wasmtime_environ/fact.rs
1//! Wasmtime's Fused Adapter Compiler of Trampolines (FACT)
2//!
3//! This module contains a compiler which emits trampolines to implement fused
4//! adapters for the component model. A fused adapter is when a core wasm
5//! function is lifted from one component instance and then lowered into another
6//! component instance. This communication between components is well-defined by
7//! the spec and ends up creating what's called a "fused adapter".
8//!
9//! Adapters are currently implemented with WebAssembly modules. This submodule
10//! will generate a core wasm binary which contains the adapters specified
11//! during compilation. The actual wasm is then later processed by standard
12//! paths in Wasmtime to create native machine code and runtime representations
13//! of modules.
14//!
15//! Note that identification of precisely what goes into an adapter module is
16//! not handled in this file, instead that's all done in `translate/adapt.rs`.
17//! Otherwise this module is only responsible for taking a set of adapters and
18//! their imports and then generating a core wasm module to implement all of
19//! that.
20
21use crate::component::dfg::CoreDef;
22use crate::component::{
23 Adapter, AdapterOptions as AdapterOptionsDfg, ComponentTypesBuilder, FlatType, InterfaceType,
24 RuntimeComponentInstanceIndex, StringEncoding, Transcode, TypeFuncIndex,
25};
26use crate::fact::transcode::Transcoder;
27use crate::{EntityRef, FuncIndex, GlobalIndex, MemoryIndex, PrimaryMap};
28use crate::{ModuleInternedTypeIndex, prelude::*};
29use std::borrow::Cow;
30use std::collections::HashMap;
31use wasm_encoder::*;
32
33mod core_types;
34mod signature;
35mod trampoline;
36mod transcode;
37mod traps;
38
39/// Fixed parameter types for the `prepare_call` built-in function.
40///
41/// Note that `prepare_call` also takes a variable number of parameters in
42/// addition to these, determined by the signature of the function for which
43/// we're generating an adapter.
44pub static PREPARE_CALL_FIXED_PARAMS: &[ValType] = &[
45 ValType::FUNCREF, // start
46 ValType::FUNCREF, // return
47 ValType::I32, // caller_instance
48 ValType::I32, // callee_instance
49 ValType::I32, // task_return_type
50 ValType::I32, // string_encoding
51 ValType::I32, // result_count_or_max_if_async
52];
53
54/// Representation of an adapter module.
55pub struct Module<'a> {
56 /// Whether or not debug code is inserted into the adapters themselves.
57 debug: bool,
58 /// Type information from the creator of this `Module`
59 types: &'a ComponentTypesBuilder,
60
61 /// Core wasm type section that's incrementally built
62 core_types: core_types::CoreTypes,
63
64 /// Core wasm import section which is built as adapters are inserted. Note
65 /// that imports here are intern'd to avoid duplicate imports of the same
66 /// item.
67 core_imports: ImportSection,
68 /// Final list of imports that this module ended up using, in the same order
69 /// as the imports in the import section.
70 imports: Vec<Import>,
71 /// Intern'd imports and what index they were assigned. Note that this map
72 /// covers all the index spaces for imports, not just one.
73 imported: HashMap<CoreDef, usize>,
74 /// Intern'd transcoders and what index they were assigned.
75 imported_transcoders: HashMap<Transcoder, FuncIndex>,
76
77 /// Cached versions of imported trampolines for working with resources.
78 imported_resource_transfer_own: Option<FuncIndex>,
79 imported_resource_transfer_borrow: Option<FuncIndex>,
80 imported_resource_enter_call: Option<FuncIndex>,
81 imported_resource_exit_call: Option<FuncIndex>,
82
83 // Cached versions of imported trampolines for working with the async ABI.
84 imported_async_start_calls: HashMap<(Option<FuncIndex>, Option<FuncIndex>), FuncIndex>,
85
86 // Cached versions of imported trampolines for working with `stream`s,
87 // `future`s, and `error-context`s.
88 imported_future_transfer: Option<FuncIndex>,
89 imported_stream_transfer: Option<FuncIndex>,
90 imported_error_context_transfer: Option<FuncIndex>,
91
92 // Current status of index spaces from the imports generated so far.
