cranelift_codegen/machinst/
buffer.rs

1//! In-memory representation of compiled machine code, with labels and fixups to
2//! refer to those labels. Handles constant-pool island insertion and also
3//! veneer insertion for out-of-range jumps.
4//!
5//! This code exists to solve three problems:
6//!
7//! - Branch targets for forward branches are not known until later, when we
8//!   emit code in a single pass through the instruction structs.
9//!
10//! - On many architectures, address references or offsets have limited range.
11//!   For example, on AArch64, conditional branches can only target code +/- 1MB
12//!   from the branch itself.
13//!
14//! - The lowering of control flow from the CFG-with-edges produced by
15//!   [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
16//!   edge blocks when the register allocator does not need to insert any
17//!   spills/reloads/moves in edge blocks, results in many suboptimal branch
18//!   patterns. The lowering also pays no attention to block order, and so
19//!   two-target conditional forms (cond-br followed by uncond-br) can often by
20//!   avoided because one of the targets is the fallthrough. There are several
21//!   cases here where we can simplify to use fewer branches.
22//!
23//! This "buffer" implements a single-pass code emission strategy (with a later
24//! "fixup" pass, but only through recorded fixups, not all instructions). The
25//! basic idea is:
26//!
27//! - Emit branches as they are, including two-target (cond/uncond) compound
28//!   forms, but with zero offsets and optimistically assuming the target will be
29//!   in range. Record the "fixup" for later. Targets are denoted instead by
30//!   symbolic "labels" that are then bound to certain offsets in the buffer as
31//!   we emit code. (Nominally, there is a label at the start of every basic
32//!   block.)
33//!
34//! - As we do this, track the offset in the buffer at which the first label
35//!   reference "goes out of range". We call this the "deadline". If we reach the
36//!   deadline and we still have not bound the label to which an unresolved branch
37//!   refers, we have a problem!
38//!
39//! - To solve this problem, we emit "islands" full of "veneers". An island is
40//!   simply a chunk of code inserted in the middle of the code actually produced
41//!   by the emitter (e.g., vcode iterating over instruction structs). The emitter
42//!   has some awareness of this: it either asks for an island between blocks, so
43//!   it is not accidentally executed, or else it emits a branch around the island
44//!   when all other options fail (see `Inst::EmitIsland` meta-instruction).
45//!
46//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
47//!   that implements a longer-range reference to a label. The idea is that, for
48//!   example, a branch with a limited range can branch to a "veneer" instead,
49//!   which is simply a branch in a form that can use a longer-range reference. On
50//!   AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
51//!   can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
52//!   conditional branch's label reference can be fixed up with a "veneer" to
53//!   achieve a longer range.
54//!
55//! - To implement all of this, we require the backend to provide a `LabelUse`
56//!   type that implements a trait. This is nominally an enum that records one of
57//!   several kinds of references to an offset in code -- basically, a relocation
58//!   type -- and will usually correspond to different instruction formats. The
59//!   `LabelUse` implementation specifies the maximum range, how to patch in the
60//!   actual label location when known, and how to generate a veneer to extend the
61//!   range.
62//!
63//! That satisfies label references, but we still may have suboptimal branch
64//! patterns. To clean up the branches, we do a simple "peephole"-style
65//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
66//! informs the buffer of branches in the code and, in the case of conditionals,
67//! the code that would have been emitted to invert this branch's condition. We
68//! track the "latest branches": these are branches that are contiguous up to
69//! the current offset. (If any code is emitted after a branch, that branch or
70//! run of contiguous branches is no longer "latest".) The latest branches are
71//! those that we can edit by simply truncating the buffer and doing something
72//! else instead.
73//!
74//! To optimize branches, we implement several simple rules, and try to apply
75//! them to the "latest branches" when possible:
76//!
77//! - A branch with a label target, when that label is bound to the ending
78//!   offset of the branch (the fallthrough location), can be removed altogether,
79//!   because the branch would have no effect).
80//!
81//! - An unconditional branch that starts at a label location, and branches to
82//!   another label, results in a "label alias": all references to the label bound
83//!   *to* this branch instruction are instead resolved to the *target* of the
84//!   branch instruction. This effectively removes empty blocks that just
85//!   unconditionally branch to the next block. We call this "branch threading".
86//!
87//! - A conditional followed by an unconditional, when the conditional branches
88//!   to the unconditional's fallthrough, results in (i) the truncation of the
89//!   unconditional, (ii) the inversion of the condition's condition, and (iii)
90//!   replacement of the conditional's target (using the original target of the
91//!   unconditional). This is a fancy way of saying "we can flip a two-target
92//!   conditional branch's taken/not-taken targets if it works better with our
93//!   fallthrough". To make this work, the emitter actually gives the buffer
94//!   *both* forms of every conditional branch: the true form is emitted into the
95//!   buffer, and the "inverted" machine-code bytes are provided as part of the
96//!   branch-fixup metadata.
97//!
98//! - An unconditional B preceded by another unconditional P, when B's label(s) have
99//!   been redirected to target(B), can be removed entirely. This is an extension
100//!   of the branch-threading optimization, and is valid because if we know there
101//!   will be no fallthrough into this branch instruction (the prior instruction
102//!   is an unconditional jump), and if we know we have successfully redirected
103//!   all labels, then this branch instruction is unreachable. Note that this
104//!   works because the redirection happens before the label is ever resolved
105//!   (fixups happen at island emission time, at which point latest-branches are
106//!   cleared, or at the end of emission), so we are sure to catch and redirect
107//!   all possible paths to this instruction.
108//!
109//! # Branch-optimization Correctness
110//!
111//! The branch-optimization mechanism depends on a few data structures with
112//! invariants, which are always held outside the scope of top-level public
113//! methods:
114//!
115//! - The latest-branches list. Each entry describes a span of the buffer
116//!   (start/end offsets), the label target, the corresponding fixup-list entry
117//!   index, and the bytes (must be the same length) for the inverted form, if
118//!   conditional. The list of labels that are bound to the start-offset of this
119//!   branch is *complete* (if any label has a resolved offset equal to `start`
120//!   and is not an alias, it must appear in this list) and *precise* (no label
121//!   in this list can be bound to another offset). No label in this list should
122//!   be an alias.  No two branch ranges can overlap, and branches are in
123//!   ascending-offset order.
124//!
125//! - The labels-at-tail list. This contains all MachLabels that have been bound
126//!   to (whose resolved offsets are equal to) the tail offset of the buffer.
127//!   No label in this list should be an alias.
128//!
129//! - The label_offsets array, containing the bound offset of a label or
130//!   UNKNOWN. No label can be bound at an offset greater than the current
131//!   buffer tail.
132//!
133//! - The label_aliases array, containing another label to which a label is
134//!   bound or UNKNOWN. A label's resolved offset is the resolved offset
135//!   of the label it is aliased to, if this is set.
136//!
137//! We argue below, at each method, how the invariants in these data structures
138//! are maintained (grep for "Post-invariant").
139//!
140//! Given these invariants, we argue why each optimization preserves execution
141//! semantics below (grep for "Preserves execution semantics").
142//!
143//! # Avoiding Quadratic Behavior
144//!
145//! There are two cases where we've had to take some care to avoid
146//! quadratic worst-case behavior:
147//!
148//! - The "labels at this branch" list can grow unboundedly if the
149//!   code generator binds many labels at one location. If the count
150//!   gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
151//!   simply abort an optimization early in a way that is always correct
152//!   but is conservative.
153//!
154//! - The fixup list can interact with island emission to create
155//!   "quadratic island behavior". In a little more detail, one can hit
156//!   this behavior by having some pending fixups (forward label
157//!   references) with long-range label-use kinds, and some others
158//!   with shorter-range references that nonetheless still are pending
159//!   long enough to trigger island generation. In such a case, we
160//!   process the fixup list, generate veneers to extend some forward
161//!   references' ranges, but leave the other (longer-range) ones
162//!   alone. The way this was implemented put them back on a list and
163//!   resulted in quadratic behavior.
164//!
165//!   To avoid this fixups are split into two lists: one "pending" list and one
166//!   final list. The pending list is kept around for handling fixups related to
167//!   branches so it can be edited/truncated. When an island is reached, which
168//!   starts processing fixups, all pending fixups are flushed into the final
169//!   list. The final list is a `BinaryHeap` which enables fixup processing to
170//!   only process those which are required during island emission, deferring
171//!   all longer-range fixups to later.
172
173use crate::binemit::{Addend, CodeOffset, Reloc};
174use crate::ir::function::FunctionParameters;
175use crate::ir::{ExternalName, RelSourceLoc, SourceLoc, TrapCode};
176use crate::isa::unwind::UnwindInst;
177use crate::machinst::{
178    BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
179};
180use crate::trace;
181use crate::{ir, MachInstEmitState};
182use crate::{timing, VCodeConstantData};
183use cranelift_control::ControlPlane;
184use cranelift_entity::{entity_impl, PrimaryMap};
185use smallvec::SmallVec;
186use std::cmp::Ordering;
187use std::collections::BinaryHeap;
188use std::mem;
189use std::string::String;
190use std::vec::Vec;
191
192#[cfg(feature = "enable-serde")]
193use serde::{Deserialize, Serialize};
194
195#[cfg(feature = "enable-serde")]
196pub trait CompilePhase {
197    type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
198    type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
199}
200
201#[cfg(not(feature = "enable-serde"))]
202pub trait CompilePhase {
203    type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
204    type SourceLocType: core::fmt::Debug + PartialEq + Clone;
205}
206
207/// Status of a compiled artifact that needs patching before being used.
208#[derive(Clone, Debug, PartialEq)]
209#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
210pub struct Stencil;
211
212/// Status of a compiled artifact ready to use.
213#[derive(Clone, Debug, PartialEq)]
214pub struct Final;
215
216impl CompilePhase for Stencil {
217    type MachSrcLocType = MachSrcLoc<Stencil>;
218    type SourceLocType = RelSourceLoc;
219}
220
221impl CompilePhase for Final {
222    type MachSrcLocType = MachSrcLoc<Final>;
223    type SourceLocType = SourceLoc;
224}
225
226#[derive(Clone, Copy, Debug, PartialEq, Eq)]
227enum ForceVeneers {
228    Yes,
229    No,
230}
231
232/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
233/// in bulk.
234///
235/// This struct uses `SmallVec`s to support small-ish function bodies without
236/// any heap allocation. As such, it will be several kilobytes large. This is
237/// likely fine as long as it is stack-allocated for function emission then
238/// thrown away; but beware if many buffer objects are retained persistently.
239pub struct MachBuffer<I: VCodeInst> {
240    /// The buffer contents, as raw bytes.
241    data: SmallVec<[u8; 1024]>,
242    /// The required alignment of this buffer.
243    min_alignment: u32,
244    /// Any relocations referring to this code. Note that only *external*
245    /// relocations are tracked here; references to labels within the buffer are
246    /// resolved before emission.
247    relocs: SmallVec<[MachReloc; 16]>,
248    /// Any trap records referring to this code.
249    traps: SmallVec<[MachTrap; 16]>,
250    /// Any call site records referring to this code.
251    call_sites: SmallVec<[MachCallSite; 16]>,
252    /// Any source location mappings referring to this code.
253    srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
254    /// Any user stack maps for this code.
255    ///
256    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
257    /// by code offset, and each stack map covers `span` bytes on the stack.
258    user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
259    /// Any unwind info at a given location.
