back up and overwrite), so
943            // clear the records and finish.
944            if b.end < cur_off {
945                break;
946            }
947
948            // If the "labels at this branch" list on this branch is
949            // longer than a threshold, don't do any simplification,
950            // and let the branch remain to separate those labels from
951            // the current tail. This avoids quadratic behavior (see
952            // #3468): otherwise, if a long string of "goto next;
953            // next:" patterns are emitted, all of the labels will
954            // coalesce into a long list of aliases for the current
955            // buffer tail. We must track all aliases of the current
956            // tail for correctness, but we are also allowed to skip
957            // optimization (removal) of any branch, so we take the
958            // escape hatch here and let it stand. In effect this
959            // "spreads" the many thousands of labels in the
960            // pathological case among an actual (harmless but
961            // suboptimal) instruction once per N labels.
962            if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
963                break;
964            }
965
966            // Invariant: we are looking at a branch that ends at the tail of
967            // the buffer.
968
969            // For any branch, conditional or unconditional:
970            // - If the target is a label at the current offset, then remove
971            //   the conditional branch, and reset all labels that targeted
972            //   the current offset (end of branch) to the truncated
973            //   end-of-code.
974            //
975            // Preserves execution semantics: a branch to its own fallthrough
976            // address is equivalent to a no-op; in both cases, nextPC is the
977            // fallthrough.
978            if self.resolve_label_offset(b.target) == cur_off {
979                trace!("branch with target == cur off; truncating");
980                self.truncate_last_branch();
981                continue;
982            }
983
984            // If latest is an unconditional branch:
985            //
986            // - If the branch's target is not its own start address, then for
987            //   each label at the start of branch, make the label an alias of the
988            //   branch target, and remove the label from the "labels at this
989            //   branch" list.
990            //
991            //   - Preserves execution semantics: an unconditional branch's
992            //     only effect is to set PC to a new PC; this change simply
993            //     collapses one step in the step-semantics.
994            //
995            //   - Post-invariant: the labels that were bound to the start of
996            //     this branch become aliases, so they must not be present in any
997            //     labels-at-this-branch list or the labels-at-tail list. The
998            //     labels are removed form the latest-branch record's
999            //     labels-at-this-branch list, and are never placed in the
1000            //     labels-at-tail list. Furthermore, it is correct that they are
1001            //     not in either list, because they are now aliases, and labels
1002            //     that are aliases remain aliases forever.
1003            //
1004            // - If there is a prior unconditional branch that ends just before
1005            //   this one begins, and this branch has no labels bound to its
1006            //   start, then we can truncate this branch, because it is entirely
1007            //   unreachable (we have redirected all labels that make it
1008            //   reachable otherwise). Do so and continue around the loop.
1009            //
1010            //   - Preserves execution semantics: the branch is unreachable,
1011            //     because execution can only flow into an instruction from the
1012            //     prior instruction's fallthrough or from a branch bound to that
1013            //     instruction's start offset. Unconditional branches have no
1014            //     fallthrough, so if the prior instruction is an unconditional
1015            //     branch, no fallthrough entry can happen. The
1016            //     labels-at-this-branch list is complete (by invariant), so if it
1017            //     is empty, then the instruction is entirely unreachable. Thus,
1018            //     it can be removed.
1019            //
1020            //   - Post-invariant: ensured by truncate_last_branch().
1021            //
1022            // - If there is a prior conditional branch whose target label
1023            //   resolves to the current offset (branches around the
1024            //   unconditional branch), then remove the unconditional branch,
1025            //   and make the target of the unconditional the target of the
1026            //   conditional instead.
1027            //
1028            //   - Preserves execution semantics: previously we had:
1029            //
1030            //         L1:
1031            //            cond_br L2
1032            //            br L3
1033            //         L2:
1034            //            (end of buffer)
1035            //
1036            //     by removing the last branch, we have:
1037            //
1038            //         L1:
1039            //            cond_br L2
1040            //         L2:
1041            //            (end of buffer)
1042            //
1043            //     we then fix up the records for the conditional branch to
1044            //     have:
1045            //
1046            //         L1:
1047            //           cond_br.inverted L3
1048            //         L2:
1049            //
1050            //     In the original code, control flow reaches L2 when the
1051            //     conditional branch's predicate is true, and L3 otherwise. In
1052            //     the optimized code, the same is true.
1053            //
1054            //   - Post-invariant: all edits to latest_branches and
1055            //     labels_at_tail are performed by `truncate_last_branch()`,
1056            //     which maintains the invariants at each step.
1057
1058            if b.is_uncond() {
1059                // Set any label equal to current branch's start as an alias of
1060                // the branch's target, if the target is not the branch itself
1061                // (i.e., an infinite loop).
1062                //
1063                // We cannot perform this aliasing if the target of this branch
1064                // ultimately aliases back here; if so, we need to keep this
1065                // branch, so break out of this loop entirely (and clear the
1066                // latest-branches list below).
1067                //
1068                // Note that this check is what prevents cycles from forming in
1069                // `self.label_aliases`. To see why, consider an arbitrary start
1070                // state:
1071                //
1072                // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
1073                // Ln, which is not aliased.
1074                //
1075                // We would create a cycle if we assigned label_aliases[Ln]
1076                // = L1.  Note that the below assignment is the only write
1077                // to label_aliases.
1078                //
1079                // By our other invariants, we have that Ln (`l` below)
1080                // resolves to the offset `b.start`, because it is in the
1081                // set `b.labels_at_this_branch`.
1082                //
1083                // If L1 were already aliased, through some arbitrarily deep
1084                // chain, to Ln, then it must also resolve to this offset
1085                // `b.start`.
1086                //
1087                // By checking the resolution of `L1` against this offset,
1088                // and aborting this branch-simplification if they are
1089                // equal, we prevent the below assignment from ever creating
1090                // a cycle.
1091                if self.resolve_label_offset(b.target) != b.start {
1092                    let redirected = b.labels_at_this_branch.len();
1093                    for &l in &b.labels_at_this_branch {
1094                        trace!(
1095                            " -> label at start of branch {:?} redirected to target {:?}",
1096                            l, b.target
1097                        );
1098                        self.label_aliases[l.0 as usize] = b.target;
1099                        // NOTE: we continue to ensure the invariant that labels
1100                        // pointing to tail of buffer are in `labels_at_tail`
1101                        // because we already ensured above that the last branch
1102                        // cannot have a target of `cur_off`; so we never have
1103                        // to put the label into `labels_at_tail` when moving it
1104                        // here.
1105                    }
1106                    // Maintain invariant: all branches have been redirected
1107                    // and are no longer pointing at the start of this branch.
1108                    let mut_b = self.latest_branches.last_mut().unwrap();
1109                    mut_b.labels_at_this_branch.clear();
1110
1111                    if redirected > 0 {
1112                        trace!(" -> after label redirects, restarting loop");
1113                        continue;
1114                    }
1115                } else {
1116                    break;
1117                }
1118
1119                let b = self.latest_branches.last().unwrap();
1120
1121                // Examine any immediately preceding branch.
1122                if self.latest_branches.len() > 1 {
1123                    let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
1124                    trace!(" -> more than one branch; prev_b = {:?}", prev_b);
1125                    // This uncond is immediately after another uncond; we
1126                    // should have already redirected labels to this uncond away
1127                    // (but check to be sure); so we can truncate this uncond.
