wasmtime/runtime/vm/
vmcontext.rs

1//! This file declares `VMContext` and several related structs which contain
2//! fields that compiled wasm code accesses directly.
3
4mod vm_host_func_context;
5
6pub use self::vm_host_func_context::VMArrayCallHostFuncContext;
7use crate::prelude::*;
8use crate::runtime::vm::{GcStore, InterpreterRef, VMGcRef, VmPtr, VmSafe};
9use crate::store::StoreOpaque;
10use core::cell::UnsafeCell;
11use core::ffi::c_void;
12use core::fmt;
13use core::marker;
14use core::mem::{self, MaybeUninit};
15use core::ptr::{self, NonNull};
16use core::sync::atomic::{AtomicUsize, Ordering};
17use sptr::Strict;
18use wasmtime_environ::{
19    BuiltinFunctionIndex, DefinedMemoryIndex, Unsigned, VMSharedTypeIndex, WasmHeapTopType,
20    WasmValType, VMCONTEXT_MAGIC,
21};
22
23/// A function pointer that exposes the array calling convention.
24///
25/// Regardless of the underlying Wasm function type, all functions using the
26/// array calling convention have the same Rust signature.
27///
28/// Arguments:
29///
30/// * Callee `vmctx` for the function itself.
31///
32/// * Caller's `vmctx` (so that host functions can access the linear memory of
33///   their Wasm callers).
34///
35/// * A pointer to a buffer of `ValRaw`s where both arguments are passed into
36///   this function, and where results are returned from this function.
37///
38/// * The capacity of the `ValRaw` buffer. Must always be at least
39///   `max(len(wasm_params), len(wasm_results))`.
40///
41/// Return value:
42///
43/// * `true` if this call succeeded.
44/// * `false` if this call failed and a trap was recorded in TLS.
45pub type VMArrayCallNative = unsafe extern "C" fn(
46    NonNull<VMOpaqueContext>,
47    NonNull<VMOpaqueContext>,
48    NonNull<ValRaw>,
49    usize,
50) -> bool;
51
52/// An opaque function pointer which might be `VMArrayCallNative` or it might be
53/// pulley bytecode. Requires external knowledge to determine what kind of
54/// function pointer this is.
55#[repr(transparent)]
56pub struct VMArrayCallFunction(VMFunctionBody);
57
58/// A function pointer that exposes the Wasm calling convention.
59///
60/// In practice, different Wasm function types end up mapping to different Rust
61/// function types, so this isn't simply a type alias the way that
62/// `VMArrayCallFunction` is. However, the exact details of the calling
63/// convention are left to the Wasm compiler (e.g. Cranelift or Winch). Runtime
64/// code never does anything with these function pointers except shuffle them
65/// around and pass them back to Wasm.
66#[repr(transparent)]
67pub struct VMWasmCallFunction(VMFunctionBody);
68
69/// An imported function.
70#[derive(Debug, Copy, Clone)]
71#[repr(C)]
72pub struct VMFunctionImport {
73    /// Function pointer to use when calling this imported function from Wasm.
74    pub wasm_call: VmPtr<VMWasmCallFunction>,
75
76    /// Function pointer to use when calling this imported function with the
77    /// "array" calling convention that `Func::new` et al use.
78    pub array_call: VmPtr<VMArrayCallFunction>,
79
80    /// The VM state associated with this function.
81    ///
82    /// For Wasm functions defined by core wasm instances this will be `*mut
83    /// VMContext`, but for lifted/lowered component model functions this will
84    /// be a `VMComponentContext`, and for a host function it will be a
85    /// `VMHostFuncContext`, etc.
86    pub vmctx: VmPtr<VMOpaqueContext>,
87}
88
89// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
90unsafe impl VmSafe for VMFunctionImport {}
91
92#[cfg(test)]
93mod test_vmfunction_import {
94    use super::VMFunctionImport;
95    use core::mem::offset_of;
96    use std::mem::size_of;
97    use wasmtime_environ::{HostPtr, Module, VMOffsets};
98
99    #[test]
100    fn check_vmfunction_import_offsets() {
101        let module = Module::new();
102        let offsets = VMOffsets::new(HostPtr, &module);
103        assert_eq!(
104            size_of::<VMFunctionImport>(),
105            usize::from(offsets.size_of_vmfunction_import())
106        );
107        assert_eq!(
108            offset_of!(VMFunctionImport, wasm_call),
109            usize::from(offsets.vmfunction_import_wasm_call())
110        );
111        assert_eq!(
112            offset_of!(VMFunctionImport, array_call),
113            usize::from(offsets.vmfunction_import_array_call())
114        );
115        assert_eq!(
116            offset_of!(VMFunctionImport, vmctx),
117            usize::from(offsets.vmfunction_import_vmctx())
118        );
119    }
120}
121
122/// A placeholder byte-sized type which is just used to provide some amount of type
123/// safety when dealing with pointers to JIT-compiled function bodies. Note that it's
124/// deliberately not Copy, as we shouldn't be carelessly copying function body bytes
125/// around.
126#[repr(C)]
127pub struct VMFunctionBody(u8);
128
129// SAFETY: this structure is never read and is safe to pass to jit code.
130unsafe impl VmSafe for VMFunctionBody {}
131
132#[cfg(test)]
133mod test_vmfunction_body {
134    use super::VMFunctionBody;
135    use std::mem::size_of;
136
137    #[test]
138    fn check_vmfunction_body_offsets() {
139        assert_eq!(size_of::<VMFunctionBody>(), 1);
140    }
141}
142
143/// The fields compiled code needs to access to utilize a WebAssembly table
144/// imported from another instance.
145#[derive(Debug, Copy, Clone)]
146#[repr(C)]
147pub struct VMTable {
148    /// A pointer to the imported table description.
149    pub from: VmPtr<VMTableDefinition>,
150
151    /// A pointer to the `VMContext` that owns the table description.
152    pub vmctx: VmPtr<VMContext>,
153}
154
155// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
156unsafe impl VmSafe for VMTable {}
157
158#[cfg(test)]
159mod test_vmtable {
160    use super::VMTable;
161    use core::mem::offset_of;
162    use std::mem::size_of;
163    use wasmtime_environ::component::{Component, VMComponentOffsets};
164    use wasmtime_environ::{HostPtr, Module, VMOffsets};
165
166    #[test]
167    fn check_vmtable_offsets() {
168        let module = Module::new();
169        let offsets = VMOffsets::new(HostPtr, &module);
170        assert_eq!(size_of::<VMTable>(), usize::from(offsets.size_of_vmtable()));
171        assert_eq!(
172            offset_of!(VMTable, from),
173            usize::from(offsets.vmtable_from())
174        );
175        assert_eq!(
176            offset_of!(VMTable, vmctx),
177            usize::from(offsets.vmtable_vmctx())
178        );
179    }
180
181    #[test]
182    fn ensure_sizes_match() {
183        // Because we use `VMTable` for recording tables used by components, we
184        // want to make sure that the size calculations between `VMOffsets` and
185        // `VMComponentOffsets` stay the same.
186        let module = Module::new();
187        let vm_offsets = VMOffsets::new(HostPtr, &module);
188        let component = Component::default();
189        let vm_component_offsets = VMComponentOffsets::new(HostPtr, &component);
190        assert_eq!(
191            vm_offsets.size_of_vmtable(),
192            vm_component_offsets.size_of_vmtable()
193        );
194    }
195}
196
197/// The fields compiled code needs to access to utilize a WebAssembly linear
198/// memory imported from another instance.