260    unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
261    /// The current source location in progress (after `start_srcloc()` and
262    /// before `end_srcloc()`).  This is a (start_offset, src_loc) tuple.
263    cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
264    /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
265    label_offsets: SmallVec<[CodeOffset; 16]>,
266    /// Label aliases: when one label points to an unconditional jump, and that
267    /// jump points to another label, we can redirect references to the first
268    /// label immediately to the second.
269    ///
270    /// Invariant: we don't have label-alias cycles. We ensure this by,
271    /// before setting label A to alias label B, resolving B's alias
272    /// target (iteratively until a non-aliased label); if B is already
273    /// aliased to A, then we cannot alias A back to B.
274    label_aliases: SmallVec<[MachLabel; 16]>,
275    /// Constants that must be emitted at some point.
276    pending_constants: SmallVec<[VCodeConstant; 16]>,
277    /// Byte size of all constants in `pending_constants`.
278    pending_constants_size: CodeOffset,
279    /// Traps that must be emitted at some point.
280    pending_traps: SmallVec<[MachLabelTrap; 16]>,
281    /// Fixups that haven't yet been flushed into `fixup_records` below and may
282    /// be related to branches that are chomped. These all get added to
283    /// `fixup_records` during island emission.
284    pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
285    /// The nearest upcoming deadline for entries in `pending_fixup_records`.
286    pending_fixup_deadline: CodeOffset,
287    /// Fixups that must be performed after all code is emitted.
288    fixup_records: BinaryHeap<MachLabelFixup<I>>,
289    /// Latest branches, to facilitate in-place editing for better fallthrough
290    /// behavior and empty-block removal.
291    latest_branches: SmallVec<[MachBranch; 4]>,
292    /// All labels at the current offset (emission tail). This is lazily
293    /// cleared: it is actually accurate as long as the current offset is
294    /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
295    /// be considered as empty.
296    ///
297    /// For correctness, this *must* be complete (i.e., the vector must contain
298    /// all labels whose offsets are resolved to the current tail), because we
299    /// rely on it to update labels when we truncate branches.
300    labels_at_tail: SmallVec<[MachLabel; 4]>,
301    /// The last offset at which `labels_at_tail` is valid. It is conceptually
302    /// always describing the tail of the buffer, but we do not clear
303    /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
304    /// when the offset has grown past this (`labels_at_tail_off`) point.
305    /// Always <= `cur_offset()`.
306    labels_at_tail_off: CodeOffset,
307    /// Metadata about all constants that this function has access to.
308    ///
309    /// This records the size/alignment of all constants (not the actual data)
310    /// along with the last available label generated for the constant. This map
311    /// is consulted when constants are referred to and the label assigned to a
312    /// constant may change over time as well.
313    constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
314    /// All recorded usages of constants as pairs of the constant and where the
315    /// constant needs to be placed within `self.data`. Note that the same
316    /// constant may appear in this array multiple times if it was emitted
317    /// multiple times.
318    used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
319    /// Indicates when a patchable region is currently open, to guard that it's
320    /// not possible to nest patchable regions.
321    open_patchable: bool,
322}
323
324impl MachBufferFinalized<Stencil> {
325    /// Get a finalized machine buffer by applying the function's base source location.
326    pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
327        MachBufferFinalized {
328            data: self.data,
329            relocs: self.relocs,
330            traps: self.traps,
331            call_sites: self.call_sites,
332            srclocs: self
333                .srclocs
334                .into_iter()
335                .map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
336                .collect(),
337            user_stack_maps: self.user_stack_maps,
338            unwind_info: self.unwind_info,
339            alignment: self.alignment,
340        }
341    }
342}
343
344/// A `MachBuffer` once emission is completed: holds generated code and records,
345/// without fixups. This allows the type to be independent of the backend.
346#[derive(PartialEq, Debug, Clone)]
347#[cfg_attr(
348    feature = "enable-serde",
349    derive(serde_derive::Serialize, serde_derive::Deserialize)
350)]
351pub struct MachBufferFinalized<T: CompilePhase> {
352    /// The buffer contents, as raw bytes.
353    pub(crate) data: SmallVec<[u8; 1024]>,
354    /// Any relocations referring to this code. Note that only *external*
355    /// relocations are tracked here; references to labels within the buffer are
356    /// resolved before emission.
357    pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
358    /// Any trap records referring to this code.
359    pub(crate) traps: SmallVec<[MachTrap; 16]>,
360    /// Any call site records referring to this code.
361    pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
362    /// Any source location mappings referring to this code.
363    pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
364    /// Any user stack maps for this code.
365    ///
366    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
367    /// by code offset, and each stack map covers `span` bytes on the stack.
368    pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
369    /// Any unwind info at a given location.
370    pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
371    /// The required alignment of this buffer.
372    pub alignment: u32,
373}
374
375const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
376const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
377
378/// Threshold on max length of `labels_at_this_branch` list to avoid
379/// unbounded quadratic behavior (see comment below at use-site).
380const LABEL_LIST_THRESHOLD: usize = 100;
381
382/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
383/// the point at which it is used by emitted code; the buffer records "fixups"
384/// for references to the label, and will come back and patch the code
385/// appropriately when the label's location is eventually known.
386#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
387pub struct MachLabel(u32);
388entity_impl!(MachLabel);
389
390impl MachLabel {
391    /// Get a label for a block. (The first N MachLabels are always reserved for
392    /// the N blocks in the vcode.)
393    pub fn from_block(bindex: BlockIndex) -> MachLabel {
394        MachLabel(bindex.index() as u32)
395    }
396
397    /// Creates a string representing this label, for convenience.
398    pub fn to_string(&self) -> String {
399        format!("label{}", self.0)
400    }
401}
402
403impl Default for MachLabel {
404    fn default() -> Self {
405        UNKNOWN_LABEL
406    }
407}
408
409/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
410/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
411/// the [`OpenPatchRegion`] token in the process.
412pub struct OpenPatchRegion(usize);
413
414/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
415/// of where you might want to use this is for patching instructions that mention constants that
416/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
417/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
418/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
419/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
420/// bytes, and the constants uses can be updated directly.
421pub struct PatchRegion {
422    range: std::ops::Range<usize>,
423}
424
425impl PatchRegion {
426    /// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
427    pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
428        &mut buffer.data[self.range]
429    }
430}
431
432impl<I: VCodeInst> MachBuffer<I> {
433    /// Create a new section, known to start at `start_offset` and with a size limited to
434    /// `length_limit`.
435    pub fn new() -> MachBuffer<I> {
436        MachBuffer {
437            data: SmallVec::new(),
438            min_alignment: I::function_alignment().minimum,
439            relocs: SmallVec::new(),
440            traps: SmallVec::new(),
441            call_sites: SmallVec::new(),
442            srclocs: SmallVec::new(),
443            user_stack_maps: SmallVec::new(),
444            unwind_info: SmallVec::new(),
445            cur_srcloc: None,
446            label_offsets: SmallVec::new(),
447            label_aliases: SmallVec::new(),
448            pending_constants: SmallVec::new(),
449            pending_constants_size: 0,
450            pending_traps: SmallVec::new(),
451            pending_fixup_records: SmallVec::new(),
452            pending_fixup_deadline: u32::MAX,
453            fixup_records: Default::default(),
454            latest_branches: SmallVec::new(),
455            labels_at_tail: SmallVec::new(),
456            labels_at_tail_off: 0,
457            constants: Default::default(),
458            used_constants: Default::default(),
459            open_patchable: false,
460        }
461    }
462
463    /// Current offset from start of buffer.
464    pub fn cur_offset(&self) -> CodeOffset {
465        self.data.len() as CodeOffset
466    }
467
468    /// Add a byte.
469    pub fn put1(&mut self, value: u8) {
470        self.data.push(value);
471
472        // Post-invariant: conceptual-labels_at_tail contains a complete and
473        // precise list of labels bound at `cur_offset()`. We have advanced
474        // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
475        // before, it is not anymore (and it cannot become equal, because
476        // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
477        // conceptually empty (even though it is only lazily cleared). No labels
478        // can be bound at this new offset (by invariant on `label_offsets`).
479        // Hence the invariant holds.
480    }
481
482    /// Add 2 bytes.
483    pub fn put2(&mut self, value: u16) {
484        let bytes = value.to_le_bytes();
485        self.data.extend_from_slice(&bytes[..]);
486
487        // Post-invariant: as for `put1()`.
488    }
489
490    /// Add 4 bytes.
491    pub fn put4(&mut self, value: u32) {
492        let bytes = value.to_le_bytes();
493        self.data.extend_from_slice(&bytes[..]);
494
495        // Post-invariant: as for `put1()`.
496    }
497
498    /// Add 8 bytes.
499    pub fn put8(&mut self, value: u64) {
500        let bytes = value.to_le_bytes();
501        self.data.extend_from_slice(&bytes[..]);
502
503        // Post-invariant: as for `put1()`.
504    }
505
506    /// Add a slice of bytes.
507    pub fn put_data(&mut self, data: &[u8]) {
508        self.data.extend_from_slice(data);
509
510        // Post-invariant: as for `put1()`.
511    }
512
513    /// Reserve appended space and return a mutable slice referring to it.
514    pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
515        let off = self.data.len();
516        let new_len = self.data.len() + len;
517        self.data.resize(new_len, 0);
518        &mut self.data[off..]
519
520        // Post-invariant: as for `put1()`.
521    }
522
523    /// Align up to the given alignment.
524    pub fn align_to(&mut self, align_to: CodeOffset) {
525        trace!("MachBuffer: align to {}", align_to);
526        assert!(
527            align_to.is_power_of_two(),
528            "{align_to} is not a power of two"
529        );
530        while self.cur_offset() & (align_to - 1) != 0 {
531            self.put1(0);
532        }
533
534        // Post-invariant: as for `put1()`.
535    }
536
537    /// Begin a region of patchable code. There is one requirement for the
538    /// code that is emitted: It must not introduce any instructions that
539    /// could be chomped (branches are an example of this). In other words,
540    /// you must not call [`MachBuffer::add_cond_branch`] or
541    /// [`MachBuffer::add_uncond_branch`] between calls to this method and
542    /// [`MachBuffer::end_patchable`].
543    pub fn start_patchable(&mut self) -> OpenPatchRegion {
544        assert!(!self.open_patchable, "Patchable regions may not be nested");
545        self.open_patchable = true;
546        OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
547    }
548
549    /// End a region of patchable code, yielding a [`PatchRegion`] value that
550    /// can be consumed later to produce a one-off mutable slice to the
551    /// associated region of the data buffer.
552    pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
553        // No need to assert the state of `open_patchable` here, as we take
554        // ownership of the only `OpenPatchable` value.
555        self.open_patchable = false;
556        let end = usize::try_from(self.cur_offset()).unwrap();
557        PatchRegion { range: open.0..end }
558    }
559
560    /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
561    /// offset yet.
562    pub fn get_label(&mut self) -> MachLabel {
563        let l = self.label_offsets.len() as u32;
564        self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
565        self.label_aliases.push(UNKNOWN_LABEL);
566        trace!("MachBuffer: new label -> {:?}", MachLabel(l));
567        MachLabel(l)
568
569        // Post-invariant: the only mutation is to add a new label; it has no
570        // bound offset yet, so it trivially satisfies all invariants.
571    }
572
573    /// Reserve the first N MachLabels for blocks.
