wasmtime_environ/
fact.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
//! Wasmtime's Fused Adapter Compiler of Trampolines (FACT)
//!
//! This module contains a compiler which emits trampolines to implement fused
//! adapters for the component model. A fused adapter is when a core wasm
//! function is lifted from one component instance and then lowered into another
//! component instance. This communication between components is well-defined by
//! the spec and ends up creating what's called a "fused adapter".
//!
//! Adapters are currently implemented with WebAssembly modules. This submodule
//! will generate a core wasm binary which contains the adapters specified
//! during compilation. The actual wasm is then later processed by standard
//! paths in Wasmtime to create native machine code and runtime representations
//! of modules.
//!
//! Note that identification of precisely what goes into an adapter module is
//! not handled in this file, instead that's all done in `translate/adapt.rs`.
//! Otherwise this module is only responsible for taking a set of adapters and
//! their imports and then generating a core wasm module to implement all of
//! that.

use crate::component::dfg::CoreDef;
use crate::component::{
    Adapter, AdapterOptions as AdapterOptionsDfg, ComponentTypesBuilder, FlatType, InterfaceType,
    StringEncoding, Transcode, TypeFuncIndex,
};
use crate::fact::transcode::Transcoder;
use crate::prelude::*;
use crate::{EntityRef, FuncIndex, GlobalIndex, MemoryIndex, PrimaryMap};
use std::borrow::Cow;
use std::collections::HashMap;
use wasm_encoder::*;

mod core_types;
mod signature;
mod trampoline;
mod transcode;
mod traps;

/// Representation of an adapter module.
pub struct Module<'a> {
    /// Whether or not debug code is inserted into the adapters themselves.
    debug: bool,
    /// Type information from the creator of this `Module`
    types: &'a ComponentTypesBuilder,

    /// Core wasm type section that's incrementally built
    core_types: core_types::CoreTypes,

    /// Core wasm import section which is built as adapters are inserted. Note
    /// that imports here are intern'd to avoid duplicate imports of the same
    /// item.
    core_imports: ImportSection,
    /// Final list of imports that this module ended up using, in the same order
    /// as the imports in the import section.
    imports: Vec<Import>,
    /// Intern'd imports and what index they were assigned. Note that this map
    /// covers all the index spaces for imports, not just one.
    imported: HashMap<CoreDef, usize>,
    /// Intern'd transcoders and what index they were assigned.
    imported_transcoders: HashMap<Transcoder, FuncIndex>,

    /// Cached versions of imported trampolines for working with resources.
    imported_resource_transfer_own: Option<FuncIndex>,
    imported_resource_transfer_borrow: Option<FuncIndex>,
    imported_resource_enter_call: Option<FuncIndex>,
    imported_resource_exit_call: Option<FuncIndex>,

    // Current status of index spaces from the imports generated so far.
    imported_funcs: PrimaryMap<FuncIndex, Option<CoreDef>>,
    imported_memories: PrimaryMap<MemoryIndex, CoreDef>,
    imported_globals: PrimaryMap<GlobalIndex, CoreDef>,

    funcs: PrimaryMap<FunctionId, Function>,
    helper_funcs: HashMap<Helper, FunctionId>,
    helper_worklist: Vec<(FunctionId, Helper)>,
}

struct AdapterData {
    /// Export name of this adapter
    name: String,
    /// Options specified during the `canon lift` operation
    lift: AdapterOptions,
    /// Options specified during the `canon lower` operation
    lower: AdapterOptions,
    /// The core wasm function that this adapter will be calling (the original
    /// function that was `canon lift`'d)
    callee: FuncIndex,
    /// FIXME(#4185) should be plumbed and handled as part of the new reentrance
    /// rules not yet implemented here.
    called_as_export: bool,
}

/// Configuration options which apply at the "global adapter" level.
///
/// These options are typically unique per-adapter and generally aren't needed
/// when translating recursive types within an adapter.
struct AdapterOptions {
    /// The ascribed type of this adapter.
    ty: TypeFuncIndex,
    /// The global that represents the instance flags for where this adapter
    /// came from.
    flags: GlobalIndex,
    /// The configured post-return function, if any.
    post_return: Option<FuncIndex>,
    /// Other, more general, options configured.
    options: Options,
}