199#[derive(Debug, Copy, Clone)]
200#[repr(C)]
201pub struct VMMemoryImport {
202    /// A pointer to the imported memory description.
203    pub from: VmPtr<VMMemoryDefinition>,
204
205    /// A pointer to the `VMContext` that owns the memory description.
206    pub vmctx: VmPtr<VMContext>,
207
208    /// The index of the memory in the containing `vmctx`.
209    pub index: DefinedMemoryIndex,
210}
211
212// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
213unsafe impl VmSafe for VMMemoryImport {}
214
215#[cfg(test)]
216mod test_vmmemory_import {
217    use super::VMMemoryImport;
218    use core::mem::offset_of;
219    use std::mem::size_of;
220    use wasmtime_environ::{HostPtr, Module, VMOffsets};
221
222    #[test]
223    fn check_vmmemory_import_offsets() {
224        let module = Module::new();
225        let offsets = VMOffsets::new(HostPtr, &module);
226        assert_eq!(
227            size_of::<VMMemoryImport>(),
228            usize::from(offsets.size_of_vmmemory_import())
229        );
230        assert_eq!(
231            offset_of!(VMMemoryImport, from),
232            usize::from(offsets.vmmemory_import_from())
233        );
234        assert_eq!(
235            offset_of!(VMMemoryImport, vmctx),
236            usize::from(offsets.vmmemory_import_vmctx())
237        );
238    }
239}
240
241/// The fields compiled code needs to access to utilize a WebAssembly global
242/// variable imported from another instance.
243///
244/// Note that unlike with functions, tables, and memories, `VMGlobalImport`
245/// doesn't include a `vmctx` pointer. Globals are never resized, and don't
246/// require a `vmctx` pointer to access.
247#[derive(Debug, Copy, Clone)]
248#[repr(C)]
249pub struct VMGlobalImport {
250    /// A pointer to the imported global variable description.
251    pub from: VmPtr<VMGlobalDefinition>,
252}
253
254// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
255unsafe impl VmSafe for VMGlobalImport {}
256
257#[cfg(test)]
258mod test_vmglobal_import {
259    use super::VMGlobalImport;
260    use core::mem::offset_of;
261    use std::mem::size_of;
262    use wasmtime_environ::{HostPtr, Module, VMOffsets};
263
264    #[test]
265    fn check_vmglobal_import_offsets() {
266        let module = Module::new();
267        let offsets = VMOffsets::new(HostPtr, &module);
268        assert_eq!(
269            size_of::<VMGlobalImport>(),
270            usize::from(offsets.size_of_vmglobal_import())
271        );
272        assert_eq!(
273            offset_of!(VMGlobalImport, from),
274            usize::from(offsets.vmglobal_import_from())
275        );
276    }
277}
278
279/// The fields compiled code needs to access to utilize a WebAssembly
280/// tag imported from another instance.
281#[derive(Debug, Copy, Clone)]
282#[repr(C)]
283pub struct VMTagImport {
284    /// A pointer to the imported tag description.
285    pub from: VmPtr<VMTagDefinition>,
286}
287
288// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
289unsafe impl VmSafe for VMTagImport {}
290
291#[cfg(test)]
292mod test_vmtag_import {
293    use super::VMTagImport;
294    use core::mem::{offset_of, size_of};
295    use wasmtime_environ::{HostPtr, Module, VMOffsets};
296
297    #[test]
298    fn check_vmtag_import_offsets() {
299        let module = Module::new();
300        let offsets = VMOffsets::new(HostPtr, &module);
301        assert_eq!(
302            size_of::<VMTagImport>(),
303            usize::from(offsets.size_of_vmtag_import())
304        );
305        assert_eq!(
306            offset_of!(VMTagImport, from),
307            usize::from(offsets.vmtag_import_from())
308        );
309    }
310}
311
312/// The fields compiled code needs to access to utilize a WebAssembly linear
313/// memory defined within the instance, namely the start address and the
314/// size in bytes.
315#[derive(Debug)]
316#[repr(C)]
317pub struct VMMemoryDefinition {
318    /// The start address.
319    pub base: VmPtr<u8>,
320
321    /// The current logical size of this linear memory in bytes.
322    ///
323    /// This is atomic because shared memories must be able to grow their length
324    /// atomically. For relaxed access, see
325    /// [`VMMemoryDefinition::current_length()`].
326    pub current_length: AtomicUsize,
327}
328
329// SAFETY: the above definition has `repr(C)` and each field individually
330// implements `VmSafe`, which satisfies the requirements of this trait.
331unsafe impl VmSafe for VMMemoryDefinition {}
332
333impl VMMemoryDefinition {
334    /// Return the current length (in bytes) of the [`VMMemoryDefinition`] by
335    /// performing a relaxed load; do not use this function for situations in
336    /// which a precise length is needed. Owned memories (i.e., non-shared) will
337    /// always return a precise result (since no concurrent modification is
338    /// possible) but shared memories may see an imprecise value--a
339    /// `current_length` potentially smaller than what some other thread
340    /// observes. Since Wasm memory only grows, this under-estimation may be
341    /// acceptable in certain cases.
342    pub fn current_length(&self) -> usize {
343        self.current_length.load(Ordering::Relaxed)
344    }
345
346    /// Return a copy of the [`VMMemoryDefinition`] using the relaxed value of
347    /// `current_length`; see [`VMMemoryDefinition::current_length()`].
348    pub unsafe fn load(ptr: *mut Self) -> Self {
349        let other = &*ptr;
350        VMMemoryDefinition {
351            base: other.base,
352            current_length: other.current_length().into(),
353        }
354    }
355}
356
357#[cfg(test)]
358mod test_vmmemory_definition {
359    use super::VMMemoryDefinition;
360    use core::mem::offset_of;
361    use std::mem::size_of;
362    use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
363
364    #[test]
365    fn check_vmmemory_definition_offsets() {
366        let module = Module::new();
367        let offsets = VMOffsets::new(HostPtr, &module);
368        assert_eq!(
369            size_of::<VMMemoryDefinition>(),
370            usize::from(offsets.ptr.size_of_vmmemory_definition())
371        );
372        assert_eq!(
373            offset_of!(VMMemoryDefinition, base),
374            usize::from(offsets.ptr.vmmemory_definition_base())
375        );
376        assert_eq!(
377            offset_of!(VMMemoryDefinition, current_length),
378            usize::from(offsets.ptr.vmmemory_definition_current_length())
379        );
380        /* TODO: Assert that the size of `current_length` matches.
381        assert_eq!(
382            size_of::<VMMemoryDefinition::current_length>(),
383            usize::from(offsets.size_of_vmmemory_definition_current_length())
384        );
385        */
386    }
387}
388
389/// The fields compiled code needs to access to utilize a WebAssembly table
390/// defined within the instance.
391#[derive(Debug, Copy, Clone)]
392#[repr(C)]
393pub struct VMTableDefinition {
394    /// Pointer to the table data.
395    pub base: VmPtr<u8>,
396
397    /// The current number of elements in the table.
