wasmtime/runtime/
types.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
use crate::prelude::*;
use core::fmt::{self, Display, Write};
use wasmtime_environ::{
    EngineOrModuleTypeIndex, EntityType, Global, IndexType, Limits, Memory, ModuleTypes, Table,
    TypeTrace, VMSharedTypeIndex, WasmArrayType, WasmCompositeInnerType, WasmCompositeType,
    WasmFieldType, WasmFuncType, WasmHeapType, WasmRefType, WasmStorageType, WasmStructType,
    WasmSubType, WasmValType,
};

use crate::{type_registry::RegisteredType, Engine};

pub(crate) mod matching;

// Type Representations

// Type attributes

/// Indicator of whether a global value, struct's field, or array type's
/// elements are mutable or not.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq)]
pub enum Mutability {
    /// The global value, struct field, or array elements are constant and the
    /// value does not change.
    Const,
    /// The value of the global, struct field, or array elements can change over
    /// time.
    Var,
}

impl Mutability {
    /// Is this constant?
    #[inline]
    pub fn is_const(&self) -> bool {
        *self == Self::Const
    }

    /// Is this variable?
    #[inline]
    pub fn is_var(&self) -> bool {
        *self == Self::Var
    }
}

/// Indicator of whether a type is final or not.
///
/// Final types may not be the supertype of other types.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq)]
pub enum Finality {
    /// The associated type is final.
    Final,
    /// The associated type is not final.
    NonFinal,
}

impl Finality {
    /// Is this final?
    #[inline]
    pub fn is_final(&self) -> bool {
        *self == Self::Final
    }

    /// Is this non-final?
    #[inline]
    pub fn is_non_final(&self) -> bool {
        *self == Self::NonFinal
    }
}

// Value Types

/// A list of all possible value types in WebAssembly.
///
/// # Subtyping and Equality
///
/// `ValType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`ValType::matches`] and [`Val::matches_ty`][crate::Val::matches_ty] methods
/// to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`ValType::eq`] method.
#[derive(Clone, Hash)]
pub enum ValType {
    // NB: the ordering of variants here is intended to match the ordering in
    // `wasmtime_environ::WasmType` to help improve codegen when converting.
    //
    /// Signed 32 bit integer.
    I32,
    /// Signed 64 bit integer.
    I64,
    /// Floating point 32 bit integer.
    F32,
    /// Floating point 64 bit integer.
    F64,
    /// A 128 bit number.
    V128,
    /// An opaque reference to some type on the heap.
    Ref(RefType),
}

impl fmt::Debug for ValType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(self, f)
    }
}

impl Display for ValType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            ValType::I32 => write!(f, "i32"),
            ValType::I64 => write!(f, "i64"),
            ValType::F32 => write!(f, "f32"),
            ValType::F64 => write!(f, "f64"),
            ValType::V128 => write!(f, "v128"),
            ValType::Ref(r) => Display::fmt(r, f),
        }
    }
}

impl From<RefType> for ValType {
    #[inline]
    fn from(r: RefType) -> Self {
        ValType::Ref(r)
    }
}

impl ValType {
    /// The `externref` type, aka `(ref null extern)`.
    pub const EXTERNREF: Self = ValType::Ref(RefType::EXTERNREF);

    /// The `nullexternref` type, aka `(ref null noextern)`.
    pub const NULLEXTERNREF: Self = ValType::Ref(RefType::NULLEXTERNREF);

    /// The `funcref` type, aka `(ref null func)`.
    pub const FUNCREF: Self = ValType::Ref(RefType::FUNCREF);

    /// The `nullfuncref` type, aka `(ref null nofunc)`.
    pub const NULLFUNCREF: Self = ValType::Ref(RefType::NULLFUNCREF);

    /// The `anyref` type, aka `(ref null any)`.
    pub const ANYREF: Self = ValType::Ref(RefType::ANYREF);

    /// The `eqref` type, aka `(ref null eq)`.
    pub const EQREF: Self = ValType::Ref(RefType::EQREF);

    /// The `i31ref` type, aka `(ref null i31)`.
    pub const I31REF: Self = ValType::Ref(RefType::I31REF);

    /// The `arrayref` type, aka `(ref null array)`.
    pub const ARRAYREF: Self = ValType::Ref(RefType::ARRAYREF);

    /// The `structref` type, aka `(ref null struct)`.
    pub const STRUCTREF: Self = ValType::Ref(RefType::STRUCTREF);

    /// The `nullref` type, aka `(ref null none)`.
    pub const NULLREF: Self = ValType::Ref(RefType::NULLREF);

    /// Returns true if `ValType` matches any of the numeric types. (e.g. `I32`,
    /// `I64`, `F32`, `F64`).
    #[inline]
    pub fn is_num(&self) -> bool {
        match self {
            ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 => true,
            _ => false,
        }
    }