93 imported_funcs: PrimaryMap<FuncIndex, Option<CoreDef>>,
94 imported_memories: PrimaryMap<MemoryIndex, CoreDef>,
95 imported_globals: PrimaryMap<GlobalIndex, CoreDef>,
96
97 funcs: PrimaryMap<FunctionId, Function>,
98 helper_funcs: HashMap<Helper, FunctionId>,
99 helper_worklist: Vec<(FunctionId, Helper)>,
100
101 exports: Vec<(u32, String)>,
102}
103
104struct AdapterData {
105 /// Export name of this adapter
106 name: String,
107 /// Options specified during the `canon lift` operation
108 lift: AdapterOptions,
109 /// Options specified during the `canon lower` operation
110 lower: AdapterOptions,
111 /// The core wasm function that this adapter will be calling (the original
112 /// function that was `canon lift`'d)
113 callee: FuncIndex,
114 /// FIXME(#4185) should be plumbed and handled as part of the new reentrance
115 /// rules not yet implemented here.
116 called_as_export: bool,
117}
118
119/// Configuration options which apply at the "global adapter" level.
120///
121/// These options are typically unique per-adapter and generally aren't needed
122/// when translating recursive types within an adapter.
123struct AdapterOptions {
124 instance: RuntimeComponentInstanceIndex,
125 /// The ascribed type of this adapter.
126 ty: TypeFuncIndex,
127 /// The global that represents the instance flags for where this adapter
128 /// came from.
129 flags: GlobalIndex,
130 /// The configured post-return function, if any.
131 post_return: Option<FuncIndex>,
132 /// Other, more general, options configured.
133 options: Options,
134}
135
136#[derive(PartialEq, Eq, Hash, Copy, Clone)]
137/// Linear memory.
138struct LinearMemoryOptions {
139 /// Whether or not the `memory` field, if present, is a 64-bit memory.
140 memory64: bool,
141 /// An optionally-specified memory where values may travel through for
142 /// types like lists.
143 memory: Option<MemoryIndex>,
144 /// An optionally-specified function to be used to allocate space for
145 /// types such as strings as they go into a module.
146 realloc: Option<FuncIndex>,
147}
148
149impl LinearMemoryOptions {
150 fn ptr(&self) -> ValType {
151 if self.memory64 {
152 ValType::I64
153 } else {
154 ValType::I32
155 }
156 }
157
158 fn ptr_size(&self) -> u8 {
159 if self.memory64 { 8 } else { 4 }
160 }
161}
162
163/// The data model for objects passed through an adapter.
164#[derive(PartialEq, Eq, Hash, Copy, Clone)]
165enum DataModel {
166 Gc {},
167 LinearMemory(LinearMemoryOptions),
168}
169
170impl DataModel {
171 #[track_caller]
172 fn unwrap_memory(&self) -> &LinearMemoryOptions {
173 match self {
174 DataModel::Gc {} => panic!("`unwrap_memory` on GC"),
175 DataModel::LinearMemory(opts) => opts,
176 }
177 }
178}
179
180/// This type is split out of `AdapterOptions` and is specifically used to
181/// deduplicate translation functions within a module. Consequently this has
182/// as few fields as possible to minimize the number of functions generated
183/// within an adapter module.
184#[derive(PartialEq, Eq, Hash, Copy, Clone)]
185struct Options {
186 /// The encoding that strings use from this adapter.
187 string_encoding: StringEncoding,
188 callback: Option<FuncIndex>,
189 async_: bool,
190 core_type: ModuleInternedTypeIndex,
191 data_model: DataModel,
192}
193
194/// Representation of a "helper function" which may be generated as part of
195/// generating an adapter trampoline.
196///
197/// Helper functions are created when inlining the translation for a type in its
198/// entirety would make a function excessively large. This is currently done via
199/// a simple fuel/cost heuristic based on the type being translated but may get
200/// fancier over time.
201#[derive(Copy, Clone, PartialEq, Eq, Hash)]
202struct Helper {
203 /// Metadata about the source type of what's being translated.
204 src: HelperType,
205 /// Metadata about the destination type which is being translated to.
206 dst: HelperType,
207}
208
209/// Information about a source or destination type in a `Helper` which is
210/// generated.
211#[derive(Copy, Clone, PartialEq, Eq, Hash)]
212struct HelperType {
213 /// The concrete type being translated.
214 ty: InterfaceType,
215 /// The configuration options (memory, etc) for the adapter.
216 opts: Options,
217 /// Where the type is located (either the stack or in memory)
218 loc: HelperLocation,
219}
220
221/// Where a `HelperType` is located, dictating the signature of the helper
222/// function.
