cranelift_codegen/machinst/buffer.rs
1//! In-memory representation of compiled machine code, with labels and fixups to
2//! refer to those labels. Handles constant-pool island insertion and also
3//! veneer insertion for out-of-range jumps.
4//!
5//! This code exists to solve three problems:
6//!
7//! - Branch targets for forward branches are not known until later, when we
8//! emit code in a single pass through the instruction structs.
9//!
10//! - On many architectures, address references or offsets have limited range.
11//! For example, on AArch64, conditional branches can only target code +/- 1MB
12//! from the branch itself.
13//!
14//! - The lowering of control flow from the CFG-with-edges produced by
15//! [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
16//! edge blocks when the register allocator does not need to insert any
17//! spills/reloads/moves in edge blocks, results in many suboptimal branch
18//! patterns. The lowering also pays no attention to block order, and so
19//! two-target conditional forms (cond-br followed by uncond-br) can often by
20//! avoided because one of the targets is the fallthrough. There are several
21//! cases here where we can simplify to use fewer branches.
22//!
23//! This "buffer" implements a single-pass code emission strategy (with a later
24//! "fixup" pass, but only through recorded fixups, not all instructions). The
25//! basic idea is:
26//!
27//! - Emit branches as they are, including two-target (cond/uncond) compound
28//! forms, but with zero offsets and optimistically assuming the target will be
29//! in range. Record the "fixup" for later. Targets are denoted instead by
30//! symbolic "labels" that are then bound to certain offsets in the buffer as
31//! we emit code. (Nominally, there is a label at the start of every basic
32//! block.)
33//!
34//! - As we do this, track the offset in the buffer at which the first label
35//! reference "goes out of range". We call this the "deadline". If we reach the
36//! deadline and we still have not bound the label to which an unresolved branch
37//! refers, we have a problem!
38//!
39//! - To solve this problem, we emit "islands" full of "veneers". An island is
40//! simply a chunk of code inserted in the middle of the code actually produced
41//! by the emitter (e.g., vcode iterating over instruction structs). The emitter
42//! has some awareness of this: it either asks for an island between blocks, so
43//! it is not accidentally executed, or else it emits a branch around the island
44//! when all other options fail (see `Inst::EmitIsland` meta-instruction).
45//!
46//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
47//! that implements a longer-range reference to a label. The idea is that, for
48//! example, a branch with a limited range can branch to a "veneer" instead,
49//! which is simply a branch in a form that can use a longer-range reference. On
50//! AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
51//! can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
52//! conditional branch's label reference can be fixed up with a "veneer" to
53//! achieve a longer range.
54//!
55//! - To implement all of this, we require the backend to provide a `LabelUse`
56//! type that implements a trait. This is nominally an enum that records one of
57//! several kinds of references to an offset in code -- basically, a relocation
58//! type -- and will usually correspond to different instruction formats. The
59//! `LabelUse` implementation specifies the maximum range, how to patch in the
60//! actual label location when known, and how to generate a veneer to extend the
61//! range.
62//!
63//! That satisfies label references, but we still may have suboptimal branch
64//! patterns. To clean up the branches, we do a simple "peephole"-style
65//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
66//! informs the buffer of branches in the code and, in the case of conditionals,
67//! the code that would have been emitted to invert this branch's condition. We
68//! track the "latest branches": these are branches that are contiguous up to
69//! the current offset. (If any code is emitted after a branch, that branch or
70//! run of contiguous branches is no longer "latest".) The latest branches are
71//! those that we can edit by simply truncating the buffer and doing something
72//! else instead.
73//!
74//! To optimize branches, we implement several simple rules, and try to apply
75//! them to the "latest branches" when possible:
76//!
77//! - A branch with a label target, when that label is bound to the ending
78//! offset of the branch (the fallthrough location), can be removed altogether,
79//! because the branch would have no effect).
80//!
81//! - An unconditional branch that starts at a label location, and branches to
82//! another label, results in a "label alias": all references to the label bound
83//! *to* this branch instruction are instead resolved to the *target* of the
84//! branch instruction. This effectively removes empty blocks that just
85//! unconditionally branch to the next block. We call this "branch threading".
86//!
87//! - A conditional followed by an unconditional, when the conditional branches
88//! to the unconditional's fallthrough, results in (i) the truncation of the
89//! unconditional, (ii) the inversion of the condition's condition, and (iii)
90//! replacement of the conditional's target (using the original target of the
91//! unconditional). This is a fancy way of saying "we can flip a two-target
92//! conditional branch's taken/not-taken targets if it works better with our
93//! fallthrough". To make this work, the emitter actually gives the buffer
94//! *both* forms of every conditional branch: the true form is emitted into the
95//! buffer, and the "inverted" machine-code bytes are provided as part of the
96//! branch-fixup metadata.
97//!
98//! - An unconditional B preceded by another unconditional P, when B's label(s) have
99//! been redirected to target(B), can be removed entirely. This is an extension
100//! of the branch-threading optimization, and is valid because if we know there
101//! will be no fallthrough into this branch instruction (the prior instruction
102//! is an unconditional jump), and if we know we have successfully redirected
103//! all labels, then this branch instruction is unreachable. Note that this
104//! works because the redirection happens before the label is ever resolved
105//! (fixups happen at island emission time, at which point latest-branches are
106//! cleared, or at the end of emission), so we are sure to catch and redirect
107//! all possible paths to this instruction.
108//!
109//! # Branch-optimization Correctness
110//!
111//! The branch-optimization mechanism depends on a few data structures with
112//! invariants, which are always held outside the scope of top-level public
113//! methods:
114//!
115//! - The latest-branches list. Each entry describes a span of the buffer
116//! (start/end offsets), the label target, the corresponding fixup-list entry
117//! index, and the bytes (must be the same length) for the inverted form, if
118//! conditional. The list of labels that are bound to the start-offset of this
119//! branch is *complete* (if any label has a resolved offset equal to `start`
120//! and is not an alias, it must appear in this list) and *precise* (no label
121//! in this list can be bound to another offset). No label in this list should
122//! be an alias. No two branch ranges can overlap, and branches are in
123//! ascending-offset order.
124//!
125//! - The labels-at-tail list. This contains all MachLabels that have been bound
126//! to (whose resolved offsets are equal to) the tail offset of the buffer.
127//! No label in this list should be an alias.
128//!
129//! - The label_offsets array, containing the bound offset of a label or
130//! UNKNOWN. No label can be bound at an offset greater than the current
131//! buffer tail.
132//!
133//! - The label_aliases array, containing another label to which a label is
134//! bound or UNKNOWN. A label's resolved offset is the resolved offset
135//! of the label it is aliased to, if this is set.
136//!
137//! We argue below, at each method, how the invariants in these data structures
138//! are maintained (grep for "Post-invariant").
139//!
140//! Given these invariants, we argue why each optimization preserves execution
141//! semantics below (grep for "Preserves execution semantics").
142//!
143//! # Avoiding Quadratic Behavior
144//!
145//! There are two cases where we've had to take some care to avoid
146//! quadratic worst-case behavior:
147//!
148//! - The "labels at this branch" list can grow unboundedly if the
149//! code generator binds many labels at one location. If the count
150//! gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
151//! simply abort an optimization early in a way that is always correct
152//! but is conservative.
153//!
154//! - The fixup list can interact with island emission to create
155//! "quadratic island behavior". In a little more detail, one can hit
156//! this behavior by having some pending fixups (forward label
157//! references) with long-range label-use kinds, and some others
158//! with shorter-range references that nonetheless still are pending
159//! long enough to trigger island generation. In such a case, we
160//! process the fixup list, generate veneers to extend some forward
161//! references' ranges, but leave the other (longer-range) ones
162//! alone. The way this was implemented put them back on a list and
163//! resulted in quadratic behavior.
164//!
165//! To avoid this fixups are split into two lists: one "pending" list and one
166//! final list. The pending list is kept around for handling fixups related to
167//! branches so it can be edited/truncated. When an island is reached, which
168//! starts processing fixups, all pending fixups are flushed into the final
169//! list. The final list is a `BinaryHeap` which enables fixup processing to
170//! only process those which are required during island emission, deferring
171//! all longer-range fixups to later.
172
173use crate::binemit::{Addend, CodeOffset, Reloc};
174use crate::ir::function::FunctionParameters;
175use crate::ir::{ExternalName, RelSourceLoc, SourceLoc, TrapCode};
176use crate::isa::unwind::UnwindInst;
177use crate::machinst::{
178 BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
179};
180use crate::trace;
181use crate::{ir, MachInstEmitState};
182use crate::{timing, VCodeConstantData};
183use cranelift_control::ControlPlane;
184use cranelift_entity::{entity_impl, PrimaryMap};
185use smallvec::SmallVec;
186use std::cmp::Ordering;
187use std::collections::BinaryHeap;
188use std::mem;
189use std::string::String;
190use std::vec::Vec;
191
192#[cfg(feature = "enable-serde")]
193use serde::{Deserialize, Serialize};
194
195#[cfg(feature = "enable-serde")]
196pub trait CompilePhase {
197 type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
198 type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
199}
200
201#[cfg(not(feature = "enable-serde"))]
202pub trait CompilePhase {
203 type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
204 type SourceLocType: core::fmt::Debug + PartialEq + Clone;
205}
206
207/// Status of a compiled artifact that needs patching before being used.
208#[derive(Clone, Debug, PartialEq)]
209#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
210pub struct Stencil;
211
212/// Status of a compiled artifact ready to use.
213#[derive(Clone, Debug, PartialEq)]
214pub struct Final;
215
216impl CompilePhase for Stencil {
217 type MachSrcLocType = MachSrcLoc<Stencil>;
218 type SourceLocType = RelSourceLoc;
219}
220
221impl CompilePhase for Final {
222 type MachSrcLocType = MachSrcLoc<Final>;
223 type SourceLocType = SourceLoc;
224}
225
226#[derive(Clone, Copy, Debug, PartialEq, Eq)]
227enum ForceVeneers {
228 Yes,
229 No,
230}
231
232/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
233/// in bulk.
234///
235/// This struct uses `SmallVec`s to support small-ish function bodies without
236/// any heap allocation. As such, it will be several kilobytes large. This is
237/// likely fine as long as it is stack-allocated for function emission then
238/// thrown away; but beware if many buffer objects are retained persistently.
239pub struct MachBuffer<I: VCodeInst> {
240 /// The buffer contents, as raw bytes.
241 data: SmallVec<[u8; 1024]>,
242 /// The required alignment of this buffer.
243 min_alignment: u32,
244 /// Any relocations referring to this code. Note that only *external*
245 /// relocations are tracked here; references to labels within the buffer are
246 /// resolved before emission.
247 relocs: SmallVec<[MachReloc; 16]>,
248 /// Any trap records referring to this code.
249 traps: SmallVec<[MachTrap; 16]>,
250 /// Any call site records referring to this code.
251 call_sites: SmallVec<[MachCallSite; 16]>,
252 /// Any source location mappings referring to this code.
253 srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
254 /// Any user stack maps for this code.
255 ///
256 /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
257 /// by code offset, and each stack map covers `span` bytes on the stack.
258 user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
259 /// Any unwind info at a given location.
260 unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
261 /// The current source location in progress (after `start_srcloc()` and
262 /// before `end_srcloc()`). This is a (start_offset, src_loc) tuple.
