cranelift_assembler_x64/
fuzz.rs

1//! A fuzz testing oracle for roundtrip assembly-disassembly.
2//!
3//! This contains manual implementations of the `Arbitrary` trait for types
4//! throughout this crate to avoid depending on the `arbitrary` crate
5//! unconditionally (use the `fuzz` feature instead).
6
7use crate::{
8    AmodeOffset, AmodeOffsetPlusKnownOffset, AsReg, CodeSink, Constant, Fixed, Gpr, Inst, Label,
9    NonRspGpr, Registers, TrapCode, Xmm,
10};
11use arbitrary::{Arbitrary, Result, Unstructured};
12use capstone::{Capstone, arch::BuildsCapstone, arch::BuildsCapstoneSyntax, arch::x86};
13
14/// Take a random assembly instruction and check its encoding and
15/// pretty-printing against a known-good disassembler.
16///
17/// # Panics
18///
19/// This function panics to express failure as expected by the `arbitrary`
20/// fuzzer infrastructure. It may fail during assembly, disassembly, or when
21/// comparing the disassembled strings.
22pub fn roundtrip(inst: &Inst<FuzzRegs>) {
23    // Check that we can actually assemble this instruction.
24    let assembled = assemble(inst);
25    let expected = disassemble(&assembled, inst);
26
27    // Check that our pretty-printed output matches the known-good output. Trim
28    // off the instruction offset first.
29    let expected = expected.split_once(' ').unwrap().1;
30    let actual = inst.to_string();
31    if expected != actual && expected.trim() != fix_up(&actual) {
32        println!("> {inst}");
33        println!("  debug: {inst:x?}");
34        println!("  assembled: {}", pretty_print_hexadecimal(&assembled));
35        println!("  expected (capstone): {expected}");
36        println!("  actual (to_string):  {actual}");
37        assert_eq!(expected, &actual);
38    }
39}
40
41/// Use this assembler to emit machine code into a byte buffer.
42///
43/// This will skip any traps or label registrations, but this is fine for the
44/// single-instruction disassembly we're doing here.
45fn assemble(inst: &Inst<FuzzRegs>) -> Vec<u8> {
46    let mut sink = TestCodeSink::default();
47    let offsets: Vec<i32> = Vec::new();
48    inst.encode(&mut sink, &offsets);
49    sink.patch_labels_as_if_they_referred_to_end();
50    sink.buf
51}
52
53#[derive(Default)]
54struct TestCodeSink {
55    buf: Vec<u8>,
56    offsets_using_label: Vec<u32>,
57}
58
59impl TestCodeSink {
60    /// References to labels, e.g. RIP-relative addressing, is stored with an
61    /// adjustment that takes into account the distance from the relative offset
62    /// to the end of the instruction, where the offset is relative to. That
63    /// means that to indeed make the offset relative to the end of the
64    /// instruction, which is what we pretend all labels are bound to, it's
65    /// required that this adjustment is taken into account.
66    ///
67    /// This function will iterate over all labels bound to this code sink and
68    /// pretend the label is found at the end of the `buf`. That means that the
69    /// distance from the label to the end of `buf` minus 4, which is the width
70    /// of the offset, is added to what's already present in the encoding buffer.
71    ///
72    /// This is effectively undoing the `bytes_at_end` adjustment that's part of
73    /// `Amode::RipRelative` addressing.
74    fn patch_labels_as_if_they_referred_to_end(&mut self) {
75        let len = i32::try_from(self.buf.len()).unwrap();
76        for offset in self.offsets_using_label.iter() {
77            let range = self.buf[*offset as usize..].first_chunk_mut::<4>().unwrap();
78            let offset = i32::try_from(*offset).unwrap() + 4;
79            let rel_distance = len - offset;
80            *range = (i32::from_le_bytes(*range) + rel_distance).to_le_bytes();
81        }
82    }
83}
84
85impl CodeSink for TestCodeSink {
86    fn put1(&mut self, v: u8) {
87        self.buf.extend_from_slice(&[v]);
88    }
89
90    fn put2(&mut self, v: u16) {
91        self.buf.extend_from_slice(&v.to_le_bytes());
92    }
93
94    fn put4(&mut self, v: u32) {
95        self.buf.extend_from_slice(&v.to_le_bytes());
96    }
97
98    fn put8(&mut self, v: u64) {
99        self.buf.extend_from_slice(&v.to_le_bytes());
100    }
101
102    fn add_trap(&mut self, _: TrapCode) {}
103
104    fn current_offset(&self) -> u32 {
105        self.buf.len().try_into().unwrap()
106    }
107
108    fn use_label_at_offset(&mut self, offset: u32, _: Label) {
109        self.offsets_using_label.push(offset);
110    }
111
112    fn get_label_for_constant(&mut self, c: Constant) -> Label {
113        Label(c.0)
114    }
115}
116
117/// Building a new `Capstone` each time is suboptimal (TODO).