223#[derive(Copy, Clone, PartialEq, Eq, Hash)]
224enum HelperLocation {
225 /// Located on the stack in wasm locals.
226 Stack,
227 /// Located in linear memory as configured by `opts`.
228 Memory,
229 /// Located in a GC struct field.
230 #[expect(dead_code, reason = "CM+GC is still WIP")]
231 StructField,
232 /// Located in a GC array element.
233 #[expect(dead_code, reason = "CM+GC is still WIP")]
234 ArrayElement,
235}
236
237impl<'a> Module<'a> {
238 /// Creates an empty module.
239 pub fn new(types: &'a ComponentTypesBuilder, debug: bool) -> Module<'a> {
240 Module {
241 debug,
242 types,
243 core_types: Default::default(),
244 core_imports: Default::default(),
245 imported: Default::default(),
246 imports: Default::default(),
247 imported_transcoders: Default::default(),
248 imported_funcs: PrimaryMap::new(),
249 imported_memories: PrimaryMap::new(),
250 imported_globals: PrimaryMap::new(),
251 funcs: PrimaryMap::new(),
252 helper_funcs: HashMap::new(),
253 helper_worklist: Vec::new(),
254 imported_resource_transfer_own: None,
255 imported_resource_transfer_borrow: None,
256 imported_resource_enter_call: None,
257 imported_resource_exit_call: None,
258 imported_async_start_calls: HashMap::new(),
259 imported_future_transfer: None,
260 imported_stream_transfer: None,
261 imported_error_context_transfer: None,
262 exports: Vec::new(),
263 }
264 }
265
266 /// Registers a new adapter within this adapter module.
267 ///
268 /// The `name` provided is the export name of the adapter from the final
269 /// module, and `adapter` contains all metadata necessary for compilation.
270 pub fn adapt(&mut self, name: &str, adapter: &Adapter) {
271 // Import any items required by the various canonical options
272 // (memories, reallocs, etc)
273 let mut lift = self.import_options(adapter.lift_ty, &adapter.lift_options);
274 let lower = self.import_options(adapter.lower_ty, &adapter.lower_options);
275
276 // Lowering options are not allowed to specify post-return as per the
277 // current canonical abi specification.
278 assert!(adapter.lower_options.post_return.is_none());
279
280 // Import the core wasm function which was lifted using its appropriate
281 // signature since the exported function this adapter generates will
282 // call the lifted function.
283 let signature = self.types.signature(&lift);
284 let ty = self
285 .core_types
286 .function(&signature.params, &signature.results);
287 let callee = self.import_func("callee", name, ty, adapter.func.clone());
288
289 // Handle post-return specifically here where we have `core_ty` and the
290 // results of `core_ty` are the parameters to the post-return function.
291 lift.post_return = adapter.lift_options.post_return.as_ref().map(|func| {
292 let ty = self.core_types.function(&signature.results, &[]);
293 self.import_func("post_return", name, ty, func.clone())
294 });
295
296 // This will internally create the adapter as specified and append
297 // anything necessary to `self.funcs`.
298 trampoline::compile(
299 self,
300 &AdapterData {
301 name: name.to_string(),
302 lift,
303 lower,
304 callee,
305 // FIXME(#4185) should be plumbed and handled as part of the new
306 // reentrance rules not yet implemented here.