263 cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
264 /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
265 label_offsets: SmallVec<[CodeOffset; 16]>,
266 /// Label aliases: when one label points to an unconditional jump, and that
267 /// jump points to another label, we can redirect references to the first
268 /// label immediately to the second.
269 ///
270 /// Invariant: we don't have label-alias cycles. We ensure this by,
271 /// before setting label A to alias label B, resolving B's alias
272 /// target (iteratively until a non-aliased label); if B is already
273 /// aliased to A, then we cannot alias A back to B.
274 label_aliases: SmallVec<[MachLabel; 16]>,
275 /// Constants that must be emitted at some point.
276 pending_constants: SmallVec<[VCodeConstant; 16]>,
277 /// Byte size of all constants in `pending_constants`.
278 pending_constants_size: CodeOffset,
279 /// Traps that must be emitted at some point.
280 pending_traps: SmallVec<[MachLabelTrap; 16]>,
281 /// Fixups that haven't yet been flushed into `fixup_records` below and may
282 /// be related to branches that are chomped. These all get added to
283 /// `fixup_records` during island emission.
284 pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
285 /// The nearest upcoming deadline for entries in `pending_fixup_records`.
286 pending_fixup_deadline: CodeOffset,
287 /// Fixups that must be performed after all code is emitted.
288 fixup_records: BinaryHeap<MachLabelFixup<I>>,
289 /// Latest branches, to facilitate in-place editing for better fallthrough
290 /// behavior and empty-block removal.
291 latest_branches: SmallVec<[MachBranch; 4]>,
292 /// All labels at the current offset (emission tail). This is lazily
293 /// cleared: it is actually accurate as long as the current offset is
294 /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
295 /// be considered as empty.
296 ///
297 /// For correctness, this *must* be complete (i.e., the vector must contain
298 /// all labels whose offsets are resolved to the current tail), because we
299 /// rely on it to update labels when we truncate branches.
300 labels_at_tail: SmallVec<[MachLabel; 4]>,
301 /// The last offset at which `labels_at_tail` is valid. It is conceptually
302 /// always describing the tail of the buffer, but we do not clear
303 /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
304 /// when the offset has grown past this (`labels_at_tail_off`) point.
305 /// Always <= `cur_offset()`.
306 labels_at_tail_off: CodeOffset,
307 /// Metadata about all constants that this function has access to.
308 ///
309 /// This records the size/alignment of all constants (not the actual data)
310 /// along with the last available label generated for the constant. This map
311 /// is consulted when constants are referred to and the label assigned to a
312 /// constant may change over time as well.
313 constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
314 /// All recorded usages of constants as pairs of the constant and where the
315 /// constant needs to be placed within `self.data`. Note that the same
316 /// constant may appear in this array multiple times if it was emitted
317 /// multiple times.
318 used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
319 /// Indicates when a patchable region is currently open, to guard that it's
320 /// not possible to nest patchable regions.
321 open_patchable: bool,
322}
323
324impl MachBufferFinalized<Stencil> {
325 /// Get a finalized machine buffer by applying the function's base source location.
326 pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
327 MachBufferFinalized {
328 data: self.data,
329 relocs: self.relocs,
330 traps: self.traps,
331 call_sites: self.call_sites,
332 srclocs: self
333 .srclocs
334 .into_iter()
335 .map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
336 .collect(),
337 user_stack_maps: self.user_stack_maps,
338 unwind_info: self.unwind_info,
339 alignment: self.alignment,
340 }
341 }
342}
343
344/// A `MachBuffer` once emission is completed: holds generated code and records,
345/// without fixups. This allows the type to be independent of the backend.
346#[derive(PartialEq, Debug, Clone)]
347#[cfg_attr(
348 feature = "enable-serde",
349 derive(serde_derive::Serialize, serde_derive::Deserialize)
350)]
351pub struct MachBufferFinalized<T: CompilePhase> {
352 /// The buffer contents, as raw bytes.
353 pub(crate) data: SmallVec<[u8; 1024]>,
354 /// Any relocations referring to this code. Note that only *external*
355 /// relocations are tracked here; references to labels within the buffer are
356 /// resolved before emission.
357 pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
358 /// Any trap records referring to this code.
359 pub(crate) traps: SmallVec<[MachTrap; 16]>,
360 /// Any call site records referring to this code.
361 pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
362 /// Any source location mappings referring to this code.
363 pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
364 /// Any user stack maps for this code.
365 ///
366 /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
367 /// by code offset, and each stack map covers `span` bytes on the stack.
368 pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
369 /// Any unwind info at a given location.
370 pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
371 /// The required alignment of this buffer.
372 pub alignment: u32,
373}
374
375const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
376const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
377
378/// Threshold on max length of `labels_at_this_branch` list to avoid
379/// unbounded quadratic behavior (see comment below at use-site).
380const LABEL_LIST_THRESHOLD: usize = 100;
381
382/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
383/// the point at which it is used by emitted code; the buffer records "fixups"
384/// for references to the label, and will come back and patch the code
385/// appropriately when the label's location is eventually known.
386#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
387pub struct MachLabel(u32);
388entity_impl!(MachLabel);
389
390impl MachLabel {
391 /// Get a label for a block. (The first N MachLabels are always reserved for
392 /// the N blocks in the vcode.)
393 pub fn from_block(bindex: BlockIndex) -> MachLabel {
394 MachLabel(bindex.index() as u32)
395 }
396
397 /// Creates a string representing this label, for convenience.
398 pub fn to_string(&self) -> String {
399 format!("label{}", self.0)
400 }
401}
402
403impl Default for MachLabel {
404 fn default() -> Self {
405 UNKNOWN_LABEL
406 }
407}
408
409/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
410/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
411/// the [`OpenPatchRegion`] token in the process.
412pub struct OpenPatchRegion(usize);
413
414/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
415/// of where you might want to use this is for patching instructions that mention constants that
416/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
417/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
418/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
419/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
420/// bytes, and the constants uses can be updated directly.
421pub struct PatchRegion {
422 range: std::ops::Range<usize>,
423}
424
425impl PatchRegion {
426 /// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
427 pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
428 &mut buffer.data[self.range]
429 }
430}
431
432impl<I: VCodeInst> MachBuffer<I> {
433 /// Create a new section, known to start at `start_offset` and with a size limited to
434 /// `length_limit`.
435 pub fn new() -> MachBuffer<I> {
436 MachBuffer {
437 data: SmallVec::new(),
438 min_alignment: I::function_alignment().minimum,
439 relocs: SmallVec::new(),
440 traps: SmallVec::new(),
441 call_sites: SmallVec::new(),
442 srclocs: SmallVec::new(),
443 user_stack_maps: SmallVec::new(),
444 unwind_info: SmallVec::new(),
445 cur_srcloc: None,
446 label_offsets: SmallVec::new(),
447 label_aliases: SmallVec::new(),
448 pending_constants: SmallVec::new(),
449 pending_constants_size: 0,
450 pending_traps: SmallVec::new(),
451 pending_fixup_records: SmallVec::new(),
452 pending_fixup_deadline: u32::MAX,
453 fixup_records: Default::default(),
454 latest_branches: SmallVec::new(),
455 labels_at_tail: SmallVec::new(),
456 labels_at_tail_off: 0,
457 constants: Default::default(),
458 used_constants: Default::default(),
459 open_patchable: false,
460 }
461 }
462
463 /// Current offset from start of buffer.
464 pub fn cur_offset(&self) -> CodeOffset {
465 self.data.len() as CodeOffset
466 }
467
468 /// Add a byte.
469 pub fn put1(&mut self, value: u8) {
470 self.data.push(value);
471
472 // Post-invariant: conceptual-labels_at_tail contains a complete and
473 // precise list of labels bound at `cur_offset()`. We have advanced
474 // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
475 // before, it is not anymore (and it cannot become equal, because
476 // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
477 // conceptually empty (even though it is only lazily cleared). No labels
478 // can be bound at this new offset (by invariant on `label_offsets`).
479 // Hence the invariant holds.
480 }
481
482 /// Add 2 bytes.
483 pub fn put2(&mut self, value: u16) {
484 let bytes = value.to_le_bytes();
485 self.data.extend_from_slice(&bytes[..]);
486
487 // Post-invariant: as for `put1()`.
488 }
489
490 /// Add 4 bytes.
491 pub fn put4(&mut self, value: u32) {
492 let bytes = value.to_le_bytes();
493 self.data.extend_from_slice(&bytes[..]);
494
495 // Post-invariant: as for `put1()`.
496 }
497
498 /// Add 8 bytes.
499 pub fn put8(&mut self, value: u64) {
500 let bytes = value.to_le_bytes();
501 self.data.extend_from_slice(&bytes[..]);
502
503 // Post-invariant: as for `put1()`.
504 }
505
506 /// Add a slice of bytes.
507 pub fn put_data(&mut self, data: &[u8]) {
508 self.data.extend_from_slice(data);
509
510 // Post-invariant: as for `put1()`.
511 }
512
513 /// Reserve appended space and return a mutable slice referring to it.
514 pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
515 let off = self.data.len();
516 let new_len = self.data.len() + len;
517 self.data.resize(new_len, 0);
518 &mut self.data[off..]
519
520 // Post-invariant: as for `put1()`.
521 }
522
523 /// Align up to the given alignment.
524 pub fn align_to(&mut self, align_to: CodeOffset) {
525 trace!("MachBuffer: align to {}", align_to);
526 assert!(
527 align_to.is_power_of_two(),
528 "{align_to} is not a power of two"
529 );
530 while self.cur_offset() & (align_to - 1) != 0 {
531 self.put1(0);
532 }
533
534 // Post-invariant: as for `put1()`.
535 }
536
537 /// Begin a region of patchable code. There is one requirement for the
538 /// code that is emitted: It must not introduce any instructions that
539 /// could be chomped (branches are an example of this). In other words,
540 /// you must not call [`MachBuffer::add_cond_branch`] or
541 /// [`MachBuffer::add_uncond_branch`] between calls to this method and
542 /// [`MachBuffer::end_patchable`].
543 pub fn start_patchable(&mut self) -> OpenPatchRegion {
544 assert!(!self.open_patchable, "Patchable regions may not be nested");
545 self.open_patchable = true;
546 OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
547 }
548
549 /// End a region of patchable code, yielding a [`PatchRegion`] value that
550 /// can be consumed later to produce a one-off mutable slice to the
551 /// associated region of the data buffer.
552 pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
553 // No need to assert the state of `open_patchable` here, as we take
554 // ownership of the only `OpenPatchable` value.
555 self.open_patchable = false;
556 let end = usize::try_from(self.cur_offset()).unwrap();
557 PatchRegion { range: open.0..end }
558 }
559
560 /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
561 /// offset yet.
562 pub fn get_label(&mut self) -> MachLabel {
563 let l = self.label_offsets.len() as u32;
564 self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
565 self.label_aliases.push(UNKNOWN_LABEL);
566 trace!("MachBuffer: new label -> {:?}", MachLabel(l));
567 MachLabel(l)
568
569 // Post-invariant: the only mutation is to add a new label; it has no
570 // bound offset yet, so it trivially satisfies all invariants.
571 }
572
573 /// Reserve the first N MachLabels for blocks.
574 pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
575 trace!("MachBuffer: first {} labels are for blocks", blocks);
576 debug_assert!(self.label_offsets.is_empty());
577 self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
578 self.label_aliases.resize(blocks, UNKNOWN_LABEL);
579
580 // Post-invariant: as for `get_label()`.