    /// Is this the `i32` type?
    #[inline]
    pub fn is_i32(&self) -> bool {
        matches!(self, ValType::I32)
    }

    /// Is this the `i64` type?
    #[inline]
    pub fn is_i64(&self) -> bool {
        matches!(self, ValType::I64)
    }

    /// Is this the `f32` type?
    #[inline]
    pub fn is_f32(&self) -> bool {
        matches!(self, ValType::F32)
    }

    /// Is this the `f64` type?
    #[inline]
    pub fn is_f64(&self) -> bool {
        matches!(self, ValType::F64)
    }

    /// Is this the `v128` type?
    #[inline]
    pub fn is_v128(&self) -> bool {
        matches!(self, ValType::V128)
    }

    /// Returns true if `ValType` is any kind of reference type.
    #[inline]
    pub fn is_ref(&self) -> bool {
        matches!(self, ValType::Ref(_))
    }

    /// Is this the `funcref` (aka `(ref null func)`) type?
    #[inline]
    pub fn is_funcref(&self) -> bool {
        matches!(
            self,
            ValType::Ref(RefType {
                is_nullable: true,
                heap_type: HeapType::Func
            })
        )
    }

    /// Is this the `externref` (aka `(ref null extern)`) type?
    #[inline]
    pub fn is_externref(&self) -> bool {
        matches!(
            self,
            ValType::Ref(RefType {
                is_nullable: true,
                heap_type: HeapType::Extern
            })
        )
    }

    /// Is this the `anyref` (aka `(ref null any)`) type?
    #[inline]
    pub fn is_anyref(&self) -> bool {
        matches!(
            self,
            ValType::Ref(RefType {
                is_nullable: true,
                heap_type: HeapType::Any
            })
        )
    }

    /// Get the underlying reference type, if this value type is a reference
    /// type.
    #[inline]
    pub fn as_ref(&self) -> Option<&RefType> {
        match self {
            ValType::Ref(r) => Some(r),
            _ => None,
        }
    }

    /// Get the underlying reference type, panicking if this value type is not a
    /// reference type.
    #[inline]
    pub fn unwrap_ref(&self) -> &RefType {
        self.as_ref()
            .expect("ValType::unwrap_ref on a non-reference type")
    }

    /// Does this value type match the other type?
    ///
    /// That is, is this value type a subtype of the other?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &ValType) -> bool {
        match (self, other) {
            (Self::I32, Self::I32) => true,
            (Self::I64, Self::I64) => true,
            (Self::F32, Self::F32) => true,
            (Self::F64, Self::F64) => true,
            (Self::V128, Self::V128) => true,
            (Self::Ref(a), Self::Ref(b)) => a.matches(b),
            (Self::I32, _)
            | (Self::I64, _)
            | (Self::F32, _)
            | (Self::F64, _)
            | (Self::V128, _)
            | (Self::Ref(_), _) => false,
        }
    }

    /// Is value type `a` precisely equal to value type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same value type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine.
    pub fn eq(a: &Self, b: &Self) -> bool {
        a.matches(b) && b.matches(a)
    }

    /// Is this a `VMGcRef` type that is not i31 and is not an uninhabited
    /// bottom type?
    #[inline]
    pub(crate) fn is_vmgcref_type_and_points_to_object(&self) -> bool {
        match self {
            ValType::Ref(r) => r.is_vmgcref_type_and_points_to_object(),
            ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 | ValType::V128 => false,
        }
    }

    pub(crate) fn ensure_matches(&self, engine: &Engine, other: &ValType) -> Result<()> {
        if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
            bail!("type used with wrong engine");
        }
        if self.matches(other) {
            Ok(())
        } else {
            bail!("type mismatch: expected {other}, found {self}")
        }
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        match self {
            Self::I32 | Self::I64 | Self::F32 | Self::F64 | Self::V128 => true,
            Self::Ref(r) => r.comes_from_same_engine(engine),
        }
    }

    pub(crate) fn to_wasm_type(&self) -> WasmValType {
        match self {
            Self::I32 => WasmValType::I32,
            Self::I64 => WasmValType::I64,
            Self::F32 => WasmValType::F32,
            Self::F64 => WasmValType::F64,
            Self::V128 => WasmValType::V128,
            Self::Ref(r) => WasmValType::Ref(r.to_wasm_type()),
        }
    }

    #[inline]
    pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmValType) -> Self {
        match ty {
            WasmValType::I32 => Self::I32,
            WasmValType::I64 => Self::I64,
            WasmValType::F32 => Self::F32,
            WasmValType::F64 => Self::F64,
            WasmValType::V128 => Self::V128,
            WasmValType::Ref(r) => Self::Ref(RefType::from_wasm_type(engine, r)),
        }
    }
}