/// This type is split out of `AdapterOptions` and is specifically used to
/// deduplicate translation functions within a module. Consequently this has
/// as few fields as possible to minimize the number of functions generated
/// within an adapter module.
#[derive(PartialEq, Eq, Hash, Copy, Clone)]
struct Options {
    /// The encoding that strings use from this adapter.
    string_encoding: StringEncoding,
    /// Whether or not the `memory` field, if present, is a 64-bit memory.
    memory64: bool,
    /// An optionally-specified memory where values may travel through for
    /// types like lists.
    memory: Option<MemoryIndex>,
    /// An optionally-specified function to be used to allocate space for
    /// types such as strings as they go into a module.
    realloc: Option<FuncIndex>,
}

enum Context {
    Lift,
    Lower,
}

/// Representation of a "helper function" which may be generated as part of
/// generating an adapter trampoline.
///
/// Helper functions are created when inlining the translation for a type in its
/// entirety would make a function excessively large. This is currently done via
/// a simple fuel/cost heuristic based on the type being translated but may get
/// fancier over time.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct Helper {
    /// Metadata about the source type of what's being translated.
    src: HelperType,
    /// Metadata about the destination type which is being translated to.
    dst: HelperType,
}

/// Information about a source or destination type in a `Helper` which is
/// generated.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct HelperType {
    /// The concrete type being translated.
    ty: InterfaceType,
    /// The configuration options (memory, etc) for the adapter.
    opts: Options,
    /// Where the type is located (either the stack or in memory)
    loc: HelperLocation,
}

/// Where a `HelperType` is located, dictating the signature of the helper
/// function.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
enum HelperLocation {
    /// Located on the stack in wasm locals.
    Stack,
    /// Located in linear memory as configured by `opts`.
    Memory,
}

impl<'a> Module<'a> {
    /// Creates an empty module.
    pub fn new(types: &'a ComponentTypesBuilder, debug: bool) -> Module<'a> {
        Module {
            debug,
            types,
            core_types: Default::default(),
            core_imports: Default::default(),
            imported: Default::default(),
            imports: Default::default(),
            imported_transcoders: Default::default(),
            imported_funcs: PrimaryMap::new(),
            imported_memories: PrimaryMap::new(),
            imported_globals: PrimaryMap::new(),
            funcs: PrimaryMap::new(),
            helper_funcs: HashMap::new(),
            helper_worklist: Vec::new(),
            imported_resource_transfer_own: None,
            imported_resource_transfer_borrow: None,
            imported_resource_enter_call: None,
            imported_resource_exit_call: None,
        }
    }

    /// Registers a new adapter within this adapter module.
    ///
    /// The `name` provided is the export name of the adapter from the final
    /// module, and `adapter` contains all metadata necessary for compilation.
    pub fn adapt(&mut self, name: &str, adapter: &Adapter) {
        // Import any items required by the various canonical options
        // (memories, reallocs, etc)
        let mut lift = self.import_options(adapter.lift_ty, &adapter.lift_options);
        let lower = self.import_options(adapter.lower_ty, &adapter.lower_options);

        // Lowering options are not allowed to specify post-return as per the
        // current canonical abi specification.
        assert!(adapter.lower_options.post_return.is_none());

        // Import the core wasm function which was lifted using its appropriate
        // signature since the exported function this adapter generates will
        // call the lifted function.
        let signature = self.types.signature(&lift, Context::Lift);
        let ty = self
            .core_types
            .function(&signature.params, &signature.results);
        let callee = self.import_func("callee", name, ty, adapter.func.clone());

        // Handle post-return specifically here where we have `core_ty` and the
        // results of `core_ty` are the parameters to the post-return function.
        lift.post_return = adapter.lift_options.post_return.as_ref().map(|func| {
            let ty = self.core_types.function(&signature.results, &[]);
            self.import_func("post_return", name, ty, func.clone())
        });

        // This will internally create the adapter as specified and append
        // anything necessary to `self.funcs`.
        trampoline::compile(
            self,
            &AdapterData {
                name: name.to_string(),
                lift,
                lower,
                callee,
                // FIXME(#4185) should be plumbed and handled as part of the new
                // reentrance rules not yet implemented here.
                called_as_export: true,
            },
        );

        while let Some((result, helper)) = self.helper_worklist.pop() {
            trampoline::compile_helper(self, result, helper);
        }
    }