581 }
582
583 /// Registers metadata in this `MachBuffer` about the `constants` provided.
584 ///
585 /// This will record the size/alignment of all constants which will prepare
586 /// them for emission later on.
587 pub fn register_constants(&mut self, constants: &VCodeConstants) {
588 for (c, val) in constants.iter() {
589 self.register_constant(&c, val);
590 }
591 }
592
593 /// Similar to [`MachBuffer::register_constants`] but registers a
594 /// single constant metadata. This function is useful in
595 /// situations where not all constants are known at the time of
596 /// emission.
597 pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
598 let c2 = self.constants.push(MachBufferConstant {
599 upcoming_label: None,
600 align: data.alignment(),
601 size: data.as_slice().len(),
602 });
603 assert_eq!(*constant, c2);
604 }
605
606 /// Completes constant emission by iterating over `self.used_constants` and
607 /// filling in the "holes" with the constant values provided by `constants`.
608 ///
609 /// Returns the alignment required for this entire buffer. Alignment starts
610 /// at the ISA's minimum function alignment and can be increased due to
611 /// constant requirements.
612 fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
613 let mut alignment = self.min_alignment;
614 for (constant, offset) in mem::take(&mut self.used_constants) {
615 let constant = constants.get(constant);
616 let data = constant.as_slice();
617 self.data[offset as usize..][..data.len()].copy_from_slice(data);
618 alignment = constant.alignment().max(alignment);
619 }
620 alignment
621 }
622
623 /// Returns a label that can be used to refer to the `constant` provided.
624 ///
625 /// This will automatically defer a new constant to be emitted for
626 /// `constant` if it has not been previously emitted. Note that this
627 /// function may return a different label for the same constant at
628 /// different points in time. The label is valid to use only from the
629 /// current location; the MachBuffer takes care to emit the same constant
630 /// multiple times if needed so the constant is always in range.
631 pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
632 let MachBufferConstant {
633 align,
634 size,
635 upcoming_label,
636 } = self.constants[constant];
637 if let Some(label) = upcoming_label {
638 return label;
639 }
640
641 let label = self.get_label();
642 trace!(
643 "defer constant: eventually emit {size} bytes aligned \
644 to {align} at label {label:?}",
645 );
646 self.pending_constants.push(constant);
647 self.pending_constants_size += size as u32;
648 self.constants[constant].upcoming_label = Some(label);
649 label
650 }
651
652 /// Bind a label to the current offset. A label can only be bound once.
653 pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
654 trace!(
655 "MachBuffer: bind label {:?} at offset {}",
656 label,
657 self.cur_offset()
658 );
659 debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
660 debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
661 let offset = self.cur_offset();
662 self.label_offsets[label.0 as usize] = offset;
663 self.lazily_clear_labels_at_tail();
664 self.labels_at_tail.push(label);
665
666 // Invariants hold: bound offset of label is <= cur_offset (in fact it
667 // is equal). If the `labels_at_tail` list was complete and precise
668 // before, it is still, because we have bound this label to the current
669 // offset and added it to the list (which contains all labels at the
670 // current offset).
671
672 self.optimize_branches(ctrl_plane);
673
674 // Post-invariant: by `optimize_branches()` (see argument there).
675 }
676
677 /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
678 /// offset that it applies to.
679 fn lazily_clear_labels_at_tail(&mut self) {
680 let offset = self.cur_offset();
681 if offset > self.labels_at_tail_off {
682 self.labels_at_tail_off = offset;
683 self.labels_at_tail.clear();
684 }
685
686 // Post-invariant: either labels_at_tail_off was at cur_offset, and
687 // state is untouched, or was less than cur_offset, in which case the
688 // labels_at_tail list was conceptually empty, and is now actually
689 // empty.
690 }
691
692 /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
693 pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
694 let mut iters = 0;
695 while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
696 label = self.label_aliases[label.0 as usize];
697 // To protect against an infinite loop (despite our assurances to
698 // ourselves that the invariants make this impossible), assert out
699 // after 1M iterations. The number of basic blocks is limited
700 // in most contexts anyway so this should be impossible to hit with
701 // a legitimate input.
702 iters += 1;
703 assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
704 }
705 self.label_offsets[label.0 as usize]
706
707 // Post-invariant: no mutations.
708 }
709
710 /// Emit a reference to the given label with the given reference type (i.e.,
711 /// branch-instruction format) at the current offset. This is like a
712 /// relocation, but handled internally.
713 ///
714 /// This can be called before the branch is actually emitted; fixups will
715 /// not happen until an island is emitted or the buffer is finished.
716 pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
717 trace!(
718 "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
719 offset,
720 label,
721 kind
722 );
723
724 // Add the fixup, and update the worst-case island size based on a
725 // veneer for this label use.
726 let fixup = MachLabelFixup {
727 label,
728 offset,
729 kind,
730 };
731 self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
732 self.pending_fixup_records.push(fixup);
733
734 // Post-invariant: no mutations to branches/labels data structures.
735 }
736
737 /// Inform the buffer of an unconditional branch at the given offset,
738 /// targeting the given label. May be used to optimize branches.
739 /// The last added label-use must correspond to this branch.
740 /// This must be called when the current offset is equal to `start`; i.e.,
741 /// before actually emitting the branch. This implies that for a branch that
742 /// uses a label and is eligible for optimizations by the MachBuffer, the
743 /// proper sequence is:
744 ///
745 /// - Call `use_label_at_offset()` to emit the fixup record.
746 /// - Call `add_uncond_branch()` to make note of the branch.
747 /// - Emit the bytes for the branch's machine code.
748 ///
749 /// Additional requirement: no labels may be bound between `start` and `end`
750 /// (exclusive on both ends).
751 pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
752 debug_assert!(
753 !self.open_patchable,
754 "Branch instruction inserted within a patchable region"
755 );
756 assert!(self.cur_offset() == start);
757 debug_assert!(end > start);
758 assert!(!self.pending_fixup_records.is_empty());
759 let fixup = self.pending_fixup_records.len() - 1;
760 self.lazily_clear_labels_at_tail();
761 self.latest_branches.push(MachBranch {
762 start,
763 end,
764 target,
765 fixup,
766 inverted: None,
767 labels_at_this_branch: self.labels_at_tail.clone(),
768 });
769
770 // Post-invariant: we asserted branch start is current tail; the list of
771 // labels at branch is cloned from list of labels at current tail.
772 }
773
774 /// Inform the buffer of a conditional branch at the given offset,
775 /// targeting the given label. May be used to optimize branches.
776 /// The last added label-use must correspond to this branch.
777 ///
778 /// Additional requirement: no labels may be bound between `start` and `end`
779 /// (exclusive on both ends).
780 pub fn add_cond_branch(
781 &mut self,
782 start: CodeOffset,
783 end: CodeOffset,
784 target: MachLabel,
785 inverted: &[u8],
786 ) {
787 debug_assert!(
788 !self.open_patchable,
789 "Branch instruction inserted within a patchable region"
790 );
791 assert!(self.cur_offset() == start);
792 debug_assert!(end > start);
793 assert!(!self.pending_fixup_records.is_empty());
794 debug_assert!(
795 inverted.len() == (end - start) as usize,
796 "branch length = {}, but inverted length = {}",
797 end - start,
798 inverted.len()
799 );
800 let fixup = self.pending_fixup_records.len() - 1;
801 let inverted = Some(SmallVec::from(inverted));
802 self.lazily_clear_labels_at_tail();
803 self.latest_branches.push(MachBranch {
804 start,
805 end,
806 target,
807 fixup,
808 inverted,
809 labels_at_this_branch: self.labels_at_tail.clone(),
810 });
811
812 // Post-invariant: we asserted branch start is current tail; labels at
813 // branch list is cloned from list of labels at current tail.
814 }
815
816 fn truncate_last_branch(&mut self) {
817 debug_assert!(
818 !self.open_patchable,
819 "Branch instruction truncated within a patchable region"
820 );
821
822 self.lazily_clear_labels_at_tail();
823 // Invariants hold at this point.
824
825 let b = self.latest_branches.pop().unwrap();
826 assert!(b.end == self.cur_offset());
827
828 // State:
829 // [PRE CODE]
830 // Offset b.start, b.labels_at_this_branch:
831 // [BRANCH CODE]
832 // cur_off, self.labels_at_tail -->
833 // (end of buffer)
834 self.data.truncate(b.start as usize);
835 self.pending_fixup_records.truncate(b.fixup);
836 while let Some(last_srcloc) = self.srclocs.last_mut() {
837 if last_srcloc.end <= b.start {
838 break;
839 }
840 if last_srcloc.start < b.start {
841 last_srcloc.end = b.start;
842 break;
843 }
844 self.srclocs.pop();
845 }
846 // State:
847 // [PRE CODE]
848 // cur_off, Offset b.start, b.labels_at_this_branch:
849 // (end of buffer)
850 //
851 // self.labels_at_tail --> (past end of buffer)
852 let cur_off = self.cur_offset();
853 self.labels_at_tail_off = cur_off;
854 // State:
855 // [PRE CODE]
856 // cur_off, Offset b.start, b.labels_at_this_branch,
857 // self.labels_at_tail:
858 // (end of buffer)
859 //
860 // resolve_label_offset(l) for l in labels_at_tail:
861 // (past end of buffer)
862
863 trace!(
864 "truncate_last_branch: truncated {:?}; off now {}",
865 b,
866 cur_off
867 );
868
869 // Fix up resolved label offsets for labels at tail.
870 for &l in &self.labels_at_tail {
871 self.label_offsets[l.0 as usize] = cur_off;
872 }
873 // Old labels_at_this_branch are now at cur_off.
874 self.labels_at_tail
875 .extend(b.labels_at_this_branch.into_iter());
876
877 // Post-invariant: this operation is defined to truncate the buffer,
878 // which moves cur_off backward, and to move labels at the end of the
879 // buffer back to the start-of-branch offset.
880 //
881 // latest_branches satisfies all invariants:
882 // - it has no branches past the end of the buffer (branches are in
883 // order, we removed the last one, and we truncated the buffer to just
884 // before the start of that branch)
885 // - no labels were moved to lower offsets than the (new) cur_off, so
886 // the labels_at_this_branch list for any other branch need not change.
887 //
888 // labels_at_tail satisfies all invariants:
889 // - all labels that were at the tail after the truncated branch are
890 // moved backward to just before the branch, which becomes the new tail;
891 // thus every element in the list should remain (ensured by `.extend()`
892 // above).
893 // - all labels that refer to the new tail, which is the start-offset of
894 // the truncated branch, must be present. The `labels_at_this_branch`
895 // list in the truncated branch's record is a complete and precise list
896 // of exactly these labels; we append these to labels_at_tail.
897 // - labels_at_tail_off is at cur_off after truncation occurs, so the
898 // list is valid (not to be lazily cleared).
899 //
900 // The stated operation was performed:
901 // - For each label at the end of the buffer prior to this method, it
902 // now resolves to the new (truncated) end of the buffer: it must have
903 // been in `labels_at_tail` (this list is precise and complete, and
904 // the tail was at the end of the truncated branch on entry), and we
905 // iterate over this list and set `label_offsets` to the new tail.