1128                    if prev_b.is_uncond()
1129                        && prev_b.end == b.start
1130                        && b.labels_at_this_branch.is_empty()
1131                    {
1132                        trace!(" -> uncond follows another uncond; truncating");
1133                        self.truncate_last_branch();
1134                        continue;
1135                    }
1136
1137                    // This uncond is immediately after a conditional, and the
1138                    // conditional's target is the end of this uncond, and we've
1139                    // already redirected labels to this uncond away; so we can
1140                    // truncate this uncond, flip the sense of the conditional, and
1141                    // set the conditional's target (in `latest_branches` and in
1142                    // `fixup_records`) to the uncond's target.
1143                    if prev_b.is_cond()
1144                        && prev_b.end == b.start
1145                        && self.resolve_label_offset(prev_b.target) == cur_off
1146                    {
1147                        trace!(
1148                            " -> uncond follows a conditional, and conditional's target resolves to current offset"
1149                        );
1150                        // Save the target of the uncond (this becomes the
1151                        // target of the cond), and truncate the uncond.
1152                        let target = b.target;
1153                        let data = prev_b.inverted.clone().unwrap();
1154                        self.truncate_last_branch();
1155
1156                        // Mutate the code and cond branch.
1157                        let off_before_edit = self.cur_offset();
1158                        let prev_b = self.latest_branches.last_mut().unwrap();
1159                        let not_inverted = SmallVec::from(
1160                            &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
1161                        );
1162
1163                        // Low-level edit: replaces bytes of branch with
1164                        // inverted form. cur_off remains the same afterward, so
1165                        // we do not need to modify label data structures.
1166                        self.data.truncate(prev_b.start as usize);
1167                        self.data.extend_from_slice(&data[..]);
1168
1169                        // Save the original code as the inversion of the
1170                        // inverted branch, in case we later edit this branch
1171                        // again.
1172                        prev_b.inverted = Some(not_inverted);
1173                        self.pending_fixup_records[prev_b.fixup].label = target;
1174                        trace!(" -> reassigning target of condbr to {:?}", target);
1175                        prev_b.target = target;
1176                        debug_assert_eq!(off_before_edit, self.cur_offset());
1177                        continue;
1178                    }
1179                }
1180            }
1181
1182            // If we couldn't do anything with the last branch, then break.
1183            break;
1184        }
1185
1186        self.purge_latest_branches();
1187
1188        trace!(
1189            "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
1190            self.latest_branches, self.labels_at_tail, self.pending_fixup_records
1191        );
1192    }
1193
1194    fn purge_latest_branches(&mut self) {
1195        // All of our branch simplification rules work only if a branch ends at
1196        // the tail of the buffer, with no following code; and branches are in
1197        // order in latest_branches; so if the last entry ends prior to
1198        // cur_offset, then clear all entries.
1199        let cur_off = self.cur_offset();
1200        if let Some(l) = self.latest_branches.last() {
1201            if l.end < cur_off {
1202                trace!("purge_latest_branches: removing branch {:?}", l);
1203                self.latest_branches.clear();
1204            }
1205        }
1206
1207        // Post-invariant: no invariant requires any branch to appear in
1208        // `latest_branches`; it is always optional. The list-clear above thus
1209        // preserves all semantics.
1210    }
1211
1212    /// Emit a trap at some point in the future with the specified code and
1213    /// stack map.
1214    ///
1215    /// This function returns a [`MachLabel`] which will be the future address
1216    /// of the trap. Jumps should refer to this label, likely by using the
1217    /// [`MachBuffer::use_label_at_offset`] method, to get a relocation
1218    /// patched in once the address of the trap is known.
1219    ///
1220    /// This will batch all traps into the end of the function.
1221    pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
1222        let label = self.get_label();
1223        self.pending_traps.push(MachLabelTrap {
1224            label,
1225            code,
1226            loc: self.cur_srcloc.map(|(_start, loc)| loc),
1227        });
1228        label
1229    }
1230
1231    /// Is an island needed within the next N bytes?
1232    pub fn island_needed(&self, distance: CodeOffset) -> bool {
1233        let deadline = match self.fixup_records.peek() {
1234            Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
1235            None => self.pending_fixup_deadline,
1236        };
1237        deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
1238    }
1239
1240    /// Returns the maximal offset that islands can reach if `distance` more
1241    /// bytes are appended.
1242    ///
1243    /// This is used to determine if veneers need insertions since jumps that
1244    /// can't reach past this point must get a veneer of some form.
1245    fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
1246        // Assume that all fixups will require veneers and that the veneers are
1247        // the worst-case size for each platform. This is an over-generalization
1248        // to avoid iterating over the `fixup_records` list or maintaining
1249        // information about it as we go along.
1250        let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
1251            as u32)
1252            * (I::LabelUse::worst_case_veneer_size())
1253            + self.pending_constants_size
1254            + (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
1255        self.cur_offset()
1256            .saturating_add(distance)
1257            .saturating_add(island_worst_case_size)
1258    }
1259
1260    /// Emit all pending constants and required pending veneers.
1261    ///
1262    /// Should only be called if `island_needed()` returns true, i.e., if we
1263    /// actually reach a deadline. It's not necessarily a problem to do so
1264    /// otherwise but it may result in unnecessary work during emission.
1265    pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
1266        self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
1267    }
1268
1269    /// Same as `emit_island`, but an internal API with a `force_veneers`
1270    /// argument to force all veneers to always get emitted for debugging.
1271    fn emit_island_maybe_forced(
1272        &mut self,
1273        force_veneers: ForceVeneers,
1274        distance: CodeOffset,
1275        ctrl_plane: &mut ControlPlane,
1276    ) {
1277        // We're going to purge fixups, so no latest-branch editing can happen
1278        // anymore.
1279        self.latest_branches.clear();
1280
1281        // End the current location tracking since anything emitted during this
1282        // function shouldn't be attributed to whatever the current source
1283        // location is.
1284        //
1285        // Note that the current source location, if it's set right now, will be
1286        // restored at the end of this island emission.
1287        let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
1288        if cur_loc.is_some() {
1289            self.end_srcloc();
1290        }
1291
1292        let forced_threshold = self.worst_case_end_of_island(distance);
1293
1294        // First flush out all traps/constants so we have more labels in case
1295        // fixups are applied against these labels.
1296        //
1297        // Note that traps are placed first since this typically happens at the
1298        // end of the function and for disassemblers we try to keep all the code
1299        // contiguously together.
1300        for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
1301            // If this trap has source information associated with it then
1302            // emit this information for the trap instruction going out now too.
1303            if let Some(loc) = loc {
1304                self.start_srcloc(loc);
1305            }
1306            self.align_to(I::LabelUse::ALIGN);
1307            self.bind_label(label, ctrl_plane);
1308            self.add_trap(code);
1309            self.put_data(I::TRAP_OPCODE);
1310            if loc.is_some() {
1311                self.end_srcloc();
1312            }
1313        }
1314
1315        for constant in mem::take(&mut self.pending_constants) {
1316            let MachBufferConstant { align, size, .. } = self.constants[constant];
1317            let label = self.constants[constant].upcoming_label.take().unwrap();
1318            self.align_to(align);
1319            self.bind_label(label, ctrl_plane);
1320            self.used_constants.push((constant, self.cur_offset()));
1321            self.get_appended_space(size);
1322        }
1323
1324        // Either handle all pending fixups because they're ready or move them
1325        // onto the `BinaryHeap` tracking all pending fixups if they aren't
1326        // ready.