/// Opaque references to data in the Wasm heap or to host data.
///
/// # Subtyping and Equality
///
/// `RefType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`RefType::matches`] and [`Ref::matches_ty`][crate::Ref::matches_ty] methods
/// to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`RefType::eq`] method.
#[derive(Clone, Hash)]
pub struct RefType {
    is_nullable: bool,
    heap_type: HeapType,
}

impl fmt::Debug for RefType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl fmt::Display for RefType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(ref ")?;
        if self.is_nullable() {
            write!(f, "null ")?;
        }
        write!(f, "{})", self.heap_type())
    }
}

impl RefType {
    /// The `externref` type, aka `(ref null extern)`.
    pub const EXTERNREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::Extern,
    };

    /// The `nullexternref` type, aka `(ref null noextern)`.
    pub const NULLEXTERNREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::NoExtern,
    };

    /// The `funcref` type, aka `(ref null func)`.
    pub const FUNCREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::Func,
    };

    /// The `nullfuncref` type, aka `(ref null nofunc)`.
    pub const NULLFUNCREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::NoFunc,
    };

    /// The `anyref` type, aka `(ref null any)`.
    pub const ANYREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::Any,
    };

    /// The `eqref` type, aka `(ref null eq)`.
    pub const EQREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::Eq,
    };

    /// The `i31ref` type, aka `(ref null i31)`.
    pub const I31REF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::I31,
    };

    /// The `arrayref` type, aka `(ref null array)`.
    pub const ARRAYREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::Array,
    };

    /// The `structref` type, aka `(ref null struct)`.
    pub const STRUCTREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::Struct,
    };

    /// The `nullref` type, aka `(ref null none)`.
    pub const NULLREF: Self = RefType {
        is_nullable: true,
        heap_type: HeapType::None,
    };

    /// Construct a new reference type.
    pub fn new(is_nullable: bool, heap_type: HeapType) -> RefType {
        RefType {
            is_nullable,
            heap_type,
        }
    }

    /// Can this type of reference be null?
    pub fn is_nullable(&self) -> bool {
        self.is_nullable
    }

    /// The heap type that this is a reference to.
    #[inline]
    pub fn heap_type(&self) -> &HeapType {
        &self.heap_type
    }

    /// Does this reference type match the other?
    ///
    /// That is, is this reference type a subtype of the other?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &RefType) -> bool {
        if self.is_nullable() && !other.is_nullable() {
            return false;
        }
        self.heap_type().matches(other.heap_type())
    }

    /// Is reference type `a` precisely equal to reference type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same reference type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine.
    pub fn eq(a: &RefType, b: &RefType) -> bool {
        a.matches(b) && b.matches(a)
    }

    pub(crate) fn ensure_matches(&self, engine: &Engine, other: &RefType) -> Result<()> {
        if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
            bail!("type used with wrong engine");
        }
        if self.matches(other) {
            Ok(())
        } else {
            bail!("type mismatch: expected {other}, found {self}")
        }
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        self.heap_type().comes_from_same_engine(engine)
    }

    pub(crate) fn to_wasm_type(&self) -> WasmRefType {
        WasmRefType {
            nullable: self.is_nullable(),
            heap_type: self.heap_type().to_wasm_type(),
        }
    }

    pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmRefType) -> RefType {
        RefType {
            is_nullable: ty.nullable,
            heap_type: HeapType::from_wasm_type(engine, &ty.heap_type),
        }
    }

    pub(crate) fn is_vmgcref_type_and_points_to_object(&self) -> bool {
        self.heap_type().is_vmgcref_type_and_points_to_object()
    }
}