398    pub current_elements: usize,
399}
400
401// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
402unsafe impl VmSafe for VMTableDefinition {}
403
404#[cfg(test)]
405mod test_vmtable_definition {
406    use super::VMTableDefinition;
407    use core::mem::offset_of;
408    use std::mem::size_of;
409    use wasmtime_environ::{HostPtr, Module, VMOffsets};
410
411    #[test]
412    fn check_vmtable_definition_offsets() {
413        let module = Module::new();
414        let offsets = VMOffsets::new(HostPtr, &module);
415        assert_eq!(
416            size_of::<VMTableDefinition>(),
417            usize::from(offsets.size_of_vmtable_definition())
418        );
419        assert_eq!(
420            offset_of!(VMTableDefinition, base),
421            usize::from(offsets.vmtable_definition_base())
422        );
423        assert_eq!(
424            offset_of!(VMTableDefinition, current_elements),
425            usize::from(offsets.vmtable_definition_current_elements())
426        );
427    }
428}
429
430/// The storage for a WebAssembly global defined within the instance.
431///
432/// TODO: Pack the globals more densely, rather than using the same size
433/// for every type.
434#[derive(Debug)]
435#[repr(C, align(16))]
436pub struct VMGlobalDefinition {
437    storage: [u8; 16],
438    // If more elements are added here, remember to add offset_of tests below!
439}
440
441// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
442unsafe impl VmSafe for VMGlobalDefinition {}
443
444#[cfg(test)]
445mod test_vmglobal_definition {
446    use super::VMGlobalDefinition;
447    use std::mem::{align_of, size_of};
448    use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
449
450    #[test]
451    fn check_vmglobal_definition_alignment() {
452        assert!(align_of::<VMGlobalDefinition>() >= align_of::<i32>());
453        assert!(align_of::<VMGlobalDefinition>() >= align_of::<i64>());
454        assert!(align_of::<VMGlobalDefinition>() >= align_of::<f32>());
455        assert!(align_of::<VMGlobalDefinition>() >= align_of::<f64>());
456        assert!(align_of::<VMGlobalDefinition>() >= align_of::<[u8; 16]>());
457    }
458
459    #[test]
460    fn check_vmglobal_definition_offsets() {
461        let module = Module::new();
462        let offsets = VMOffsets::new(HostPtr, &module);
463        assert_eq!(
464            size_of::<VMGlobalDefinition>(),
465            usize::from(offsets.ptr.size_of_vmglobal_definition())
466        );
467    }
468
469    #[test]
470    fn check_vmglobal_begins_aligned() {
471        let module = Module::new();
472        let offsets = VMOffsets::new(HostPtr, &module);
473        assert_eq!(offsets.vmctx_globals_begin() % 16, 0);
474    }
475
476    #[test]
477    #[cfg(feature = "gc")]
478    fn check_vmglobal_can_contain_gc_ref() {
479        assert!(size_of::<crate::runtime::vm::VMGcRef>() <= size_of::<VMGlobalDefinition>());
480    }
481}
482
483impl VMGlobalDefinition {
484    /// Construct a `VMGlobalDefinition`.
485    pub fn new() -> Self {
486        Self { storage: [0; 16] }
487    }
488
489    /// Create a `VMGlobalDefinition` from a `ValRaw`.
490    ///
491    /// # Unsafety
492    ///
493    /// This raw value's type must match the given `WasmValType`.
494    pub unsafe fn from_val_raw(
495        store: &mut StoreOpaque,
496        wasm_ty: WasmValType,
497        raw: ValRaw,
498    ) -> Result<Self> {
499        let mut global = Self::new();
500        match wasm_ty {
501            WasmValType::I32 => *global.as_i32_mut() = raw.get_i32(),
502            WasmValType::I64 => *global.as_i64_mut() = raw.get_i64(),
503            WasmValType::F32 => *global.as_f32_bits_mut() = raw.get_f32(),
504            WasmValType::F64 => *global.as_f64_bits_mut() = raw.get_f64(),
505            WasmValType::V128 => global.set_u128(raw.get_v128()),
506            WasmValType::Ref(r) => match r.heap_type.top() {
507                WasmHeapTopType::Extern => {
508                    let r = VMGcRef::from_raw_u32(raw.get_externref());
509                    global.init_gc_ref(store.gc_store_mut()?, r.as_ref())
510                }
511                WasmHeapTopType::Any => {
512                    let r = VMGcRef::from_raw_u32(raw.get_anyref());
513                    global.init_gc_ref(store.gc_store_mut()?, r.as_ref())
514                }
515                WasmHeapTopType::Func => *global.as_func_ref_mut() = raw.get_funcref().cast(),
516                WasmHeapTopType::Cont => todo!(), // FIXME: #10248 stack switching support.
517            },
518        }
519        Ok(global)
520    }
521
522    /// Get this global's value as a `ValRaw`.
523    ///
524    /// # Unsafety
525    ///
526    /// This global's value's type must match the given `WasmValType`.
527    pub unsafe fn to_val_raw(
528        &self,
529        store: &mut StoreOpaque,
530        wasm_ty: WasmValType,
531    ) -> Result<ValRaw> {
532        Ok(match wasm_ty {
533            WasmValType::I32 => ValRaw::i32(*self.as_i32()),
534            WasmValType::I64 => ValRaw::i64(*self.as_i64()),
535            WasmValType::F32 => ValRaw::f32(*self.as_f32_bits()),
536            WasmValType::F64 => ValRaw::f64(*self.as_f64_bits()),
537            WasmValType::V128 => ValRaw::v128(self.get_u128()),
538            WasmValType::Ref(r) => match r.heap_type.top() {
539                WasmHeapTopType::Extern => ValRaw::externref(match self.as_gc_ref() {
540                    Some(r) => store.gc_store_mut()?.clone_gc_ref(r).as_raw_u32(),
541                    None => 0,
542                }),
543                WasmHeapTopType::Any => ValRaw::anyref({
544                    match self.as_gc_ref() {
545                        Some(r) => store.gc_store_mut()?.clone_gc_ref(r).as_raw_u32(),
546                        None => 0,
547                    }
548                }),
549                WasmHeapTopType::Func => ValRaw::funcref(self.as_func_ref().cast()),
550                WasmHeapTopType::Cont => todo!(), // FIXME: #10248 stack switching support.
551            },
552        })
553    }
554
555    /// Return a reference to the value as an i32.
556    pub unsafe fn as_i32(&self) -> &i32 {
557        &*(self.storage.as_ref().as_ptr().cast::<i32>())
558    }
559
560    /// Return a mutable reference to the value as an i32.
561    pub unsafe fn as_i32_mut(&mut self) -> &mut i32 {
562        &mut *(self.storage.as_mut().as_mut_ptr().cast::<i32>())
563    }
564
565    /// Return a reference to the value as a u32.
566    pub unsafe fn as_u32(&self) -> &u32 {
567        &*(self.storage.as_ref().as_ptr().cast::<u32>())
568    }
569
570    /// Return a mutable reference to the value as an u32.
571    pub unsafe fn as_u32_mut(&mut self) -> &mut u32 {
572        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u32>())
573    }
574
575    /// Return a reference to the value as an i64.
576    pub unsafe fn as_i64(&self) -> &i64 {
577        &*(self.storage.as_ref().as_ptr().cast::<i64>())
578    }
579
580    /// Return a mutable reference to the value as an i64.
581    pub unsafe fn as_i64_mut(&mut self) -> &mut i64 {
582        &mut *(self.storage.as_mut().as_mut_ptr().cast::<i64>())
583    }
584
585    /// Return a reference to the value as an u64.