1327        assert!(self.latest_branches.is_empty());
1328        for fixup in mem::take(&mut self.pending_fixup_records) {
1329            if self.should_apply_fixup(&fixup, forced_threshold) {
1330                self.handle_fixup(fixup, force_veneers, forced_threshold);
1331            } else {
1332                self.fixup_records.push(fixup);
1333            }
1334        }
1335        self.pending_fixup_deadline = u32::MAX;
1336        while let Some(fixup) = self.fixup_records.peek() {
1337            trace!("emit_island: fixup {:?}", fixup);
1338
1339            // If this fixup shouldn't be applied, that means its label isn't
1340            // defined yet and there'll be remaining space to apply a veneer if
1341            // necessary in the future after this island. In that situation
1342            // because `fixup_records` is sorted by deadline this loop can
1343            // exit.
1344            if !self.should_apply_fixup(fixup, forced_threshold) {
1345                break;
1346            }
1347
1348            let fixup = self.fixup_records.pop().unwrap();
1349            self.handle_fixup(fixup, force_veneers, forced_threshold);
1350        }
1351
1352        if let Some(loc) = cur_loc {
1353            self.start_srcloc(loc);
1354        }
1355    }
1356
1357    fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
1358        let label_offset = self.resolve_label_offset(fixup.label);
1359        label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
1360    }
1361
1362    fn handle_fixup(
1363        &mut self,
1364        fixup: MachLabelFixup<I>,
1365        force_veneers: ForceVeneers,
1366        forced_threshold: CodeOffset,
1367    ) {
1368        let MachLabelFixup {
1369            label,
1370            offset,
1371            kind,
1372        } = fixup;
1373        let start = offset as usize;
1374        let end = (offset + kind.patch_size()) as usize;
1375        let label_offset = self.resolve_label_offset(label);
1376
1377        if label_offset != UNKNOWN_LABEL_OFFSET {
1378            // If the offset of the label for this fixup is known then
1379            // we're going to do something here-and-now. We're either going
1380            // to patch the original offset because it's an in-bounds jump,
1381            // or we're going to generate a veneer, patch the fixup to jump
1382            // to the veneer, and then keep going.
1383            //
1384            // If the label comes after the original fixup, then we should
1385            // be guaranteed that the jump is in-bounds. Otherwise there's
1386            // a bug somewhere because this method wasn't called soon
1387            // enough. All forward-jumps are tracked and should get veneers
1388            // before their deadline comes and they're unable to jump
1389            // further.
1390            //
1391            // Otherwise if the label is before the fixup, then that's a
1392            // backwards jump. If it's past the maximum negative range
1393            // then we'll emit a veneer that to jump forward to which can
1394            // then jump backwards.
1395            let veneer_required = if label_offset >= offset {
1396                assert!((label_offset - offset) <= kind.max_pos_range());
1397                false
1398            } else {
1399                (offset - label_offset) > kind.max_neg_range()
1400            };
1401            trace!(
1402                " -> label_offset = {}, known, required = {} (pos {} neg {})",
1403                label_offset,
1404                veneer_required,
1405                kind.max_pos_range(),
1406                kind.max_neg_range()
1407            );
1408
1409            if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
1410                self.emit_veneer(label, offset, kind);
1411            } else {
1412                let slice = &mut self.data[start..end];
1413                trace!(
1414                    "patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}"
1415                );
1416                kind.patch(slice, offset, label_offset);
1417            }
1418        } else {
1419            // If the offset of this label is not known at this time then
1420            // that means that a veneer is required because after this
1421            // island the target can't be in range of the original target.
1422            assert!(forced_threshold - offset > kind.max_pos_range());
1423            self.emit_veneer(label, offset, kind);
1424        }
1425    }
1426
1427    /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
1428    ///
1429    /// This will generate extra machine code, using `kind`, to get a
1430    /// larger-jump-kind than `kind` allows. The code at `offset` is then
1431    /// patched to jump to our new code, and then the new code is enqueued for
1432    /// a fixup to get processed at some later time.
1433    fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
1434        // If this `kind` doesn't support a veneer then that's a bug in the
1435        // backend because we need to implement support for such a veneer.
1436        assert!(
1437            kind.supports_veneer(),
1438            "jump beyond the range of {kind:?} but a veneer isn't supported",
1439        );
1440
1441        // Allocate space for a veneer in the island.
1442        self.align_to(I::LabelUse::ALIGN);
1443        let veneer_offset = self.cur_offset();
1444        trace!("making a veneer at {}", veneer_offset);
1445        let start = offset as usize;
1446        let end = (offset + kind.patch_size()) as usize;
1447        let slice = &mut self.data[start..end];
1448        // Patch the original label use to refer to the veneer.
1449        trace!(
1450            "patching original at offset {} to veneer offset {}",
1451            offset, veneer_offset
1452        );
1453        kind.patch(slice, offset, veneer_offset);
1454        // Generate the veneer.
1455        let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
1456        let (veneer_fixup_off, veneer_label_use) =
1457            kind.generate_veneer(veneer_slice, veneer_offset);
1458        trace!(
1459            "generated veneer; fixup offset {}, label_use {:?}",
1460            veneer_fixup_off, veneer_label_use
1461        );
1462        // Register a new use of `label` with our new veneer fixup and
1463        // offset. This'll recalculate deadlines accordingly and
1464        // enqueue this fixup to get processed at some later
1465        // time.
1466        self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
1467    }
1468
1469    fn finish_emission_maybe_forcing_veneers(
1470        &mut self,
1471        force_veneers: ForceVeneers,
1472        ctrl_plane: &mut ControlPlane,
1473    ) {
1474        while !self.pending_constants.is_empty()
1475            || !self.pending_traps.is_empty()
1476            || !self.fixup_records.is_empty()
1477            || !self.pending_fixup_records.is_empty()
1478        {
1479            // `emit_island()` will emit any pending veneers and constants, and
1480            // as a side-effect, will also take care of any fixups with resolved
1481            // labels eagerly.
1482            self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
1483        }
1484
1485        // Ensure that all labels have been fixed up after the last island is emitted. This is a
1486        // full (release-mode) assert because an unresolved label means the emitted code is
1487        // incorrect.
1488        assert!(self.fixup_records.is_empty());
1489        assert!(self.pending_fixup_records.is_empty());
1490    }
1491
1492    /// Finish any deferred emissions and/or fixups.
1493    pub fn finish(
1494        mut self,
1495        constants: &VCodeConstants,
1496        ctrl_plane: &mut ControlPlane,
1497    ) -> MachBufferFinalized<Stencil> {
1498        let _tt = timing::vcode_emit_finish();
1499
1500        self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
1501
1502        let alignment = self.finish_constants(constants);
1503
1504        // Resolve all labels to their offsets.