/// The heap types that can Wasm can have references to.
///
/// # Subtyping Hierarchy
///
/// Wasm has three different heap type hierarchies:
///
/// 1. Function types
/// 2. External types
/// 3. Internal types
///
/// Each hierarchy has a top type (the common supertype of which everything else
/// in its hierarchy is a subtype of) and a bottom type (the common subtype of
/// which everything else in its hierarchy is supertype of).
///
/// ## Function Types Hierarchy
///
/// The top of the function types hierarchy is `func`; the bottom is
/// `nofunc`. In between are all the concrete function types.
///
/// ```text
///                          func
///                       /  /  \  \
///      ,----------------  /    \  -------------------------.
///     /                  /      \                           \
///    |              ,----        -----------.                |
///    |              |                       |                |
///    |              |                       |                |
/// (func)    (func (param i32))    (func (param i32 i32))    ...
///    |              |                       |                |
///    |              |                       |                |
///    |              `---.        ,----------'                |
///     \                  \      /                           /
///      `---------------.  \    /  ,------------------------'
///                       \  \  /  /
///                         nofunc
/// ```
///
/// Additionally, some concrete function types are sub- or supertypes of other
/// concrete function types, if that was declared in their definition. For
/// simplicity, this isn't depicted in the diagram above.
///
/// ## External
///
/// The top of the external types hierarchy is `extern`; the bottom is
/// `noextern`. There are no concrete types in this hierarchy.
///
/// ```text
///  extern
///    |
/// noextern
/// ```
///
/// ## Internal
///
/// The top of the internal types hierarchy is `any`; the bottom is `none`. The
/// `eq` type is the common supertype of all types that can be compared for
/// equality. The `struct` and `array` types are the common supertypes of all
/// concrete struct and array types respectively. The `i31` type represents
/// unboxed 31-bit integers.
///
/// ```text
///                                   any
///                                  / | \
///    ,----------------------------'  |  `--------------------------.
///   /                                |                              \
///  |                        .--------'                               |
///  |                        |                                        |
///  |                      struct                                   array
///  |                     /  |   \                                 /  |   \
/// i31             ,-----'   |    '-----.                   ,-----'   |    `-----.
///  |             /          |           \                 /          |           \
///  |            |           |            |               |           |            |
///  |        (struct)    (struct i32)    ...        (array i32)    (array i64)    ...
///  |            |           |            |               |           |            |
///  |             \          |           /                 \          |           /
///   \             `-----.   |    ,-----'                   `-----.   |    ,-----'
///    \                   \  |   /                                 \  |   /
///     \                   \ |  /                                   \ |  /
///      \                   \| /                                     \| /
///       \                   |/                                       |/
///        \                  |                                        |
///         \                 |                                       /
///          \                '--------.                             /
///           \                        |                            /
///            `--------------------.  |   ,-----------------------'
///                                  \ |  /
///                                   none
/// ```
///
/// Additionally, concrete struct and array types can be subtypes of other
/// concrete struct and array types respectively, if that was declared in their
/// definitions. Once again, this is omitted from the above diagram for
/// simplicity.
///
/// # Subtyping and Equality
///
/// `HeapType` does not implement `Eq`, because heap types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`HeapType::matches`] method to perform these types of checks. If, however,
/// you are in that 0.01% scenario where you need to check precise equality
/// between types, you can use the [`HeapType::eq`] method.
#[derive(Debug, Clone, Hash)]
pub enum HeapType {
    /// The abstract `extern` heap type represents external host data.
    ///
    /// This is the top type for the external type hierarchy, and therefore is
    /// the common supertype of all external reference types.
    Extern,

    /// The abstract `noextern` heap type represents the null external
    /// reference.
    ///
    /// This is the bottom type for the external type hierarchy, and therefore
    /// is the common subtype of all external reference types.
    NoExtern,

    /// The abstract `func` heap type represents a reference to any kind of
    /// function.
    ///
    /// This is the top type for the function references type hierarchy, and is
    /// therefore a supertype of every function reference.
    Func,

    /// A reference to a function of a specific, concrete type.
    ///
    /// These are subtypes of `func` and supertypes of `nofunc`.
    ConcreteFunc(FuncType),

    /// The abstract `nofunc` heap type represents the null function reference.
    ///
    /// This is the bottom type for the function references type hierarchy, and
    /// therefore `nofunc` is a subtype of all function reference types.
    NoFunc,

    /// The abstract `any` heap type represents all internal Wasm data.
    ///
    /// This is the top type of the internal type hierarchy, and is therefore a
    /// supertype of all internal types (such as `eq`, `i31`, `struct`s, and
    /// `array`s).
    Any,

    /// The abstract `eq` heap type represenets all internal Wasm references
    /// that can be compared for equality.
    ///
    /// This is a subtype of `any` and a supertype of `i31`, `array`, `struct`,
    /// and `none` heap types.
    Eq,

    /// The `i31` heap type represents unboxed 31-bit integers.
    ///
    /// This is a subtype of `any` and `eq`, and a supertype of `none`.
    I31,

    /// The abstract `array` heap type represents a reference to any kind of
    /// array.
    ///
    /// This is a subtype of `any` and `eq`, and a supertype of all concrete
    /// array types, as well as a supertype of the abstract `none` heap type.
    Array,

    /// A reference to an array of a specific, concrete type.
    ///
    /// These are subtypes of the `array` heap type (therefore also a subtype of
    /// `any` and `eq`) and supertypes of the `none` heap type.
    ConcreteArray(ArrayType),

    /// The abstract `struct` heap type represents a reference to any kind of
    /// struct.
    ///
    /// This is a subtype of `any` and `eq`, and a supertype of all concrete
    /// struct types, as well as a supertype of the abstract `none` heap type.
    Struct,

    /// A reference to an struct of a specific, concrete type.
    ///
    /// These are subtypes of the `struct` heap type (therefore also a subtype
    /// of `any` and `eq`) and supertypes of the `none` heap type.
    ConcreteStruct(StructType),