586    pub unsafe fn as_u64(&self) -> &u64 {
587        &*(self.storage.as_ref().as_ptr().cast::<u64>())
588    }
589
590    /// Return a mutable reference to the value as an u64.
591    pub unsafe fn as_u64_mut(&mut self) -> &mut u64 {
592        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u64>())
593    }
594
595    /// Return a reference to the value as an f32.
596    pub unsafe fn as_f32(&self) -> &f32 {
597        &*(self.storage.as_ref().as_ptr().cast::<f32>())
598    }
599
600    /// Return a mutable reference to the value as an f32.
601    pub unsafe fn as_f32_mut(&mut self) -> &mut f32 {
602        &mut *(self.storage.as_mut().as_mut_ptr().cast::<f32>())
603    }
604
605    /// Return a reference to the value as f32 bits.
606    pub unsafe fn as_f32_bits(&self) -> &u32 {
607        &*(self.storage.as_ref().as_ptr().cast::<u32>())
608    }
609
610    /// Return a mutable reference to the value as f32 bits.
611    pub unsafe fn as_f32_bits_mut(&mut self) -> &mut u32 {
612        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u32>())
613    }
614
615    /// Return a reference to the value as an f64.
616    pub unsafe fn as_f64(&self) -> &f64 {
617        &*(self.storage.as_ref().as_ptr().cast::<f64>())
618    }
619
620    /// Return a mutable reference to the value as an f64.
621    pub unsafe fn as_f64_mut(&mut self) -> &mut f64 {
622        &mut *(self.storage.as_mut().as_mut_ptr().cast::<f64>())
623    }
624
625    /// Return a reference to the value as f64 bits.
626    pub unsafe fn as_f64_bits(&self) -> &u64 {
627        &*(self.storage.as_ref().as_ptr().cast::<u64>())
628    }
629
630    /// Return a mutable reference to the value as f64 bits.
631    pub unsafe fn as_f64_bits_mut(&mut self) -> &mut u64 {
632        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u64>())
633    }
634
635    /// Gets the underlying 128-bit vector value.
636    //
637    // Note that vectors are stored in little-endian format while other types
638    // are stored in native-endian format.
639    pub unsafe fn get_u128(&self) -> u128 {
640        u128::from_le(*(self.storage.as_ref().as_ptr().cast::<u128>()))
641    }
642
643    /// Sets the 128-bit vector values.
644    //
645    // Note that vectors are stored in little-endian format while other types
646    // are stored in native-endian format.
647    pub unsafe fn set_u128(&mut self, val: u128) {
648        *self.storage.as_mut().as_mut_ptr().cast::<u128>() = val.to_le();
649    }
650
651    /// Return a reference to the value as u128 bits.
652    pub unsafe fn as_u128_bits(&self) -> &[u8; 16] {
653        &*(self.storage.as_ref().as_ptr().cast::<[u8; 16]>())
654    }
655
656    /// Return a mutable reference to the value as u128 bits.
657    pub unsafe fn as_u128_bits_mut(&mut self) -> &mut [u8; 16] {
658        &mut *(self.storage.as_mut().as_mut_ptr().cast::<[u8; 16]>())
659    }
660
661    /// Return a reference to the global value as a borrowed GC reference.
662    pub unsafe fn as_gc_ref(&self) -> Option<&VMGcRef> {
663        let raw_ptr = self.storage.as_ref().as_ptr().cast::<Option<VMGcRef>>();
664        let ret = (*raw_ptr).as_ref();
665        assert!(cfg!(feature = "gc") || ret.is_none());
666        ret
667    }
668
669    /// Initialize a global to the given GC reference.
670    pub unsafe fn init_gc_ref(&mut self, gc_store: &mut GcStore, gc_ref: Option<&VMGcRef>) {
671        assert!(cfg!(feature = "gc") || gc_ref.is_none());
672
673        let dest = &mut *(self
674            .storage
675            .as_mut()
676            .as_mut_ptr()
677            .cast::<MaybeUninit<Option<VMGcRef>>>());
678
679        gc_store.init_gc_ref(dest, gc_ref)
680    }
681
682    /// Write a GC reference into this global value.
683    pub unsafe fn write_gc_ref(&mut self, gc_store: &mut GcStore, gc_ref: Option<&VMGcRef>) {
684        assert!(cfg!(feature = "gc") || gc_ref.is_none());
685
686        let dest = &mut *(self.storage.as_mut().as_mut_ptr().cast::<Option<VMGcRef>>());
687        assert!(cfg!(feature = "gc") || dest.is_none());
688
689        gc_store.write_gc_ref(dest, gc_ref)
690    }
691
692    /// Return a reference to the value as a `VMFuncRef`.
693    pub unsafe fn as_func_ref(&self) -> *mut VMFuncRef {
694        *(self.storage.as_ref().as_ptr().cast::<*mut VMFuncRef>())
695    }
696
697    /// Return a mutable reference to the value as a `VMFuncRef`.
698    pub unsafe fn as_func_ref_mut(&mut self) -> &mut *mut VMFuncRef {
699        &mut *(self.storage.as_mut().as_mut_ptr().cast::<*mut VMFuncRef>())
700    }
701}
702
703#[cfg(test)]
704mod test_vmshared_type_index {
705    use super::VMSharedTypeIndex;
706    use std::mem::size_of;
707    use wasmtime_environ::{HostPtr, Module, VMOffsets};
708
709    #[test]
710    fn check_vmshared_type_index() {
711        let module = Module::new();
712        let offsets = VMOffsets::new(HostPtr, &module);
713        assert_eq!(
714            size_of::<VMSharedTypeIndex>(),
715            usize::from(offsets.size_of_vmshared_type_index())
716        );
717    }
718}
719
720/// A WebAssembly tag defined within the instance.
721///
722#[derive(Debug)]
723#[repr(C)]
724pub struct VMTagDefinition {
725    /// Function signature's type id.
726    pub type_index: VMSharedTypeIndex,
727}
728
729impl VMTagDefinition {
730    pub fn new(type_index: VMSharedTypeIndex) -> Self {
731        Self { type_index }
732    }
733}
734
735// SAFETY: the above structure is repr(C) and only contains VmSafe
736// fields.
737unsafe impl VmSafe for VMTagDefinition {}
738
739#[cfg(test)]
740mod test_vmtag_definition {
741    use super::VMTagDefinition;
742    use std::mem::size_of;
743    use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
744
745    #[test]
746    fn check_vmtag_definition_offsets() {
747        let module = Module::new();
748        let offsets = VMOffsets::new(HostPtr, &module);
749        assert_eq!(
750            size_of::<VMTagDefinition>(),
751            usize::from(offsets.ptr.size_of_vmtag_definition())
752        );
753    }
754
755    #[test]
756    fn check_vmtag_begins_aligned() {
757        let module = Module::new();
758        let offsets = VMOffsets::new(HostPtr, &module);
759        assert_eq!(offsets.vmctx_tags_begin() % 16, 0);
760    }
761}
762
763/// The VM caller-checked "funcref" record, for caller-side signature checking.
764///
765/// It consists of function pointer(s), a type id to be checked by the
766/// caller, and the vmctx closure associated with this function.
767#[derive(Debug, Clone)]
768#[repr(C)]
769pub struct VMFuncRef {
770    /// Function pointer for this funcref if being called via the "array"
771    /// calling convention that `Func::new` et al use.
772    pub array_call: VmPtr<VMArrayCallFunction>,
773
774    /// Function pointer for this funcref if being called via the calling
775    /// convention we use when compiling Wasm.