1505        let finalized_relocs = self
1506            .relocs
1507            .iter()
1508            .map(|reloc| FinalizedMachReloc {
1509                offset: reloc.offset,
1510                kind: reloc.kind,
1511                addend: reloc.addend,
1512                target: match &reloc.target {
1513                    RelocTarget::ExternalName(name) => {
1514                        FinalizedRelocTarget::ExternalName(name.clone())
1515                    }
1516                    RelocTarget::Label(label) => {
1517                        FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
1518                    }
1519                },
1520            })
1521            .collect();
1522
1523        let finalized_exception_handlers = self
1524            .exception_handlers
1525            .iter()
1526            .map(|(tag, label)| (*tag, self.resolve_label_offset(*label)))
1527            .collect();
1528
1529        let mut srclocs = self.srclocs;
1530        srclocs.sort_by_key(|entry| entry.start);
1531
1532        MachBufferFinalized {
1533            data: self.data,
1534            relocs: finalized_relocs,
1535            traps: self.traps,
1536            call_sites: self.call_sites,
1537            exception_handlers: finalized_exception_handlers,
1538            srclocs,
1539            user_stack_maps: self.user_stack_maps,
1540            unwind_info: self.unwind_info,
1541            alignment,
1542        }
1543    }
1544
1545    /// Add an external relocation at the given offset.
1546    pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
1547        &mut self,
1548        offset: CodeOffset,
1549        kind: Reloc,
1550        target: &T,
1551        addend: Addend,
1552    ) {
1553        let target: RelocTarget = target.clone().into();
1554        // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
1555        // generate a label-use statement to track whether an island is possibly
1556        // needed to escape this function to actually get to the external name.
1557        // This is most likely to come up on AArch64 where calls between
1558        // functions use a 26-bit signed offset which gives +/- 64MB. This means
1559        // that if a function is 128MB in size and there's a call in the middle
1560        // it's impossible to reach the actual target. Also, while it's
1561        // technically possible to jump to the start of a function and then jump
1562        // further, island insertion below always inserts islands after
1563        // previously appended code so for Cranelift's own implementation this
1564        // is also a problem for 64MB functions on AArch64 which start with a
1565        // call instruction, those won't be able to escape.
1566        //
1567        // Ideally what needs to happen here is that a `LabelUse` is
1568        // transparently generated (or call-sites of this function are audited
1569        // to generate a `LabelUse` instead) and tracked internally. The actual
1570        // relocation would then change over time if and when a veneer is
1571        // inserted, where the relocation here would be patched by this
1572        // `MachBuffer` to jump to the veneer. The problem, though, is that all
1573        // this still needs to end up, in the case of a singular function,
1574        // generating a final relocation pointing either to this particular
1575        // relocation or to the veneer inserted. Additionally
1576        // `MachBuffer` needs the concept of a label which will never be
1577        // resolved, so `emit_island` doesn't trip over not actually ever
1578        // knowning what some labels are. Currently the loop in
1579        // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
1580        // loop.
1581        //
1582        // For now this means that because relocs aren't tracked at all that
1583        // AArch64 functions have a rough size limits of 64MB. For now that's
1584        // somewhat reasonable and the failure mode is a panic in `MachBuffer`
1585        // when a relocation can't otherwise be resolved later, so it shouldn't
1586        // actually result in any memory unsafety or anything like that.
1587        self.relocs.push(MachReloc {
1588            offset,
1589            kind,
1590            target,
1591            addend,
1592        });
1593    }
1594
1595    /// Add an external relocation at the current offset.
1596    pub fn add_reloc<T: Into<RelocTarget> + Clone>(
1597        &mut self,
1598        kind: Reloc,
1599        target: &T,
1600        addend: Addend,
1601    ) {
1602        self.add_reloc_at_offset(self.data.len() as CodeOffset, kind, target, addend);
1603    }
1604
1605    /// Add a trap record at the current offset.
1606    pub fn add_trap(&mut self, code: TrapCode) {
1607        self.traps.push(MachTrap {
1608            offset: self.data.len() as CodeOffset,
1609            code,
1610        });
1611    }
1612
1613    /// Add a call-site record at the current offset, optionally with exception handlers.
1614    pub fn add_call_site(
1615        &mut self,
1616        exception_handlers: &[(PackedOption<ExceptionTag>, MachLabel)],
1617    ) {
1618        let start = u32::try_from(self.exception_handlers.len()).unwrap();
1619        self.exception_handlers
1620            .extend(exception_handlers.into_iter().copied());
1621        let end = u32::try_from(self.exception_handlers.len()).unwrap();
1622        self.call_sites.push(MachCallSite {
1623            ret_addr: self.data.len() as CodeOffset,
1624            exception_handler_range: start..end,
1625        });
1626    }
1627
1628    /// Add an unwind record at the current offset.
1629    pub fn add_unwind(&mut self, unwind: UnwindInst) {
1630        self.unwind_info.push((self.cur_offset(), unwind));
1631    }
1632
1633    /// Set the `SourceLoc` for code from this offset until the offset at the
1634    /// next call to `end_srcloc()`.
1635    /// Returns the current [CodeOffset] and [RelSourceLoc].
1636    pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
1637        let cur = (self.cur_offset(), loc);
1638        self.cur_srcloc = Some(cur);
1639        cur
1640    }
1641
1642    /// Mark the end of the `SourceLoc` segment started at the last
1643    /// `start_srcloc()` call.
1644    pub fn end_srcloc(&mut self) {
1645        let (start, loc) = self
1646            .cur_srcloc
1647            .take()
1648            .expect("end_srcloc() called without start_srcloc()");
1649        let end = self.cur_offset();
1650        // Skip zero-length extends.
1651        debug_assert!(end >= start);
1652        if end > start {
1653            self.srclocs.push(MachSrcLoc { start, end, loc });
1654        }
1655    }
1656
1657    /// Push a user stack map onto this buffer.
1658    ///
1659    /// The stack map is associated with the given `return_addr` code
1660    /// offset. This must be the PC for the instruction just *after* this stack
1661    /// map's associated instruction. For example in the sequence `call $foo;
1662    /// add r8, rax`, the `return_addr` must be the offset of the start of the
1663    /// `add` instruction.
1664    ///
1665    /// Stack maps must be pushed in sorted `return_addr` order.
1666    pub fn push_user_stack_map(
1667        &mut self,
1668        emit_state: &I::State,
1669        return_addr: CodeOffset,
1670        mut stack_map: ir::UserStackMap,
1671    ) {
1672        let span = emit_state.frame_layout().active_size();
1673        trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
1674
1675        debug_assert!(
1676            self.user_stack_maps
1677                .last()
1678                .map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
1679            "pushed stack maps out of order: {} is not less than {}",
1680            self.user_stack_maps.last().unwrap().0,
1681            return_addr,
1682        );
1683
1684        stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
1685        self.user_stack_maps.push((return_addr, span, stack_map));
1686    }
1687
1688    /// Increase the alignment of the buffer to the given alignment if bigger
1689    /// than the current alignment.
1690    pub fn set_log2_min_function_alignment(&mut self, align_to: u8) {
1691        self.min_alignment = self.min_alignment.max(
1692            1u32.checked_shl(u32::from(align_to))
1693                .expect("log2_min_function_alignment too large"),
1694        );
1695    }
1696}
1697
1698impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
1699    fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
1700        for b in iter {
1701            self.put1(b);
1702        }
1703    }
1704}
1705
1706impl<T: CompilePhase> MachBufferFinalized<T> {
1707    /// Get a list of source location mapping tuples in sorted-by-start-offset order.
1708    pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
1709        &self.srclocs[..]
1710    }
1711
1712    /// Get the total required size for the code.
1713    pub fn total_size(&self) -> CodeOffset {
1714        self.data.len() as CodeOffset
1715    }
1716
1717    /// Return the code in this mach buffer as a hex string for testing purposes.
1718    pub fn stringify_code_bytes(&self) -> String {
1719        // This is pretty lame, but whatever ..