    fn import_options(&mut self, ty: TypeFuncIndex, options: &AdapterOptionsDfg) -> AdapterOptions {
        let AdapterOptionsDfg {
            instance,
            string_encoding,
            memory,
            memory64,
            realloc,
            post_return: _, // handled above
        } = options;
        let flags = self.import_global(
            "flags",
            &format!("instance{}", instance.as_u32()),
            GlobalType {
                val_type: ValType::I32,
                mutable: true,
                shared: false,
            },
            CoreDef::InstanceFlags(*instance),
        );
        let memory = memory.as_ref().map(|memory| {
            self.import_memory(
                "memory",
                &format!("m{}", self.imported_memories.len()),
                MemoryType {
                    minimum: 0,
                    maximum: None,
                    shared: false,
                    memory64: *memory64,
                    page_size_log2: None,
                },
                memory.clone().into(),
            )
        });
        let realloc = realloc.as_ref().map(|func| {
            let ptr = if *memory64 {
                ValType::I64
            } else {
                ValType::I32
            };
            let ty = self.core_types.function(&[ptr, ptr, ptr, ptr], &[ptr]);
            self.import_func(
                "realloc",
                &format!("f{}", self.imported_funcs.len()),
                ty,
                func.clone(),
            )
        });

        AdapterOptions {
            ty,
            flags,
            post_return: None,
            options: Options {
                string_encoding: *string_encoding,
                memory64: *memory64,
                memory,
                realloc,
            },
        }
    }

    fn import_func(&mut self, module: &str, name: &str, ty: u32, def: CoreDef) -> FuncIndex {
        self.import(module, name, EntityType::Function(ty), def, |m| {
            &mut m.imported_funcs
        })
    }

    fn import_global(
        &mut self,
        module: &str,
        name: &str,
        ty: GlobalType,
        def: CoreDef,
    ) -> GlobalIndex {
        self.import(module, name, EntityType::Global(ty), def, |m| {
            &mut m.imported_globals
        })
    }

    fn import_memory(
        &mut self,
        module: &str,
        name: &str,
        ty: MemoryType,
        def: CoreDef,
    ) -> MemoryIndex {
        self.import(module, name, EntityType::Memory(ty), def, |m| {
            &mut m.imported_memories
        })
    }

    fn import<K: EntityRef, V: From<CoreDef>>(
        &mut self,
        module: &str,
        name: &str,
        ty: EntityType,
        def: CoreDef,
        map: impl FnOnce(&mut Self) -> &mut PrimaryMap<K, V>,
    ) -> K {
        if let Some(prev) = self.imported.get(&def) {
            return K::new(*prev);
        }
        let idx = map(self).push(def.clone().into());
        self.core_imports.import(module, name, ty);
        self.imported.insert(def.clone(), idx.index());
        self.imports.push(Import::CoreDef(def));
        idx
    }

    fn import_transcoder(&mut self, transcoder: transcode::Transcoder) -> FuncIndex {
        *self
            .imported_transcoders
            .entry(transcoder)
            .or_insert_with(|| {
                // Add the import to the core wasm import section...
                let name = transcoder.name();
                let ty = transcoder.ty(&mut self.core_types);
                self.core_imports.import("transcode", &name, ty);

                // ... and also record the metadata for what this import
                // corresponds to.
                let from = self.imported_memories[transcoder.from_memory].clone();
                let to = self.imported_memories[transcoder.to_memory].clone();
                self.imports.push(Import::Transcode {
                    op: transcoder.op,
                    from,
                    from64: transcoder.from_memory64,
                    to,
                    to64: transcoder.to_memory64,
                });

                self.imported_funcs.push(None)
            })
    }

    fn import_simple(
        &mut self,
        module: &str,
        name: &str,
        params: &[ValType],
        results: &[ValType],
        import: Import,
        get: impl Fn(&mut Self) -> &mut Option<FuncIndex>,
    ) -> FuncIndex {
        if let Some(idx) = get(self) {
            return *idx;
        }
        let ty = self.core_types.function(params, results);
        let ty = EntityType::Function(ty);
        self.core_imports.import(module, name, ty);

        self.imports.push(import);
        let idx = self.imported_funcs.push(None);
        *get(self) = Some(idx);
        idx
    }

    fn import_resource_transfer_own(&mut self) -> FuncIndex {
        self.import_simple(
            "resource",
            "transfer-own",
            &[ValType::I32, ValType::I32, ValType::I32],
            &[ValType::I32],
            Import::ResourceTransferOwn,
            |me| &mut me.imported_resource_transfer_own,
        )
    }

    fn import_resource_transfer_borrow(&mut self) -> FuncIndex {
        self.import_simple(
            "resource",
            "transfer-borrow",
            &[ValType::I32, ValType::I32, ValType::I32],
            &[ValType::I32],
            Import::ResourceTransferBorrow,
            |me| &mut me.imported_resource_transfer_borrow,
        )
    }