776    ///
777    /// Most functions come with a function pointer that we can use when they
778    /// are called from Wasm. The notable exception is when we `Func::wrap` a
779    /// host function, and we don't have a Wasm compiler on hand to compile a
780    /// Wasm-to-native trampoline for the function. In this case, we leave
781    /// `wasm_call` empty until the function is passed as an import to Wasm (or
782    /// otherwise exposed to Wasm via tables/globals). At this point, we look up
783    /// a Wasm-to-native trampoline for the function in the Wasm's compiled
784    /// module and use that fill in `VMFunctionImport::wasm_call`. **However**
785    /// there is no guarantee that the Wasm module has a trampoline for this
786    /// function's signature. The Wasm module only has trampolines for its
787    /// types, and if this function isn't of one of those types, then the Wasm
788    /// module will not have a trampoline for it. This is actually okay, because
789    /// it means that the Wasm cannot actually call this function. But it does
790    /// mean that this field needs to be an `Option` even though it is non-null
791    /// the vast vast vast majority of the time.
792    pub wasm_call: Option<VmPtr<VMWasmCallFunction>>,
793
794    /// Function signature's type id.
795    pub type_index: VMSharedTypeIndex,
796
797    /// The VM state associated with this function.
798    ///
799    /// The actual definition of what this pointer points to depends on the
800    /// function being referenced: for core Wasm functions, this is a `*mut
801    /// VMContext`, for host functions it is a `*mut VMHostFuncContext`, and for
802    /// component functions it is a `*mut VMComponentContext`.
803    pub vmctx: VmPtr<VMOpaqueContext>,
804    // If more elements are added here, remember to add offset_of tests below!
805}
806
807// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
808unsafe impl VmSafe for VMFuncRef {}
809
810impl VMFuncRef {
811    /// Invokes the `array_call` field of this `VMFuncRef` with the supplied
812    /// arguments.
813    ///
814    /// This will invoke the function pointer in the `array_call` field with:
815    ///
816    /// * the `callee` vmctx as `self.vmctx`
817    /// * the `caller` as `caller` specified here
818    /// * the args pointer as `args_and_results`
819    /// * the args length as `args_and_results`
820    ///
821    /// The `args_and_results` area must be large enough to both load all
822    /// arguments from and store all results to.
823    ///
824    /// Returns whether a trap was recorded in TLS for raising.
825    ///
826    /// # Unsafety
827    ///
828    /// This method is unsafe because it can be called with any pointers. They
829    /// must all be valid for this wasm function call to proceed. For example
830    /// the `caller` must be valid machine code if `pulley` is `None` or it must
831    /// be valid bytecode if `pulley` is `Some`. Additionally `args_and_results`
832    /// must be large enough to handle all the arguments/results for this call.
833    ///
834    /// Note that the unsafety invariants to maintain here are not currently
835    /// exhaustively documented.
836    pub unsafe fn array_call(
837        &self,
838        pulley: Option<InterpreterRef<'_>>,
839        caller: NonNull<VMOpaqueContext>,
840        args_and_results: NonNull<[ValRaw]>,
841    ) -> bool {
842        match pulley {
843            Some(vm) => self.array_call_interpreted(vm, caller, args_and_results),
844            None => self.array_call_native(caller, args_and_results),
845        }
846    }
847
848    unsafe fn array_call_interpreted(
849        &self,
850        vm: InterpreterRef<'_>,
851        caller: NonNull<VMOpaqueContext>,
852        args_and_results: NonNull<[ValRaw]>,
853    ) -> bool {
854        // If `caller` is actually a `VMArrayCallHostFuncContext` then skip the
855        // interpreter, even though it's available, as `array_call` will be
856        // native code.
857        if self.vmctx.as_non_null().as_ref().magic
858            == wasmtime_environ::VM_ARRAY_CALL_HOST_FUNC_MAGIC
859        {
860            return self.array_call_native(caller, args_and_results);
861        }
862        vm.call(
863            self.array_call.as_non_null().cast(),
864            self.vmctx.as_non_null(),
865            caller,
866            args_and_results,
867        )
868    }
869
870    unsafe fn array_call_native(
871        &self,
872        caller: NonNull<VMOpaqueContext>,
873        args_and_results: NonNull<[ValRaw]>,
874    ) -> bool {
875        union GetNativePointer {
876            native: VMArrayCallNative,
877            ptr: NonNull<VMArrayCallFunction>,
878        }
879        let native = GetNativePointer {
880            ptr: self.array_call.as_non_null(),
881        }
882        .native;
883        native(
884            self.vmctx.as_non_null(),
885            caller,
886            args_and_results.cast(),
887            args_and_results.len(),
888        )
889    }
890}
891
892#[cfg(test)]
893mod test_vm_func_ref {
894    use super::VMFuncRef;
895    use core::mem::offset_of;
896    use std::mem::size_of;
897    use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
898
899    #[test]
900    fn check_vm_func_ref_offsets() {
901        let module = Module::new();
902        let offsets = VMOffsets::new(HostPtr, &module);
903        assert_eq!(
904            size_of::<VMFuncRef>(),
905            usize::from(offsets.ptr.size_of_vm_func_ref())
906        );
907        assert_eq!(
908            offset_of!(VMFuncRef, array_call),
909            usize::from(offsets.ptr.vm_func_ref_array_call())
910        );
911        assert_eq!(
912            offset_of!(VMFuncRef, wasm_call),
913            usize::from(offsets.ptr.vm_func_ref_wasm_call())
914        );
915        assert_eq!(
916            offset_of!(VMFuncRef, type_index),
917            usize::from(offsets.ptr.vm_func_ref_type_index())
918        );
919        assert_eq!(
920            offset_of!(VMFuncRef, vmctx),
921            usize::from(offsets.ptr.vm_func_ref_vmctx())
922        );
923    }
924}
925
926macro_rules! define_builtin_array {
927    (
928        $(
929            $( #[$attr:meta] )*
930            $name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
931        )*
932    ) => {
933        /// An array that stores addresses of builtin functions. We translate code
934        /// to use indirect calls. This way, we don't have to patch the code.
935        #[repr(C)]
936        pub struct VMBuiltinFunctionsArray {
937            $(
938                $name: unsafe extern "C" fn(
939                    $(define_builtin_array!(@ty $param)),*
940                ) $( -> define_builtin_array!(@ty $result))?,
941            )*
942        }
943
944        impl VMBuiltinFunctionsArray {
945            #[allow(unused_doc_comments)]
946            pub const INIT: VMBuiltinFunctionsArray = VMBuiltinFunctionsArray {
947                $(
948                    $name: crate::runtime::vm::libcalls::raw::$name,
949                )*
950            };
951
952            /// Helper to call `expose_provenance()` on all contained pointers.
953            ///
954            /// This is required to be called at least once before entering wasm
955            /// to inform the compiler that these function pointers may all be
956            /// loaded/stored and used on the "other end" to reacquire
957            /// provenance in Pulley. Pulley models hostcalls with a host
958            /// pointer as the first parameter that's a function pointer under
959            /// the hood, and this call ensures that the use of the function
960            /// pointer is considered valid.