307 called_as_export: true,
308 },
309 );
310
311 while let Some((result, helper)) = self.helper_worklist.pop() {
312 trampoline::compile_helper(self, result, helper);
313 }
314 }
315
316 fn import_options(&mut self, ty: TypeFuncIndex, options: &AdapterOptionsDfg) -> AdapterOptions {
317 let AdapterOptionsDfg {
318 instance,
319 string_encoding,
320 post_return: _, // handled above
321 callback,
322 async_,
323 core_type,
324 data_model,
325 } = options;
326
327 let flags = self.import_global(
328 "flags",
329 &format!("instance{}", instance.as_u32()),
330 GlobalType {
331 val_type: ValType::I32,
332 mutable: true,
333 shared: false,
334 },
335 CoreDef::InstanceFlags(*instance),
336 );
337
338 let data_model = match data_model {
339 crate::component::DataModel::Gc {} => DataModel::Gc {},
340 crate::component::DataModel::LinearMemory {
341 memory,
342 memory64,
343 realloc,
344 } => {
345 let memory = memory.as_ref().map(|memory| {
346 self.import_memory(
347 "memory",
348 &format!("m{}", self.imported_memories.len()),
349 MemoryType {
350 minimum: 0,
351 maximum: None,
352 shared: false,
353 memory64: *memory64,
354 page_size_log2: None,
355 },
356 memory.clone().into(),
357 )
358 });
359 let realloc = realloc.as_ref().map(|func| {
360 let ptr = if *memory64 {
361 ValType::I64
362 } else {
363 ValType::I32
364 };
365 let ty = self.core_types.function(&[ptr, ptr, ptr, ptr], &[ptr]);
366 self.import_func(
367 "realloc",
368 &format!("f{}", self.imported_funcs.len()),
369 ty,
370 func.clone(),
371 )
372 });
373 DataModel::LinearMemory(LinearMemoryOptions {
374 memory64: *memory64,
375 memory,
376 realloc,
377 })
378 }
379 };
380
381 let callback = callback.as_ref().map(|func| {
382 let ty = self
383 .core_types
384 .function(&[ValType::I32, ValType::I32, ValType::I32], &[ValType::I32]);
385 self.import_func(
386 "callback",
387 &format!("f{}", self.imported_funcs.len()),
388 ty,
389 func.clone(),
390 )
391 });
392
393 AdapterOptions {
394 instance: *instance,
395 ty,
396 flags,
397 post_return: None,
398 options: Options {
399 string_encoding: *string_encoding,
400 callback,
401 async_: *async_,
402 core_type: *core_type,
403 data_model,
404 },
405 }
406 }
407
408 fn import_func(&mut self, module: &str, name: &str, ty: u32, def: CoreDef) -> FuncIndex {
409 self.import(module, name, EntityType::Function(ty), def, |m| {
410 &mut m.imported_funcs
411 })
412 }
413
414 fn import_global(
415 &mut self,
416 module: &str,
417 name: &str,
418 ty: GlobalType,
419 def: CoreDef,
420 ) -> GlobalIndex {
421 self.import(module, name, EntityType::Global(ty), def, |m| {
422 &mut m.imported_globals
423 })
424 }
425
426 fn import_memory(
427 &mut self,
428 module: &str,
429 name: &str,
430 ty: MemoryType,
431 def: CoreDef,
432 ) -> MemoryIndex {
433 self.import(module, name, EntityType::Memory(ty), def, |m| {
434 &mut m.imported_memories
435 })
436 }
437
438 fn import<K: EntityRef, V: From<CoreDef>>(
439 &mut self,
440 module: &str,
441 name: &str,
442 ty: EntityType,
443 def: CoreDef,
444 map: impl FnOnce(&mut Self) -> &mut PrimaryMap<K, V>,
445 ) -> K {
446 if let Some(prev) = self.imported.get(&def) {
447 return K::new(*prev);
448 }
449 let idx = map(self).push(def.clone().into());
450 self.core_imports.import(module, name, ty);
451 self.imported.insert(def.clone(), idx.index());
452 self.imports.push(Import::CoreDef(def));
453 idx
454 }
455
456 fn import_transcoder(&mut self, transcoder: transcode::Transcoder) -> FuncIndex {
457 *self
458 .imported_transcoders
459 .entry(transcoder)
460 .or_insert_with(|| {
461 // Add the import to the core wasm import section...
462 let name = transcoder.name();
463 let ty = transcoder.ty(&mut self.core_types);
464 self.core_imports.import("transcode", &name, ty);
465
466 // ... and also record the metadata for what this import
467 // corresponds to.
468 let from = self.imported_memories[transcoder.from_memory].clone();
469 let to = self.imported_memories[transcoder.to_memory].clone();
470 self.imports.push(Import::Transcode {
471 op: transcoder.op,
472 from,
473 from64: transcoder.from_memory64,
474 to,
475 to64: transcoder.to_memory64,
476 });
477
478 self.imported_funcs.push(None)
479 })
480 }
481
482 fn import_simple(
483 &mut self,
484 module: &str,
485 name: &str,
486 params: &[ValType],
487 results: &[ValType],
488 import: Import,
489 get: impl Fn(&mut Self) -> &mut Option<FuncIndex>,
490 ) -> FuncIndex {
491 self.import_simple_get_and_set(
492 module,
493 name,
494 params,
495 results,
496 import,
497 |me| *get(me),
498 |me, v| *get(me) = Some(v),
499 )
500 }
501
502 fn import_simple_get_and_set(
503 &mut self,
504 module: &str,
505 name: &str,
506 params: &[ValType],
507 results: &[ValType],
508 import: Import,
509 get: impl Fn(&mut Self) -> Option<FuncIndex>,
510 set: impl Fn(&mut Self, FuncIndex),
511 ) -> FuncIndex {
512 if let Some(idx) = get(self) {
513 return idx;
514 }
515 let ty = self.core_types.function(params, results);
516 let ty = EntityType::Function(ty);
517 self.core_imports.import(module, name, ty);
518
519 self.imports.push(import);
520 let idx = self.imported_funcs.push(None);
521 set(self, idx);
522 idx
523 }
524
525 /// Import a host built-in function to set up a subtask for a sync-lowered
526 /// import call to an async-lifted export.