574    pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
575        trace!("MachBuffer: first {} labels are for blocks", blocks);
576        debug_assert!(self.label_offsets.is_empty());
577        self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
578        self.label_aliases.resize(blocks, UNKNOWN_LABEL);
579
580        // Post-invariant: as for `get_label()`.
581    }
582
583    /// Registers metadata in this `MachBuffer` about the `constants` provided.
584    ///
585    /// This will record the size/alignment of all constants which will prepare
586    /// them for emission later on.
587    pub fn register_constants(&mut self, constants: &VCodeConstants) {
588        for (c, val) in constants.iter() {
589            self.register_constant(&c, val);
590        }
591    }
592
593    /// Similar to [`MachBuffer::register_constants`] but registers a
594    /// single constant metadata. This function is useful in
595    /// situations where not all constants are known at the time of
596    /// emission.
597    pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
598        let c2 = self.constants.push(MachBufferConstant {
599            upcoming_label: None,
600            align: data.alignment(),
601            size: data.as_slice().len(),
602        });
603        assert_eq!(*constant, c2);
604    }
605
606    /// Completes constant emission by iterating over `self.used_constants` and
607    /// filling in the "holes" with the constant values provided by `constants`.
608    ///
609    /// Returns the alignment required for this entire buffer. Alignment starts
610    /// at the ISA's minimum function alignment and can be increased due to
611    /// constant requirements.
612    fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
613        let mut alignment = self.min_alignment;
614        for (constant, offset) in mem::take(&mut self.used_constants) {
615            let constant = constants.get(constant);
616            let data = constant.as_slice();
617            self.data[offset as usize..][..data.len()].copy_from_slice(data);
618            alignment = constant.alignment().max(alignment);
619        }
620        alignment
621    }
622
623    /// Returns a label that can be used to refer to the `constant` provided.
624    ///
625    /// This will automatically defer a new constant to be emitted for
626    /// `constant` if it has not been previously emitted. Note that this
627    /// function may return a different label for the same constant at
628    /// different points in time. The label is valid to use only from the
629    /// current location; the MachBuffer takes care to emit the same constant
630    /// multiple times if needed so the constant is always in range.
631    pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
632        let MachBufferConstant {
633            align,
634            size,
635            upcoming_label,
636        } = self.constants[constant];
637        if let Some(label) = upcoming_label {
638            return label;
639        }
640
641        let label = self.get_label();
642        trace!(
643            "defer constant: eventually emit {size} bytes aligned \
644             to {align} at label {label:?}",
645        );
646        self.pending_constants.push(constant);
647        self.pending_constants_size += size as u32;
648        self.constants[constant].upcoming_label = Some(label);
649        label
650    }
651
652    /// Bind a label to the current offset. A label can only be bound once.
653    pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
654        trace!(
655            "MachBuffer: bind label {:?} at offset {}",
656            label,
657            self.cur_offset()
658        );
659        debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
660        debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
661        let offset = self.cur_offset();
662        self.label_offsets[label.0 as usize] = offset;
663        self.lazily_clear_labels_at_tail();
664        self.labels_at_tail.push(label);
665
666        // Invariants hold: bound offset of label is <= cur_offset (in fact it
667        // is equal). If the `labels_at_tail` list was complete and precise
668        // before, it is still, because we have bound this label to the current
669        // offset and added it to the list (which contains all labels at the
670        // current offset).
671
672        self.optimize_branches(ctrl_plane);
673
674        // Post-invariant: by `optimize_branches()` (see argument there).
675    }
676
677    /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
678    /// offset that it applies to.
679    fn lazily_clear_labels_at_tail(&mut self) {
680        let offset = self.cur_offset();
681        if offset > self.labels_at_tail_off {
682            self.labels_at_tail_off = offset;
683            self.labels_at_tail.clear();
684        }
685
686        // Post-invariant: either labels_at_tail_off was at cur_offset, and
687        // state is untouched, or was less than cur_offset, in which case the
688        // labels_at_tail list was conceptually empty, and is now actually
689        // empty.
690    }
691
692    /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
693    pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
694        let mut iters = 0;
695        while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
696            label = self.label_aliases[label.0 as usize];
697            // To protect against an infinite loop (despite our assurances to
698            // ourselves that the invariants make this impossible), assert out
699            // after 1M iterations. The number of basic blocks is limited
700            // in most contexts anyway so this should be impossible to hit with
701            // a legitimate input.
702            iters += 1;
703            assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
704        }
705        self.label_offsets[label.0 as usize]
706
707        // Post-invariant: no mutations.
708    }
709
710    /// Emit a reference to the given label with the given reference type (i.e.,
711    /// branch-instruction format) at the current offset.  This is like a
712    /// relocation, but handled internally.
713    ///
714    /// This can be called before the branch is actually emitted; fixups will
715    /// not happen until an island is emitted or the buffer is finished.
716    pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
717        trace!(
718            "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
719            offset,
720            label,
721            kind
722        );
723
724        // Add the fixup, and update the worst-case island size based on a
725        // veneer for this label use.
726        let fixup = MachLabelFixup {
727            label,
728            offset,
729            kind,
730        };
731        self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
732        self.pending_fixup_records.push(fixup);
733
734        // Post-invariant: no mutations to branches/labels data structures.
735    }
736
737    /// Inform the buffer of an unconditional branch at the given offset,
738    /// targeting the given label. May be used to optimize branches.
739    /// The last added label-use must correspond to this branch.
740    /// This must be called when the current offset is equal to `start`; i.e.,
741    /// before actually emitting the branch. This implies that for a branch that
742    /// uses a label and is eligible for optimizations by the MachBuffer, the
743    /// proper sequence is:
744    ///
745    /// - Call `use_label_at_offset()` to emit the fixup record.
746    /// - Call `add_uncond_branch()` to make note of the branch.
747    /// - Emit the bytes for the branch's machine code.
748    ///
749    /// Additional requirement: no labels may be bound between `start` and `end`
750    /// (exclusive on both ends).
751    pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
752        debug_assert!(
753            !self.open_patchable,
754            "Branch instruction inserted within a patchable region"
755        );
756        assert!(self.cur_offset() == start);
757        debug_assert!(end > start);
758        assert!(!self.pending_fixup_records.is_empty());
759        let fixup = self.pending_fixup_records.len() - 1;
760        self.lazily_clear_labels_at_tail();
761        self.latest_branches.push(MachBranch {
762            start,
763            end,
764            target,
765            fixup,
766            inverted: None,
767            labels_at_this_branch: self.labels_at_tail.clone(),
768        });
769
770        // Post-invariant: we asserted branch start is current tail; the list of
771        // labels at branch is cloned from list of labels at current tail.
772    }
773
774    /// Inform the buffer of a conditional branch at the given offset,
775    /// targeting the given label. May be used to optimize branches.
776    /// The last added label-use must correspond to this branch.
777    ///
778    /// Additional requirement: no labels may be bound between `start` and `end`
779    /// (exclusive on both ends).
780    pub fn add_cond_branch(
781        &mut self,
782        start: CodeOffset,
783        end: CodeOffset,
784        target: MachLabel,
785        inverted: &[u8],
786    ) {
787        debug_assert!(
788            !self.open_patchable,
789            "Branch instruction inserted within a patchable region"
790        );
791        assert!(self.cur_offset() == start);
792        debug_assert!(end > start);
793        assert!(!self.pending_fixup_records.is_empty());
794        debug_assert!(
795            inverted.len() == (end - start) as usize,
796            "branch length = {}, but inverted length = {}",
797            end - start,
798            inverted.len()
799        );
800        let fixup = self.pending_fixup_records.len() - 1;
801        let inverted = Some(SmallVec::from(inverted));
802        self.lazily_clear_labels_at_tail();
803        self.latest_branches.push(MachBranch {
804            start,
805            end,
806            target,
807            fixup,
808            inverted,
809            labels_at_this_branch: self.labels_at_tail.clone(),
810        });
811
812        // Post-invariant: we asserted branch start is current tail; labels at
813        // branch list is cloned from list of labels at current tail.
814    }
815
816    fn truncate_last_branch(&mut self) {
817        debug_assert!(
818            !self.open_patchable,
819            "Branch instruction truncated within a patchable region"
820        );
821
822        self.lazily_clear_labels_at_tail();
823        // Invariants hold at this point.
824
825        let b = self.latest_branches.pop().unwrap();
826        assert!(b.end == self.cur_offset());
827
828        // State:
829        //    [PRE CODE]
830        //  Offset b.start, b.labels_at_this_branch:
831        //    [BRANCH CODE]
832        //  cur_off, self.labels_at_tail -->
833        //    (end of buffer)
834        self.data.truncate(b.start as usize);
835        self.pending_fixup_records.truncate(b.fixup);
836        while let Some(last_srcloc) = self.srclocs.last_mut() {
837            if last_srcloc.end <= b.start {
838                break;
839            }
840            if last_srcloc.start < b.start {
841                last_srcloc.end = b.start;
842                break;
843            }
844            self.srclocs.pop();
845        }
846        // State:
847        //    [PRE CODE]
848        //  cur_off, Offset b.start, b.labels_at_this_branch:
849        //    (end of buffer)
850        //
851        //  self.labels_at_tail -->  (past end of buffer)
852        let cur_off = self.cur_offset();
853        self.labels_at_tail_off = cur_off;
854        // State:
855        //    [PRE CODE]
856        //  cur_off, Offset b.start, b.labels_at_this_branch,
857        //  self.labels_at_tail:
858        //    (end of buffer)
859        //
860        // resolve_label_offset(l) for l in labels_at_tail:
861        //    (past end of buffer)
862
863        trace!(
864            "truncate_last_branch: truncated {:?}; off now {}",
865            b,
866            cur_off
867        );
868
869        // Fix up resolved label offsets for labels at tail.
870        for &l in &self.labels_at_tail {
871            self.label_offsets[l.0 as usize] = cur_off;
872        }
873        // Old labels_at_this_branch are now at cur_off.
874        self.labels_at_tail
875            .extend(b.labels_at_this_branch.into_iter());
876
877        // Post-invariant: this operation is defined to truncate the buffer,
878        // which moves cur_off backward, and to move labels at the end of the
879        // buffer back to the start-of-branch offset.
880        //
881        // latest_branches satisfies all invariants:
882        // - it has no branches past the end of the buffer (branches are in
883        //   order, we removed the last one, and we truncated the buffer to just
884        //   before the start of that branch)
885        // - no labels were moved to lower offsets than the (new) cur_off, so
886        //   the labels_at_this_branch list for any other branch need not change.
887        //
888        // labels_at_tail satisfies all invariants:
889        // - all labels that were at the tail after the truncated branch are
890        //   moved backward to just before the branch, which becomes the new tail;
891        //   thus every element in the list should remain (ensured by `.extend()`
892        //   above).
893        // - all labels that refer to the new tail, which is the start-offset of
894        //   the truncated branch, must be present. The `labels_at_this_branch`
895        //   list in the truncated branch's record is a complete and precise list
896        //   of exactly these labels; we append these to labels_at_tail.
897        // - labels_at_tail_off is at cur_off after truncation occurs, so the
898        //   list is valid (not to be lazily cleared).
899        //
900        // The stated operation was performed:
901        // - For each label at the end of the buffer prior to this method, it
902        //   now resolves to the new (truncated) end of the buffer: it must have
903        //   been in `labels_at_tail` (this list is precise and complete, and
904        //   the tail was at the end of the truncated branch on entry), and we
905        //   iterate over this list and set `label_offsets` to the new tail.