961            pub fn expose_provenance(&self) -> NonNull<Self>{
962                $(
963                    (self.$name as *mut u8).expose_provenance();
964                )*
965                NonNull::from(self)
966            }
967        }
968    };
969
970    (@ty u32) => (u32);
971    (@ty u64) => (u64);
972    (@ty u8) => (u8);
973    (@ty bool) => (bool);
974    (@ty pointer) => (*mut u8);
975    (@ty vmctx) => (NonNull<VMContext>);
976}
977
978// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
979unsafe impl VmSafe for VMBuiltinFunctionsArray {}
980
981wasmtime_environ::foreach_builtin_function!(define_builtin_array);
982
983const _: () = {
984    assert!(
985        mem::size_of::<VMBuiltinFunctionsArray>()
986            == mem::size_of::<usize>() * (BuiltinFunctionIndex::len() as usize)
987    )
988};
989
990/// Structure that holds all mutable context that is shared across all instances
991/// in a store, for example data related to fuel or epochs.
992///
993/// `VMStoreContext`s are one-to-one with `wasmtime::Store`s, the same way that
994/// `VMContext`s are one-to-one with `wasmtime::Instance`s. And the same way
995/// that multiple `wasmtime::Instance`s may be associated with the same
996/// `wasmtime::Store`, multiple `VMContext`s hold a pointer to the same
997/// `VMStoreContext` when they are associated with the same `wasmtime::Store`.
998#[derive(Debug)]
999#[repr(C)]
1000pub struct VMStoreContext {
1001    // NB: 64-bit integer fields are located first with pointer-sized fields
1002    // trailing afterwards. That makes the offsets in this structure easier to
1003    // calculate on 32-bit platforms as we don't have to worry about the
1004    // alignment of 64-bit integers.
1005    //
1006    /// Indicator of how much fuel has been consumed and is remaining to
1007    /// WebAssembly.
1008    ///
1009    /// This field is typically negative and increments towards positive. Upon
1010    /// turning positive a wasm trap will be generated. This field is only
1011    /// modified if wasm is configured to consume fuel.
1012    pub fuel_consumed: UnsafeCell<i64>,
1013
1014    /// Deadline epoch for interruption: if epoch-based interruption
1015    /// is enabled and the global (per engine) epoch counter is
1016    /// observed to reach or exceed this value, the guest code will
1017    /// yield if running asynchronously.
1018    pub epoch_deadline: UnsafeCell<u64>,
1019
1020    /// Current stack limit of the wasm module.
1021    ///
1022    /// For more information see `crates/cranelift/src/lib.rs`.
1023    pub stack_limit: UnsafeCell<usize>,
1024
1025    /// The value of the frame pointer register when we last called from Wasm to
1026    /// the host.
1027    ///
1028    /// Maintained by our Wasm-to-host trampoline, and cleared just before
1029    /// calling into Wasm in `catch_traps`.
1030    ///
1031    /// This member is `0` when Wasm is actively running and has not called out
1032    /// to the host.
1033    ///
1034    /// Used to find the start of a a contiguous sequence of Wasm frames when
1035    /// walking the stack.
1036    pub last_wasm_exit_fp: UnsafeCell<usize>,
1037
1038    /// The last Wasm program counter before we called from Wasm to the host.
1039    ///
1040    /// Maintained by our Wasm-to-host trampoline, and cleared just before
1041    /// calling into Wasm in `catch_traps`.
1042    ///
1043    /// This member is `0` when Wasm is actively running and has not called out
1044    /// to the host.
1045    ///
1046    /// Used when walking a contiguous sequence of Wasm frames.
1047    pub last_wasm_exit_pc: UnsafeCell<usize>,
1048
1049    /// The last host stack pointer before we called into Wasm from the host.
1050    ///
1051    /// Maintained by our host-to-Wasm trampoline, and cleared just before
1052    /// calling into Wasm in `catch_traps`.
1053    ///
1054    /// This member is `0` when Wasm is actively running and has not called out
1055    /// to the host.
1056    ///
1057    /// When a host function is wrapped into a `wasmtime::Func`, and is then
1058    /// called from the host, then this member has the sentinel value of `-1 as
1059    /// usize`, meaning that this contiguous sequence of Wasm frames is the
1060    /// empty sequence, and it is not safe to dereference the
1061    /// `last_wasm_exit_fp`.
1062    ///
1063    /// Used to find the end of a contiguous sequence of Wasm frames when
1064    /// walking the stack.
1065    pub last_wasm_entry_fp: UnsafeCell<usize>,
1066}
1067
1068// The `VMStoreContext` type is a pod-type with no destructor, and we don't
1069// access any fields from other threads, so add in these trait impls which are
1070// otherwise not available due to the `fuel_consumed` and `epoch_deadline`
1071// variables in `VMStoreContext`.
1072unsafe impl Send for VMStoreContext {}
1073unsafe impl Sync for VMStoreContext {}
1074
1075// SAFETY: the above structure is repr(C) and only contains `VmSafe` fields.
1076unsafe impl VmSafe for VMStoreContext {}
1077
1078impl Default for VMStoreContext {
1079    fn default() -> VMStoreContext {
1080        VMStoreContext {
1081            stack_limit: UnsafeCell::new(usize::max_value()),
1082            fuel_consumed: UnsafeCell::new(0),
1083            epoch_deadline: UnsafeCell::new(0),
1084            last_wasm_exit_fp: UnsafeCell::new(0),
1085            last_wasm_exit_pc: UnsafeCell::new(0),
1086            last_wasm_entry_fp: UnsafeCell::new(0),
1087        }
1088    }
1089}
1090
1091#[cfg(test)]
1092mod test_vmstore_context {
1093    use super::VMStoreContext;
1094    use core::mem::offset_of;
1095    use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
1096
1097    #[test]
1098    fn field_offsets() {
1099        let module = Module::new();
1100        let offsets = VMOffsets::new(HostPtr, &module);
1101        assert_eq!(
1102            offset_of!(VMStoreContext, stack_limit),
1103            usize::from(offsets.ptr.vmstore_context_stack_limit())
1104        );
1105        assert_eq!(
1106            offset_of!(VMStoreContext, fuel_consumed),
1107            usize::from(offsets.ptr.vmstore_context_fuel_consumed())
1108        );
1109        assert_eq!(
1110            offset_of!(VMStoreContext, epoch_deadline),
1111            usize::from(offsets.ptr.vmstore_context_epoch_deadline())
1112        );
1113        assert_eq!(
1114            offset_of!(VMStoreContext, last_wasm_exit_fp),
1115            usize::from(offsets.ptr.vmstore_context_last_wasm_exit_fp())
1116        );
1117        assert_eq!(
1118            offset_of!(VMStoreContext, last_wasm_exit_pc),
1119            usize::from(offsets.ptr.vmstore_context_last_wasm_exit_pc())
1120        );
1121        assert_eq!(
1122            offset_of!(VMStoreContext, last_wasm_entry_fp),
1123            usize::from(offsets.ptr.vmstore_context_last_wasm_entry_fp())
1124        );
1125    }
1126}
1127
1128/// The VM "context", which is pointed to by the `vmctx` arg in Cranelift.
1129/// This has information about globals, memories, tables, and other runtime
1130/// state associated with the current instance.
1131///
1132/// The struct here is empty, as the sizes of these fields are dynamic, and
1133/// we can't describe them in Rust's type system. Sufficient memory is
1134/// allocated at runtime.
