cranelift_codegen/traversals.rs
1//! Traversals over the IR.
2
3use crate::ir;
4use alloc::vec::Vec;
5use core::fmt::Debug;
6use core::hash::Hash;
7use cranelift_entity::EntitySet;
8
9/// A low-level DFS traversal event: either entering or exiting the traversal of
10/// a block.
11#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
12pub enum Event {
13 /// Entering traversal of a block.
14 ///
15 /// Processing a block upon this event corresponds to a pre-order,
16 /// depth-first traversal.
17 Enter,
18
19 /// Exiting traversal of a block.
20 ///
21 /// Processing a block upon this event corresponds to a post-order,
22 /// depth-first traversal.
23 Exit,
24}
25
26/// A depth-first traversal.
27///
28/// This is a fairly low-level traversal type, and is generally intended to be
29/// used as a building block for making specific pre-order or post-order
30/// traversals for whatever problem is at hand.
31///
32/// This type may be reused multiple times across different passes or functions
33/// and will internally reuse any heap allocations its already made.
34///
35/// Traversal is not recursive.
36#[derive(Debug, Default, Clone)]
37pub struct Dfs {
38 stack: Vec<(Event, ir::Block)>,
39 seen: EntitySet<ir::Block>,
40}
41
42impl Dfs {
43 /// Construct a new depth-first traversal.
44 pub fn new() -> Self {
45 Self::default()
46 }
47
48 /// Perform a depth-first traversal over the given function.
49 ///
50 /// Yields pairs of `(Event, ir::Block)`.
51 ///
52 /// This iterator can be used to perform either pre- or post-order
53 /// traversals, or a combination of the two.
54 pub fn iter<'a>(&'a mut self, func: &'a ir::Function) -> DfsIter<'a> {
55 self.clear();
56 if let Some(e) = func.layout.entry_block() {
57 self.stack.push((Event::Enter, e));
58 }
59 DfsIter { dfs: self, func }
60 }
61
62 /// Perform a pre-order traversal over the given function.
63 ///
64 /// Yields `ir::Block` items.
65 pub fn pre_order_iter<'a>(&'a mut self, func: &'a ir::Function) -> DfsPreOrderIter<'a> {
66 DfsPreOrderIter(self.iter(func))
67 }
68
69 /// Perform a post-order traversal over the given function.
70 ///
71 /// Yields `ir::Block` items.
72 pub fn post_order_iter<'a>(&'a mut self, func: &'a ir::Function) -> DfsPostOrderIter<'a> {
73 DfsPostOrderIter(self.iter(func))
74 }
75
76 /// Clear this DFS, but keep its allocations for future reuse.
77 pub fn clear(&mut self) {
78 let Dfs { stack, seen } = self;
79 stack.clear();
80 seen.clear();
81 }
82}
83
84/// An iterator that yields pairs of `(Event, ir::Block)` items as it performs a
85/// depth-first traversal over its associated function.
86pub struct DfsIter<'a> {
87 dfs: &'a mut Dfs,
88 func: &'a ir::Function,
89}
90
91impl Iterator for DfsIter<'_> {
92 type Item = (Event, ir::Block);
93
94 fn next(&mut self) -> Option<(Event, ir::Block)> {
95 loop {
96 let (event, block) = self.dfs.stack.pop()?;
97
98 if event == Event::Enter {
99 let first_time_seeing = self.dfs.seen.insert(block);
100 if !first_time_seeing {
101 continue;
102 }
103
104 self.dfs.stack.push((Event::Exit, block));
105 self.dfs.stack.extend(
106 self.func
107 .block_successors(block)
108 // Heuristic: chase the children in reverse. This puts
109 // the first successor block first in the postorder, all
110 // other things being equal, which tends to prioritize
111 // loop backedges over out-edges, putting the edge-block
112 // closer to the loop body and minimizing live-ranges in
113 // linear instruction space. This heuristic doesn't have
114 // any effect on the computation of dominators, and is
115 // purely for other consumers of the postorder we cache
116 // here.
117 .rev()
118 // This is purely an optimization to avoid additional
119 // iterations of the loop, and is not required; it's
120 // merely inlining the check from the outer conditional
121 // of this case to avoid the extra loop iteration. This
122 // also avoids potential excess stack growth.
123 .filter(|block| !self.dfs.seen.contains(*block))
124 .map(|block| (Event::Enter, block)),
125 );
126 }
127
128 return Some((event, block));
129 }
130 }
131}
132
133/// An iterator that yields `ir::Block` items during a depth-first, pre-order
134/// traversal over its associated function.