906        //   None of these labels could have been an alias (by invariant), so
907        //   `label_offsets` is authoritative for each.
908        // - No other labels will be past the end of the buffer, because of the
909        //   requirement that no labels be bound to the middle of branch ranges
910        //   (see comments to `add_{cond,uncond}_branch()`).
911        // - The buffer is truncated to just before the last branch, and the
912        //   fixup record referring to that last branch is removed.
913    }
914
915    /// Performs various optimizations on branches pointing at the current label.
916    pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
917        if ctrl_plane.get_decision() {
918            return;
919        }
920
921        self.lazily_clear_labels_at_tail();
922        // Invariants valid at this point.
923
924        trace!(
925            "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
926            self.latest_branches,
927            self.labels_at_tail,
928            self.pending_fixup_records
929        );
930
931        // We continue to munch on branches at the tail of the buffer until no
932        // more rules apply. Note that the loop only continues if a branch is
933        // actually truncated (or if labels are redirected away from a branch),
934        // so this always makes progress.
935        while let Some(b) = self.latest_branches.last() {
936            let cur_off = self.cur_offset();
937            trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
938            // If there has been any code emission since the end of the last branch or
939            // label definition, then there's nothing we can edit (because we
940            // don't move code once placed, only back up and overwrite), so
941            // clear the records and finish.
942            if b.end < cur_off {
943                break;
944            }
945
946            // If the "labels at this branch" list on this branch is
947            // longer than a threshold, don't do any simplification,
948            // and let the branch remain to separate those labels from
949            // the current tail. This avoids quadratic behavior (see
950            // #3468): otherwise, if a long string of "goto next;
951            // next:" patterns are emitted, all of the labels will
952            // coalesce into a long list of aliases for the current
953            // buffer tail. We must track all aliases of the current
954            // tail for correctness, but we are also allowed to skip
955            // optimization (removal) of any branch, so we take the
956            // escape hatch here and let it stand. In effect this
957            // "spreads" the many thousands of labels in the
958            // pathological case among an actual (harmless but
959            // suboptimal) instruction once per N labels.
960            if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
961                break;
962            }
963
964            // Invariant: we are looking at a branch that ends at the tail of
965            // the buffer.
966
967            // For any branch, conditional or unconditional:
968            // - If the target is a label at the current offset, then remove
969            //   the conditional branch, and reset all labels that targeted
970            //   the current offset (end of branch) to the truncated
971            //   end-of-code.
972            //
973            // Preserves execution semantics: a branch to its own fallthrough
974            // address is equivalent to a no-op; in both cases, nextPC is the
975            // fallthrough.
976            if self.resolve_label_offset(b.target) == cur_off {
977                trace!("branch with target == cur off; truncating");
978                self.truncate_last_branch();
979                continue;
980            }
981
982            // If latest is an unconditional branch:
983            //
984            // - If the branch's target is not its own start address, then for
985            //   each label at the start of branch, make the label an alias of the
986            //   branch target, and remove the label from the "labels at this
987            //   branch" list.
988            //
989            //   - Preserves execution semantics: an unconditional branch's
990            //     only effect is to set PC to a new PC; this change simply
991            //     collapses one step in the step-semantics.
992            //
993            //   - Post-invariant: the labels that were bound to the start of
994            //     this branch become aliases, so they must not be present in any
995            //     labels-at-this-branch list or the labels-at-tail list. The
996            //     labels are removed form the latest-branch record's
997            //     labels-at-this-branch list, and are never placed in the
998            //     labels-at-tail list. Furthermore, it is correct that they are
999            //     not in either list, because they are now aliases, and labels
1000            //     that are aliases remain aliases forever.
1001            //
1002            // - If there is a prior unconditional branch that ends just before
1003            //   this one begins, and this branch has no labels bound to its
1004            //   start, then we can truncate this branch, because it is entirely
1005            //   unreachable (we have redirected all labels that make it
1006            //   reachable otherwise). Do so and continue around the loop.
1007            //
1008            //   - Preserves execution semantics: the branch is unreachable,
1009            //     because execution can only flow into an instruction from the
1010            //     prior instruction's fallthrough or from a branch bound to that
1011            //     instruction's start offset. Unconditional branches have no
1012            //     fallthrough, so if the prior instruction is an unconditional
1013            //     branch, no fallthrough entry can happen. The
1014            //     labels-at-this-branch list is complete (by invariant), so if it
1015            //     is empty, then the instruction is entirely unreachable. Thus,
1016            //     it can be removed.
1017            //
1018            //   - Post-invariant: ensured by truncate_last_branch().
1019            //
1020            // - If there is a prior conditional branch whose target label
1021            //   resolves to the current offset (branches around the
1022            //   unconditional branch), then remove the unconditional branch,
1023            //   and make the target of the unconditional the target of the
1024            //   conditional instead.
1025            //
1026            //   - Preserves execution semantics: previously we had:
1027            //
1028            //         L1:
1029            //            cond_br L2
1030            //            br L3
1031            //         L2:
1032            //            (end of buffer)
1033            //
1034            //     by removing the last branch, we have:
1035            //
1036            //         L1:
1037            //            cond_br L2
1038            //         L2:
1039            //            (end of buffer)
1040            //
1041            //     we then fix up the records for the conditional branch to
1042            //     have:
1043            //
1044            //         L1:
1045            //           cond_br.inverted L3
1046            //         L2:
1047            //
1048            //     In the original code, control flow reaches L2 when the
1049            //     conditional branch's predicate is true, and L3 otherwise. In
1050            //     the optimized code, the same is true.
1051            //
1052            //   - Post-invariant: all edits to latest_branches and
1053            //     labels_at_tail are performed by `truncate_last_branch()`,
1054            //     which maintains the invariants at each step.
1055
1056            if b.is_uncond() {
1057                // Set any label equal to current branch's start as an alias of
1058                // the branch's target, if the target is not the branch itself
1059                // (i.e., an infinite loop).
1060                //
1061                // We cannot perform this aliasing if the target of this branch
1062                // ultimately aliases back here; if so, we need to keep this
1063                // branch, so break out of this loop entirely (and clear the
1064                // latest-branches list below).
1065                //
1066                // Note that this check is what prevents cycles from forming in
1067                // `self.label_aliases`. To see why, consider an arbitrary start
1068                // state:
1069                //
1070                // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
1071                // Ln, which is not aliased.
1072                //
1073                // We would create a cycle if we assigned label_aliases[Ln]
1074                // = L1.  Note that the below assignment is the only write
1075                // to label_aliases.
1076                //
1077                // By our other invariants, we have that Ln (`l` below)
1078                // resolves to the offset `b.start`, because it is in the
1079                // set `b.labels_at_this_branch`.
1080                //
1081                // If L1 were already aliased, through some arbitrarily deep
1082                // chain, to Ln, then it must also resolve to this offset
1083                // `b.start`.
1084                //
1085                // By checking the resolution of `L1` against this offset,
1086                // and aborting this branch-simplification if they are
1087                // equal, we prevent the below assignment from ever creating
1088                // a cycle.
1089                if self.resolve_label_offset(b.target) != b.start {
1090                    let redirected = b.labels_at_this_branch.len();
1091                    for &l in &b.labels_at_this_branch {
1092                        trace!(
1093                            " -> label at start of branch {:?} redirected to target {:?}",
1094                            l,
1095                            b.target
1096                        );
1097                        self.label_aliases[l.0 as usize] = b.target;
1098                        // NOTE: we continue to ensure the invariant that labels
1099                        // pointing to tail of buffer are in `labels_at_tail`
1100                        // because we already ensured above that the last branch
1101                        // cannot have a target of `cur_off`; so we never have
1102                        // to put the label into `labels_at_tail` when moving it
1103                        // here.
1104                    }
1105                    // Maintain invariant: all branches have been redirected
1106                    // and are no longer pointing at the start of this branch.
1107                    let mut_b = self.latest_branches.last_mut().unwrap();
1108                    mut_b.labels_at_this_branch.clear();
1109
1110                    if redirected > 0 {
1111                        trace!(" -> after label redirects, restarting loop");
1112                        continue;
1113                    }
1114                } else {
1115                    break;
1116                }
1117
1118                let b = self.latest_branches.last().unwrap();
1119
1120                // Examine any immediately preceding branch.
1121                if self.latest_branches.len() > 1 {
1122                    let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
1123                    trace!(" -> more than one branch; prev_b = {:?}", prev_b);
1124                    // This uncond is immediately after another uncond; we
1125                    // should have already redirected labels to this uncond away
1126                    // (but check to be sure); so we can truncate this uncond.
1127                    if prev_b.is_uncond()
1128                        && prev_b.end == b.start
1129                        && b.labels_at_this_branch.is_empty()
1130                    {
1131                        trace!(" -> uncond follows another uncond; truncating");
1132                        self.truncate_last_branch();
1133                        continue;
1134                    }
1135
1136                    // This uncond is immediately after a conditional, and the
1137                    // conditional's target is the end of this uncond, and we've
1138                    // already redirected labels to this uncond away; so we can
1139                    // truncate this uncond, flip the sense of the conditional, and
1140                    // set the conditional's target (in `latest_branches` and in
1141                    // `fixup_records`) to the uncond's target.
1142                    if prev_b.is_cond()
1143                        && prev_b.end == b.start
1144                        && self.resolve_label_offset(prev_b.target) == cur_off
1145                    {
1146                        trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
1147                        // Save the target of the uncond (this becomes the
1148                        // target of the cond), and truncate the uncond.
1149                        let target = b.target;
1150                        let data = prev_b.inverted.clone().unwrap();
1151                        self.truncate_last_branch();
1152
1153                        // Mutate the code and cond branch.
1154                        let off_before_edit = self.cur_offset();
1155                        let prev_b = self.latest_branches.last_mut().unwrap();
1156                        let not_inverted = SmallVec::from(
1157                            &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
1158                        );
1159
1160                        // Low-level edit: replaces bytes of branch with
1161                        // inverted form. cur_off remains the same afterward, so
1162                        // we do not need to modify label data structures.
1163                        self.data.truncate(prev_b.start as usize);
1164                        self.data.extend_from_slice(&data[..]);
1165
1166                        // Save the original code as the inversion of the
1167                        // inverted branch, in case we later edit this branch
1168                        // again.
1169                        prev_b.inverted = Some(not_inverted);
1170                        self.pending_fixup_records[prev_b.fixup].label = target;
1171                        trace!(" -> reassigning target of condbr to {:?}", target);
1172                        prev_b.target = target;
1173                        debug_assert_eq!(off_before_edit, self.cur_offset());
1174                        continue;
1175                    }
1176                }
1177            }
1178
1179            // If we couldn't do anything with the last branch, then break.
1180            break;
1181        }
1182
1183        self.purge_latest_branches();
1184
1185        trace!(
1186            "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
1187            self.latest_branches,
1188            self.labels_at_tail,
1189            self.pending_fixup_records
1190        );
1191    }
1192
1193    fn purge_latest_branches(&mut self) {
1194        // All of our branch simplification rules work only if a branch ends at
1195        // the tail of the buffer, with no following code; and branches are in
1196        // order in latest_branches; so if the last entry ends prior to
1197        // cur_offset, then clear all entries.
1198        let cur_off = self.cur_offset();
1199        if let Some(l) = self.latest_branches.last() {
1200            if l.end < cur_off {
1201                trace!("purge_latest_branches: removing branch {:?}", l);
1202                self.latest_branches.clear();
1203            }
1204        }
1205
1206        // Post-invariant: no invariant requires any branch to appear in
1207        // `latest_branches`; it is always optional. The list-clear above thus
1208        // preserves all semantics.