    fn import_resource_enter_call(&mut self) -> FuncIndex {
        self.import_simple(
            "resource",
            "enter-call",
            &[],
            &[],
            Import::ResourceEnterCall,
            |me| &mut me.imported_resource_enter_call,
        )
    }

    fn import_resource_exit_call(&mut self) -> FuncIndex {
        self.import_simple(
            "resource",
            "exit-call",
            &[],
            &[],
            Import::ResourceExitCall,
            |me| &mut me.imported_resource_exit_call,
        )
    }

    fn translate_helper(&mut self, helper: Helper) -> FunctionId {
        *self.helper_funcs.entry(helper).or_insert_with(|| {
            // Generate a fresh `Function` with a unique id for what we're about to
            // generate.
            let ty = helper.core_type(self.types, &mut self.core_types);
            let id = self.funcs.push(Function::new(None, ty));
            self.helper_worklist.push((id, helper));
            id
        })
    }

    /// Encodes this module into a WebAssembly binary.
    pub fn encode(&mut self) -> Vec<u8> {
        // Build the function/export sections of the wasm module in a first pass
        // which will assign a final `FuncIndex` to all functions defined in
        // `self.funcs`.
        let mut funcs = FunctionSection::new();
        let mut exports = ExportSection::new();
        let mut id_to_index = PrimaryMap::<FunctionId, FuncIndex>::new();
        for (id, func) in self.funcs.iter() {
            assert!(func.filled_in);
            let idx = FuncIndex::from_u32(self.imported_funcs.next_key().as_u32() + id.as_u32());
            let id2 = id_to_index.push(idx);
            assert_eq!(id2, id);

            funcs.function(func.ty);

            if let Some(name) = &func.export {
                exports.export(name, ExportKind::Func, idx.as_u32());
            }
        }

        // With all functions numbered the fragments of the body of each
        // function can be assigned into one final adapter function.
        let mut code = CodeSection::new();
        let mut traps = traps::TrapSection::default();
        for (id, func) in self.funcs.iter() {
            let mut func_traps = Vec::new();
            let mut body = Vec::new();

            // Encode all locals used for this function
            func.locals.len().encode(&mut body);
            for (count, ty) in func.locals.iter() {
                count.encode(&mut body);
                ty.encode(&mut body);
            }

            // Then encode each "chunk" of a body which may have optional traps
            // specified within it. Traps get offset by the current length of
            // the body and otherwise our `Call` instructions are "relocated"
            // here to the final function index.
            for chunk in func.body.iter() {
                match chunk {
                    Body::Raw(code, traps) => {
                        let start = body.len();
                        body.extend_from_slice(code);
                        for (offset, trap) in traps {
                            func_traps.push((start + offset, *trap));
                        }
                    }
                    Body::Call(id) => {
                        Instruction::Call(id_to_index[*id].as_u32()).encode(&mut body);
                    }
                }
            }
            code.raw(&body);
            traps.append(id_to_index[id].as_u32(), func_traps);
        }

        let traps = traps.finish();

        let mut result = wasm_encoder::Module::new();
        result.section(&self.core_types.section);
        result.section(&self.core_imports);
        result.section(&funcs);
        result.section(&exports);
        result.section(&code);
        if self.debug {
            result.section(&CustomSection {
                name: "wasmtime-trampoline-traps".into(),
                data: Cow::Borrowed(&traps),
            });
        }
        result.finish()
    }

    /// Returns the imports that were used, in order, to create this adapter
    /// module.
    pub fn imports(&self) -> &[Import] {
        &self.imports
    }
}

/// Possible imports into an adapter module.
#[derive(Clone)]
pub enum Import {
    /// A definition required in the configuration of an `Adapter`.
    CoreDef(CoreDef),
    /// A transcoding function from the host to convert between string encodings.
    Transcode {
        /// The transcoding operation this performs.
        op: Transcode,
        /// The memory being read
        from: CoreDef,
        /// Whether or not `from` is a 64-bit memory
        from64: bool,
        /// The memory being written
        to: CoreDef,
        /// Whether or not `to` is a 64-bit memory
        to64: bool,
    },
    /// Transfers an owned resource from one table to another.
    ResourceTransferOwn,
    /// Transfers a borrowed resource from one table to another.
    ResourceTransferBorrow,
    /// Sets up entry metadata for a borrow resources when a call starts.
    ResourceEnterCall,
    /// Tears down a previous entry and handles checking borrow-related
    /// metadata.
    ResourceExitCall,
}