527 ///
528 /// Given that the callee may exert backpressure before the host can copy
529 /// the parameters, the adapter must use this function to set up the subtask
530 /// and stash the parameters as part of that subtask until any backpressure
531 /// has cleared.
532 fn import_prepare_call(
533 &mut self,
534 suffix: &str,
535 params: &[ValType],
536 memory: Option<MemoryIndex>,
537 ) -> FuncIndex {
538 let ty = self.core_types.function(
539 &PREPARE_CALL_FIXED_PARAMS
540 .iter()
541 .copied()
542 .chain(params.iter().copied())
543 .collect::<Vec<_>>(),
544 &[],
545 );
546 self.core_imports.import(
547 "sync",
548 &format!("[prepare-call]{suffix}"),
549 EntityType::Function(ty),
550 );
551 let import = Import::PrepareCall {
552 memory: memory.map(|v| self.imported_memories[v].clone()),
553 };
554 self.imports.push(import);
555 self.imported_funcs.push(None)
556 }
557
558 /// Import a host built-in function to start a subtask for a sync-lowered
559 /// import call to an async-lifted export.
560 ///
561 /// This call with block until the subtask has produced result(s) via the
562 /// `task.return` intrinsic.
563 ///
564 /// Note that this could potentially be combined with the `sync-prepare`
565 /// built-in into a single built-in function that does both jobs. However,
566 /// we've kept them separate to allow a future optimization where the caller
567 /// calls the callee directly rather than using `sync-start` to have the host
568 /// do it.
569 fn import_sync_start_call(
570 &mut self,
571 suffix: &str,
572 callback: Option<FuncIndex>,
573 results: &[ValType],
574 ) -> FuncIndex {
575 let ty = self
576 .core_types
577 .function(&[ValType::FUNCREF, ValType::I32], results);
578 self.core_imports.import(
579 "sync",
580 &format!("[start-call]{suffix}"),
581 EntityType::Function(ty),
582 );
583 let import = Import::SyncStartCall {
584 callback: callback
585 .map(|callback| self.imported_funcs.get(callback).unwrap().clone().unwrap()),
586 };
587 self.imports.push(import);
588 self.imported_funcs.push(None)
589 }
590
591 /// Import a host built-in function to start a subtask for an async-lowered
592 /// import call to an async- or sync-lifted export.
593 ///
594 /// Note that this could potentially be combined with the `async-prepare`
595 /// built-in into a single built-in function that does both jobs. However,
596 /// we've kept them separate to allow a future optimization where the caller
597 /// calls the callee directly rather than using `async-start` to have the
598 /// host do it.