1720        use std::fmt::Write;
1721        let mut s = String::with_capacity(self.data.len() * 2);
1722        for b in &self.data {
1723            write!(&mut s, "{b:02X}").unwrap();
1724        }
1725        s
1726    }
1727
1728    /// Get the code bytes.
1729    pub fn data(&self) -> &[u8] {
1730        // N.B.: we emit every section into the .text section as far as
1731        // the `CodeSink` is concerned; we do not bother to segregate
1732        // the contents into the actual program text, the jumptable and the
1733        // rodata (constant pool). This allows us to generate code assuming
1734        // that these will not be relocated relative to each other, and avoids
1735        // having to designate each section as belonging in one of the three
1736        // fixed categories defined by `CodeSink`. If this becomes a problem
1737        // later (e.g. because of memory permissions or similar), we can
1738        // add this designation and segregate the output; take care, however,
1739        // to add the appropriate relocations in this case.
1740
1741        &self.data[..]
1742    }
1743
1744    /// Get the list of external relocations for this code.
1745    pub fn relocs(&self) -> &[FinalizedMachReloc] {
1746        &self.relocs[..]
1747    }
1748
1749    /// Get the list of trap records for this code.
1750    pub fn traps(&self) -> &[MachTrap] {
1751        &self.traps[..]
1752    }
1753
1754    /// Get the user stack map metadata for this code.
1755    pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
1756        &self.user_stack_maps
1757    }
1758
1759    /// Take this buffer's user strack map metadata.
1760    pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
1761        mem::take(&mut self.user_stack_maps)
1762    }
1763
1764    /// Get the list of call sites for this code, along with
1765    /// associated exception handlers.
1766    ///
1767    /// Each item yielded by the returned iterator is a struct with:
1768    ///
1769    /// - The call site metadata record, with a `ret_addr` field
1770    ///   directly accessible and denoting the offset of the return
1771    ///   address into this buffer's code.
1772    /// - The slice of pairs of exception tags and code offsets
1773    ///   denoting exception-handler entry points associated with this
1774    ///   call site.
1775    pub fn call_sites(&self) -> impl Iterator<Item = FinalizedMachCallSite<'_>> + '_ {
1776        self.call_sites.iter().map(|call_site| {
1777            let range = call_site.exception_handler_range.clone();
1778            let range = usize::try_from(range.start).unwrap()..usize::try_from(range.end).unwrap();
1779            FinalizedMachCallSite {
1780                ret_addr: call_site.ret_addr,
1781                exception_handlers: &self.exception_handlers[range],
1782            }
1783        })
1784    }
1785}
1786
1787/// Metadata about a constant.
1788struct MachBufferConstant {
1789    /// A label which has not yet been bound which can be used for this
1790    /// constant.
1791    ///
1792    /// This is lazily created when a label is requested for a constant and is
1793    /// cleared when a constant is emitted.
1794    upcoming_label: Option<MachLabel>,
1795    /// Required alignment.
1796    align: CodeOffset,
1797    /// The byte size of this constant.
1798    size: usize,
1799}
1800
1801/// A trap that is deferred to the next time an island is emitted for either
1802/// traps, constants, or fixups.
1803struct MachLabelTrap {
1804    /// This label will refer to the trap's offset.
1805    label: MachLabel,
1806    /// The code associated with this trap.
1807    code: TrapCode,
1808    /// An optional source location to assign for this trap.
1809    loc: Option<RelSourceLoc>,
1810}
1811
1812/// A fixup to perform on the buffer once code is emitted. Fixups always refer
1813/// to labels and patch the code based on label offsets. Hence, they are like
1814/// relocations, but internal to one buffer.
1815#[derive(Debug)]
1816struct MachLabelFixup<I: VCodeInst> {
1817    /// The label whose offset controls this fixup.
1818    label: MachLabel,
1819    /// The offset to fix up / patch to refer to this label.
1820    offset: CodeOffset,
1821    /// The kind of fixup. This is architecture-specific; each architecture may have,
1822    /// e.g., several types of branch instructions, each with differently-sized
1823    /// offset fields and different places within the instruction to place the
1824    /// bits.
1825    kind: I::LabelUse,
1826}
1827
1828impl<I: VCodeInst> MachLabelFixup<I> {
1829    fn deadline(&self) -> CodeOffset {
1830        self.offset.saturating_add(self.kind.max_pos_range())
1831    }
1832}
1833
1834impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
1835    fn eq(&self, other: &Self) -> bool {
1836        self.deadline() == other.deadline()
1837    }
1838}
1839
1840impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
1841
1842impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
1843    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1844        Some(self.cmp(other))
1845    }
1846}
1847
1848impl<I: VCodeInst> Ord for MachLabelFixup<I> {
1849    fn cmp(&self, other: &Self) -> Ordering {
1850        other.deadline().cmp(&self.deadline())
1851    }
1852}
1853
1854/// A relocation resulting from a compilation.
1855#[derive(Clone, Debug, PartialEq)]
1856#[cfg_attr(
1857    feature = "enable-serde",
1858    derive(serde_derive::Serialize, serde_derive::Deserialize)
1859)]
1860pub struct MachRelocBase<T> {
1861    /// The offset at which the relocation applies, *relative to the
1862    /// containing section*.
1863    pub offset: CodeOffset,
1864    /// The kind of relocation.
1865    pub kind: Reloc,
1866    /// The external symbol / name to which this relocation refers.
1867    pub target: T,
1868    /// The addend to add to the symbol value.
1869    pub addend: i64,
1870}
1871
1872type MachReloc = MachRelocBase<RelocTarget>;
1873
1874/// A relocation resulting from a compilation.
1875pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
1876
1877/// A Relocation target
1878#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1879pub enum RelocTarget {
1880    /// Points to an [ExternalName] outside the current function.
1881    ExternalName(ExternalName),
1882    /// Points to a [MachLabel] inside this function.
1883    /// This is different from [MachLabelFixup] in that both the relocation and the
1884    /// label will be emitted and are only resolved at link time.
1885    ///
1886    /// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
1887    Label(MachLabel),
1888}
1889
1890impl From<ExternalName> for RelocTarget {
1891    fn from(name: ExternalName) -> Self {
1892        Self::ExternalName(name)
1893    }
1894}
1895
1896impl From<MachLabel> for RelocTarget {
1897    fn from(label: MachLabel) -> Self {
1898        Self::Label(label)
1899    }
1900}
1901
1902/// A Relocation target
1903#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1904#[cfg_attr(
1905    feature = "enable-serde",
1906    derive(serde_derive::Serialize, serde_derive::Deserialize)
1907)]
1908pub enum FinalizedRelocTarget {
1909    /// Points to an [ExternalName] outside the current function.
1910    ExternalName(ExternalName),
1911    /// Points to a [CodeOffset] from the start of the current function.
1912    Func(CodeOffset),
1913}
1914
1915impl FinalizedRelocTarget {
1916    /// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
1917    /// output.
1918    pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
1919        match self {
1920            FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
1921            FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
1922        }
1923    }
1924}
1925
1926/// A trap record resulting from a compilation.
1927#[derive(Clone, Debug, PartialEq)]
1928#[cfg_attr(
1929    feature = "enable-serde",
1930    derive(serde_derive::Serialize, serde_derive::Deserialize)
1931)]
1932pub struct MachTrap {
1933    /// The offset at which the trap instruction occurs, *relative to the
1934    /// containing section*.