906 // None of these labels could have been an alias (by invariant), so
907 // `label_offsets` is authoritative for each.
908 // - No other labels will be past the end of the buffer, because of the
909 // requirement that no labels be bound to the middle of branch ranges
910 // (see comments to `add_{cond,uncond}_branch()`).
911 // - The buffer is truncated to just before the last branch, and the
912 // fixup record referring to that last branch is removed.
913 }
914
915 /// Performs various optimizations on branches pointing at the current label.
916 pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
917 if ctrl_plane.get_decision() {
918 return;
919 }
920
921 self.lazily_clear_labels_at_tail();
922 // Invariants valid at this point.
923
924 trace!(
925 "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
926 self.latest_branches,
927 self.labels_at_tail,
928 self.pending_fixup_records
929 );
930
931 // We continue to munch on branches at the tail of the buffer until no
932 // more rules apply. Note that the loop only continues if a branch is
933 // actually truncated (or if labels are redirected away from a branch),
934 // so this always makes progress.
935 while let Some(b) = self.latest_branches.last() {
936 let cur_off = self.cur_offset();
937 trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
938 // If there has been any code emission since the end of the last branch or
939 // label definition, then there's nothing we can edit (because we
940 // don't move code once placed, only back up and overwrite), so
941 // clear the records and finish.
942 if b.end < cur_off {
943 break;
944 }
945
946 // If the "labels at this branch" list on this branch is
947 // longer than a threshold, don't do any simplification,
948 // and let the branch remain to separate those labels from
949 // the current tail. This avoids quadratic behavior (see
950 // #3468): otherwise, if a long string of "goto next;
951 // next:" patterns are emitted, all of the labels will
952 // coalesce into a long list of aliases for the current
953 // buffer tail. We must track all aliases of the current
954 // tail for correctness, but we are also allowed to skip
955 // optimization (removal) of any branch, so we take the
956 // escape hatch here and let it stand. In effect this
957 // "spreads" the many thousands of labels in the
958 // pathological case among an actual (harmless but
959 // suboptimal) instruction once per N labels.
960 if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
961 break;
962 }
963
964 // Invariant: we are looking at a branch that ends at the tail of
965 // the buffer.
966
967 // For any branch, conditional or unconditional:
968 // - If the target is a label at the current offset, then remove
969 // the conditional branch, and reset all labels that targeted
970 // the current offset (end of branch) to the truncated
971 // end-of-code.
972 //
973 // Preserves execution semantics: a branch to its own fallthrough
974 // address is equivalent to a no-op; in both cases, nextPC is the
975 // fallthrough.
976 if self.resolve_label_offset(b.target) == cur_off {
977 trace!("branch with target == cur off; truncating");
978 self.truncate_last_branch();
979 continue;
980 }
981
982 // If latest is an unconditional branch:
983 //
984 // - If the branch's target is not its own start address, then for
985 // each label at the start of branch, make the label an alias of the
986 // branch target, and remove the label from the "labels at this
987 // branch" list.
988 //
989 // - Preserves execution semantics: an unconditional branch's
990 // only effect is to set PC to a new PC; this change simply
991 // collapses one step in the step-semantics.
992 //
993 // - Post-invariant: the labels that were bound to the start of
994 // this branch become aliases, so they must not be present in any
995 // labels-at-this-branch list or the labels-at-tail list. The
996 // labels are removed form the latest-branch record's
997 // labels-at-this-branch list, and are never placed in the
998 // labels-at-tail list. Furthermore, it is correct that they are
999 // not in either list, because they are now aliases, and labels
1000 // that are aliases remain aliases forever.
1001 //
1002 // - If there is a prior unconditional branch that ends just before
1003 // this one begins, and this branch has no labels bound to its
1004 // start, then we can truncate this branch, because it is entirely
1005 // unreachable (we have redirected all labels that make it
1006 // reachable otherwise). Do so and continue around the loop.
1007 //
1008 // - Preserves execution semantics: the branch is unreachable,
1009 // because execution can only flow into an instruction from the
1010 // prior instruction's fallthrough or from a branch bound to that
1011 // instruction's start offset. Unconditional branches have no
1012 // fallthrough, so if the prior instruction is an unconditional
1013 // branch, no fallthrough entry can happen. The
1014 // labels-at-this-branch list is complete (by invariant), so if it
1015 // is empty, then the instruction is entirely unreachable. Thus,
1016 // it can be removed.
1017 //
1018 // - Post-invariant: ensured by truncate_last_branch().
1019 //
1020 // - If there is a prior conditional branch whose target label
1021 // resolves to the current offset (branches around the
1022 // unconditional branch), then remove the unconditional branch,
1023 // and make the target of the unconditional the target of the
1024 // conditional instead.
1025 //
1026 // - Preserves execution semantics: previously we had:
1027 //
1028 // L1:
1029 // cond_br L2
1030 // br L3
1031 // L2:
1032 // (end of buffer)
1033 //
1034 // by removing the last branch, we have:
1035 //
1036 // L1:
1037 // cond_br L2
1038 // L2:
1039 // (end of buffer)
1040 //
1041 // we then fix up the records for the conditional branch to
1042 // have:
1043 //
1044 // L1:
1045 // cond_br.inverted L3
1046 // L2:
1047 //
1048 // In the original code, control flow reaches L2 when the
1049 // conditional branch's predicate is true, and L3 otherwise. In
1050 // the optimized code, the same is true.
1051 //
1052 // - Post-invariant: all edits to latest_branches and
1053 // labels_at_tail are performed by `truncate_last_branch()`,
1054 // which maintains the invariants at each step.
1055
1056 if b.is_uncond() {
1057 // Set any label equal to current branch's start as an alias of
1058 // the branch's target, if the target is not the branch itself
1059 // (i.e., an infinite loop).
1060 //
1061 // We cannot perform this aliasing if the target of this branch
1062 // ultimately aliases back here; if so, we need to keep this
1063 // branch, so break out of this loop entirely (and clear the
1064 // latest-branches list below).
1065 //
1066 // Note that this check is what prevents cycles from forming in
1067 // `self.label_aliases`. To see why, consider an arbitrary start
1068 // state:
1069 //
1070 // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
1071 // Ln, which is not aliased.
1072 //
1073 // We would create a cycle if we assigned label_aliases[Ln]
1074 // = L1. Note that the below assignment is the only write
1075 // to label_aliases.
1076 //
1077 // By our other invariants, we have that Ln (`l` below)
1078 // resolves to the offset `b.start`, because it is in the
1079 // set `b.labels_at_this_branch`.
1080 //
1081 // If L1 were already aliased, through some arbitrarily deep
1082 // chain, to Ln, then it must also resolve to this offset
1083 // `b.start`.
1084 //
1085 // By checking the resolution of `L1` against this offset,
1086 // and aborting this branch-simplification if they are
1087 // equal, we prevent the below assignment from ever creating
1088 // a cycle.
1089 if self.resolve_label_offset(b.target) != b.start {
1090 let redirected = b.labels_at_this_branch.len();
1091 for &l in &b.labels_at_this_branch {
1092 trace!(
1093 " -> label at start of branch {:?} redirected to target {:?}",
1094 l,
1095 b.target
1096 );
1097 self.label_aliases[l.0 as usize] = b.target;
1098 // NOTE: we continue to ensure the invariant that labels
1099 // pointing to tail of buffer are in `labels_at_tail`
1100 // because we already ensured above that the last branch
1101 // cannot have a target of `cur_off`; so we never have
1102 // to put the label into `labels_at_tail` when moving it
1103 // here.
1104 }
1105 // Maintain invariant: all branches have been redirected
1106 // and are no longer pointing at the start of this branch.
1107 let mut_b = self.latest_branches.last_mut().unwrap();
1108 mut_b.labels_at_this_branch.clear();
1109
1110 if redirected > 0 {
1111 trace!(" -> after label redirects, restarting loop");
1112 continue;
1113 }
1114 } else {
1115 break;
1116 }
1117
1118 let b = self.latest_branches.last().unwrap();
1119
1120 // Examine any immediately preceding branch.
1121 if self.latest_branches.len() > 1 {
1122 let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
1123 trace!(" -> more than one branch; prev_b = {:?}", prev_b);
1124 // This uncond is immediately after another uncond; we
1125 // should have already redirected labels to this uncond away
1126 // (but check to be sure); so we can truncate this uncond.
1127 if prev_b.is_uncond()
1128 && prev_b.end == b.start
1129 && b.labels_at_this_branch.is_empty()
1130 {
1131 trace!(" -> uncond follows another uncond; truncating");
1132 self.truncate_last_branch();
1133 continue;
1134 }
1135
1136 // This uncond is immediately after a conditional, and the
1137 // conditional's target is the end of this uncond, and we've
1138 // already redirected labels to this uncond away; so we can
1139 // truncate this uncond, flip the sense of the conditional, and
1140 // set the conditional's target (in `latest_branches` and in
1141 // `fixup_records`) to the uncond's target.
1142 if prev_b.is_cond()
1143 && prev_b.end == b.start
1144 && self.resolve_label_offset(prev_b.target) == cur_off
1145 {
1146 trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
1147 // Save the target of the uncond (this becomes the
1148 // target of the cond), and truncate the uncond.
1149 let target = b.target;
1150 let data = prev_b.inverted.clone().unwrap();
1151 self.truncate_last_branch();
1152
1153 // Mutate the code and cond branch.
1154 let off_before_edit = self.cur_offset();
1155 let prev_b = self.latest_branches.last_mut().unwrap();
1156 let not_inverted = SmallVec::from(
1157 &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
1158 );
1159
1160 // Low-level edit: replaces bytes of branch with
1161 // inverted form. cur_off remains the same afterward, so
1162 // we do not need to modify label data structures.
1163 self.data.truncate(prev_b.start as usize);
1164 self.data.extend_from_slice(&data[..]);
1165
1166 // Save the original code as the inversion of the
1167 // inverted branch, in case we later edit this branch
1168 // again.
1169 prev_b.inverted = Some(not_inverted);
1170 self.pending_fixup_records[prev_b.fixup].label = target;
1171 trace!(" -> reassigning target of condbr to {:?}", target);
1172 prev_b.target = target;
1173 debug_assert_eq!(off_before_edit, self.cur_offset());
1174 continue;
1175 }
1176 }
1177 }
1178
1179 // If we couldn't do anything with the last branch, then break.
1180 break;
1181 }
1182
1183 self.purge_latest_branches();
1184
1185 trace!(
1186 "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
1187 self.latest_branches,
1188 self.labels_at_tail,
1189 self.pending_fixup_records
1190 );
1191 }
1192
1193 fn purge_latest_branches(&mut self) {
1194 // All of our branch simplification rules work only if a branch ends at
1195 // the tail of the buffer, with no following code; and branches are in
1196 // order in latest_branches; so if the last entry ends prior to
1197 // cur_offset, then clear all entries.
1198 let cur_off = self.cur_offset();
1199 if let Some(l) = self.latest_branches.last() {
1200 if l.end < cur_off {
1201 trace!("purge_latest_branches: removing branch {:?}", l);
1202 self.latest_branches.clear();
1203 }
1204 }
1205
1206 // Post-invariant: no invariant requires any branch to appear in
1207 // `latest_branches`; it is always optional. The list-clear above thus
1208 // preserves all semantics.
1209 }
1210
1211 /// Emit a trap at some point in the future with the specified code and
1212 /// stack map.