    /// The abstract `none` heap type represents the null internal reference.
    ///
    /// This is the bottom type for the internal type hierarchy, and therefore
    /// `none` is a subtype of internal types.
    None,
}

impl Display for HeapType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            HeapType::Extern => write!(f, "extern"),
            HeapType::NoExtern => write!(f, "noextern"),
            HeapType::Func => write!(f, "func"),
            HeapType::NoFunc => write!(f, "nofunc"),
            HeapType::Any => write!(f, "any"),
            HeapType::Eq => write!(f, "eq"),
            HeapType::I31 => write!(f, "i31"),
            HeapType::Array => write!(f, "array"),
            HeapType::Struct => write!(f, "struct"),
            HeapType::None => write!(f, "none"),
            HeapType::ConcreteFunc(ty) => write!(f, "(concrete func {:?})", ty.type_index()),
            HeapType::ConcreteArray(ty) => write!(f, "(concrete array {:?})", ty.type_index()),
            HeapType::ConcreteStruct(ty) => write!(f, "(concrete struct {:?})", ty.type_index()),
        }
    }
}

impl From<FuncType> for HeapType {
    #[inline]
    fn from(f: FuncType) -> Self {
        HeapType::ConcreteFunc(f)
    }
}

impl From<ArrayType> for HeapType {
    #[inline]
    fn from(a: ArrayType) -> Self {
        HeapType::ConcreteArray(a)
    }
}

impl From<StructType> for HeapType {
    #[inline]
    fn from(s: StructType) -> Self {
        HeapType::ConcreteStruct(s)
    }
}

impl HeapType {
    /// Is this the abstract `extern` heap type?
    pub fn is_extern(&self) -> bool {
        matches!(self, HeapType::Extern)
    }

    /// Is this the abstract `func` heap type?
    pub fn is_func(&self) -> bool {
        matches!(self, HeapType::Func)
    }

    /// Is this the abstract `nofunc` heap type?
    pub fn is_no_func(&self) -> bool {
        matches!(self, HeapType::NoFunc)
    }

    /// Is this the abstract `any` heap type?
    pub fn is_any(&self) -> bool {
        matches!(self, HeapType::Any)
    }

    /// Is this the abstract `i31` heap type?
    pub fn is_i31(&self) -> bool {
        matches!(self, HeapType::I31)
    }

    /// Is this the abstract `none` heap type?
    pub fn is_none(&self) -> bool {
        matches!(self, HeapType::None)
    }

    /// Is this an abstract type?
    ///
    /// Types that are not abstract are concrete, user-defined types.
    pub fn is_abstract(&self) -> bool {
        !self.is_concrete()
    }

    /// Is this a concrete, user-defined heap type?
    ///
    /// Types that are not concrete, user-defined types are abstract types.
    #[inline]
    pub fn is_concrete(&self) -> bool {
        matches!(
            self,
            HeapType::ConcreteFunc(_) | HeapType::ConcreteArray(_) | HeapType::ConcreteStruct(_)
        )
    }

    /// Is this a concrete, user-defined function type?
    pub fn is_concrete_func(&self) -> bool {
        matches!(self, HeapType::ConcreteFunc(_))
    }

    /// Get the underlying concrete, user-defined function type, if any.
    ///
    /// Returns `None` if this is not a concrete function type.
    pub fn as_concrete_func(&self) -> Option<&FuncType> {
        match self {
            HeapType::ConcreteFunc(f) => Some(f),
            _ => None,
        }
    }

    /// Get the underlying concrete, user-defined type, panicking if this is not
    /// a concrete function type.
    pub fn unwrap_concrete_func(&self) -> &FuncType {
        self.as_concrete_func().unwrap()
    }

    /// Is this a concrete, user-defined array type?
    pub fn is_concrete_array(&self) -> bool {
        matches!(self, HeapType::ConcreteArray(_))
    }

    /// Get the underlying concrete, user-defined array type, if any.
    ///
    /// Returns `None` for if this is not a concrete array type.
    pub fn as_concrete_array(&self) -> Option<&ArrayType> {
        match self {
            HeapType::ConcreteArray(f) => Some(f),
            _ => None,
        }
    }

    /// Get the underlying concrete, user-defined type, panicking if this is not
    /// a concrete array type.
    pub fn unwrap_concrete_array(&self) -> &ArrayType {
        self.as_concrete_array().unwrap()
    }

    /// Is this a concrete, user-defined struct type?
    pub fn is_concrete_struct(&self) -> bool {
        matches!(self, HeapType::ConcreteStruct(_))
    }

    /// Get the underlying concrete, user-defined struct type, if any.
    ///
    /// Returns `None` for if this is not a concrete struct type.
    pub fn as_concrete_struct(&self) -> Option<&StructType> {
        match self {
            HeapType::ConcreteStruct(f) => Some(f),
            _ => None,
        }
    }