1935    pub offset: CodeOffset,
1936    /// The trap code.
1937    pub code: TrapCode,
1938}
1939
1940/// A call site record resulting from a compilation.
1941#[derive(Clone, Debug, PartialEq)]
1942#[cfg_attr(
1943    feature = "enable-serde",
1944    derive(serde_derive::Serialize, serde_derive::Deserialize)
1945)]
1946pub struct MachCallSite {
1947    /// The offset of the call's return address, *relative to the
1948    /// start of the buffer*.
1949    pub ret_addr: CodeOffset,
1950
1951    /// Range in `exception_handlers` corresponding to the exception
1952    /// handlers for this callsite.
1953    exception_handler_range: Range<u32>,
1954}
1955
1956/// A call site record resulting from a compilation.
1957#[derive(Clone, Debug, PartialEq)]
1958pub struct FinalizedMachCallSite<'a> {
1959    /// The offset of the call's return address, *relative to the
1960    /// start of the buffer*.
1961    pub ret_addr: CodeOffset,
1962
1963    /// Exception handlers at this callsite, with target offsets
1964    /// *relative to the start of the buffer*.
1965    pub exception_handlers: &'a [(PackedOption<ir::ExceptionTag>, CodeOffset)],
1966}
1967
1968/// A source-location mapping resulting from a compilation.
1969#[derive(PartialEq, Debug, Clone)]
1970#[cfg_attr(
1971    feature = "enable-serde",
1972    derive(serde_derive::Serialize, serde_derive::Deserialize)
1973)]
1974pub struct MachSrcLoc<T: CompilePhase> {
1975    /// The start of the region of code corresponding to a source location.
1976    /// This is relative to the start of the function, not to the start of the
1977    /// section.
1978    pub start: CodeOffset,
1979    /// The end of the region of code corresponding to a source location.
1980    /// This is relative to the start of the section, not to the start of the
1981    /// section.
1982    pub end: CodeOffset,
1983    /// The source location.
1984    pub loc: T::SourceLocType,
1985}
1986
1987impl MachSrcLoc<Stencil> {
1988    fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
1989        MachSrcLoc {
1990            start: self.start,
1991            end: self.end,
1992            loc: self.loc.expand(base_srcloc),
1993        }
1994    }
1995}
1996
1997/// Record of branch instruction in the buffer, to facilitate editing.
1998#[derive(Clone, Debug)]
1999struct MachBranch {
2000    start: CodeOffset,
2001    end: CodeOffset,
2002    target: MachLabel,
2003    fixup: usize,
2004    inverted: Option<SmallVec<[u8; 8]>>,
2005    /// All labels pointing to the start of this branch. For correctness, this
2006    /// *must* be complete (i.e., must contain all labels whose resolved offsets
2007    /// are at the start of this branch): we rely on being able to redirect all
2008    /// labels that could jump to this branch before removing it, if it is
2009    /// otherwise unreachable.
2010    labels_at_this_branch: SmallVec<[MachLabel; 4]>,
2011}
2012
2013impl MachBranch {
2014    fn is_cond(&self) -> bool {
2015        self.inverted.is_some()
2016    }
2017    fn is_uncond(&self) -> bool {
2018        self.inverted.is_none()
2019    }
2020}
2021
2022/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
2023///
2024/// Note that `MachBuffer` was primarily written for intra-function references
2025/// of jumps between basic blocks, but it's also quite usable for entire text
2026/// sections and resolving references between functions themselves. This
2027/// builder interprets "blocks" as labeled functions for the purposes of
2028/// resolving labels internally in the buffer.
2029pub struct MachTextSectionBuilder<I: VCodeInst> {
2030    buf: MachBuffer<I>,
2031    next_func: usize,
2032    force_veneers: ForceVeneers,
2033}
2034
2035impl<I: VCodeInst> MachTextSectionBuilder<I> {
2036    /// Creates a new text section builder which will have `num_funcs` functions
2037    /// pushed into it.
2038    pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
2039        let mut buf = MachBuffer::new();
2040        buf.reserve_labels_for_blocks(num_funcs);
2041        MachTextSectionBuilder {
2042            buf,
2043            next_func: 0,
2044            force_veneers: ForceVeneers::No,
2045        }
2046    }
2047}
2048
2049impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
2050    fn append(
2051        &mut self,
2052        labeled: bool,
2053        func: &[u8],
2054        align: u32,
2055        ctrl_plane: &mut ControlPlane,
2056    ) -> u64 {
2057        // Conditionally emit an island if it's necessary to resolve jumps
2058        // between functions which are too far away.
2059        let size = func.len() as u32;
2060        if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
2061            self.buf
2062                .emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
2063        }
2064
2065        self.buf.align_to(align);
2066        let pos = self.buf.cur_offset();
2067        if labeled {
2068            self.buf.bind_label(
2069                MachLabel::from_block(BlockIndex::new(self.next_func)),
2070                ctrl_plane,
2071            );
2072            self.next_func += 1;
2073        }
2074        self.buf.put_data(func);
2075        u64::from(pos)
2076    }
2077
2078    fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
2079        crate::trace!(
2080            "Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
2081        );
2082        let label = MachLabel::from_block(BlockIndex::new(target));
2083        let offset = u32::try_from(offset).unwrap();
2084        match I::LabelUse::from_reloc(reloc, addend) {
2085            Some(label_use) => {
2086                self.buf.use_label_at_offset(offset, label, label_use);
2087                true
2088            }
2089            None => false,
2090        }
2091    }
2092
2093    fn force_veneers(&mut self) {
2094        self.force_veneers = ForceVeneers::Yes;
2095    }
2096
2097    fn write(&mut self, offset: u64, data: &[u8]) {
2098        self.buf.data[offset.try_into().unwrap()..][..data.len()].copy_from_slice(data);
2099    }
2100
2101    fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
2102        // Double-check all functions were pushed.
2103        assert_eq!(self.next_func, self.buf.label_offsets.len());
2104
2105        // Finish up any veneers, if necessary.
2106        self.buf
2107            .finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
2108
2109        // We don't need the data any more, so return it to the caller.