impl Options {
    fn ptr(&self) -> ValType {
        if self.memory64 {
            ValType::I64
        } else {
            ValType::I32
        }
    }

    fn ptr_size(&self) -> u8 {
        if self.memory64 {
            8
        } else {
            4
        }
    }

    fn flat_types<'a>(
        &self,
        ty: &InterfaceType,
        types: &'a ComponentTypesBuilder,
    ) -> Option<&'a [FlatType]> {
        let flat = types.flat_types(ty)?;
        Some(if self.memory64 {
            flat.memory64
        } else {
            flat.memory32
        })
    }
}

/// Temporary index which is not the same as `FuncIndex`.
///
/// This represents the nth generated function in the adapter module where the
/// final index of the function is not known at the time of generation since
/// more imports may be discovered (specifically string transcoders).
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
struct FunctionId(u32);
cranelift_entity::entity_impl!(FunctionId);

/// A generated function to be added to an adapter module.
///
/// At least one function is created per-adapter and depending on the type
/// hierarchy multiple functions may be generated per-adapter.
struct Function {
    /// Whether or not the `body` has been finished.
    ///
    /// Functions are added to a `Module` before they're defined so this is used
    /// to assert that the function was in fact actually filled in by the
    /// time we reach `Module::encode`.
    filled_in: bool,

    /// The type signature that this function has, as an index into the core
    /// wasm type index space of the generated adapter module.
    ty: u32,

    /// The locals that are used by this function, organized by the number of
    /// types of each local.
    locals: Vec<(u32, ValType)>,

    /// If specified, the export name of this function.
    export: Option<String>,

    /// The contents of the function.
    ///
    /// See `Body` for more information, and the `Vec` here represents the
    /// concatenation of all the `Body` fragments.
    body: Vec<Body>,
}

/// Representation of a fragment of the body of a core wasm function generated
/// for adapters.
///
/// This variant comes in one of two flavors:
///
/// 1. First a `Raw` variant is used to contain general instructions for the
///    wasm function. This is populated by `Compiler::instruction` primarily.
///    This also comes with a list of traps. and the byte offset within the
///    first vector of where the trap information applies to.
///
/// 2. A `Call` instruction variant for a `FunctionId` where the final
///    `FuncIndex` isn't known until emission time.
///
/// The purpose of this representation is the `Body::Call` variant. This can't
/// be encoded as an instruction when it's generated due to not knowing the
/// final index of the function being called. During `Module::encode`, however,
/// all indices are known and `Body::Call` is turned into a final
/// `Instruction::Call`.
///
/// One other possible representation in the future would be to encode a `Call`
/// instruction with a 5-byte leb to fill in later, but for now this felt
/// easier to represent. A 5-byte leb may be more efficient at compile-time if
/// necessary, however.
enum Body {
    Raw(Vec<u8>, Vec<(usize, traps::Trap)>),
    Call(FunctionId),
}

impl Function {
    fn new(export: Option<String>, ty: u32) -> Function {
        Function {
            filled_in: false,
            ty,
            locals: Vec::new(),
            export,
            body: Vec::new(),
        }
    }
}

impl Helper {
    fn core_type(
        &self,
        types: &ComponentTypesBuilder,
        core_types: &mut core_types::CoreTypes,
    ) -> u32 {
        let mut params = Vec::new();
        let mut results = Vec::new();
        // The source type being translated is always pushed onto the
        // parameters first, either a pointer for memory or its flat
        // representation.
        self.src.push_flat(&mut params, types);

        // The destination type goes into the parameter list if it's from
        // memory or otherwise is the result of the function itself for a
        // stack-based representation.
        match self.dst.loc {
            HelperLocation::Stack => self.dst.push_flat(&mut results, types),
            HelperLocation::Memory => params.push(self.dst.opts.ptr()),
        }

        core_types.function(&params, &results)
    }
}

impl HelperType {
    fn push_flat(&self, dst: &mut Vec<ValType>, types: &ComponentTypesBuilder) {
        match self.loc {
            HelperLocation::Stack => {
                for ty in self.opts.flat_types(&self.ty, types).unwrap() {
                    dst.push((*ty).into());
                }
            }
            HelperLocation::Memory => {
                dst.push(self.opts.ptr());
            }
        }
    }
}