1135#[derive(Debug)]
1136#[repr(C, align(16))] // align 16 since globals are aligned to that and contained inside
1137pub struct VMContext {
1138    /// There's some more discussion about this within `wasmtime/src/lib.rs` but
1139    /// the idea is that we want to tell the compiler that this contains
1140    /// pointers which transitively refers to itself, to suppress some
1141    /// optimizations that might otherwise assume this doesn't exist.
1142    ///
1143    /// The self-referential pointer we care about is the `*mut Store` pointer
1144    /// early on in this context, which if you follow through enough levels of
1145    /// nesting, eventually can refer back to this `VMContext`
1146    pub _marker: marker::PhantomPinned,
1147}
1148
1149impl VMContext {
1150    /// Helper function to cast between context types using a debug assertion to
1151    /// protect against some mistakes.
1152    #[inline]
1153    pub unsafe fn from_opaque(opaque: NonNull<VMOpaqueContext>) -> NonNull<VMContext> {
1154        // Note that in general the offset of the "magic" field is stored in
1155        // `VMOffsets::vmctx_magic`. Given though that this is a sanity check
1156        // about converting this pointer to another type we ideally don't want
1157        // to read the offset from potentially corrupt memory. Instead it would
1158        // be better to catch errors here as soon as possible.
1159        //
1160        // To accomplish this the `VMContext` structure is laid out with the
1161        // magic field at a statically known offset (here it's 0 for now). This
1162        // static offset is asserted in `VMOffsets::from` and needs to be kept
1163        // in sync with this line for this debug assertion to work.
1164        //
1165        // Also note that this magic is only ever invalid in the presence of
1166        // bugs, meaning we don't actually read the magic and act differently
1167        // at runtime depending what it is, so this is a debug assertion as
1168        // opposed to a regular assertion.
1169        debug_assert_eq!(opaque.as_ref().magic, VMCONTEXT_MAGIC);
1170        opaque.cast()
1171    }
1172}
1173
1174/// A "raw" and unsafe representation of a WebAssembly value.
1175///
1176/// This is provided for use with the `Func::new_unchecked` and
1177/// `Func::call_unchecked` APIs. In general it's unlikely you should be using
1178/// this from Rust, rather using APIs like `Func::wrap` and `TypedFunc::call`.
1179///
1180/// This is notably an "unsafe" way to work with `Val` and it's recommended to
1181/// instead use `Val` where possible. An important note about this union is that
1182/// fields are all stored in little-endian format, regardless of the endianness
1183/// of the host system.
1184#[allow(missing_docs)]
1185#[repr(C)]
1186#[derive(Copy, Clone)]
1187pub union ValRaw {
1188    /// A WebAssembly `i32` value.
1189    ///
1190    /// Note that the payload here is a Rust `i32` but the WebAssembly `i32`
1191    /// type does not assign an interpretation of the upper bit as either signed
1192    /// or unsigned. The Rust type `i32` is simply chosen for convenience.
1193    ///
1194    /// This value is always stored in a little-endian format.
1195    i32: i32,
1196
1197    /// A WebAssembly `i64` value.
1198    ///
1199    /// Note that the payload here is a Rust `i64` but the WebAssembly `i64`
1200    /// type does not assign an interpretation of the upper bit as either signed
1201    /// or unsigned. The Rust type `i64` is simply chosen for convenience.
1202    ///
1203    /// This value is always stored in a little-endian format.
1204    i64: i64,
1205
1206    /// A WebAssembly `f32` value.
1207    ///
1208    /// Note that the payload here is a Rust `u32`. This is to allow passing any
1209    /// representation of NaN into WebAssembly without risk of changing NaN
1210    /// payload bits as its gets passed around the system. Otherwise though this
1211    /// `u32` value is the return value of `f32::to_bits` in Rust.
1212    ///
1213    /// This value is always stored in a little-endian format.
1214    f32: u32,
1215
1216    /// A WebAssembly `f64` value.
1217    ///
1218    /// Note that the payload here is a Rust `u64`. This is to allow passing any
1219    /// representation of NaN into WebAssembly without risk of changing NaN
1220    /// payload bits as its gets passed around the system. Otherwise though this
1221    /// `u64` value is the return value of `f64::to_bits` in Rust.
1222    ///
1223    /// This value is always stored in a little-endian format.
1224    f64: u64,
1225
1226    /// A WebAssembly `v128` value.
1227    ///
1228    /// The payload here is a Rust `[u8; 16]` which has the same number of bits
1229    /// but note that `v128` in WebAssembly is often considered a vector type
1230    /// such as `i32x4` or `f64x2`. This means that the actual interpretation
1231    /// of the underlying bits is left up to the instructions which consume
1232    /// this value.
1233    ///
1234    /// This value is always stored in a little-endian format.
1235    v128: [u8; 16],
1236
1237    /// A WebAssembly `funcref` value (or one of its subtypes).
1238    ///
1239    /// The payload here is a pointer which is runtime-defined. This is one of
1240    /// the main points of unsafety about the `ValRaw` type as the validity of
1241    /// the pointer here is not easily verified and must be preserved by
1242    /// carefully calling the correct functions throughout the runtime.
1243    ///
1244    /// This value is always stored in a little-endian format.
1245    funcref: *mut c_void,
1246
1247    /// A WebAssembly `externref` value (or one of its subtypes).
1248    ///
1249    /// The payload here is a compressed pointer value which is
1250    /// runtime-defined. This is one of the main points of unsafety about the
1251    /// `ValRaw` type as the validity of the pointer here is not easily verified
1252    /// and must be preserved by carefully calling the correct functions
1253    /// throughout the runtime.
1254    ///
1255    /// This value is always stored in a little-endian format.
1256    externref: u32,
1257
1258    /// A WebAssembly `anyref` value (or one of its subtypes).
1259    ///
1260    /// The payload here is a compressed pointer value which is
1261    /// runtime-defined. This is one of the main points of unsafety about the
1262    /// `ValRaw` type as the validity of the pointer here is not easily verified
1263    /// and must be preserved by carefully calling the correct functions
1264    /// throughout the runtime.
1265    ///
1266    /// This value is always stored in a little-endian format.
1267    anyref: u32,
1268}
1269
1270// The `ValRaw` type is matched as `wasmtime_val_raw_t` in the C API so these
1271// are some simple assertions about the shape of the type which are additionally
1272// matched in C.
1273const _: () = {
1274    assert!(mem::size_of::<ValRaw>() == 16);
1275    assert!(mem::align_of::<ValRaw>() == mem::align_of::<u64>());
1276};
1277
1278// This type is just a bag-of-bits so it's up to the caller to figure out how
1279// to safely deal with threading concerns and safely access interior bits.
1280unsafe impl Send for ValRaw {}
1281unsafe impl Sync for ValRaw {}
1282
1283impl fmt::Debug for ValRaw {
1284    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1285        struct Hex<T>(T);
1286        impl<T: fmt::LowerHex> fmt::Debug for Hex<T> {
1287            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1288                let bytes = mem::size_of::<T>();
1289                let hex_digits_per_byte = 2;
1290                let hex_digits = bytes * hex_digits_per_byte;
1291                write!(f, "0x{:0width$x}", self.0, width = hex_digits)
1292            }
1293        }
1294
1295        unsafe {
1296            f.debug_struct("ValRaw")
1297                .field("i32", &Hex(self.i32))
1298                .field("i64", &Hex(self.i64))
1299                .field("f32", &Hex(self.f32))
1300                .field("f64", &Hex(self.f64))
1301                .field("v128", &Hex(u128::from_le_bytes(self.v128)))
1302                .field("funcref", &self.funcref)
1303                .field("externref", &Hex(self.externref))
1304                .field("anyref", &Hex(self.anyref))
1305                .finish()
1306        }
1307    }
1308}
1309
1310impl ValRaw {
1311    /// Create a null reference that is compatible with any of
1312    /// `{any,extern,func}ref`.