    /// Get the underlying concrete, user-defined type, panicking if this is not
    /// a concrete struct type.
    pub fn unwrap_concrete_struct(&self) -> &StructType {
        self.as_concrete_struct().unwrap()
    }

    /// Get the top type of this heap type's type hierarchy.
    ///
    /// The returned heap type is a supertype of all types in this heap type's
    /// type hierarchy.
    #[inline]
    pub fn top(&self) -> HeapType {
        match self {
            HeapType::Func | HeapType::ConcreteFunc(_) | HeapType::NoFunc => HeapType::Func,

            HeapType::Extern | HeapType::NoExtern => HeapType::Extern,

            HeapType::Any
            | HeapType::Eq
            | HeapType::I31
            | HeapType::Array
            | HeapType::ConcreteArray(_)
            | HeapType::Struct
            | HeapType::ConcreteStruct(_)
            | HeapType::None => HeapType::Any,
        }
    }

    /// Is this the top type within its type hierarchy?
    #[inline]
    pub fn is_top(&self) -> bool {
        match self {
            HeapType::Any | HeapType::Extern | HeapType::Func => true,
            _ => false,
        }
    }

    /// Get the bottom type of this heap type's type hierarchy.
    ///
    /// The returned heap type is a subtype of all types in this heap type's
    /// type hierarchy.
    #[inline]
    pub fn bottom(&self) -> HeapType {
        match self {
            HeapType::Extern | HeapType::NoExtern => HeapType::NoExtern,

            HeapType::Func | HeapType::ConcreteFunc(_) | HeapType::NoFunc => HeapType::NoFunc,

            HeapType::Any
            | HeapType::Eq
            | HeapType::I31
            | HeapType::Array
            | HeapType::ConcreteArray(_)
            | HeapType::Struct
            | HeapType::ConcreteStruct(_)
            | HeapType::None => HeapType::None,
        }
    }

    /// Is this the bottom type within its type hierarchy?
    #[inline]
    pub fn is_bottom(&self) -> bool {
        match self {
            HeapType::None | HeapType::NoExtern | HeapType::NoFunc => true,
            _ => false,
        }
    }

    /// Does this heap type match the other heap type?
    ///
    /// That is, is this heap type a subtype of the other?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &HeapType) -> bool {
        match (self, other) {
            (HeapType::Extern, HeapType::Extern) => true,
            (HeapType::Extern, _) => false,

            (HeapType::NoExtern, HeapType::NoExtern | HeapType::Extern) => true,
            (HeapType::NoExtern, _) => false,

            (HeapType::NoFunc, HeapType::NoFunc | HeapType::ConcreteFunc(_) | HeapType::Func) => {
                true
            }
            (HeapType::NoFunc, _) => false,

            (HeapType::ConcreteFunc(_), HeapType::Func) => true,
            (HeapType::ConcreteFunc(a), HeapType::ConcreteFunc(b)) => {
                assert!(a.comes_from_same_engine(b.engine()));
                a.engine()
                    .signatures()
                    .is_subtype(a.type_index(), b.type_index())
            }
            (HeapType::ConcreteFunc(_), _) => false,

            (HeapType::Func, HeapType::Func) => true,
            (HeapType::Func, _) => false,

            (
                HeapType::None,
                HeapType::None
                | HeapType::ConcreteArray(_)
                | HeapType::Array
                | HeapType::ConcreteStruct(_)
                | HeapType::Struct
                | HeapType::I31
                | HeapType::Eq
                | HeapType::Any,
            ) => true,
            (HeapType::None, _) => false,

            (HeapType::ConcreteArray(_), HeapType::Array | HeapType::Eq | HeapType::Any) => true,
            (HeapType::ConcreteArray(a), HeapType::ConcreteArray(b)) => {
                assert!(a.comes_from_same_engine(b.engine()));
                a.engine()
                    .signatures()
                    .is_subtype(a.type_index(), b.type_index())
            }
            (HeapType::ConcreteArray(_), _) => false,

            (HeapType::Array, HeapType::Array | HeapType::Eq | HeapType::Any) => true,
            (HeapType::Array, _) => false,

            (HeapType::ConcreteStruct(_), HeapType::Struct | HeapType::Eq | HeapType::Any) => true,
            (HeapType::ConcreteStruct(a), HeapType::ConcreteStruct(b)) => {
                assert!(a.comes_from_same_engine(b.engine()));
                a.engine()
                    .signatures()
                    .is_subtype(a.type_index(), b.type_index())
            }
            (HeapType::ConcreteStruct(_), _) => false,

            (HeapType::Struct, HeapType::Struct | HeapType::Eq | HeapType::Any) => true,
            (HeapType::Struct, _) => false,

            (HeapType::I31, HeapType::I31 | HeapType::Eq | HeapType::Any) => true,
            (HeapType::I31, _) => false,

            (HeapType::Eq, HeapType::Eq | HeapType::Any) => true,
            (HeapType::Eq, _) => false,