1209    }
1210
1211    /// Emit a trap at some point in the future with the specified code and
1212    /// stack map.
1213    ///
1214    /// This function returns a [`MachLabel`] which will be the future address
1215    /// of the trap. Jumps should refer to this label, likely by using the
1216    /// [`MachBuffer::use_label_at_offset`] method, to get a relocation
1217    /// patched in once the address of the trap is known.
1218    ///
1219    /// This will batch all traps into the end of the function.
1220    pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
1221        let label = self.get_label();
1222        self.pending_traps.push(MachLabelTrap {
1223            label,
1224            code,
1225            loc: self.cur_srcloc.map(|(_start, loc)| loc),
1226        });
1227        label
1228    }
1229
1230    /// Is an island needed within the next N bytes?
1231    pub fn island_needed(&self, distance: CodeOffset) -> bool {
1232        let deadline = match self.fixup_records.peek() {
1233            Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
1234            None => self.pending_fixup_deadline,
1235        };
1236        deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
1237    }
1238
1239    /// Returns the maximal offset that islands can reach if `distance` more
1240    /// bytes are appended.
1241    ///
1242    /// This is used to determine if veneers need insertions since jumps that
1243    /// can't reach past this point must get a veneer of some form.
1244    fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
1245        // Assume that all fixups will require veneers and that the veneers are
1246        // the worst-case size for each platform. This is an over-generalization
1247        // to avoid iterating over the `fixup_records` list or maintaining
1248        // information about it as we go along.
1249        let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
1250            as u32)
1251            * (I::LabelUse::worst_case_veneer_size())
1252            + self.pending_constants_size
1253            + (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
1254        self.cur_offset()
1255            .saturating_add(distance)
1256            .saturating_add(island_worst_case_size)
1257    }
1258
1259    /// Emit all pending constants and required pending veneers.
1260    ///
1261    /// Should only be called if `island_needed()` returns true, i.e., if we
1262    /// actually reach a deadline. It's not necessarily a problem to do so
1263    /// otherwise but it may result in unnecessary work during emission.
1264    pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
1265        self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
1266    }
1267
1268    /// Same as `emit_island`, but an internal API with a `force_veneers`
1269    /// argument to force all veneers to always get emitted for debugging.
1270    fn emit_island_maybe_forced(
1271        &mut self,
1272        force_veneers: ForceVeneers,
1273        distance: CodeOffset,
1274        ctrl_plane: &mut ControlPlane,
1275    ) {
1276        // We're going to purge fixups, so no latest-branch editing can happen
1277        // anymore.
1278        self.latest_branches.clear();
1279
1280        // End the current location tracking since anything emitted during this
1281        // function shouldn't be attributed to whatever the current source
1282        // location is.
1283        //
1284        // Note that the current source location, if it's set right now, will be
1285        // restored at the end of this island emission.
1286        let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
1287        if cur_loc.is_some() {
1288            self.end_srcloc();
1289        }
1290
1291        let forced_threshold = self.worst_case_end_of_island(distance);
1292
1293        // First flush out all traps/constants so we have more labels in case
1294        // fixups are applied against these labels.
1295        //
1296        // Note that traps are placed first since this typically happens at the
1297        // end of the function and for disassemblers we try to keep all the code
1298        // contiguously together.
1299        for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
1300            // If this trap has source information associated with it then
1301            // emit this information for the trap instruction going out now too.
1302            if let Some(loc) = loc {
1303                self.start_srcloc(loc);
1304            }
1305            self.align_to(I::LabelUse::ALIGN);
1306            self.bind_label(label, ctrl_plane);
1307            self.add_trap(code);
1308            self.put_data(I::TRAP_OPCODE);
1309            if loc.is_some() {
1310                self.end_srcloc();
1311            }
1312        }
1313
1314        for constant in mem::take(&mut self.pending_constants) {
1315            let MachBufferConstant { align, size, .. } = self.constants[constant];
1316            let label = self.constants[constant].upcoming_label.take().unwrap();
1317            self.align_to(align);
1318            self.bind_label(label, ctrl_plane);
1319            self.used_constants.push((constant, self.cur_offset()));
1320            self.get_appended_space(size);
1321        }
1322
1323        // Either handle all pending fixups because they're ready or move them
1324        // onto the `BinaryHeap` tracking all pending fixups if they aren't
1325        // ready.
1326        assert!(self.latest_branches.is_empty());
1327        for fixup in mem::take(&mut self.pending_fixup_records) {
1328            if self.should_apply_fixup(&fixup, forced_threshold) {
1329                self.handle_fixup(fixup, force_veneers, forced_threshold);
1330            } else {
1331                self.fixup_records.push(fixup);
1332            }
1333        }
1334        self.pending_fixup_deadline = u32::MAX;
1335        while let Some(fixup) = self.fixup_records.peek() {
1336            trace!("emit_island: fixup {:?}", fixup);
1337
1338            // If this fixup shouldn't be applied, that means its label isn't
1339            // defined yet and there'll be remaining space to apply a veneer if
1340            // necessary in the future after this island. In that situation
1341            // because `fixup_records` is sorted by deadline this loop can
1342            // exit.
1343            if !self.should_apply_fixup(fixup, forced_threshold) {
1344                break;
1345            }
1346
1347            let fixup = self.fixup_records.pop().unwrap();
1348            self.handle_fixup(fixup, force_veneers, forced_threshold);
1349        }
1350
1351        if let Some(loc) = cur_loc {
1352            self.start_srcloc(loc);
1353        }
1354    }
1355
1356    fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
1357        let label_offset = self.resolve_label_offset(fixup.label);
1358        label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
1359    }
1360
1361    fn handle_fixup(
1362        &mut self,
1363        fixup: MachLabelFixup<I>,
1364        force_veneers: ForceVeneers,
1365        forced_threshold: CodeOffset,
1366    ) {
1367        let MachLabelFixup {
1368            label,
1369            offset,
1370            kind,
1371        } = fixup;
1372        let start = offset as usize;
1373        let end = (offset + kind.patch_size()) as usize;
1374        let label_offset = self.resolve_label_offset(label);
1375
1376        if label_offset != UNKNOWN_LABEL_OFFSET {
1377            // If the offset of the label for this fixup is known then
1378            // we're going to do something here-and-now. We're either going
1379            // to patch the original offset because it's an in-bounds jump,
1380            // or we're going to generate a veneer, patch the fixup to jump
1381            // to the veneer, and then keep going.
1382            //
1383            // If the label comes after the original fixup, then we should
1384            // be guaranteed that the jump is in-bounds. Otherwise there's
1385            // a bug somewhere because this method wasn't called soon
1386            // enough. All forward-jumps are tracked and should get veneers
1387            // before their deadline comes and they're unable to jump
1388            // further.
1389            //
1390            // Otherwise if the label is before the fixup, then that's a
1391            // backwards jump. If it's past the maximum negative range
1392            // then we'll emit a veneer that to jump forward to which can
1393            // then jump backwards.
1394            let veneer_required = if label_offset >= offset {
1395                assert!((label_offset - offset) <= kind.max_pos_range());
1396                false
1397            } else {
1398                (offset - label_offset) > kind.max_neg_range()
1399            };
1400            trace!(
1401                " -> label_offset = {}, known, required = {} (pos {} neg {})",
1402                label_offset,
1403                veneer_required,
1404                kind.max_pos_range(),
1405                kind.max_neg_range()
1406            );
1407
1408            if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
1409                self.emit_veneer(label, offset, kind);
1410            } else {
1411                let slice = &mut self.data[start..end];
1412                trace!("patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}");
1413                kind.patch(slice, offset, label_offset);
1414            }
1415        } else {
1416            // If the offset of this label is not known at this time then
1417            // that means that a veneer is required because after this
1418            // island the target can't be in range of the original target.
1419            assert!(forced_threshold - offset > kind.max_pos_range());
1420            self.emit_veneer(label, offset, kind);
1421        }
1422    }
1423
1424    /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
1425    ///
1426    /// This will generate extra machine code, using `kind`, to get a
1427    /// larger-jump-kind than `kind` allows. The code at `offset` is then
1428    /// patched to jump to our new code, and then the new code is enqueued for
1429    /// a fixup to get processed at some later time.
1430    fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
1431        // If this `kind` doesn't support a veneer then that's a bug in the
1432        // backend because we need to implement support for such a veneer.
1433        assert!(
1434            kind.supports_veneer(),
1435            "jump beyond the range of {kind:?} but a veneer isn't supported",
1436        );
1437
1438        // Allocate space for a veneer in the island.
1439        self.align_to(I::LabelUse::ALIGN);
1440        let veneer_offset = self.cur_offset();
1441        trace!("making a veneer at {}", veneer_offset);
1442        let start = offset as usize;
1443        let end = (offset + kind.patch_size()) as usize;
1444        let slice = &mut self.data[start..end];
1445        // Patch the original label use to refer to the veneer.
1446        trace!(
1447            "patching original at offset {} to veneer offset {}",
1448            offset,
1449            veneer_offset
1450        );
1451        kind.patch(slice, offset, veneer_offset);
1452        // Generate the veneer.
1453        let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
1454        let (veneer_fixup_off, veneer_label_use) =
1455            kind.generate_veneer(veneer_slice, veneer_offset);
1456        trace!(
1457            "generated veneer; fixup offset {}, label_use {:?}",
1458            veneer_fixup_off,
1459            veneer_label_use
1460        );
1461        // Register a new use of `label` with our new veneer fixup and
1462        // offset. This'll recalculate deadlines accordingly and
1463        // enqueue this fixup to get processed at some later
1464        // time.
1465        self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
1466    }
1467
1468    fn finish_emission_maybe_forcing_veneers(
1469        &mut self,
1470        force_veneers: ForceVeneers,
1471        ctrl_plane: &mut ControlPlane,
1472    ) {
1473        while !self.pending_constants.is_empty()
1474            || !self.pending_traps.is_empty()
1475            || !self.fixup_records.is_empty()
1476            || !self.pending_fixup_records.is_empty()
1477        {
1478            // `emit_island()` will emit any pending veneers and constants, and
1479            // as a side-effect, will also take care of any fixups with resolved
1480            // labels eagerly.
1481            self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
1482        }
1483
1484        // Ensure that all labels have been fixed up after the last island is emitted. This is a
1485        // full (release-mode) assert because an unresolved label means the emitted code is
1486        // incorrect.
1487        assert!(self.fixup_records.is_empty());
1488        assert!(self.pending_fixup_records.is_empty());
1489    }
1490
1491    /// Finish any deferred emissions and/or fixups.
1492    pub fn finish(
1493        mut self,
1494        constants: &VCodeConstants,
1495        ctrl_plane: &mut ControlPlane,
1496    ) -> MachBufferFinalized<Stencil> {
1497        let _tt = timing::vcode_emit_finish();
1498
1499        self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
1500
1501        let alignment = self.finish_constants(constants);
1502
1503        // Resolve all labels to their offsets.