599 fn import_async_start_call(
600 &mut self,
601 suffix: &str,
602 callback: Option<FuncIndex>,
603 post_return: Option<FuncIndex>,
604 ) -> FuncIndex {
605 self.import_simple_get_and_set(
606 "async",
607 &format!("[start-call]{suffix}"),
608 &[ValType::FUNCREF, ValType::I32, ValType::I32, ValType::I32],
609 &[ValType::I32],
610 Import::AsyncStartCall {
611 callback: callback
612 .map(|callback| self.imported_funcs.get(callback).unwrap().clone().unwrap()),
613 post_return: post_return.map(|post_return| {
614 self.imported_funcs
615 .get(post_return)
616 .unwrap()
617 .clone()
618 .unwrap()
619 }),
620 },
621 |me| {
622 me.imported_async_start_calls
623 .get(&(callback, post_return))
624 .copied()
625 },
626 |me, v| {
627 assert!(
628 me.imported_async_start_calls
629 .insert((callback, post_return), v)
630 .is_none()
631 )
632 },
633 )
634 }
635
636 fn import_future_transfer(&mut self) -> FuncIndex {
637 self.import_simple(
638 "future",
639 "transfer",
640 &[ValType::I32; 3],
641 &[ValType::I32],
642 Import::FutureTransfer,
643 |me| &mut me.imported_future_transfer,
644 )
645 }
646
647 fn import_stream_transfer(&mut self) -> FuncIndex {
648 self.import_simple(
649 "stream",
650 "transfer",
651 &[ValType::I32; 3],
652 &[ValType::I32],
653 Import::StreamTransfer,
654 |me| &mut me.imported_stream_transfer,
655 )
656 }
657
658 fn import_error_context_transfer(&mut self) -> FuncIndex {
659 self.import_simple(
660 "error-context",
661 "transfer",
662 &[ValType::I32; 3],
663 &[ValType::I32],
664 Import::ErrorContextTransfer,
665 |me| &mut me.imported_error_context_transfer,
666 )
667 }
668
669 fn import_resource_transfer_own(&mut self) -> FuncIndex {
670 self.import_simple(
671 "resource",
672 "transfer-own",
673 &[ValType::I32, ValType::I32, ValType::I32],
674 &[ValType::I32],
675 Import::ResourceTransferOwn,
676 |me| &mut me.imported_resource_transfer_own,
677 )
678 }
679
680 fn import_resource_transfer_borrow(&mut self) -> FuncIndex {
681 self.import_simple(
682 "resource",
683 "transfer-borrow",
684 &[ValType::I32, ValType::I32, ValType::I32],
685 &[ValType::I32],
686 Import::ResourceTransferBorrow,
687 |me| &mut me.imported_resource_transfer_borrow,
688 )
689 }
690
691 fn import_resource_enter_call(&mut self) -> FuncIndex {
692 self.import_simple(
693 "resource",
694 "enter-call",
695 &[],
696 &[],
697 Import::ResourceEnterCall,
698 |me| &mut me.imported_resource_enter_call,
699 )
700 }
701
702 fn import_resource_exit_call(&mut self) -> FuncIndex {
703 self.import_simple(
704 "resource",
705 "exit-call",
706 &[],
707 &[],
708 Import::ResourceExitCall,
709 |me| &mut me.imported_resource_exit_call,
710 )
711 }
712
713 fn translate_helper(&mut self, helper: Helper) -> FunctionId {
714 *self.helper_funcs.entry(helper).or_insert_with(|| {
715 // Generate a fresh `Function` with a unique id for what we're about to
716 // generate.
717 let ty = helper.core_type(self.types, &mut self.core_types);
718 let id = self.funcs.push(Function::new(None, ty));
719 self.helper_worklist.push((id, helper));
720 id
721 })
722 }
723
724 /// Encodes this module into a WebAssembly binary.
725 pub fn encode(&mut self) -> Vec<u8> {
726 // Build the function/export sections of the wasm module in a first pass
727 // which will assign a final `FuncIndex` to all functions defined in
728 // `self.funcs`.
729 let mut funcs = FunctionSection::new();
730 let mut exports = ExportSection::new();
731 let mut id_to_index = PrimaryMap::<FunctionId, FuncIndex>::new();
732 for (id, func) in self.funcs.iter() {
733 assert!(func.filled_in);
734 let idx = FuncIndex::from_u32(self.imported_funcs.next_key().as_u32() + id.as_u32());
735 let id2 = id_to_index.push(idx);
736 assert_eq!(id2, id);
737
738 funcs.function(func.ty);
739
740 if let Some(name) = &func.export {
741 exports.export(name, ExportKind::Func, idx.as_u32());
742 }
743 }
744 for (idx, name) in &self.exports {
745 exports.export(name, ExportKind::Func, *idx);
746 }
747
748 // With all functions numbered the fragments of the body of each
749 // function can be assigned into one final adapter function.
750 let mut code = CodeSection::new();
751 let mut traps = traps::TrapSection::default();
752 for (id, func) in self.funcs.iter() {
753 let mut func_traps = Vec::new();
754 let mut body = Vec::new();
755
756 // Encode all locals used for this function
757 func.locals.len().encode(&mut body);
758 for (count, ty) in func.locals.iter() {
759 count.encode(&mut body);
760 ty.encode(&mut body);
761 }
762
763 // Then encode each "chunk" of a body which may have optional traps
764 // specified within it. Traps get offset by the current length of
765 // the body and otherwise our `Call` instructions are "relocated"
766 // here to the final function index.