1213 ///
1214 /// This function returns a [`MachLabel`] which will be the future address
1215 /// of the trap. Jumps should refer to this label, likely by using the
1216 /// [`MachBuffer::use_label_at_offset`] method, to get a relocation
1217 /// patched in once the address of the trap is known.
1218 ///
1219 /// This will batch all traps into the end of the function.
1220 pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
1221 let label = self.get_label();
1222 self.pending_traps.push(MachLabelTrap {
1223 label,
1224 code,
1225 loc: self.cur_srcloc.map(|(_start, loc)| loc),
1226 });
1227 label
1228 }
1229
1230 /// Is an island needed within the next N bytes?
1231 pub fn island_needed(&self, distance: CodeOffset) -> bool {
1232 let deadline = match self.fixup_records.peek() {
1233 Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
1234 None => self.pending_fixup_deadline,
1235 };
1236 deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
1237 }
1238
1239 /// Returns the maximal offset that islands can reach if `distance` more
1240 /// bytes are appended.
1241 ///
1242 /// This is used to determine if veneers need insertions since jumps that
1243 /// can't reach past this point must get a veneer of some form.
1244 fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
1245 // Assume that all fixups will require veneers and that the veneers are
1246 // the worst-case size for each platform. This is an over-generalization
1247 // to avoid iterating over the `fixup_records` list or maintaining
1248 // information about it as we go along.
1249 let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
1250 as u32)
1251 * (I::LabelUse::worst_case_veneer_size())
1252 + self.pending_constants_size
1253 + (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
1254 self.cur_offset()
1255 .saturating_add(distance)
1256 .saturating_add(island_worst_case_size)
1257 }
1258
1259 /// Emit all pending constants and required pending veneers.
1260 ///
1261 /// Should only be called if `island_needed()` returns true, i.e., if we
1262 /// actually reach a deadline. It's not necessarily a problem to do so
1263 /// otherwise but it may result in unnecessary work during emission.
1264 pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
1265 self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
1266 }
1267
1268 /// Same as `emit_island`, but an internal API with a `force_veneers`
1269 /// argument to force all veneers to always get emitted for debugging.
1270 fn emit_island_maybe_forced(
1271 &mut self,
1272 force_veneers: ForceVeneers,
1273 distance: CodeOffset,
1274 ctrl_plane: &mut ControlPlane,
1275 ) {
1276 // We're going to purge fixups, so no latest-branch editing can happen
1277 // anymore.
1278 self.latest_branches.clear();
1279
1280 // End the current location tracking since anything emitted during this
1281 // function shouldn't be attributed to whatever the current source
1282 // location is.
1283 //
1284 // Note that the current source location, if it's set right now, will be
1285 // restored at the end of this island emission.
1286 let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
1287 if cur_loc.is_some() {
1288 self.end_srcloc();
1289 }
1290
1291 let forced_threshold = self.worst_case_end_of_island(distance);
1292
1293 // First flush out all traps/constants so we have more labels in case
1294 // fixups are applied against these labels.
1295 //
1296 // Note that traps are placed first since this typically happens at the
1297 // end of the function and for disassemblers we try to keep all the code
1298 // contiguously together.
1299 for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
1300 // If this trap has source information associated with it then
1301 // emit this information for the trap instruction going out now too.
1302 if let Some(loc) = loc {
1303 self.start_srcloc(loc);
1304 }
1305 self.align_to(I::LabelUse::ALIGN);
1306 self.bind_label(label, ctrl_plane);
1307 self.add_trap(code);
1308 self.put_data(I::TRAP_OPCODE);
1309 if loc.is_some() {
1310 self.end_srcloc();
1311 }
1312 }
1313
1314 for constant in mem::take(&mut self.pending_constants) {
1315 let MachBufferConstant { align, size, .. } = self.constants[constant];
1316 let label = self.constants[constant].upcoming_label.take().unwrap();
1317 self.align_to(align);
1318 self.bind_label(label, ctrl_plane);
1319 self.used_constants.push((constant, self.cur_offset()));
1320 self.get_appended_space(size);
1321 }
1322
1323 // Either handle all pending fixups because they're ready or move them
1324 // onto the `BinaryHeap` tracking all pending fixups if they aren't
1325 // ready.
1326 assert!(self.latest_branches.is_empty());
1327 for fixup in mem::take(&mut self.pending_fixup_records) {
1328 if self.should_apply_fixup(&fixup, forced_threshold) {
1329 self.handle_fixup(fixup, force_veneers, forced_threshold);
1330 } else {
1331 self.fixup_records.push(fixup);
1332 }
1333 }
1334 self.pending_fixup_deadline = u32::MAX;
1335 while let Some(fixup) = self.fixup_records.peek() {
1336 trace!("emit_island: fixup {:?}", fixup);
1337
1338 // If this fixup shouldn't be applied, that means its label isn't
1339 // defined yet and there'll be remaining space to apply a veneer if
1340 // necessary in the future after this island. In that situation
1341 // because `fixup_records` is sorted by deadline this loop can
1342 // exit.
1343 if !self.should_apply_fixup(fixup, forced_threshold) {
1344 break;
1345 }
1346
1347 let fixup = self.fixup_records.pop().unwrap();
1348 self.handle_fixup(fixup, force_veneers, forced_threshold);
1349 }
1350
1351 if let Some(loc) = cur_loc {
1352 self.start_srcloc(loc);
1353 }
1354 }
1355
1356 fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
1357 let label_offset = self.resolve_label_offset(fixup.label);
1358 label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
1359 }
1360
1361 fn handle_fixup(
1362 &mut self,
1363 fixup: MachLabelFixup<I>,
1364 force_veneers: ForceVeneers,
1365 forced_threshold: CodeOffset,
1366 ) {
1367 let MachLabelFixup {
1368 label,
1369 offset,
1370 kind,
1371 } = fixup;
1372 let start = offset as usize;
1373 let end = (offset + kind.patch_size()) as usize;
1374 let label_offset = self.resolve_label_offset(label);
1375
1376 if label_offset != UNKNOWN_LABEL_OFFSET {
1377 // If the offset of the label for this fixup is known then
1378 // we're going to do something here-and-now. We're either going
1379 // to patch the original offset because it's an in-bounds jump,
1380 // or we're going to generate a veneer, patch the fixup to jump
1381 // to the veneer, and then keep going.
1382 //
1383 // If the label comes after the original fixup, then we should
1384 // be guaranteed that the jump is in-bounds. Otherwise there's
1385 // a bug somewhere because this method wasn't called soon
1386 // enough. All forward-jumps are tracked and should get veneers
1387 // before their deadline comes and they're unable to jump
1388 // further.
1389 //
1390 // Otherwise if the label is before the fixup, then that's a
1391 // backwards jump. If it's past the maximum negative range
1392 // then we'll emit a veneer that to jump forward to which can
1393 // then jump backwards.
1394 let veneer_required = if label_offset >= offset {
1395 assert!((label_offset - offset) <= kind.max_pos_range());
1396 false
1397 } else {
1398 (offset - label_offset) > kind.max_neg_range()
1399 };
1400 trace!(
1401 " -> label_offset = {}, known, required = {} (pos {} neg {})",
1402 label_offset,
1403 veneer_required,
1404 kind.max_pos_range(),
1405 kind.max_neg_range()
1406 );
1407
1408 if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
1409 self.emit_veneer(label, offset, kind);
1410 } else {
1411 let slice = &mut self.data[start..end];
1412 trace!("patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}");
1413 kind.patch(slice, offset, label_offset);
1414 }
1415 } else {
1416 // If the offset of this label is not known at this time then
1417 // that means that a veneer is required because after this
1418 // island the target can't be in range of the original target.
1419 assert!(forced_threshold - offset > kind.max_pos_range());
1420 self.emit_veneer(label, offset, kind);
1421 }
1422 }
1423
1424 /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
1425 ///
1426 /// This will generate extra machine code, using `kind`, to get a
1427 /// larger-jump-kind than `kind` allows. The code at `offset` is then
1428 /// patched to jump to our new code, and then the new code is enqueued for
1429 /// a fixup to get processed at some later time.
1430 fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
1431 // If this `kind` doesn't support a veneer then that's a bug in the
1432 // backend because we need to implement support for such a veneer.
1433 assert!(
1434 kind.supports_veneer(),
1435 "jump beyond the range of {kind:?} but a veneer isn't supported",
1436 );
1437
1438 // Allocate space for a veneer in the island.
1439 self.align_to(I::LabelUse::ALIGN);
1440 let veneer_offset = self.cur_offset();
1441 trace!("making a veneer at {}", veneer_offset);
1442 let start = offset as usize;
1443 let end = (offset + kind.patch_size()) as usize;
1444 let slice = &mut self.data[start..end];
1445 // Patch the original label use to refer to the veneer.
1446 trace!(
1447 "patching original at offset {} to veneer offset {}",
1448 offset,
1449 veneer_offset
1450 );
1451 kind.patch(slice, offset, veneer_offset);
1452 // Generate the veneer.
1453 let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
1454 let (veneer_fixup_off, veneer_label_use) =
1455 kind.generate_veneer(veneer_slice, veneer_offset);
1456 trace!(
1457 "generated veneer; fixup offset {}, label_use {:?}",
1458 veneer_fixup_off,
1459 veneer_label_use
1460 );
1461 // Register a new use of `label` with our new veneer fixup and
1462 // offset. This'll recalculate deadlines accordingly and
1463 // enqueue this fixup to get processed at some later
1464 // time.
1465 self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
1466 }
1467
1468 fn finish_emission_maybe_forcing_veneers(
1469 &mut self,
1470 force_veneers: ForceVeneers,
1471 ctrl_plane: &mut ControlPlane,
1472 ) {
1473 while !self.pending_constants.is_empty()
1474 || !self.pending_traps.is_empty()
1475 || !self.fixup_records.is_empty()
1476 || !self.pending_fixup_records.is_empty()
1477 {
1478 // `emit_island()` will emit any pending veneers and constants, and
1479 // as a side-effect, will also take care of any fixups with resolved
1480 // labels eagerly.
1481 self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
1482 }
1483
1484 // Ensure that all labels have been fixed up after the last island is emitted. This is a
1485 // full (release-mode) assert because an unresolved label means the emitted code is
1486 // incorrect.
1487 assert!(self.fixup_records.is_empty());
1488 assert!(self.pending_fixup_records.is_empty());
1489 }
1490
1491 /// Finish any deferred emissions and/or fixups.
1492 pub fn finish(
1493 mut self,
1494 constants: &VCodeConstants,
1495 ctrl_plane: &mut ControlPlane,
1496 ) -> MachBufferFinalized<Stencil> {
1497 let _tt = timing::vcode_emit_finish();
1498
1499 self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
1500
1501 let alignment = self.finish_constants(constants);
1502
1503 // Resolve all labels to their offsets.
1504 let finalized_relocs = self
1505 .relocs
1506 .iter()
1507 .map(|reloc| FinalizedMachReloc {
1508 offset: reloc.offset,
1509 kind: reloc.kind,
1510 addend: reloc.addend,
1511 target: match &reloc.target {
1512 RelocTarget::ExternalName(name) => {
1513 FinalizedRelocTarget::ExternalName(name.clone())
1514 }
1515 RelocTarget::Label(label) => {
1516 FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
1517 }
1518 },
1519 })
1520 .collect();
1521
1522 let mut srclocs = self.srclocs;
1523 srclocs.sort_by_key(|entry| entry.start);
1524
1525 MachBufferFinalized {
1526 data: self.data,
1527 relocs: finalized_relocs,
1528 traps: self.traps,
1529 call_sites: self.call_sites,
1530 srclocs,
1531 user_stack_maps: self.user_stack_maps,
1532 unwind_info: self.unwind_info,
1533 alignment,
1534 }
1535 }
1536
1537 /// Add an external relocation at the given offset.