1504        let finalized_relocs = self
1505            .relocs
1506            .iter()
1507            .map(|reloc| FinalizedMachReloc {
1508                offset: reloc.offset,
1509                kind: reloc.kind,
1510                addend: reloc.addend,
1511                target: match &reloc.target {
1512                    RelocTarget::ExternalName(name) => {
1513                        FinalizedRelocTarget::ExternalName(name.clone())
1514                    }
1515                    RelocTarget::Label(label) => {
1516                        FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
1517                    }
1518                },
1519            })
1520            .collect();
1521
1522        let mut srclocs = self.srclocs;
1523        srclocs.sort_by_key(|entry| entry.start);
1524
1525        MachBufferFinalized {
1526            data: self.data,
1527            relocs: finalized_relocs,
1528            traps: self.traps,
1529            call_sites: self.call_sites,
1530            srclocs,
1531            user_stack_maps: self.user_stack_maps,
1532            unwind_info: self.unwind_info,
1533            alignment,
1534        }
1535    }
1536
1537    /// Add an external relocation at the given offset.
1538    pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
1539        &mut self,
1540        offset: CodeOffset,
1541        kind: Reloc,
1542        target: &T,
1543        addend: Addend,
1544    ) {
1545        let target: RelocTarget = target.clone().into();
1546        // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
1547        // generate a label-use statement to track whether an island is possibly
1548        // needed to escape this function to actually get to the external name.
1549        // This is most likely to come up on AArch64 where calls between
1550        // functions use a 26-bit signed offset which gives +/- 64MB. This means
1551        // that if a function is 128MB in size and there's a call in the middle
1552        // it's impossible to reach the actual target. Also, while it's
1553        // technically possible to jump to the start of a function and then jump
1554        // further, island insertion below always inserts islands after
1555        // previously appended code so for Cranelift's own implementation this
1556        // is also a problem for 64MB functions on AArch64 which start with a
1557        // call instruction, those won't be able to escape.
1558        //
1559        // Ideally what needs to happen here is that a `LabelUse` is
1560        // transparently generated (or call-sites of this function are audited
1561        // to generate a `LabelUse` instead) and tracked internally. The actual
1562        // relocation would then change over time if and when a veneer is
1563        // inserted, where the relocation here would be patched by this
1564        // `MachBuffer` to jump to the veneer. The problem, though, is that all
1565        // this still needs to end up, in the case of a singular function,
1566        // generating a final relocation pointing either to this particular
1567        // relocation or to the veneer inserted. Additionally
1568        // `MachBuffer` needs the concept of a label which will never be
1569        // resolved, so `emit_island` doesn't trip over not actually ever
1570        // knowning what some labels are. Currently the loop in
1571        // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
1572        // loop.
1573        //
1574        // For now this means that because relocs aren't tracked at all that
1575        // AArch64 functions have a rough size limits of 64MB. For now that's
1576        // somewhat reasonable and the failure mode is a panic in `MachBuffer`
1577        // when a relocation can't otherwise be resolved later, so it shouldn't
1578        // actually result in any memory unsafety or anything like that.
1579        self.relocs.push(MachReloc {
1580            offset,
1581            kind,
1582            target,
1583            addend,
1584        });
1585    }
1586
1587    /// Add an external relocation at the current offset.
1588    pub fn add_reloc<T: Into<RelocTarget> + Clone>(
1589        &mut self,
1590        kind: Reloc,
1591        target: &T,
1592        addend: Addend,
1593    ) {
1594        self.add_reloc_at_offset(self.data.len() as CodeOffset, kind, target, addend);
1595    }
1596
1597    /// Add a trap record at the current offset.
1598    pub fn add_trap(&mut self, code: TrapCode) {
1599        self.traps.push(MachTrap {
1600            offset: self.data.len() as CodeOffset,
1601            code,
1602        });
1603    }
1604
1605    /// Add a call-site record at the current offset.
1606    pub fn add_call_site(&mut self) {
1607        self.call_sites.push(MachCallSite {
1608            ret_addr: self.data.len() as CodeOffset,
1609        });
1610    }
1611
1612    /// Add an unwind record at the current offset.
1613    pub fn add_unwind(&mut self, unwind: UnwindInst) {
1614        self.unwind_info.push((self.cur_offset(), unwind));
1615    }
1616
1617    /// Set the `SourceLoc` for code from this offset until the offset at the
1618    /// next call to `end_srcloc()`.
1619    /// Returns the current [CodeOffset] and [RelSourceLoc].
1620    pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
1621        let cur = (self.cur_offset(), loc);
1622        self.cur_srcloc = Some(cur);
1623        cur
1624    }
1625
1626    /// Mark the end of the `SourceLoc` segment started at the last
1627    /// `start_srcloc()` call.
1628    pub fn end_srcloc(&mut self) {
1629        let (start, loc) = self
1630            .cur_srcloc
1631            .take()
1632            .expect("end_srcloc() called without start_srcloc()");
1633        let end = self.cur_offset();
1634        // Skip zero-length extends.
1635        debug_assert!(end >= start);
1636        if end > start {
1637            self.srclocs.push(MachSrcLoc { start, end, loc });
1638        }
1639    }
1640
1641    /// Push a user stack map onto this buffer.
1642    ///
1643    /// The stack map is associated with the given `return_addr` code
1644    /// offset. This must be the PC for the instruction just *after* this stack
1645    /// map's associated instruction. For example in the sequence `call $foo;
1646    /// add r8, rax`, the `return_addr` must be the offset of the start of the
1647    /// `add` instruction.
1648    ///
1649    /// Stack maps must be pushed in sorted `return_addr` order.
1650    pub fn push_user_stack_map(
1651        &mut self,
1652        emit_state: &I::State,
1653        return_addr: CodeOffset,
1654        mut stack_map: ir::UserStackMap,
1655    ) {
1656        let span = emit_state.frame_layout().active_size();
1657        trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
1658
1659        debug_assert!(
1660            self.user_stack_maps
1661                .last()
1662                .map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
1663            "pushed stack maps out of order: {} is not less than {}",
1664            self.user_stack_maps.last().unwrap().0,
1665            return_addr,
1666        );
1667
1668        stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
1669        self.user_stack_maps.push((return_addr, span, stack_map));
1670    }
1671
1672    /// Increase the alignment of the buffer to the given alignment if bigger
1673    /// than the current alignment.
1674    pub fn set_log2_min_function_alignment(&mut self, align_to: u8) {
1675        self.min_alignment = self.min_alignment.max(
1676            1u32.checked_shl(u32::from(align_to))
1677                .expect("log2_min_function_alignment too large"),
1678        );
1679    }
1680}
1681
1682impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
1683    fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
1684        for b in iter {
1685            self.put1(b);
1686        }
1687    }
1688}
1689
1690impl<T: CompilePhase> MachBufferFinalized<T> {
1691    /// Get a list of source location mapping tuples in sorted-by-start-offset order.
1692    pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
1693        &self.srclocs[..]
1694    }
1695
1696    /// Get the total required size for the code.
1697    pub fn total_size(&self) -> CodeOffset {
1698        self.data.len() as CodeOffset
1699    }
1700
1701    /// Return the code in this mach buffer as a hex string for testing purposes.
1702    pub fn stringify_code_bytes(&self) -> String {
1703        // This is pretty lame, but whatever ..
1704        use std::fmt::Write;
1705        let mut s = String::with_capacity(self.data.len() * 2);
1706        for b in &self.data {
1707            write!(&mut s, "{b:02X}").unwrap();
1708        }
1709        s
1710    }
1711
1712    /// Get the code bytes.
1713    pub fn data(&self) -> &[u8] {
1714        // N.B.: we emit every section into the .text section as far as
1715        // the `CodeSink` is concerned; we do not bother to segregate
1716        // the contents into the actual program text, the jumptable and the
1717        // rodata (constant pool). This allows us to generate code assuming
1718        // that these will not be relocated relative to each other, and avoids
1719        // having to designate each section as belonging in one of the three
1720        // fixed categories defined by `CodeSink`. If this becomes a problem
1721        // later (e.g. because of memory permissions or similar), we can
1722        // add this designation and segregate the output; take care, however,
1723        // to add the appropriate relocations in this case.
1724
1725        &self.data[..]
1726    }
1727
1728    /// Get the list of external relocations for this code.
1729    pub fn relocs(&self) -> &[FinalizedMachReloc] {
1730        &self.relocs[..]
1731    }
1732
1733    /// Get the list of trap records for this code.
1734    pub fn traps(&self) -> &[MachTrap] {
1735        &self.traps[..]
1736    }
1737
1738    /// Get the user stack map metadata for this code.
1739    pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
1740        &self.user_stack_maps
1741    }
1742
1743    /// Take this buffer's user strack map metadata.
1744    pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
1745        mem::take(&mut self.user_stack_maps)
1746    }
1747
1748    /// Get the list of call sites for this code.
1749    pub fn call_sites(&self) -> &[MachCallSite] {
1750        &self.call_sites[..]
1751    }
1752}
1753
1754/// Metadata about a constant.
1755struct MachBufferConstant {
1756    /// A label which has not yet been bound which can be used for this
1757    /// constant.
1758    ///
1759    /// This is lazily created when a label is requested for a constant and is
1760    /// cleared when a constant is emitted.
1761    upcoming_label: Option<MachLabel>,
1762    /// Required alignment.
1763    align: CodeOffset,
1764    /// The byte size of this constant.
1765    size: usize,
1766}
1767
1768/// A trap that is deferred to the next time an island is emitted for either
1769/// traps, constants, or fixups.
1770struct MachLabelTrap {
1771    /// This label will refer to the trap's offset.
1772    label: MachLabel,
1773    /// The code associated with this trap.
1774    code: TrapCode,
1775    /// An optional source location to assign for this trap.
1776    loc: Option<RelSourceLoc>,
1777}
1778
1779/// A fixup to perform on the buffer once code is emitted. Fixups always refer
1780/// to labels and patch the code based on label offsets. Hence, they are like
1781/// relocations, but internal to one buffer.
1782#[derive(Debug)]
1783struct MachLabelFixup<I: VCodeInst> {
1784    /// The label whose offset controls this fixup.
1785    label: MachLabel,
1786    /// The offset to fix up / patch to refer to this label.
1787    offset: CodeOffset,
1788    /// The kind of fixup. This is architecture-specific; each architecture may have,
1789    /// e.g., several types of branch instructions, each with differently-sized
1790    /// offset fields and different places within the instruction to place the
1791    /// bits.
1792    kind: I::LabelUse,
1793}
1794
1795impl<I: VCodeInst> MachLabelFixup<I> {
1796    fn deadline(&self) -> CodeOffset {
1797        self.offset.saturating_add(self.kind.max_pos_range())
1798    }
1799}
1800
1801impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
1802    fn eq(&self, other: &Self) -> bool {
1803        self.deadline() == other.deadline()
1804    }
1805}
1806
1807impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
1808
1809impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
1810    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1811        Some(self.cmp(other))
1812    }
1813}
1814
1815impl<I: VCodeInst> Ord for MachLabelFixup<I> {
1816    fn cmp(&self, other: &Self) -> Ordering {
1817        other.deadline().cmp(&self.deadline())
1818    }
1819}
1820
1821/// A relocation resulting from a compilation.
1822#[derive(Clone, Debug, PartialEq)]
1823#[cfg_attr(
1824    feature = "enable-serde",
1825    derive(serde_derive::Serialize, serde_derive::Deserialize)
1826)]
1827pub struct MachRelocBase<T> {
1828    /// The offset at which the relocation applies, *relative to the
1829    /// containing section*.
1830    pub offset: CodeOffset,
1831    /// The kind of relocation.
1832    pub kind: Reloc,
1833    /// The external symbol / name to which this relocation refers.