            (HeapType::Any, HeapType::Any) => true,
            (HeapType::Any, _) => false,
        }
    }

    /// Is heap type `a` precisely equal to heap type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same heap type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn eq(a: &HeapType, b: &HeapType) -> bool {
        a.matches(b) && b.matches(a)
    }

    pub(crate) fn ensure_matches(&self, engine: &Engine, other: &HeapType) -> Result<()> {
        if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
            bail!("type used with wrong engine");
        }
        if self.matches(other) {
            Ok(())
        } else {
            bail!("type mismatch: expected {other}, found {self}");
        }
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        match self {
            HeapType::Extern
            | HeapType::NoExtern
            | HeapType::Func
            | HeapType::NoFunc
            | HeapType::Any
            | HeapType::Eq
            | HeapType::I31
            | HeapType::Array
            | HeapType::Struct
            | HeapType::None => true,
            HeapType::ConcreteFunc(ty) => ty.comes_from_same_engine(engine),
            HeapType::ConcreteArray(ty) => ty.comes_from_same_engine(engine),
            HeapType::ConcreteStruct(ty) => ty.comes_from_same_engine(engine),
        }
    }

    pub(crate) fn to_wasm_type(&self) -> WasmHeapType {
        match self {
            HeapType::Extern => WasmHeapType::Extern,
            HeapType::NoExtern => WasmHeapType::NoExtern,
            HeapType::Func => WasmHeapType::Func,
            HeapType::NoFunc => WasmHeapType::NoFunc,
            HeapType::Any => WasmHeapType::Any,
            HeapType::Eq => WasmHeapType::Eq,
            HeapType::I31 => WasmHeapType::I31,
            HeapType::Array => WasmHeapType::Array,
            HeapType::Struct => WasmHeapType::Struct,
            HeapType::None => WasmHeapType::None,
            HeapType::ConcreteFunc(f) => {
                WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::Engine(f.type_index()))
            }
            HeapType::ConcreteArray(a) => {
                WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::Engine(a.type_index()))
            }
            HeapType::ConcreteStruct(a) => {
                WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::Engine(a.type_index()))
            }
        }
    }

    pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmHeapType) -> HeapType {
        match ty {
            WasmHeapType::Extern => HeapType::Extern,
            WasmHeapType::NoExtern => HeapType::NoExtern,
            WasmHeapType::Func => HeapType::Func,
            WasmHeapType::NoFunc => HeapType::NoFunc,
            WasmHeapType::Any => HeapType::Any,
            WasmHeapType::Eq => HeapType::Eq,
            WasmHeapType::I31 => HeapType::I31,
            WasmHeapType::Array => HeapType::Array,
            WasmHeapType::Struct => HeapType::Struct,
            WasmHeapType::None => HeapType::None,
            WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::Engine(idx)) => {
                HeapType::ConcreteFunc(FuncType::from_shared_type_index(engine, *idx))
            }
            WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::Engine(idx)) => {
                HeapType::ConcreteArray(ArrayType::from_shared_type_index(engine, *idx))
            }
            WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::Engine(idx)) => {
                HeapType::ConcreteStruct(StructType::from_shared_type_index(engine, *idx))
            }

            WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::Module(_))
            | WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::RecGroup(_))
            | WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::Module(_))
            | WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::RecGroup(_))
            | WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::Module(_))
            | WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::RecGroup(_)) => {
                panic!("HeapType::from_wasm_type on non-canonicalized-for-runtime-usage heap type")
            }
        }
    }

    pub(crate) fn as_registered_type(&self) -> Option<&RegisteredType> {
        match self {
            HeapType::ConcreteFunc(f) => Some(&f.registered_type),
            HeapType::ConcreteArray(a) => Some(&a.registered_type),
            HeapType::ConcreteStruct(a) => Some(&a.registered_type),

            HeapType::Extern
            | HeapType::NoExtern
            | HeapType::Func
            | HeapType::NoFunc
            | HeapType::Any
            | HeapType::Eq
            | HeapType::I31
            | HeapType::Array
            | HeapType::Struct
            | HeapType::None => None,
        }
    }

    #[inline]
    pub(crate) fn is_vmgcref_type(&self) -> bool {
        match self.top() {
            Self::Any | Self::Extern => true,
            Self::Func => false,
            ty => unreachable!("not a top type: {ty:?}"),
        }
    }

    /// Is this a `VMGcRef` type that is not i31 and is not an uninhabited
    /// bottom type?
    #[inline]
    pub(crate) fn is_vmgcref_type_and_points_to_object(&self) -> bool {
        self.is_vmgcref_type()
            && !matches!(
                self,
                HeapType::I31 | HeapType::NoExtern | HeapType::NoFunc | HeapType::None
            )
    }
}