118fn disassemble(assembled: &[u8], original: &Inst<FuzzRegs>) -> String {
119    let cs = Capstone::new()
120        .x86()
121        .mode(x86::ArchMode::Mode64)
122        .syntax(x86::ArchSyntax::Att)
123        .detail(true)
124        .build()
125        .expect("failed to create Capstone object");
126    let insts = cs
127        .disasm_all(assembled, 0x0)
128        .expect("failed to disassemble");
129
130    if insts.len() != 1 {
131        println!("> {original}");
132        println!("  debug: {original:x?}");
133        println!("  assembled: {}", pretty_print_hexadecimal(&assembled));
134        assert_eq!(insts.len(), 1, "not a single instruction");
135    }
136
137    let inst = insts.first().expect("at least one instruction");
138    if assembled.len() != inst.len() {
139        println!("> {original}");
140        println!("  debug: {original:x?}");
141        println!("  assembled: {}", pretty_print_hexadecimal(&assembled));
142        println!(
143            "  capstone-assembled: {}",
144            pretty_print_hexadecimal(inst.bytes())
145        );
146        assert_eq!(assembled.len(), inst.len(), "extra bytes not disassembled");
147    }
148
149    inst.to_string()
150}
151
152fn pretty_print_hexadecimal(hex: &[u8]) -> String {
153    use std::fmt::Write;
154    let mut s = String::with_capacity(hex.len() * 2);
155    for b in hex {
156        write!(&mut s, "{b:02X}").unwrap();
157    }
158    s
159}
160
161/// See `replace_signed_immediates`.
162macro_rules! hex_print_signed_imm {
163    ($hex:expr, $from:ty => $to:ty) => {{
164        let imm = <$from>::from_str_radix($hex, 16).unwrap() as $to;
165        let mut simm = String::new();
166        if imm < 0 {
167            simm.push_str("-");
168        }
169        let abs = match imm.checked_abs() {
170            Some(i) => i,
171            None => <$to>::MIN,
172        };
173        if imm > -10 && imm < 10 {
174            simm.push_str(&format!("{:x}", abs));
175        } else {
176            simm.push_str(&format!("0x{:x}", abs));
177        }
178        simm
179    }};
180}
181
182/// Replace signed immediates in the disassembly with their unsigned hexadecimal
183/// equivalent. This is only necessary to match `capstone`'s complex
184/// pretty-printing rules; e.g. `capstone` will:
185/// - omit the `0x` prefix when printing `0x0` as `0`.
186/// - omit the `0x` prefix when print small values (less than 10)
187/// - print negative values as `-0x...` (signed hex) instead of `0xff...`
188///   (normal hex)
189/// - print `mov` immediates as base-10 instead of base-16 (?!).
190fn replace_signed_immediates(dis: &str) -> std::borrow::Cow<str> {
191    match dis.find('$') {
192        None => dis.into(),
193        Some(idx) => {
194            let (prefix, rest) = dis.split_at(idx + 1); // Skip the '$'.
195            let (_, rest) = chomp("-", rest); // Skip the '-' if it's there.
196            let (_, rest) = chomp("0x", rest); // Skip the '0x' if it's there.
197            let n = rest.chars().take_while(char::is_ascii_hexdigit).count();
198            let (hex, rest) = rest.split_at(n); // Split at next non-hex character.
199            let simm = if dis.starts_with("mov") {
200                u64::from_str_radix(hex, 16).unwrap().to_string()
201            } else {
202                match hex.len() {
203                    1 | 2 => hex_print_signed_imm!(hex, u8 => i8),
204                    4 => hex_print_signed_imm!(hex, u16 => i16),
205                    8 => hex_print_signed_imm!(hex, u32 => i32),
206                    16 => hex_print_signed_imm!(hex, u64 => i64),
207                    _ => panic!("unexpected length for hex: {hex}"),
208                }
209            };
210            format!("{prefix}{simm}{rest}").into()
211        }
212    }
213}
214
215// See `replace_signed_immediates`.
216fn chomp<'a>(pat: &str, s: &'a str) -> (&'a str, &'a str) {
217    if s.starts_with(pat) {
218        s.split_at(pat.len())
219    } else {
220        ("", s)
221    }
222}
223
224#[test]
225fn replace() {
226    assert_eq!(
227        replace_signed_immediates("andl $0xffffff9a, %r11d"),
228        "andl $-0x66, %r11d"
229    );
230    assert_eq!(
231        replace_signed_immediates("xorq $0xffffffffffffffbc, 0x7f139ecc(%r9)"),
232        "xorq $-0x44, 0x7f139ecc(%r9)"
233    );
234    assert_eq!(
235        replace_signed_immediates("subl $0x3ca77a19, -0x1a030f40(%r14)"),
236        "subl $0x3ca77a19, -0x1a030f40(%r14)"
237    );
238    assert_eq!(
239        replace_signed_immediates("movq $0xffffffff864ae103, %rsi"),
240        "movq $18446744071667638531, %rsi"
241    );
242}
243
244/// Remove everything after the first semicolon in the disassembly and trim any
245/// trailing spaces. This is necessary to remove the implicit operands we end up
246/// printing for Cranelift's sake.