1313    pub fn null() -> ValRaw {
1314        unsafe {
1315            let raw = mem::MaybeUninit::<Self>::zeroed().assume_init();
1316            debug_assert_eq!(raw.get_anyref(), 0);
1317            debug_assert_eq!(raw.get_externref(), 0);
1318            debug_assert_eq!(raw.get_funcref(), ptr::null_mut());
1319            raw
1320        }
1321    }
1322
1323    /// Creates a WebAssembly `i32` value
1324    #[inline]
1325    pub fn i32(i: i32) -> ValRaw {
1326        // Note that this is intentionally not setting the `i32` field, instead
1327        // setting the `i64` field with a zero-extended version of `i`. For more
1328        // information on this see the comments on `Lower for Result` in the
1329        // `wasmtime` crate. Otherwise though all `ValRaw` constructors are
1330        // otherwise constrained to guarantee that the initial 64-bits are
1331        // always initialized.
1332        ValRaw::u64(i.unsigned().into())
1333    }
1334
1335    /// Creates a WebAssembly `i64` value
1336    #[inline]
1337    pub fn i64(i: i64) -> ValRaw {
1338        ValRaw { i64: i.to_le() }
1339    }
1340
1341    /// Creates a WebAssembly `i32` value
1342    #[inline]
1343    pub fn u32(i: u32) -> ValRaw {
1344        // See comments in `ValRaw::i32` for why this is setting the upper
1345        // 32-bits as well.
1346        ValRaw::u64(i.into())
1347    }
1348
1349    /// Creates a WebAssembly `i64` value
1350    #[inline]
1351    pub fn u64(i: u64) -> ValRaw {
1352        ValRaw::i64(i as i64)
1353    }
1354
1355    /// Creates a WebAssembly `f32` value
1356    #[inline]
1357    pub fn f32(i: u32) -> ValRaw {
1358        // See comments in `ValRaw::i32` for why this is setting the upper
1359        // 32-bits as well.
1360        ValRaw::u64(i.into())
1361    }
1362
1363    /// Creates a WebAssembly `f64` value
1364    #[inline]
1365    pub fn f64(i: u64) -> ValRaw {
1366        ValRaw { f64: i.to_le() }
1367    }
1368
1369    /// Creates a WebAssembly `v128` value
1370    #[inline]
1371    pub fn v128(i: u128) -> ValRaw {
1372        ValRaw {
1373            v128: i.to_le_bytes(),
1374        }
1375    }
1376
1377    /// Creates a WebAssembly `funcref` value
1378    #[inline]
1379    pub fn funcref(i: *mut c_void) -> ValRaw {
1380        ValRaw {
1381            funcref: Strict::map_addr(i, |i| i.to_le()),
1382        }
1383    }
1384
1385    /// Creates a WebAssembly `externref` value
1386    #[inline]
1387    pub fn externref(e: u32) -> ValRaw {
1388        assert!(cfg!(feature = "gc") || e == 0);
1389        ValRaw {
1390            externref: e.to_le(),
1391        }
1392    }
1393
1394    /// Creates a WebAssembly `anyref` value
1395    #[inline]
1396    pub fn anyref(r: u32) -> ValRaw {
1397        assert!(cfg!(feature = "gc") || r == 0);
1398        ValRaw { anyref: r.to_le() }
1399    }
1400
1401    /// Gets the WebAssembly `i32` value
1402    #[inline]
1403    pub fn get_i32(&self) -> i32 {
1404        unsafe { i32::from_le(self.i32) }
1405    }
1406
1407    /// Gets the WebAssembly `i64` value
1408    #[inline]
1409    pub fn get_i64(&self) -> i64 {
1410        unsafe { i64::from_le(self.i64) }
1411    }
1412
1413    /// Gets the WebAssembly `i32` value
1414    #[inline]
1415    pub fn get_u32(&self) -> u32 {
1416        self.get_i32().unsigned()
1417    }
1418
1419    /// Gets the WebAssembly `i64` value
1420    #[inline]
1421    pub fn get_u64(&self) -> u64 {
1422        self.get_i64().unsigned()
1423    }
1424
1425    /// Gets the WebAssembly `f32` value
1426    #[inline]
1427    pub fn get_f32(&self) -> u32 {
1428        unsafe { u32::from_le(self.f32) }
1429    }
1430
1431    /// Gets the WebAssembly `f64` value
1432    #[inline]
1433    pub fn get_f64(&self) -> u64 {
1434        unsafe { u64::from_le(self.f64) }
1435    }
1436
1437    /// Gets the WebAssembly `v128` value
1438    #[inline]
1439    pub fn get_v128(&self) -> u128 {
1440        unsafe { u128::from_le_bytes(self.v128) }
1441    }
1442
1443    /// Gets the WebAssembly `funcref` value
1444    #[inline]
1445    pub fn get_funcref(&self) -> *mut c_void {
1446        unsafe { Strict::map_addr(self.funcref, |i| usize::from_le(i)) }
1447    }
1448
1449    /// Gets the WebAssembly `externref` value
1450    #[inline]
1451    pub fn get_externref(&self) -> u32 {
1452        let externref = u32::from_le(unsafe { self.externref });
1453        assert!(cfg!(feature = "gc") || externref == 0);
1454        externref
1455    }
1456
1457    /// Gets the WebAssembly `anyref` value
1458    #[inline]
1459    pub fn get_anyref(&self) -> u32 {
1460        let anyref = u32::from_le(unsafe { self.anyref });
1461        assert!(cfg!(feature = "gc") || anyref == 0);
1462        anyref
1463    }
1464}
1465
1466/// An "opaque" version of `VMContext` which must be explicitly casted to a
1467/// target context.
1468///
1469/// This context is used to represent that contexts specified in
1470/// `VMFuncRef` can have any type and don't have an implicit
1471/// structure. Neither wasmtime nor cranelift-generated code can rely on the
1472/// structure of an opaque context in general and only the code which configured
1473/// the context is able to rely on a particular structure. This is because the
1474/// context pointer configured for `VMFuncRef` is guaranteed to be
1475/// the first parameter passed.
1476///
1477/// Note that Wasmtime currently has a layout where all contexts that are casted
1478/// to an opaque context start with a 32-bit "magic" which can be used in debug
1479/// mode to debug-assert that the casts here are correct and have at least a
1480/// little protection against incorrect casts.
1481pub struct VMOpaqueContext {
1482    pub(crate) magic: u32,
1483    _marker: marker::PhantomPinned,
1484}
1485
1486impl VMOpaqueContext {
1487    /// Helper function to clearly indicate that casts are desired.
1488    #[inline]
1489    pub fn from_vmcontext(ptr: NonNull<VMContext>) -> NonNull<VMOpaqueContext> {
1490        ptr.cast()
1491    }
1492
1493    /// Helper function to clearly indicate that casts are desired.
1494    #[inline]
1495    pub fn from_vm_array_call_host_func_context(
1496        ptr: NonNull<VMArrayCallHostFuncContext>,
1497    ) -> NonNull<VMOpaqueContext> {
1498        ptr.cast()
1499    }
1500}