767 for chunk in func.body.iter() {
768 match chunk {
769 Body::Raw(code, traps) => {
770 let start = body.len();
771 body.extend_from_slice(code);
772 for (offset, trap) in traps {
773 func_traps.push((start + offset, *trap));
774 }
775 }
776 Body::Call(id) => {
777 Instruction::Call(id_to_index[*id].as_u32()).encode(&mut body);
778 }
779 Body::RefFunc(id) => {
780 Instruction::RefFunc(id_to_index[*id].as_u32()).encode(&mut body);
781 }
782 }
783 }
784 code.raw(&body);
785 traps.append(id_to_index[id].as_u32(), func_traps);
786 }
787
788 let traps = traps.finish();
789
790 let mut result = wasm_encoder::Module::new();
791 result.section(&self.core_types.section);
792 result.section(&self.core_imports);
793 result.section(&funcs);
794 result.section(&exports);
795 result.section(&code);
796 if self.debug {
797 result.section(&CustomSection {
798 name: "wasmtime-trampoline-traps".into(),
799 data: Cow::Borrowed(&traps),
800 });
801 }
802 result.finish()
803 }
804
805 /// Returns the imports that were used, in order, to create this adapter
806 /// module.
807 pub fn imports(&self) -> &[Import] {
808 &self.imports
809 }
810}
811
812/// Possible imports into an adapter module.
813#[derive(Clone)]
814pub enum Import {
815 /// A definition required in the configuration of an `Adapter`.
816 CoreDef(CoreDef),
817 /// A transcoding function from the host to convert between string encodings.
818 Transcode {
819 /// The transcoding operation this performs.
820 op: Transcode,
821 /// The memory being read
822 from: CoreDef,
823 /// Whether or not `from` is a 64-bit memory
824 from64: bool,
825 /// The memory being written
826 to: CoreDef,
827 /// Whether or not `to` is a 64-bit memory
828 to64: bool,
829 },
830 /// Transfers an owned resource from one table to another.
831 ResourceTransferOwn,
832 /// Transfers a borrowed resource from one table to another.
833 ResourceTransferBorrow,
834 /// Sets up entry metadata for a borrow resources when a call starts.
835 ResourceEnterCall,
836 /// Tears down a previous entry and handles checking borrow-related
837 /// metadata.
838 ResourceExitCall,
839 /// An intrinsic used by FACT-generated modules to begin a call involving
840 /// an async-lowered import and/or an async-lifted export.
841 PrepareCall {
842 /// The memory used to verify that the memory specified for the
843 /// `task.return` that is called at runtime (if any) matches the one
844 /// specified in the lifted export.
845 memory: Option<CoreDef>,
846 },
847 /// An intrinsic used by FACT-generated modules to complete a call involving
848 /// a sync-lowered import and async-lifted export.
849 SyncStartCall {
850 /// The callee's callback function, if any.
851 callback: Option<CoreDef>,
852 },
853 /// An intrinsic used by FACT-generated modules to complete a call involving
854 /// an async-lowered import function.
855 AsyncStartCall {
856 /// The callee's callback function, if any.
857 callback: Option<CoreDef>,
858
859 /// The callee's post-return function, if any.
860 post_return: Option<CoreDef>,
861 },
862 /// An intrinisic used by FACT-generated modules to (partially or entirely) transfer
863 /// ownership of a `future`.
864 FutureTransfer,
865 /// An intrinisic used by FACT-generated modules to (partially or entirely) transfer
866 /// ownership of a `stream`.
867 StreamTransfer,
868 /// An intrinisic used by FACT-generated modules to (partially or entirely) transfer
869 /// ownership of an `error-context`.
870 ErrorContextTransfer,
871}
872
873impl Options {
874 fn flat_types<'a>(
875 &self,
876 ty: &InterfaceType,
877 types: &'a ComponentTypesBuilder,
878 ) -> Option<&'a [FlatType]> {
879 let flat = types.flat_types(ty)?;
880 match self.data_model {
881 DataModel::Gc {} => todo!("CM+GC"),
882 DataModel::LinearMemory(mem_opts) => Some(if mem_opts.memory64 {
883 flat.memory64
884 } else {
885 flat.memory32
886 }),
887 }
888 }
889}
890
891/// Temporary index which is not the same as `FuncIndex`.