1834    pub target: T,
1835    /// The addend to add to the symbol value.
1836    pub addend: i64,
1837}
1838
1839type MachReloc = MachRelocBase<RelocTarget>;
1840
1841/// A relocation resulting from a compilation.
1842pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
1843
1844/// A Relocation target
1845#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1846pub enum RelocTarget {
1847    /// Points to an [ExternalName] outside the current function.
1848    ExternalName(ExternalName),
1849    /// Points to a [MachLabel] inside this function.
1850    /// This is different from [MachLabelFixup] in that both the relocation and the
1851    /// label will be emitted and are only resolved at link time.
1852    ///
1853    /// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
1854    Label(MachLabel),
1855}
1856
1857impl From<ExternalName> for RelocTarget {
1858    fn from(name: ExternalName) -> Self {
1859        Self::ExternalName(name)
1860    }
1861}
1862
1863impl From<MachLabel> for RelocTarget {
1864    fn from(label: MachLabel) -> Self {
1865        Self::Label(label)
1866    }
1867}
1868
1869/// A Relocation target
1870#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1871#[cfg_attr(
1872    feature = "enable-serde",
1873    derive(serde_derive::Serialize, serde_derive::Deserialize)
1874)]
1875pub enum FinalizedRelocTarget {
1876    /// Points to an [ExternalName] outside the current function.
1877    ExternalName(ExternalName),
1878    /// Points to a [CodeOffset] from the start of the current function.
1879    Func(CodeOffset),
1880}
1881
1882impl FinalizedRelocTarget {
1883    /// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
1884    /// output.
1885    pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
1886        match self {
1887            FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
1888            FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
1889        }
1890    }
1891}
1892
1893/// A trap record resulting from a compilation.
1894#[derive(Clone, Debug, PartialEq)]
1895#[cfg_attr(
1896    feature = "enable-serde",
1897    derive(serde_derive::Serialize, serde_derive::Deserialize)
1898)]
1899pub struct MachTrap {
1900    /// The offset at which the trap instruction occurs, *relative to the
1901    /// containing section*.
1902    pub offset: CodeOffset,
1903    /// The trap code.
1904    pub code: TrapCode,
1905}
1906
1907/// A call site record resulting from a compilation.
1908#[derive(Clone, Debug, PartialEq)]
1909#[cfg_attr(
1910    feature = "enable-serde",
1911    derive(serde_derive::Serialize, serde_derive::Deserialize)
1912)]
1913pub struct MachCallSite {
1914    /// The offset of the call's return address, *relative to the containing section*.
1915    pub ret_addr: CodeOffset,
1916}
1917
1918/// A source-location mapping resulting from a compilation.
1919#[derive(PartialEq, Debug, Clone)]
1920#[cfg_attr(
1921    feature = "enable-serde",
1922    derive(serde_derive::Serialize, serde_derive::Deserialize)
1923)]
1924pub struct MachSrcLoc<T: CompilePhase> {
1925    /// The start of the region of code corresponding to a source location.
1926    /// This is relative to the start of the function, not to the start of the
1927    /// section.
1928    pub start: CodeOffset,
1929    /// The end of the region of code corresponding to a source location.
1930    /// This is relative to the start of the section, not to the start of the
1931    /// section.
1932    pub end: CodeOffset,
1933    /// The source location.
1934    pub loc: T::SourceLocType,
1935}
1936
1937impl MachSrcLoc<Stencil> {
1938    fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
1939        MachSrcLoc {
1940            start: self.start,
1941            end: self.end,
1942            loc: self.loc.expand(base_srcloc),
1943        }
1944    }
1945}
1946
1947/// Record of branch instruction in the buffer, to facilitate editing.
1948#[derive(Clone, Debug)]
1949struct MachBranch {
1950    start: CodeOffset,
1951    end: CodeOffset,
1952    target: MachLabel,
1953    fixup: usize,
1954    inverted: Option<SmallVec<[u8; 8]>>,
1955    /// All labels pointing to the start of this branch. For correctness, this
1956    /// *must* be complete (i.e., must contain all labels whose resolved offsets
1957    /// are at the start of this branch): we rely on being able to redirect all
1958    /// labels that could jump to this branch before removing it, if it is
1959    /// otherwise unreachable.
1960    labels_at_this_branch: SmallVec<[MachLabel; 4]>,
1961}
1962
1963impl MachBranch {
1964    fn is_cond(&self) -> bool {
1965        self.inverted.is_some()
1966    }
1967    fn is_uncond(&self) -> bool {
1968        self.inverted.is_none()
1969    }
1970}
1971
1972/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
1973///
1974/// Note that `MachBuffer` was primarily written for intra-function references
1975/// of jumps between basic blocks, but it's also quite usable for entire text
1976/// sections and resolving references between functions themselves. This
1977/// builder interprets "blocks" as labeled functions for the purposes of
1978/// resolving labels internally in the buffer.
1979pub struct MachTextSectionBuilder<I: VCodeInst> {
1980    buf: MachBuffer<I>,
1981    next_func: usize,
1982    force_veneers: ForceVeneers,
1983}
1984
1985impl<I: VCodeInst> MachTextSectionBuilder<I> {
1986    /// Creates a new text section builder which will have `num_funcs` functions
1987    /// pushed into it.
1988    pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
1989        let mut buf = MachBuffer::new();
1990        buf.reserve_labels_for_blocks(num_funcs);
1991        MachTextSectionBuilder {
1992            buf,
1993            next_func: 0,
1994            force_veneers: ForceVeneers::No,
1995        }
1996    }
1997}
1998
1999impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
2000    fn append(
2001        &mut self,
2002        labeled: bool,
2003        func: &[u8],
2004        align: u32,
2005        ctrl_plane: &mut ControlPlane,
2006    ) -> u64 {
2007        // Conditionally emit an island if it's necessary to resolve jumps
2008        // between functions which are too far away.
2009        let size = func.len() as u32;
2010        if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
2011            self.buf
2012                .emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
2013        }
2014
2015        self.buf.align_to(align);
2016        let pos = self.buf.cur_offset();
2017        if labeled {
2018            self.buf.bind_label(
2019                MachLabel::from_block(BlockIndex::new(self.next_func)),
2020                ctrl_plane,
2021            );
2022            self.next_func += 1;
2023        }
2024        self.buf.put_data(func);
2025        u64::from(pos)
2026    }
2027
2028    fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
2029        crate::trace!(
2030            "Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
2031        );
2032        let label = MachLabel::from_block(BlockIndex::new(target));
2033        let offset = u32::try_from(offset).unwrap();
2034        match I::LabelUse::from_reloc(reloc, addend) {
2035            Some(label_use) => {
2036                self.buf.use_label_at_offset(offset, label, label_use);
2037                true
2038            }
2039            None => false,
2040        }
2041    }
2042
2043    fn force_veneers(&mut self) {
2044        self.force_veneers = ForceVeneers::Yes;
2045    }
2046
2047    fn write(&mut self, offset: u64, data: &[u8]) {
2048        self.buf.data[offset.try_into().unwrap()..][..data.len()].copy_from_slice(data);
2049    }
2050
2051    fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
2052        // Double-check all functions were pushed.
2053        assert_eq!(self.next_func, self.buf.label_offsets.len());
2054
2055        // Finish up any veneers, if necessary.
2056        self.buf
2057            .finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
2058
2059        // We don't need the data any more, so return it to the caller.
2060        mem::take(&mut self.buf.data).into_vec()
2061    }
2062}
2063
2064// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
2065#[cfg(all(test, feature = "arm64"))]
2066mod test {
2067    use cranelift_entity::EntityRef as _;
2068
2069    use super::*;
2070    use crate::ir::UserExternalNameRef;
2071    use crate::isa::aarch64::inst::{xreg, OperandSize};
2072    use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
2073    use crate::machinst::{MachInstEmit, MachInstEmitState};
2074    use crate::settings;
2075
2076    fn label(n: u32) -> MachLabel {
2077        MachLabel::from_block(BlockIndex::new(n as usize))
2078    }
2079    fn target(n: u32) -> BranchTarget {
2080        BranchTarget::Label(label(n))
2081    }
2082
2083    #[test]
2084    fn test_elide_jump_to_next() {
2085        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2086        let mut buf = MachBuffer::new();
2087        let mut state = <Inst as MachInstEmit>::State::default();
2088        let constants = Default::default();
2089
2090        buf.reserve_labels_for_blocks(2);
2091        buf.bind_label(label(0), state.ctrl_plane_mut());
2092        let inst = Inst::Jump { dest: target(1) };
2093        inst.emit(&mut buf, &info, &mut state);
2094        buf.bind_label(label(1), state.ctrl_plane_mut());
2095        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2096        assert_eq!(0, buf.total_size());
2097    }
2098
2099    #[test]
2100    fn test_elide_trivial_jump_blocks() {
2101        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2102        let mut buf = MachBuffer::new();
2103        let mut state = <Inst as MachInstEmit>::State::default();
2104        let constants = Default::default();
2105
2106        buf.reserve_labels_for_blocks(4);
2107
2108        buf.bind_label(label(0), state.ctrl_plane_mut());
2109        let inst = Inst::CondBr {
2110            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2111            taken: target(1),
2112            not_taken: target(2),
2113        };
2114        inst.emit(&mut buf, &info, &mut state);
2115
2116        buf.bind_label(label(1), state.ctrl_plane_mut());
2117        let inst = Inst::Jump { dest: target(3) };
2118        inst.emit(&mut buf, &info, &mut state);
2119
2120        buf.bind_label(label(2), state.ctrl_plane_mut());
2121        let inst = Inst::Jump { dest: target(3) };
2122        inst.emit(&mut buf, &info, &mut state);
2123
2124        buf.bind_label(label(3), state.ctrl_plane_mut());
2125
2126        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2127        assert_eq!(0, buf.total_size());
2128    }
2129
2130    #[test]
2131    fn test_flip_cond() {
2132        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2133        let mut buf = MachBuffer::new();
2134        let mut state = <Inst as MachInstEmit>::State::default();
2135        let constants = Default::default();
2136
2137        buf.reserve_labels_for_blocks(4);
2138
2139        buf.bind_label(label(0), state.ctrl_plane_mut());
2140        let inst = Inst::CondBr {
2141            kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2142            taken: target(1),
2143            not_taken: target(2),
2144        };
2145        inst.emit(&mut buf, &info, &mut state);
2146
2147        buf.bind_label(label(1), state.ctrl_plane_mut());
2148        let inst = Inst::Nop4;
2149        inst.emit(&mut buf, &info, &mut state);
2150
2151        buf.bind_label(label(2), state.ctrl_plane_mut());
2152        let inst = Inst::Udf {
2153            trap_code: TrapCode::STACK_OVERFLOW,
2154        };
2155        inst.emit(&mut buf, &info, &mut state);
2156
2157        buf.bind_label(label(3), state.ctrl_plane_mut());
2158
2159        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2160
2161        let mut buf2 = MachBuffer::new();
2162        let mut state = Default::default();
2163        let inst = Inst::TrapIf {
2164            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2165            trap_code: TrapCode::STACK_OVERFLOW,
2166        };
2167        inst.emit(&mut buf2, &info, &mut state);
2168        let inst = Inst::Nop4;
2169        inst.emit(&mut buf2, &info, &mut state);
2170
2171        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2172
2173        assert_eq!(buf.data, buf2.data);
2174    }
2175
2176    #[test]
2177    fn test_island() {
2178        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2179        let mut buf = MachBuffer::new();
2180        let mut state = <Inst as MachInstEmit>::State::default();
2181        let constants = Default::default();
2182
2183        buf.reserve_labels_for_blocks(4);
2184
2185        buf.bind_label(label(0), state.ctrl_plane_mut());
2186        let inst = Inst::CondBr {
2187            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2188            taken: target(2),
2189            not_taken: target(3),
2190        };
2191        inst.emit(&mut buf, &info, &mut state);
2192
2193        buf.bind_label(label(1), state.ctrl_plane_mut());
2194        while buf.cur_offset() < 2000000 {
2195            if buf.island_needed(0) {
2196                buf.emit_island(0, state.ctrl_plane_mut());
2197            }
2198            let inst = Inst::Nop4;
2199            inst.emit(&mut buf, &info, &mut state);
2200        }
2201
2202        buf.bind_label(label(2), state.ctrl_plane_mut());
2203        let inst = Inst::Nop4;
2204        inst.emit(&mut buf, &info, &mut state);
2205
2206        buf.bind_label(label(3), state.ctrl_plane_mut());
2207        let inst = Inst::Nop4;
2208        inst.emit(&mut buf, &info, &mut state);
2209
2210        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2211
2212        assert_eq!(2000000 + 8, buf.total_size());
2213
2214        let mut buf2 = MachBuffer::new();
2215        let mut state = Default::default();
2216        let inst = Inst::CondBr {
2217            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2218
2219            // This conditionally taken branch has a 19-bit constant, shifted
2220            // to the left by two, giving us a 21-bit range in total. Half of
2221            // this range positive so the we should be around 1 << 20 bytes
2222            // away for our jump target.