1538 pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
1539 &mut self,
1540 offset: CodeOffset,
1541 kind: Reloc,
1542 target: &T,
1543 addend: Addend,
1544 ) {
1545 let target: RelocTarget = target.clone().into();
1546 // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
1547 // generate a label-use statement to track whether an island is possibly
1548 // needed to escape this function to actually get to the external name.
1549 // This is most likely to come up on AArch64 where calls between
1550 // functions use a 26-bit signed offset which gives +/- 64MB. This means
1551 // that if a function is 128MB in size and there's a call in the middle
1552 // it's impossible to reach the actual target. Also, while it's
1553 // technically possible to jump to the start of a function and then jump
1554 // further, island insertion below always inserts islands after
1555 // previously appended code so for Cranelift's own implementation this
1556 // is also a problem for 64MB functions on AArch64 which start with a
1557 // call instruction, those won't be able to escape.
1558 //
1559 // Ideally what needs to happen here is that a `LabelUse` is
1560 // transparently generated (or call-sites of this function are audited
1561 // to generate a `LabelUse` instead) and tracked internally. The actual
1562 // relocation would then change over time if and when a veneer is
1563 // inserted, where the relocation here would be patched by this
1564 // `MachBuffer` to jump to the veneer. The problem, though, is that all
1565 // this still needs to end up, in the case of a singular function,
1566 // generating a final relocation pointing either to this particular
1567 // relocation or to the veneer inserted. Additionally
1568 // `MachBuffer` needs the concept of a label which will never be
1569 // resolved, so `emit_island` doesn't trip over not actually ever
1570 // knowning what some labels are. Currently the loop in
1571 // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
1572 // loop.
1573 //
1574 // For now this means that because relocs aren't tracked at all that
1575 // AArch64 functions have a rough size limits of 64MB. For now that's
1576 // somewhat reasonable and the failure mode is a panic in `MachBuffer`
1577 // when a relocation can't otherwise be resolved later, so it shouldn't
1578 // actually result in any memory unsafety or anything like that.
1579 self.relocs.push(MachReloc {
1580 offset,
1581 kind,
1582 target,
1583 addend,
1584 });
1585 }
1586
1587 /// Add an external relocation at the current offset.
1588 pub fn add_reloc<T: Into<RelocTarget> + Clone>(
1589 &mut self,
1590 kind: Reloc,
1591 target: &T,
1592 addend: Addend,
1593 ) {
1594 self.add_reloc_at_offset(self.data.len() as CodeOffset, kind, target, addend);
1595 }
1596
1597 /// Add a trap record at the current offset.
1598 pub fn add_trap(&mut self, code: TrapCode) {
1599 self.traps.push(MachTrap {
1600 offset: self.data.len() as CodeOffset,
1601 code,
1602 });
1603 }
1604
1605 /// Add a call-site record at the current offset.
1606 pub fn add_call_site(&mut self) {
1607 self.call_sites.push(MachCallSite {
1608 ret_addr: self.data.len() as CodeOffset,
1609 });
1610 }
1611
1612 /// Add an unwind record at the current offset.
1613 pub fn add_unwind(&mut self, unwind: UnwindInst) {
1614 self.unwind_info.push((self.cur_offset(), unwind));
1615 }
1616
1617 /// Set the `SourceLoc` for code from this offset until the offset at the
1618 /// next call to `end_srcloc()`.
1619 /// Returns the current [CodeOffset] and [RelSourceLoc].
1620 pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
1621 let cur = (self.cur_offset(), loc);
1622 self.cur_srcloc = Some(cur);
1623 cur
1624 }
1625
1626 /// Mark the end of the `SourceLoc` segment started at the last
1627 /// `start_srcloc()` call.
1628 pub fn end_srcloc(&mut self) {
1629 let (start, loc) = self
1630 .cur_srcloc
1631 .take()
1632 .expect("end_srcloc() called without start_srcloc()");
1633 let end = self.cur_offset();
1634 // Skip zero-length extends.
1635 debug_assert!(end >= start);
1636 if end > start {
1637 self.srclocs.push(MachSrcLoc { start, end, loc });
1638 }
1639 }
1640
1641 /// Push a user stack map onto this buffer.
1642 ///
1643 /// The stack map is associated with the given `return_addr` code
1644 /// offset. This must be the PC for the instruction just *after* this stack
1645 /// map's associated instruction. For example in the sequence `call $foo;
1646 /// add r8, rax`, the `return_addr` must be the offset of the start of the
1647 /// `add` instruction.
1648 ///
1649 /// Stack maps must be pushed in sorted `return_addr` order.
1650 pub fn push_user_stack_map(
1651 &mut self,
1652 emit_state: &I::State,
1653 return_addr: CodeOffset,
1654 mut stack_map: ir::UserStackMap,
1655 ) {
1656 let span = emit_state.frame_layout().active_size();
1657 trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
1658
1659 debug_assert!(
1660 self.user_stack_maps
1661 .last()
1662 .map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
1663 "pushed stack maps out of order: {} is not less than {}",
1664 self.user_stack_maps.last().unwrap().0,
1665 return_addr,
1666 );
1667
1668 stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
1669 self.user_stack_maps.push((return_addr, span, stack_map));
1670 }
1671
1672 /// Increase the alignment of the buffer to the given alignment if bigger
1673 /// than the current alignment.
1674 pub fn set_log2_min_function_alignment(&mut self, align_to: u8) {
1675 self.min_alignment = self.min_alignment.max(
1676 1u32.checked_shl(u32::from(align_to))
1677 .expect("log2_min_function_alignment too large"),
1678 );
1679 }
1680}
1681
1682impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
1683 fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
1684 for b in iter {
1685 self.put1(b);
1686 }
1687 }
1688}
1689
1690impl<T: CompilePhase> MachBufferFinalized<T> {
1691 /// Get a list of source location mapping tuples in sorted-by-start-offset order.
1692 pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
1693 &self.srclocs[..]
1694 }
1695
1696 /// Get the total required size for the code.
1697 pub fn total_size(&self) -> CodeOffset {
1698 self.data.len() as CodeOffset
1699 }
1700
1701 /// Return the code in this mach buffer as a hex string for testing purposes.
1702 pub fn stringify_code_bytes(&self) -> String {
1703 // This is pretty lame, but whatever ..
1704 use std::fmt::Write;
1705 let mut s = String::with_capacity(self.data.len() * 2);
1706 for b in &self.data {
1707 write!(&mut s, "{b:02X}").unwrap();
1708 }
1709 s
1710 }
1711
1712 /// Get the code bytes.
1713 pub fn data(&self) -> &[u8] {
1714 // N.B.: we emit every section into the .text section as far as
1715 // the `CodeSink` is concerned; we do not bother to segregate
1716 // the contents into the actual program text, the jumptable and the
1717 // rodata (constant pool). This allows us to generate code assuming
1718 // that these will not be relocated relative to each other, and avoids
1719 // having to designate each section as belonging in one of the three
1720 // fixed categories defined by `CodeSink`. If this becomes a problem
1721 // later (e.g. because of memory permissions or similar), we can
1722 // add this designation and segregate the output; take care, however,
1723 // to add the appropriate relocations in this case.
1724
1725 &self.data[..]
1726 }
1727
1728 /// Get the list of external relocations for this code.
1729 pub fn relocs(&self) -> &[FinalizedMachReloc] {
1730 &self.relocs[..]
1731 }
1732
1733 /// Get the list of trap records for this code.
1734 pub fn traps(&self) -> &[MachTrap] {
1735 &self.traps[..]
1736 }
1737
1738 /// Get the user stack map metadata for this code.
1739 pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
1740 &self.user_stack_maps
1741 }
1742
1743 /// Take this buffer's user strack map metadata.
1744 pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
1745 mem::take(&mut self.user_stack_maps)
1746 }
1747
1748 /// Get the list of call sites for this code.
1749 pub fn call_sites(&self) -> &[MachCallSite] {
1750 &self.call_sites[..]
1751 }
1752}
1753
1754/// Metadata about a constant.
1755struct MachBufferConstant {
1756 /// A label which has not yet been bound which can be used for this
1757 /// constant.
1758 ///
1759 /// This is lazily created when a label is requested for a constant and is
1760 /// cleared when a constant is emitted.
1761 upcoming_label: Option<MachLabel>,
1762 /// Required alignment.
1763 align: CodeOffset,
1764 /// The byte size of this constant.
1765 size: usize,
1766}
1767
1768/// A trap that is deferred to the next time an island is emitted for either
1769/// traps, constants, or fixups.
1770struct MachLabelTrap {
1771 /// This label will refer to the trap's offset.
1772 label: MachLabel,
1773 /// The code associated with this trap.
1774 code: TrapCode,
1775 /// An optional source location to assign for this trap.
1776 loc: Option<RelSourceLoc>,
1777}
1778
1779/// A fixup to perform on the buffer once code is emitted. Fixups always refer
1780/// to labels and patch the code based on label offsets. Hence, they are like
1781/// relocations, but internal to one buffer.
1782#[derive(Debug)]
1783struct MachLabelFixup<I: VCodeInst> {
1784 /// The label whose offset controls this fixup.
1785 label: MachLabel,
1786 /// The offset to fix up / patch to refer to this label.
1787 offset: CodeOffset,
1788 /// The kind of fixup. This is architecture-specific; each architecture may have,
1789 /// e.g., several types of branch instructions, each with differently-sized
1790 /// offset fields and different places within the instruction to place the
1791 /// bits.
1792 kind: I::LabelUse,
1793}
1794
1795impl<I: VCodeInst> MachLabelFixup<I> {
1796 fn deadline(&self) -> CodeOffset {
1797 self.offset.saturating_add(self.kind.max_pos_range())
1798 }
1799}
1800
1801impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
1802 fn eq(&self, other: &Self) -> bool {
1803 self.deadline() == other.deadline()
1804 }
1805}
1806
1807impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
1808
1809impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
1810 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1811 Some(self.cmp(other))
1812 }
1813}
1814
1815impl<I: VCodeInst> Ord for MachLabelFixup<I> {
1816 fn cmp(&self, other: &Self) -> Ordering {
1817 other.deadline().cmp(&self.deadline())
1818 }
1819}
1820
1821/// A relocation resulting from a compilation.
1822#[derive(Clone, Debug, PartialEq)]
1823#[cfg_attr(
1824 feature = "enable-serde",
1825 derive(serde_derive::Serialize, serde_derive::Deserialize)
1826)]
1827pub struct MachRelocBase<T> {
1828 /// The offset at which the relocation applies, *relative to the
1829 /// containing section*.
1830 pub offset: CodeOffset,
1831 /// The kind of relocation.
1832 pub kind: Reloc,
1833 /// The external symbol / name to which this relocation refers.
1834 pub target: T,
1835 /// The addend to add to the symbol value.