2110        mem::take(&mut self.buf.data).into_vec()
2111    }
2112}
2113
2114// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
2115#[cfg(all(test, feature = "arm64"))]
2116mod test {
2117    use cranelift_entity::EntityRef as _;
2118
2119    use super::*;
2120    use crate::ir::UserExternalNameRef;
2121    use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
2122    use crate::isa::aarch64::inst::{OperandSize, xreg};
2123    use crate::machinst::{MachInstEmit, MachInstEmitState};
2124    use crate::settings;
2125
2126    fn label(n: u32) -> MachLabel {
2127        MachLabel::from_block(BlockIndex::new(n as usize))
2128    }
2129    fn target(n: u32) -> BranchTarget {
2130        BranchTarget::Label(label(n))
2131    }
2132
2133    #[test]
2134    fn test_elide_jump_to_next() {
2135        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2136        let mut buf = MachBuffer::new();
2137        let mut state = <Inst as MachInstEmit>::State::default();
2138        let constants = Default::default();
2139
2140        buf.reserve_labels_for_blocks(2);
2141        buf.bind_label(label(0), state.ctrl_plane_mut());
2142        let inst = Inst::Jump { dest: target(1) };
2143        inst.emit(&mut buf, &info, &mut state);
2144        buf.bind_label(label(1), state.ctrl_plane_mut());
2145        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2146        assert_eq!(0, buf.total_size());
2147    }
2148
2149    #[test]
2150    fn test_elide_trivial_jump_blocks() {
2151        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2152        let mut buf = MachBuffer::new();
2153        let mut state = <Inst as MachInstEmit>::State::default();
2154        let constants = Default::default();
2155
2156        buf.reserve_labels_for_blocks(4);
2157
2158        buf.bind_label(label(0), state.ctrl_plane_mut());
2159        let inst = Inst::CondBr {
2160            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2161            taken: target(1),
2162            not_taken: target(2),
2163        };
2164        inst.emit(&mut buf, &info, &mut state);
2165
2166        buf.bind_label(label(1), state.ctrl_plane_mut());
2167        let inst = Inst::Jump { dest: target(3) };
2168        inst.emit(&mut buf, &info, &mut state);
2169
2170        buf.bind_label(label(2), state.ctrl_plane_mut());
2171        let inst = Inst::Jump { dest: target(3) };
2172        inst.emit(&mut buf, &info, &mut state);
2173
2174        buf.bind_label(label(3), state.ctrl_plane_mut());
2175
2176        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2177        assert_eq!(0, buf.total_size());
2178    }
2179
2180    #[test]
2181    fn test_flip_cond() {
2182        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2183        let mut buf = MachBuffer::new();
2184        let mut state = <Inst as MachInstEmit>::State::default();
2185        let constants = Default::default();
2186
2187        buf.reserve_labels_for_blocks(4);
2188
2189        buf.bind_label(label(0), state.ctrl_plane_mut());
2190        let inst = Inst::CondBr {
2191            kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2192            taken: target(1),
2193            not_taken: target(2),
2194        };
2195        inst.emit(&mut buf, &info, &mut state);
2196
2197        buf.bind_label(label(1), state.ctrl_plane_mut());
2198        let inst = Inst::Nop4;
2199        inst.emit(&mut buf, &info, &mut state);
2200
2201        buf.bind_label(label(2), state.ctrl_plane_mut());
2202        let inst = Inst::Udf {
2203            trap_code: TrapCode::STACK_OVERFLOW,
2204        };
2205        inst.emit(&mut buf, &info, &mut state);
2206
2207        buf.bind_label(label(3), state.ctrl_plane_mut());
2208
2209        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2210
2211        let mut buf2 = MachBuffer::new();
2212        let mut state = Default::default();
2213        let inst = Inst::TrapIf {
2214            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2215            trap_code: TrapCode::STACK_OVERFLOW,
2216        };
2217        inst.emit(&mut buf2, &info, &mut state);
2218        let inst = Inst::Nop4;
2219        inst.emit(&mut buf2, &info, &mut state);
2220
2221        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2222
2223        assert_eq!(buf.data, buf2.data);
2224    }
2225
2226    #[test]
2227    fn test_island() {
2228        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2229        let mut buf = MachBuffer::new();
2230        let mut state = <Inst as MachInstEmit>::State::default();
2231        let constants = Default::default();
2232
2233        buf.reserve_labels_for_blocks(4);
2234
2235        buf.bind_label(label(0), state.ctrl_plane_mut());
2236        let inst = Inst::CondBr {
2237            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2238            taken: target(2),
2239            not_taken: target(3),
2240        };
2241        inst.emit(&mut buf, &info, &mut state);
2242
2243        buf.bind_label(label(1), state.ctrl_plane_mut());
2244        while buf.cur_offset() < 2000000 {
2245            if buf.island_needed(0) {
2246                buf.emit_island(0, state.ctrl_plane_mut());
2247            }
2248            let inst = Inst::Nop4;
2249            inst.emit(&mut buf, &info, &mut state);
2250        }
2251
2252        buf.bind_label(label(2), state.ctrl_plane_mut());
2253        let inst = Inst::Nop4;
2254        inst.emit(&mut buf, &info, &mut state);
2255
2256        buf.bind_label(label(3), state.ctrl_plane_mut());
2257        let inst = Inst::Nop4;
2258        inst.emit(&mut buf, &info, &mut state);
2259
2260        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2261
2262        assert_eq!(2000000 + 8, buf.total_size());
2263
2264        let mut buf2 = MachBuffer::new();
2265        let mut state = Default::default();
2266        let inst = Inst::CondBr {
2267            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2268
2269            // This conditionally taken branch has a 19-bit constant, shifted
2270            // to the left by two, giving us a 21-bit range in total. Half of
2271            // this range positive so the we should be around 1 << 20 bytes
2272            // away for our jump target.
2273            //
2274            // There are two pending fixups by the time we reach this point,
2275            // one for this 19-bit jump and one for the unconditional 26-bit
2276            // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
2277            // veneer is 20 bytes large, which means that pessimistically
2278            // assuming we'll need two veneers. Currently each veneer is
2279            // pessimistically assumed to be the maximal size which means we
2280            // need 40 bytes of extra space, meaning that the actual island
2281            // should come 40-bytes before the deadline.
2282            taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
2283
2284            // This branch is in-range so no veneers should be needed, it should
2285            // go directly to the target.
2286            not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
2287        };
2288        inst.emit(&mut buf2, &info, &mut state);
2289
2290        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2291
2292        assert_eq!(&buf.data[0..8], &buf2.data[..]);
2293    }
2294
2295    #[test]
2296    fn test_island_backward() {
2297        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2298        let mut buf = MachBuffer::new();
2299        let mut state = <Inst as MachInstEmit>::State::default();
2300        let constants = Default::default();
2301
2302        buf.reserve_labels_for_blocks(4);
2303
2304        buf.bind_label(label(0), state.ctrl_plane_mut());
2305        let inst = Inst::Nop4;
2306        inst.emit(&mut buf, &info, &mut state);
2307
2308        buf.bind_label(label(1), state.ctrl_plane_mut());
2309        let inst = Inst::Nop4;
2310        inst.emit(&mut buf, &info, &mut state);
2311
2312        buf.bind_label(label(2), state.ctrl_plane_mut());
2313        while buf.cur_offset() < 2000000 {
2314            let inst = Inst::Nop4;
2315            inst.emit(&mut buf, &info, &mut state);
2316        }
2317
2318        buf.bind_label(label(3), state.ctrl_plane_mut());
2319        let inst = Inst::CondBr {
2320            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2321            taken: target(0),