2223            //
2224            // There are two pending fixups by the time we reach this point,
2225            // one for this 19-bit jump and one for the unconditional 26-bit
2226            // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
2227            // veneer is 20 bytes large, which means that pessimistically
2228            // assuming we'll need two veneers. Currently each veneer is
2229            // pessimistically assumed to be the maximal size which means we
2230            // need 40 bytes of extra space, meaning that the actual island
2231            // should come 40-bytes before the deadline.
2232            taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
2233
2234            // This branch is in-range so no veneers should be needed, it should
2235            // go directly to the target.
2236            not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
2237        };
2238        inst.emit(&mut buf2, &info, &mut state);
2239
2240        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2241
2242        assert_eq!(&buf.data[0..8], &buf2.data[..]);
2243    }
2244
2245    #[test]
2246    fn test_island_backward() {
2247        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2248        let mut buf = MachBuffer::new();
2249        let mut state = <Inst as MachInstEmit>::State::default();
2250        let constants = Default::default();
2251
2252        buf.reserve_labels_for_blocks(4);
2253
2254        buf.bind_label(label(0), state.ctrl_plane_mut());
2255        let inst = Inst::Nop4;
2256        inst.emit(&mut buf, &info, &mut state);
2257
2258        buf.bind_label(label(1), state.ctrl_plane_mut());
2259        let inst = Inst::Nop4;
2260        inst.emit(&mut buf, &info, &mut state);
2261
2262        buf.bind_label(label(2), state.ctrl_plane_mut());
2263        while buf.cur_offset() < 2000000 {
2264            let inst = Inst::Nop4;
2265            inst.emit(&mut buf, &info, &mut state);
2266        }
2267
2268        buf.bind_label(label(3), state.ctrl_plane_mut());
2269        let inst = Inst::CondBr {
2270            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2271            taken: target(0),
2272            not_taken: target(1),
2273        };
2274        inst.emit(&mut buf, &info, &mut state);
2275
2276        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2277
2278        assert_eq!(2000000 + 12, buf.total_size());
2279
2280        let mut buf2 = MachBuffer::new();
2281        let mut state = Default::default();
2282        let inst = Inst::CondBr {
2283            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2284            taken: BranchTarget::ResolvedOffset(8),
2285            not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
2286        };
2287        inst.emit(&mut buf2, &info, &mut state);
2288        let inst = Inst::Jump {
2289            dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
2290        };
2291        inst.emit(&mut buf2, &info, &mut state);
2292
2293        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2294
2295        assert_eq!(&buf.data[2000000..], &buf2.data[..]);
2296    }
2297
2298    #[test]
2299    fn test_multiple_redirect() {
2300        // label0:
2301        //   cbz x0, label1
2302        //   b label2
2303        // label1:
2304        //   b label3
2305        // label2:
2306        //   nop
2307        //   nop
2308        //   b label0
2309        // label3:
2310        //   b label4
2311        // label4:
2312        //   b label5
2313        // label5:
2314        //   b label7
2315        // label6:
2316        //   nop
2317        // label7:
2318        //   ret
2319        //
2320        // -- should become:
2321        //
2322        // label0:
2323        //   cbz x0, label7
2324        // label2:
2325        //   nop
2326        //   nop
2327        //   b label0
2328        // label6:
2329        //   nop
2330        // label7:
2331        //   ret
2332
2333        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2334        let mut buf = MachBuffer::new();
2335        let mut state = <Inst as MachInstEmit>::State::default();
2336        let constants = Default::default();
2337
2338        buf.reserve_labels_for_blocks(8);
2339
2340        buf.bind_label(label(0), state.ctrl_plane_mut());
2341        let inst = Inst::CondBr {
2342            kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2343            taken: target(1),
2344            not_taken: target(2),
2345        };
2346        inst.emit(&mut buf, &info, &mut state);
2347
2348        buf.bind_label(label(1), state.ctrl_plane_mut());
2349        let inst = Inst::Jump { dest: target(3) };
2350        inst.emit(&mut buf, &info, &mut state);
2351
2352        buf.bind_label(label(2), state.ctrl_plane_mut());
2353        let inst = Inst::Nop4;
2354        inst.emit(&mut buf, &info, &mut state);
2355        inst.emit(&mut buf, &info, &mut state);
2356        let inst = Inst::Jump { dest: target(0) };
2357        inst.emit(&mut buf, &info, &mut state);
2358
2359        buf.bind_label(label(3), state.ctrl_plane_mut());
2360        let inst = Inst::Jump { dest: target(4) };
2361        inst.emit(&mut buf, &info, &mut state);
2362
2363        buf.bind_label(label(4), state.ctrl_plane_mut());
2364        let inst = Inst::Jump { dest: target(5) };
2365        inst.emit(&mut buf, &info, &mut state);
2366
2367        buf.bind_label(label(5), state.ctrl_plane_mut());
2368        let inst = Inst::Jump { dest: target(7) };
2369        inst.emit(&mut buf, &info, &mut state);
2370
2371        buf.bind_label(label(6), state.ctrl_plane_mut());
2372        let inst = Inst::Nop4;
2373        inst.emit(&mut buf, &info, &mut state);
2374
2375        buf.bind_label(label(7), state.ctrl_plane_mut());
2376        let inst = Inst::Ret {};
2377        inst.emit(&mut buf, &info, &mut state);
2378
2379        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2380
2381        let golden_data = vec![
2382            0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
2383            0x1f, 0x20, 0x03, 0xd5, // nop
2384            0x1f, 0x20, 0x03, 0xd5, // nop
2385            0xfd, 0xff, 0xff, 0x17, // b 0
2386            0x1f, 0x20, 0x03, 0xd5, // nop
2387            0xc0, 0x03, 0x5f, 0xd6, // ret
2388        ];
2389
2390        assert_eq!(&golden_data[..], &buf.data[..]);
2391    }
2392
2393    #[test]
2394    fn test_handle_branch_cycle() {
2395        // label0:
2396        //   b label1
2397        // label1:
2398        //   b label2
2399        // label2:
2400        //   b label3
2401        // label3:
2402        //   b label4
2403        // label4:
2404        //   b label1  // note: not label0 (to make it interesting).
2405        //
2406        // -- should become:
2407        //
2408        // label0, label1, ..., label4:
2409        //   b label0
2410        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2411        let mut buf = MachBuffer::new();
2412        let mut state = <Inst as MachInstEmit>::State::default();
2413        let constants = Default::default();
2414
2415        buf.reserve_labels_for_blocks(5);
2416
2417        buf.bind_label(label(0), state.ctrl_plane_mut());
2418        let inst = Inst::Jump { dest: target(1) };
2419        inst.emit(&mut buf, &info, &mut state);
2420
2421        buf.bind_label(label(1), state.ctrl_plane_mut());
2422        let inst = Inst::Jump { dest: target(2) };
2423        inst.emit(&mut buf, &info, &mut state);
2424
2425        buf.bind_label(label(2), state.ctrl_plane_mut());
2426        let inst = Inst::Jump { dest: target(3) };
2427        inst.emit(&mut buf, &info, &mut state);
2428
2429        buf.bind_label(label(3), state.ctrl_plane_mut());
2430        let inst = Inst::Jump { dest: target(4) };
2431        inst.emit(&mut buf, &info, &mut state);
2432
2433        buf.bind_label(label(4), state.ctrl_plane_mut());
2434        let inst = Inst::Jump { dest: target(1) };
2435        inst.emit(&mut buf, &info, &mut state);
2436
2437        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2438
2439        let golden_data = vec![
2440            0x00, 0x00, 0x00, 0x14, // b 0
2441        ];
2442
2443        assert_eq!(&golden_data[..], &buf.data[..]);
2444    }
2445
2446    #[test]
2447    fn metadata_records() {
2448        let mut buf = MachBuffer::<Inst>::new();
2449        let ctrl_plane = &mut Default::default();
2450        let constants = Default::default();
2451
2452        buf.reserve_labels_for_blocks(1);
2453
2454        buf.bind_label(label(0), ctrl_plane);
2455        buf.put1(1);
2456        buf.add_trap(TrapCode::HEAP_OUT_OF_BOUNDS);
2457        buf.put1(2);
2458        buf.add_trap(TrapCode::INTEGER_OVERFLOW);
2459        buf.add_trap(TrapCode::INTEGER_DIVISION_BY_ZERO);
2460        buf.add_call_site();
2461        buf.add_reloc(
2462            Reloc::Abs4,
2463            &ExternalName::User(UserExternalNameRef::new(0)),
2464            0,
2465        );
2466        buf.put1(3);
2467        buf.add_reloc(
2468            Reloc::Abs8,
2469            &ExternalName::User(UserExternalNameRef::new(1)),
2470            1,
2471        );
2472        buf.put1(4);
2473
2474        let buf = buf.finish(&constants, ctrl_plane);
2475
2476        assert_eq!(buf.data(), &[1, 2, 3, 4]);
2477        assert_eq!(
2478            buf.traps()
2479                .iter()
2480                .map(|trap| (trap.offset, trap.code))
2481                .collect::<Vec<_>>(),
2482            vec![
2483                (1, TrapCode::HEAP_OUT_OF_BOUNDS),
2484                (2, TrapCode::INTEGER_OVERFLOW),
2485                (2, TrapCode::INTEGER_DIVISION_BY_ZERO)
2486            ]
2487        );
2488        assert_eq!(
2489            buf.call_sites()
2490                .iter()
2491                .map(|call_site| call_site.ret_addr)
2492                .collect::<Vec<_>>(),
2493            vec![2]
2494        );
2495        assert_eq!(
2496            buf.relocs()
2497                .iter()
2498                .map(|reloc| (reloc.offset, reloc.kind))
2499                .collect::<Vec<_>>(),
2500            vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
2501        );
2502    }
2503}