135pub struct DfsPreOrderIter<'a>(DfsIter<'a>);
136
137impl Iterator for DfsPreOrderIter<'_> {
138 type Item = ir::Block;
139
140 fn next(&mut self) -> Option<Self::Item> {
141 loop {
142 match self.0.next()? {
143 (Event::Enter, b) => return Some(b),
144 (Event::Exit, _) => continue,
145 }
146 }
147 }
148}
149
150/// An iterator that yields `ir::Block` items during a depth-first, post-order
151/// traversal over its associated function.
152pub struct DfsPostOrderIter<'a>(DfsIter<'a>);
153
154impl Iterator for DfsPostOrderIter<'_> {
155 type Item = ir::Block;
156
157 fn next(&mut self) -> Option<Self::Item> {
158 loop {
159 match self.0.next()? {
160 (Event::Exit, b) => return Some(b),
161 (Event::Enter, _) => continue,
162 }
163 }
164 }
165}
166
167#[cfg(test)]
168mod tests {
169 use super::*;
170 use crate::cursor::{Cursor, FuncCursor};
171 use crate::ir::{Function, InstBuilder, TrapCode, types::I32};
172
173 #[test]
174 fn test_dfs_traversal() {
175 let _ = env_logger::try_init();
176
177 let mut func = Function::new();
178
179 let block0 = func.dfg.make_block();
180 let v0 = func.dfg.append_block_param(block0, I32);
181 let block1 = func.dfg.make_block();
182 let block2 = func.dfg.make_block();
183 let block3 = func.dfg.make_block();
184
185 let mut cur = FuncCursor::new(&mut func);
186
187 // block0(v0):
188 // br_if v0, block2, trap_block
189 cur.insert_block(block0);
190 cur.ins().brif(v0, block2, &[], block3, &[]);
191
192 // block3:
193 // trap user0
194 cur.insert_block(block3);
195 cur.ins().trap(TrapCode::unwrap_user(1));
196
197 // block1:
198 // v1 = iconst.i32 1
199 // v2 = iadd v0, v1
200 // jump block0(v2)
201 cur.insert_block(block1);
202 let v1 = cur.ins().iconst(I32, 1);
203 let v2 = cur.ins().iadd(v0, v1);
204 cur.ins().jump(block0, &[v2.into()]);
205
206 // block2:
207 // return v0
208 cur.insert_block(block2);
209 cur.ins().return_(&[v0]);
210
211 let mut dfs = Dfs::new();
212
213 assert_eq!(
214 dfs.iter(&func).collect::<Vec<_>>(),
215 vec![
216 (Event::Enter, block0),
217 (Event::Enter, block2),
218 (Event::Exit, block2),
219 (Event::Enter, block3),
220 (Event::Exit, block3),
221 (Event::Exit, block0)
222 ],
223 );
224 }
225
226 #[test]
227 fn multiple_successors_to_the_same_block() {
228 let _ = env_logger::try_init();
229
230 let mut func = Function::new();
231
232 let block0 = func.dfg.make_block();
233 let block1 = func.dfg.make_block();
234
235 let mut cur = FuncCursor::new(&mut func);
236
237 // block0(v0):
238 // v1 = iconst.i32 36
239 // v2 = iconst.i32 42
240 // br_if v0, block1(v1), block1(v2)
241 cur.insert_block(block0);
242 let v0 = cur.func.dfg.append_block_param(block0, I32);
243 let v1 = cur.ins().iconst(ir::types::I32, 36);
244 let v2 = cur.ins().iconst(ir::types::I32, 42);
245 cur.ins()
246 .brif(v0, block1, &[v1.into()], block1, &[v2.into()]);
247
248 // block1(v3: i32):
249 // return v3
250 cur.insert_block(block1);
251 let v3 = cur.func.dfg.append_block_param(block1, I32);
252 cur.ins().return_(&[v3]);
253
254 let mut dfs = Dfs::new();
255
256 // We should only enter `block1` once.
257 assert_eq!(
258 dfs.iter(&func).collect::<Vec<_>>(),
259 vec![
260 (Event::Enter, block0),
261 (Event::Enter, block1),
262 (Event::Exit, block1),
263 (Event::Exit, block0),
264 ],
265 );
266
267 // We should only iterate over `block1` once in a pre-order traversal.
268 assert_eq!(
269 dfs.pre_order_iter(&func).collect::<Vec<_>>(),
270 vec![block0, block1],
271 );
272
273 // We should only iterate over `block1` once in a post-order traversal.
274 assert_eq!(
275 dfs.post_order_iter(&func).collect::<Vec<_>>(),
276 vec![block1, block0],
277 );
278 }
279}