2322            not_taken: target(1),
2323        };
2324        inst.emit(&mut buf, &info, &mut state);
2325
2326        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2327
2328        assert_eq!(2000000 + 12, buf.total_size());
2329
2330        let mut buf2 = MachBuffer::new();
2331        let mut state = Default::default();
2332        let inst = Inst::CondBr {
2333            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2334            taken: BranchTarget::ResolvedOffset(8),
2335            not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
2336        };
2337        inst.emit(&mut buf2, &info, &mut state);
2338        let inst = Inst::Jump {
2339            dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
2340        };
2341        inst.emit(&mut buf2, &info, &mut state);
2342
2343        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2344
2345        assert_eq!(&buf.data[2000000..], &buf2.data[..]);
2346    }
2347
2348    #[test]
2349    fn test_multiple_redirect() {
2350        // label0:
2351        //   cbz x0, label1
2352        //   b label2
2353        // label1:
2354        //   b label3
2355        // label2:
2356        //   nop
2357        //   nop
2358        //   b label0
2359        // label3:
2360        //   b label4
2361        // label4:
2362        //   b label5
2363        // label5:
2364        //   b label7
2365        // label6:
2366        //   nop
2367        // label7:
2368        //   ret
2369        //
2370        // -- should become:
2371        //
2372        // label0:
2373        //   cbz x0, label7
2374        // label2:
2375        //   nop
2376        //   nop
2377        //   b label0
2378        // label6:
2379        //   nop
2380        // label7:
2381        //   ret
2382
2383        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2384        let mut buf = MachBuffer::new();
2385        let mut state = <Inst as MachInstEmit>::State::default();
2386        let constants = Default::default();
2387
2388        buf.reserve_labels_for_blocks(8);
2389
2390        buf.bind_label(label(0), state.ctrl_plane_mut());
2391        let inst = Inst::CondBr {
2392            kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2393            taken: target(1),
2394            not_taken: target(2),
2395        };
2396        inst.emit(&mut buf, &info, &mut state);
2397
2398        buf.bind_label(label(1), state.ctrl_plane_mut());
2399        let inst = Inst::Jump { dest: target(3) };
2400        inst.emit(&mut buf, &info, &mut state);
2401
2402        buf.bind_label(label(2), state.ctrl_plane_mut());
2403        let inst = Inst::Nop4;
2404        inst.emit(&mut buf, &info, &mut state);
2405        inst.emit(&mut buf, &info, &mut state);
2406        let inst = Inst::Jump { dest: target(0) };
2407        inst.emit(&mut buf, &info, &mut state);
2408
2409        buf.bind_label(label(3), state.ctrl_plane_mut());
2410        let inst = Inst::Jump { dest: target(4) };
2411        inst.emit(&mut buf, &info, &mut state);
2412
2413        buf.bind_label(label(4), state.ctrl_plane_mut());
2414        let inst = Inst::Jump { dest: target(5) };
2415        inst.emit(&mut buf, &info, &mut state);
2416
2417        buf.bind_label(label(5), state.ctrl_plane_mut());
2418        let inst = Inst::Jump { dest: target(7) };
2419        inst.emit(&mut buf, &info, &mut state);
2420
2421        buf.bind_label(label(6), state.ctrl_plane_mut());
2422        let inst = Inst::Nop4;
2423        inst.emit(&mut buf, &info, &mut state);
2424
2425        buf.bind_label(label(7), state.ctrl_plane_mut());
2426        let inst = Inst::Ret {};
2427        inst.emit(&mut buf, &info, &mut state);
2428
2429        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2430
2431        let golden_data = vec![
2432            0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
2433            0x1f, 0x20, 0x03, 0xd5, // nop
2434            0x1f, 0x20, 0x03, 0xd5, // nop
2435            0xfd, 0xff, 0xff, 0x17, // b 0
2436            0x1f, 0x20, 0x03, 0xd5, // nop
2437            0xc0, 0x03, 0x5f, 0xd6, // ret
2438        ];
2439
2440        assert_eq!(&golden_data[..], &buf.data[..]);
2441    }
2442
2443    #[test]
2444    fn test_handle_branch_cycle() {
2445        // label0:
2446        //   b label1
2447        // label1:
2448        //   b label2
2449        // label2:
2450        //   b label3
2451        // label3:
2452        //   b label4
2453        // label4:
2454        //   b label1  // note: not label0 (to make it interesting).
2455        //
2456        // -- should become:
2457        //
2458        // label0, label1, ..., label4:
2459        //   b label0
2460        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2461        let mut buf = MachBuffer::new();
2462        let mut state = <Inst as MachInstEmit>::State::default();
2463        let constants = Default::default();
2464
2465        buf.reserve_labels_for_blocks(5);
2466
2467        buf.bind_label(label(0), state.ctrl_plane_mut());
2468        let inst = Inst::Jump { dest: target(1) };
2469        inst.emit(&mut buf, &info, &mut state);
2470
2471        buf.bind_label(label(1), state.ctrl_plane_mut());
2472        let inst = Inst::Jump { dest: target(2) };
2473        inst.emit(&mut buf, &info, &mut state);
2474
2475        buf.bind_label(label(2), state.ctrl_plane_mut());
2476        let inst = Inst::Jump { dest: target(3) };
2477        inst.emit(&mut buf, &info, &mut state);
2478
2479        buf.bind_label(label(3), state.ctrl_plane_mut());
2480        let inst = Inst::Jump { dest: target(4) };
2481        inst.emit(&mut buf, &info, &mut state);
2482
2483        buf.bind_label(label(4), state.ctrl_plane_mut());
2484        let inst = Inst::Jump { dest: target(1) };
2485        inst.emit(&mut buf, &info, &mut state);
2486
2487        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2488
2489        let golden_data = vec![
2490            0x00, 0x00, 0x00, 0x14, // b 0
2491        ];
2492
2493        assert_eq!(&golden_data[..], &buf.data[..]);
2494    }
2495
2496    #[test]
2497    fn metadata_records() {
2498        let mut buf = MachBuffer::<Inst>::new();
2499        let ctrl_plane = &mut Default::default();
2500        let constants = Default::default();
2501
2502        buf.reserve_labels_for_blocks(3);
2503
2504        buf.bind_label(label(0), ctrl_plane);
2505        buf.put1(1);
2506        buf.add_trap(TrapCode::HEAP_OUT_OF_BOUNDS);
2507        buf.put1(2);
2508        buf.add_trap(TrapCode::INTEGER_OVERFLOW);
2509        buf.add_trap(TrapCode::INTEGER_DIVISION_BY_ZERO);
2510        buf.add_call_site(&[
2511            (None.into(), label(1)),
2512            (Some(ExceptionTag::new(42)).into(), label(2)),
2513        ]);
2514        buf.add_reloc(
2515            Reloc::Abs4,
2516            &ExternalName::User(UserExternalNameRef::new(0)),
2517            0,
2518        );
2519        buf.put1(3);
2520        buf.add_reloc(
2521            Reloc::Abs8,
2522            &ExternalName::User(UserExternalNameRef::new(1)),
2523            1,
2524        );
2525        buf.put1(4);
2526        buf.bind_label(label(1), ctrl_plane);
2527        buf.put1(0xff);
2528        buf.bind_label(label(2), ctrl_plane);
2529        buf.put1(0xff);
2530
2531        let buf = buf.finish(&constants, ctrl_plane);
2532
2533        assert_eq!(buf.data(), &[1, 2, 3, 4, 0xff, 0xff]);
2534        assert_eq!(
2535            buf.traps()
2536                .iter()
2537                .map(|trap| (trap.offset, trap.code))
2538                .collect::<Vec<_>>(),
2539            vec![
2540                (1, TrapCode::HEAP_OUT_OF_BOUNDS),
2541                (2, TrapCode::INTEGER_OVERFLOW),
2542                (2, TrapCode::INTEGER_DIVISION_BY_ZERO)
2543            ]
2544        );
2545        let call_sites: Vec<_> = buf.call_sites().collect();
2546        assert_eq!(call_sites[0].ret_addr, 2);
2547        assert_eq!(
2548            call_sites[0].exception_handlers,
2549            &[(None.into(), 4), (Some(ExceptionTag::new(42)).into(), 5)]
2550        );
2551        assert_eq!(
2552            buf.relocs()
2553                .iter()
2554                .map(|reloc| (reloc.offset, reloc.kind))
2555                .collect::<Vec<_>>(),
2556            vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
2557        );
2558    }
2559}