892///
893/// This represents the nth generated function in the adapter module where the
894/// final index of the function is not known at the time of generation since
895/// more imports may be discovered (specifically string transcoders).
896#[derive(Debug, Copy, Clone, PartialEq, Eq)]
897struct FunctionId(u32);
898cranelift_entity::entity_impl!(FunctionId);
899
900/// A generated function to be added to an adapter module.
901///
902/// At least one function is created per-adapter and depending on the type
903/// hierarchy multiple functions may be generated per-adapter.
904struct Function {
905 /// Whether or not the `body` has been finished.
906 ///
907 /// Functions are added to a `Module` before they're defined so this is used
908 /// to assert that the function was in fact actually filled in by the
909 /// time we reach `Module::encode`.
910 filled_in: bool,
911
912 /// The type signature that this function has, as an index into the core
913 /// wasm type index space of the generated adapter module.
914 ty: u32,
915
916 /// The locals that are used by this function, organized by the number of
917 /// types of each local.
918 locals: Vec<(u32, ValType)>,
919
920 /// If specified, the export name of this function.
921 export: Option<String>,
922
923 /// The contents of the function.
924 ///
925 /// See `Body` for more information, and the `Vec` here represents the
926 /// concatenation of all the `Body` fragments.
927 body: Vec<Body>,
928}
929
930/// Representation of a fragment of the body of a core wasm function generated
931/// for adapters.
932///
933/// This variant comes in one of two flavors:
934///
935/// 1. First a `Raw` variant is used to contain general instructions for the
936/// wasm function. This is populated by `Compiler::instruction` primarily.
937/// This also comes with a list of traps. and the byte offset within the
938/// first vector of where the trap information applies to.
939///
940/// 2. A `Call` instruction variant for a `FunctionId` where the final
941/// `FuncIndex` isn't known until emission time.
942///
943/// The purpose of this representation is the `Body::Call` variant. This can't
944/// be encoded as an instruction when it's generated due to not knowing the
945/// final index of the function being called. During `Module::encode`, however,
946/// all indices are known and `Body::Call` is turned into a final
947/// `Instruction::Call`.
948///
949/// One other possible representation in the future would be to encode a `Call`
950/// instruction with a 5-byte leb to fill in later, but for now this felt
951/// easier to represent. A 5-byte leb may be more efficient at compile-time if
952/// necessary, however.
953enum Body {
954 Raw(Vec<u8>, Vec<(usize, traps::Trap)>),
955 Call(FunctionId),
956 RefFunc(FunctionId),
957}
958
959impl Function {
960 fn new(export: Option<String>, ty: u32) -> Function {
961 Function {
962 filled_in: false,
963 ty,
964 locals: Vec::new(),
965 export,
966 body: Vec::new(),
967 }
968 }
969}
970
971impl Helper {
972 fn core_type(
973 &self,
974 types: &ComponentTypesBuilder,
975 core_types: &mut core_types::CoreTypes,
976 ) -> u32 {
977 let mut params = Vec::new();
978 let mut results = Vec::new();
979 // The source type being translated is always pushed onto the
980 // parameters first, either a pointer for memory or its flat
981 // representation.
982 self.src.push_flat(&mut params, types);
983
984 // The destination type goes into the parameter list if it's from
985 // memory or otherwise is the result of the function itself for a
986 // stack-based representation.
987 match self.dst.loc {
988 HelperLocation::Stack => self.dst.push_flat(&mut results, types),
989 HelperLocation::Memory => params.push(self.dst.opts.data_model.unwrap_memory().ptr()),
990 HelperLocation::StructField | HelperLocation::ArrayElement => todo!("CM+GC"),
991 }
992
993 core_types.function(¶ms, &results)
994 }
995}
996
997impl HelperType {
998 fn push_flat(&self, dst: &mut Vec<ValType>, types: &ComponentTypesBuilder) {
999 match self.loc {
1000 HelperLocation::Stack => {
1001 for ty in self.opts.flat_types(&self.ty, types).unwrap() {
1002 dst.push((*ty).into());
1003 }
1004 }
1005 HelperLocation::Memory => {
1006 dst.push(self.opts.data_model.unwrap_memory().ptr());
1007 }
1008 HelperLocation::StructField | HelperLocation::ArrayElement => todo!("CM+GC"),
1009 }
1010 }
1011}