247fn remove_after_semicolon(dis: &str) -> &str {
248    match dis.find(';') {
249        None => dis,
250        Some(idx) => {
251            let (prefix, _) = dis.split_at(idx);
252            prefix.trim()
253        }
254    }
255}
256
257#[test]
258fn remove_after_parenthesis_test() {
259    assert_eq!(
260        remove_after_semicolon("imulb 0x7658eddd(%rcx) ;; implicit: %ax"),
261        "imulb 0x7658eddd(%rcx)"
262    );
263}
264
265/// Run some post-processing on the disassembly to make it match Capstone.
266fn fix_up(dis: &str) -> std::borrow::Cow<str> {
267    let dis = remove_after_semicolon(dis);
268    replace_signed_immediates(&dis)
269}
270
271/// Fuzz-specific registers.
272///
273/// For the fuzzer, we do not need any fancy register types; see [`FuzzReg`].
274#[derive(Arbitrary, Debug)]
275pub struct FuzzRegs;
276
277impl Registers for FuzzRegs {
278    type ReadGpr = FuzzReg;
279    type ReadWriteGpr = FuzzReg;
280    type WriteGpr = FuzzReg;
281    type ReadXmm = FuzzReg;
282    type ReadWriteXmm = FuzzReg;
283    type WriteXmm = FuzzReg;
284}
285
286/// A simple `u8` register type for fuzzing only.
287#[derive(Clone, Copy, Debug, PartialEq)]
288pub struct FuzzReg(u8);
289
290impl<'a> Arbitrary<'a> for FuzzReg {
291    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
292        Ok(Self(u.int_in_range(0..=15)?))
293    }
294}
295
296impl AsReg for FuzzReg {
297    fn new(enc: u8) -> Self {
298        Self(enc)
299    }
300    fn enc(&self) -> u8 {
301        self.0
302    }
303}
304
305impl Arbitrary<'_> for AmodeOffsetPlusKnownOffset {
306    fn arbitrary(u: &mut Unstructured<'_>) -> Result<Self> {
307        // For now, we don't generate offsets (TODO).
308        Ok(Self {
309            simm32: AmodeOffset::arbitrary(u)?,
310            offset: None,
311        })
312    }
313}
314
315impl<R: AsReg, const E: u8> Arbitrary<'_> for Fixed<R, E> {
316    fn arbitrary(_: &mut Unstructured<'_>) -> Result<Self> {
317        Ok(Self::new(E))
318    }
319}
320
321impl<R: AsReg> Arbitrary<'_> for NonRspGpr<R> {
322    fn arbitrary(u: &mut Unstructured<'_>) -> Result<Self> {
323        use crate::gpr::enc::*;
324        let gpr = u.choose(&[
325            RAX, RCX, RDX, RBX, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15,
326        ])?;
327        Ok(Self::new(R::new(*gpr)))
328    }
329}
330impl<'a, R: AsReg> Arbitrary<'a> for Gpr<R> {
331    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
332        Ok(Self(R::new(u.int_in_range(0..=15)?)))
333    }
334}
335impl<'a, R: AsReg> Arbitrary<'a> for Xmm<R> {
336    fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
337        Ok(Self(R::new(u.int_in_range(0..=15)?)))
338    }
339}
340
341/// Helper trait that's used to be the same as `Registers` except with an extra
342/// `for<'a> Arbitrary<'a>` bound on all of the associated types.
343pub trait RegistersArbitrary:
344    Registers<
345        ReadGpr: for<'a> Arbitrary<'a>,
346        ReadWriteGpr: for<'a> Arbitrary<'a>,
347        WriteGpr: for<'a> Arbitrary<'a>,
348        ReadXmm: for<'a> Arbitrary<'a>,
349        ReadWriteXmm: for<'a> Arbitrary<'a>,
350        WriteXmm: for<'a> Arbitrary<'a>,
351    >
352{
353}
354
355impl<R> RegistersArbitrary for R
356where
357    R: Registers,
358    R::ReadGpr: for<'a> Arbitrary<'a>,
359    R::ReadWriteGpr: for<'a> Arbitrary<'a>,
360    R::WriteGpr: for<'a> Arbitrary<'a>,
361    R::ReadXmm: for<'a> Arbitrary<'a>,
362    R::ReadWriteXmm: for<'a> Arbitrary<'a>,
363    R::WriteXmm: for<'a> Arbitrary<'a>,
364{
365}
366
367#[cfg(test)]
368mod test {
369    use super::*;
370    use arbtest::arbtest;
371    use std::sync::atomic::{AtomicUsize, Ordering};
372
373    #[test]
374    fn smoke() {
375        let count = AtomicUsize::new(0);
376        arbtest(|u| {
377            let inst: Inst<FuzzRegs> = u.arbitrary()?;
378            roundtrip(&inst);
379            println!("#{}: {inst}", count.fetch_add(1, Ordering::SeqCst));
380            Ok(())
381        })
382        .budget_ms(1_000);
383
384        // This will run the `roundtrip` fuzzer for one second. To repeatably
385        // test a single input, append `.seed(0x<failing seed>)`.
386    }
387}