1836 pub addend: i64,
1837}
1838
1839type MachReloc = MachRelocBase<RelocTarget>;
1840
1841/// A relocation resulting from a compilation.
1842pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
1843
1844/// A Relocation target
1845#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1846pub enum RelocTarget {
1847 /// Points to an [ExternalName] outside the current function.
1848 ExternalName(ExternalName),
1849 /// Points to a [MachLabel] inside this function.
1850 /// This is different from [MachLabelFixup] in that both the relocation and the
1851 /// label will be emitted and are only resolved at link time.
1852 ///
1853 /// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
1854 Label(MachLabel),
1855}
1856
1857impl From<ExternalName> for RelocTarget {
1858 fn from(name: ExternalName) -> Self {
1859 Self::ExternalName(name)
1860 }
1861}
1862
1863impl From<MachLabel> for RelocTarget {
1864 fn from(label: MachLabel) -> Self {
1865 Self::Label(label)
1866 }
1867}
1868
1869/// A Relocation target
1870#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1871#[cfg_attr(
1872 feature = "enable-serde",
1873 derive(serde_derive::Serialize, serde_derive::Deserialize)
1874)]
1875pub enum FinalizedRelocTarget {
1876 /// Points to an [ExternalName] outside the current function.
1877 ExternalName(ExternalName),
1878 /// Points to a [CodeOffset] from the start of the current function.
1879 Func(CodeOffset),
1880}
1881
1882impl FinalizedRelocTarget {
1883 /// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
1884 /// output.
1885 pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
1886 match self {
1887 FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
1888 FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
1889 }
1890 }
1891}
1892
1893/// A trap record resulting from a compilation.
1894#[derive(Clone, Debug, PartialEq)]
1895#[cfg_attr(
1896 feature = "enable-serde",
1897 derive(serde_derive::Serialize, serde_derive::Deserialize)
1898)]
1899pub struct MachTrap {
1900 /// The offset at which the trap instruction occurs, *relative to the
1901 /// containing section*.
1902 pub offset: CodeOffset,
1903 /// The trap code.
1904 pub code: TrapCode,
1905}
1906
1907/// A call site record resulting from a compilation.
1908#[derive(Clone, Debug, PartialEq)]
1909#[cfg_attr(
1910 feature = "enable-serde",
1911 derive(serde_derive::Serialize, serde_derive::Deserialize)
1912)]
1913pub struct MachCallSite {
1914 /// The offset of the call's return address, *relative to the containing section*.
1915 pub ret_addr: CodeOffset,
1916}
1917
1918/// A source-location mapping resulting from a compilation.
1919#[derive(PartialEq, Debug, Clone)]
1920#[cfg_attr(
1921 feature = "enable-serde",
1922 derive(serde_derive::Serialize, serde_derive::Deserialize)
1923)]
1924pub struct MachSrcLoc<T: CompilePhase> {
1925 /// The start of the region of code corresponding to a source location.
1926 /// This is relative to the start of the function, not to the start of the
1927 /// section.
1928 pub start: CodeOffset,
1929 /// The end of the region of code corresponding to a source location.
1930 /// This is relative to the start of the section, not to the start of the
1931 /// section.
1932 pub end: CodeOffset,
1933 /// The source location.
1934 pub loc: T::SourceLocType,
1935}
1936
1937impl MachSrcLoc<Stencil> {
1938 fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
1939 MachSrcLoc {
1940 start: self.start,
1941 end: self.end,
1942 loc: self.loc.expand(base_srcloc),
1943 }
1944 }
1945}
1946
1947/// Record of branch instruction in the buffer, to facilitate editing.
1948#[derive(Clone, Debug)]
1949struct MachBranch {
1950 start: CodeOffset,
1951 end: CodeOffset,
1952 target: MachLabel,
1953 fixup: usize,
1954 inverted: Option<SmallVec<[u8; 8]>>,
1955 /// All labels pointing to the start of this branch. For correctness, this
1956 /// *must* be complete (i.e., must contain all labels whose resolved offsets
1957 /// are at the start of this branch): we rely on being able to redirect all
1958 /// labels that could jump to this branch before removing it, if it is
1959 /// otherwise unreachable.
1960 labels_at_this_branch: SmallVec<[MachLabel; 4]>,
1961}
1962
1963impl MachBranch {
1964 fn is_cond(&self) -> bool {
1965 self.inverted.is_some()
1966 }
1967 fn is_uncond(&self) -> bool {
1968 self.inverted.is_none()
1969 }
1970}
1971
1972/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
1973///
1974/// Note that `MachBuffer` was primarily written for intra-function references
1975/// of jumps between basic blocks, but it's also quite usable for entire text
1976/// sections and resolving references between functions themselves. This
1977/// builder interprets "blocks" as labeled functions for the purposes of
1978/// resolving labels internally in the buffer.
1979pub struct MachTextSectionBuilder<I: VCodeInst> {
1980 buf: MachBuffer<I>,
1981 next_func: usize,
1982 force_veneers: ForceVeneers,
1983}
1984
1985impl<I: VCodeInst> MachTextSectionBuilder<I> {
1986 /// Creates a new text section builder which will have `num_funcs` functions
1987 /// pushed into it.
1988 pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
1989 let mut buf = MachBuffer::new();
1990 buf.reserve_labels_for_blocks(num_funcs);
1991 MachTextSectionBuilder {
1992 buf,
1993 next_func: 0,
1994 force_veneers: ForceVeneers::No,
1995 }
1996 }
1997}
1998
1999impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
2000 fn append(
2001 &mut self,
2002 labeled: bool,
2003 func: &[u8],
2004 align: u32,
2005 ctrl_plane: &mut ControlPlane,
2006 ) -> u64 {
2007 // Conditionally emit an island if it's necessary to resolve jumps
2008 // between functions which are too far away.
2009 let size = func.len() as u32;
2010 if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
2011 self.buf
2012 .emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
2013 }
2014
2015 self.buf.align_to(align);
2016 let pos = self.buf.cur_offset();
2017 if labeled {
2018 self.buf.bind_label(
2019 MachLabel::from_block(BlockIndex::new(self.next_func)),
2020 ctrl_plane,
2021 );
2022 self.next_func += 1;
2023 }
2024 self.buf.put_data(func);
2025 u64::from(pos)
2026 }
2027
2028 fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
2029 crate::trace!(
2030 "Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
2031 );
2032 let label = MachLabel::from_block(BlockIndex::new(target));
2033 let offset = u32::try_from(offset).unwrap();
2034 match I::LabelUse::from_reloc(reloc, addend) {
2035 Some(label_use) => {
2036 self.buf.use_label_at_offset(offset, label, label_use);
2037 true
2038 }
2039 None => false,
2040 }
2041 }
2042
2043 fn force_veneers(&mut self) {
2044 self.force_veneers = ForceVeneers::Yes;
2045 }
2046
2047 fn write(&mut self, offset: u64, data: &[u8]) {
2048 self.buf.data[offset.try_into().unwrap()..][..data.len()].copy_from_slice(data);
2049 }
2050
2051 fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
2052 // Double-check all functions were pushed.
2053 assert_eq!(self.next_func, self.buf.label_offsets.len());
2054
2055 // Finish up any veneers, if necessary.
2056 self.buf
2057 .finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
2058
2059 // We don't need the data any more, so return it to the caller.
2060 mem::take(&mut self.buf.data).into_vec()
2061 }
2062}
2063
2064// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
2065#[cfg(all(test, feature = "arm64"))]
2066mod test {
2067 use cranelift_entity::EntityRef as _;
2068
2069 use super::*;
2070 use crate::ir::UserExternalNameRef;
2071 use crate::isa::aarch64::inst::{xreg, OperandSize};
2072 use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
2073 use crate::machinst::{MachInstEmit, MachInstEmitState};
2074 use crate::settings;
2075
2076 fn label(n: u32) -> MachLabel {
2077 MachLabel::from_block(BlockIndex::new(n as usize))
2078 }
2079 fn target(n: u32) -> BranchTarget {
2080 BranchTarget::Label(label(n))
2081 }
2082
2083 #[test]
2084 fn test_elide_jump_to_next() {
2085 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2086 let mut buf = MachBuffer::new();
2087 let mut state = <Inst as MachInstEmit>::State::default();
2088 let constants = Default::default();
2089
2090 buf.reserve_labels_for_blocks(2);
2091 buf.bind_label(label(0), state.ctrl_plane_mut());
2092 let inst = Inst::Jump { dest: target(1) };
2093 inst.emit(&mut buf, &info, &mut state);
2094 buf.bind_label(label(1), state.ctrl_plane_mut());
2095 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2096 assert_eq!(0, buf.total_size());
2097 }
2098
2099 #[test]
2100 fn test_elide_trivial_jump_blocks() {
2101 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2102 let mut buf = MachBuffer::new();
2103 let mut state = <Inst as MachInstEmit>::State::default();
2104 let constants = Default::default();
2105
2106 buf.reserve_labels_for_blocks(4);
2107
2108 buf.bind_label(label(0), state.ctrl_plane_mut());
2109 let inst = Inst::CondBr {
2110 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2111 taken: target(1),
2112 not_taken: target(2),
2113 };
2114 inst.emit(&mut buf, &info, &mut state);
2115
2116 buf.bind_label(label(1), state.ctrl_plane_mut());
2117 let inst = Inst::Jump { dest: target(3) };
2118 inst.emit(&mut buf, &info, &mut state);
2119
2120 buf.bind_label(label(2), state.ctrl_plane_mut());
2121 let inst = Inst::Jump { dest: target(3) };
2122 inst.emit(&mut buf, &info, &mut state);
2123
2124 buf.bind_label(label(3), state.ctrl_plane_mut());
2125
2126 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2127 assert_eq!(0, buf.total_size());
2128 }
2129
2130 #[test]
2131 fn test_flip_cond() {
2132 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2133 let mut buf = MachBuffer::new();
2134 let mut state = <Inst as MachInstEmit>::State::default();
2135 let constants = Default::default();
2136
2137 buf.reserve_labels_for_blocks(4);
2138
2139 buf.bind_label(label(0), state.ctrl_plane_mut());
2140 let inst = Inst::CondBr {
2141 kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2142 taken: target(1),
2143 not_taken: target(2),
2144 };
2145 inst.emit(&mut buf, &info, &mut state);
2146
2147 buf.bind_label(label(1), state.ctrl_plane_mut());
2148 let inst = Inst::Nop4;
2149 inst.emit(&mut buf, &info, &mut state);
2150
2151 buf.bind_label(label(2), state.ctrl_plane_mut());
2152 let inst = Inst::Udf {
2153 trap_code: TrapCode::STACK_OVERFLOW,
2154 };
2155 inst.emit(&mut buf, &info, &mut state);
2156
2157 buf.bind_label(label(3), state.ctrl_plane_mut());
2158
2159 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2160
2161 let mut buf2 = MachBuffer::new();
2162 let mut state = Default::default();
2163 let inst = Inst::TrapIf {
2164 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2165 trap_code: TrapCode::STACK_OVERFLOW,
2166 };
2167 inst.emit(&mut buf2, &info, &mut state);
2168 let inst = Inst::Nop4;
2169 inst.emit(&mut buf2, &info, &mut state);
2170
2171 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2172
2173 assert_eq!(buf.data, buf2.data);
2174 }
2175
2176 #[test]
2177 fn test_island() {
2178 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2179 let mut buf = MachBuffer::new();
2180 let mut state = <Inst as MachInstEmit>::State::default();
2181 let constants = Default::default();
2182
2183 buf.reserve_labels_for_blocks(4);
2184
2185 buf.bind_label(label(0), state.ctrl_plane_mut());
2186 let inst = Inst::CondBr {
2187 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2188 taken: target(2),
2189 not_taken: target(3),
2190 };
2191 inst.emit(&mut buf, &info, &mut state);
2192
2193 buf.bind_label(label(1), state.ctrl_plane_mut());
2194 while buf.cur_offset() < 2000000 {
2195 if buf.island_needed(0) {
2196 buf.emit_island(0, state.ctrl_plane_mut());
2197 }
2198 let inst = Inst::Nop4;
2199 inst.emit(&mut buf, &info, &mut state);
2200 }
2201
2202 buf.bind_label(label(2), state.ctrl_plane_mut());
2203 let inst = Inst::Nop4;
2204 inst.emit(&mut buf, &info, &mut state);
2205
2206 buf.bind_label(label(3), state.ctrl_plane_mut());
2207 let inst = Inst::Nop4;
2208 inst.emit(&mut buf, &info, &mut state);
2209
2210 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2211
2212 assert_eq!(2000000 + 8, buf.total_size());
2213
2214 let mut buf2 = MachBuffer::new();
2215 let mut state = Default::default();
2216 let inst = Inst::CondBr {
2217 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2218
2219 // This conditionally taken branch has a 19-bit constant, shifted
2220 // to the left by two, giving us a 21-bit range in total. Half of
2221 // this range positive so the we should be around 1 << 20 bytes
2222 // away for our jump target.
2223 //
2224 // There are two pending fixups by the time we reach this point,
2225 // one for this 19-bit jump and one for the unconditional 26-bit
2226 // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
2227 // veneer is 20 bytes large, which means that pessimistically
2228 // assuming we'll need two veneers. Currently each veneer is
2229 // pessimistically assumed to be the maximal size which means we
2230 // need 40 bytes of extra space, meaning that the actual island
2231 // should come 40-bytes before the deadline.
2232 taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
2233
2234 // This branch is in-range so no veneers should be needed, it should
2235 // go directly to the target.
2236 not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
2237 };
2238 inst.emit(&mut buf2, &info, &mut state);
2239
2240 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2241
2242 assert_eq!(&buf.data[0..8], &buf2.data[..]);
2243 }
2244
2245 #[test]
2246 fn test_island_backward() {
2247 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2248 let mut buf = MachBuffer::new();
2249 let mut state = <Inst as MachInstEmit>::State::default();
2250 let constants = Default::default();
2251
2252 buf.reserve_labels_for_blocks(4);
2253
2254 buf.bind_label(label(0), state.ctrl_plane_mut());
2255 let inst = Inst::Nop4;
2256 inst.emit(&mut buf, &info, &mut state);
2257
2258 buf.bind_label(label(1), state.ctrl_plane_mut());
2259 let inst = Inst::Nop4;
2260 inst.emit(&mut buf, &info, &mut state);
2261
2262 buf.bind_label(label(2), state.ctrl_plane_mut());
2263 while buf.cur_offset() < 2000000 {
2264 let inst = Inst::Nop4;
2265 inst.emit(&mut buf, &info, &mut state);
2266 }
2267
2268 buf.bind_label(label(3), state.ctrl_plane_mut());
2269 let inst = Inst::CondBr {
2270 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2271 taken: target(0),
2272 not_taken: target(1),
2273 };
2274 inst.emit(&mut buf, &info, &mut state);
2275
2276 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2277
2278 assert_eq!(2000000 + 12, buf.total_size());
2279
2280 let mut buf2 = MachBuffer::new();
2281 let mut state = Default::default();
2282 let inst = Inst::CondBr {
2283 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2284 taken: BranchTarget::ResolvedOffset(8),
2285 not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
2286 };
2287 inst.emit(&mut buf2, &info, &mut state);
2288 let inst = Inst::Jump {
2289 dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
2290 };
2291 inst.emit(&mut buf2, &info, &mut state);
2292
2293 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2294
2295 assert_eq!(&buf.data[2000000..], &buf2.data[..]);
2296 }
2297
2298 #[test]
2299 fn test_multiple_redirect() {
2300 // label0:
2301 // cbz x0, label1
2302 // b label2
2303 // label1:
2304 // b label3
2305 // label2:
2306 // nop
2307 // nop
2308 // b label0
2309 // label3:
2310 // b label4
2311 // label4:
2312 // b label5
2313 // label5:
2314 // b label7
2315 // label6:
2316 // nop
2317 // label7:
2318 // ret
2319 //
2320 // -- should become:
2321 //
2322 // label0:
2323 // cbz x0, label7
2324 // label2:
2325 // nop
2326 // nop
2327 // b label0
2328 // label6:
2329 // nop
2330 // label7:
2331 // ret
2332
2333 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2334 let mut buf = MachBuffer::new();
2335 let mut state = <Inst as MachInstEmit>::State::default();
2336 let constants = Default::default();
2337
2338 buf.reserve_labels_for_blocks(8);
2339
2340 buf.bind_label(label(0), state.ctrl_plane_mut());
2341 let inst = Inst::CondBr {
2342 kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2343 taken: target(1),
2344 not_taken: target(2),
2345 };
2346 inst.emit(&mut buf, &info, &mut state);
2347
2348 buf.bind_label(label(1), state.ctrl_plane_mut());
2349 let inst = Inst::Jump { dest: target(3) };
2350 inst.emit(&mut buf, &info, &mut state);
2351
2352 buf.bind_label(label(2), state.ctrl_plane_mut());
2353 let inst = Inst::Nop4;
2354 inst.emit(&mut buf, &info, &mut state);
2355 inst.emit(&mut buf, &info, &mut state);
2356 let inst = Inst::Jump { dest: target(0) };
2357 inst.emit(&mut buf, &info, &mut state);
2358
2359 buf.bind_label(label(3), state.ctrl_plane_mut());
2360 let inst = Inst::Jump { dest: target(4) };
2361 inst.emit(&mut buf, &info, &mut state);
2362
2363 buf.bind_label(label(4), state.ctrl_plane_mut());
2364 let inst = Inst::Jump { dest: target(5) };
2365 inst.emit(&mut buf, &info, &mut state);
2366
2367 buf.bind_label(label(5), state.ctrl_plane_mut());
2368 let inst = Inst::Jump { dest: target(7) };
2369 inst.emit(&mut buf, &info, &mut state);
2370
2371 buf.bind_label(label(6), state.ctrl_plane_mut());
2372 let inst = Inst::Nop4;
2373 inst.emit(&mut buf, &info, &mut state);
2374
2375 buf.bind_label(label(7), state.ctrl_plane_mut());
2376 let inst = Inst::Ret {};
2377 inst.emit(&mut buf, &info, &mut state);
2378
2379 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2380
2381 let golden_data = vec![
2382 0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
2383 0x1f, 0x20, 0x03, 0xd5, // nop
2384 0x1f, 0x20, 0x03, 0xd5, // nop
2385 0xfd, 0xff, 0xff, 0x17, // b 0
2386 0x1f, 0x20, 0x03, 0xd5, // nop
2387 0xc0, 0x03, 0x5f, 0xd6, // ret
2388 ];
2389
2390 assert_eq!(&golden_data[..], &buf.data[..]);
2391 }
2392
2393 #[test]
2394 fn test_handle_branch_cycle() {
2395 // label0:
2396 // b label1
2397 // label1:
2398 // b label2
2399 // label2:
2400 // b label3
2401 // label3:
2402 // b label4
2403 // label4:
2404 // b label1 // note: not label0 (to make it interesting).
2405 //
2406 // -- should become:
2407 //
2408 // label0, label1, ..., label4:
2409 // b label0
2410 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2411 let mut buf = MachBuffer::new();
2412 let mut state = <Inst as MachInstEmit>::State::default();
2413 let constants = Default::default();
2414
2415 buf.reserve_labels_for_blocks(5);
2416
2417 buf.bind_label(label(0), state.ctrl_plane_mut());
2418 let inst = Inst::Jump { dest: target(1) };
2419 inst.emit(&mut buf, &info, &mut state);
2420
2421 buf.bind_label(label(1), state.ctrl_plane_mut());
2422 let inst = Inst::Jump { dest: target(2) };
2423 inst.emit(&mut buf, &info, &mut state);
2424
2425 buf.bind_label(label(2), state.ctrl_plane_mut());
2426 let inst = Inst::Jump { dest: target(3) };
2427 inst.emit(&mut buf, &info, &mut state);
2428
2429 buf.bind_label(label(3), state.ctrl_plane_mut());
2430 let inst = Inst::Jump { dest: target(4) };
2431 inst.emit(&mut buf, &info, &mut state);
2432
2433 buf.bind_label(label(4), state.ctrl_plane_mut());
2434 let inst = Inst::Jump { dest: target(1) };
2435 inst.emit(&mut buf, &info, &mut state);
2436
2437 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2438
2439 let golden_data = vec![
2440 0x00, 0x00, 0x00, 0x14, // b 0
2441 ];
2442
2443 assert_eq!(&golden_data[..], &buf.data[..]);
2444 }
2445
2446 #[test]
2447 fn metadata_records() {
2448 let mut buf = MachBuffer::<Inst>::new();
2449 let ctrl_plane = &mut Default::default();
2450 let constants = Default::default();
2451
2452 buf.reserve_labels_for_blocks(1);
2453
2454 buf.bind_label(label(0), ctrl_plane);
2455 buf.put1(1);
2456 buf.add_trap(TrapCode::HEAP_OUT_OF_BOUNDS);
2457 buf.put1(2);
2458 buf.add_trap(TrapCode::INTEGER_OVERFLOW);
2459 buf.add_trap(TrapCode::INTEGER_DIVISION_BY_ZERO);
2460 buf.add_call_site();
2461 buf.add_reloc(
2462 Reloc::Abs4,
2463 &ExternalName::User(UserExternalNameRef::new(0)),
2464 0,
2465 );
2466 buf.put1(3);
2467 buf.add_reloc(
2468 Reloc::Abs8,
2469 &ExternalName::User(UserExternalNameRef::new(1)),
2470 1,
2471 );
2472 buf.put1(4);
2473
2474 let buf = buf.finish(&constants, ctrl_plane);
2475
2476 assert_eq!(buf.data(), &[1, 2, 3, 4]);
2477 assert_eq!(
2478 buf.traps()
2479 .iter()
2480 .map(|trap| (trap.offset, trap.code))
2481 .collect::<Vec<_>>(),
2482 vec![
2483 (1, TrapCode::HEAP_OUT_OF_BOUNDS),
2484 (2, TrapCode::INTEGER_OVERFLOW),
2485 (2, TrapCode::INTEGER_DIVISION_BY_ZERO)
2486 ]
2487 );
2488 assert_eq!(
2489 buf.call_sites()
2490 .iter()
2491 .map(|call_site| call_site.ret_addr)
2492 .collect::<Vec<_>>(),
2493 vec![2]
2494 );
2495 assert_eq!(
2496 buf.relocs()
2497 .iter()
2498 .map(|reloc| (reloc.offset, reloc.kind))
2499 .collect::<Vec<_>>(),
2500 vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
2501 );
2502 }
2503}