// External Types

/// A list of all possible types which can be externally referenced from a
/// WebAssembly module.
///
/// This list can be found in [`ImportType`] or [`ExportType`], so these types
/// can either be imported or exported.
#[derive(Debug, Clone)]
pub enum ExternType {
    /// This external type is the type of a WebAssembly function.
    Func(FuncType),
    /// This external type is the type of a WebAssembly global.
    Global(GlobalType),
    /// This external type is the type of a WebAssembly table.
    Table(TableType),
    /// This external type is the type of a WebAssembly memory.
    Memory(MemoryType),
}

macro_rules! extern_type_accessors {
    ($(($variant:ident($ty:ty) $get:ident $unwrap:ident))*) => ($(
        /// Attempt to return the underlying type of this external type,
        /// returning `None` if it is a different type.
        pub fn $get(&self) -> Option<&$ty> {
            if let ExternType::$variant(e) = self {
                Some(e)
            } else {
                None
            }
        }

        /// Returns the underlying descriptor of this [`ExternType`], panicking
        /// if it is a different type.
        ///
        /// # Panics
        ///
        /// Panics if `self` is not of the right type.
        pub fn $unwrap(&self) -> &$ty {
            self.$get().expect(concat!("expected ", stringify!($ty)))
        }
    )*)
}

impl ExternType {
    extern_type_accessors! {
        (Func(FuncType) func unwrap_func)
        (Global(GlobalType) global unwrap_global)
        (Table(TableType) table unwrap_table)
        (Memory(MemoryType) memory unwrap_memory)
    }

    pub(crate) fn from_wasmtime(
        engine: &Engine,
        types: &ModuleTypes,
        ty: &EntityType,
    ) -> ExternType {
        match ty {
            EntityType::Function(idx) => match idx {
                EngineOrModuleTypeIndex::Engine(e) => {
                    FuncType::from_shared_type_index(engine, *e).into()
                }
                EngineOrModuleTypeIndex::Module(m) => {
                    let subty = &types[*m];
                    FuncType::from_wasm_func_type(
                        engine,
                        subty.is_final,
                        subty.supertype,
                        subty.unwrap_func().clone(),
                    )
                    .into()
                }
                EngineOrModuleTypeIndex::RecGroup(_) => unreachable!(),
            },
            EntityType::Global(ty) => GlobalType::from_wasmtime_global(engine, ty).into(),
            EntityType::Memory(ty) => MemoryType::from_wasmtime_memory(ty).into(),
            EntityType::Table(ty) => TableType::from_wasmtime_table(engine, ty).into(),
            EntityType::Tag(_) => unimplemented!("wasm tag support"),
        }
    }
}

impl From<FuncType> for ExternType {
    fn from(ty: FuncType) -> ExternType {
        ExternType::Func(ty)
    }
}

impl From<GlobalType> for ExternType {
    fn from(ty: GlobalType) -> ExternType {
        ExternType::Global(ty)
    }
}

impl From<MemoryType> for ExternType {
    fn from(ty: MemoryType) -> ExternType {
        ExternType::Memory(ty)
    }
}

impl From<TableType> for ExternType {
    fn from(ty: TableType) -> ExternType {
        ExternType::Table(ty)
    }
}

/// The storage type of a `struct` field or `array` element.
///
/// This is either a packed 8- or -16 bit integer, or else it is some unpacked
/// Wasm value type.
#[derive(Clone, Hash)]
pub enum StorageType {
    /// `i8`, an 8-bit integer.
    I8,
    /// `i16`, a 16-bit integer.
    I16,
    /// A value type.
    ValType(ValType),
}

impl fmt::Display for StorageType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            StorageType::I8 => write!(f, "i8"),
            StorageType::I16 => write!(f, "i16"),
            StorageType::ValType(ty) => fmt::Display::fmt(ty, f),
        }
    }
}

impl From<ValType> for StorageType {
    #[inline]
    fn from(v: ValType) -> Self {
        StorageType::ValType(v)
    }
}

impl From<RefType> for StorageType {
    #[inline]
    fn from(r: RefType) -> Self {
        StorageType::ValType(r.into())
    }
}

impl StorageType {
    /// Is this an `i8`?
    #[inline]
    pub fn is_i8(&self) -> bool {
        matches!(self, Self::I8)
    }

    /// Is this an `i16`?
    #[inline]
    pub fn is_i16(&self) -> bool {
        matches!(self, Self::I16)
    }

    /// Is this a Wasm value type?
    #[inline]
    pub fn is_val_type(&self) -> bool {
        matches!(self, Self::I16)
    }

    /// Get this storage type's underlying value type, if any.
    ///
    /// Returns `None` if this storage type is not a value type.
    #[inline]
    pub fn as_val_type(&self) -> Option<&ValType> {
        match self {
            Self::ValType(v) => Some(v),
            _ => None,
        }
    }

    /// Get this storage type's underlying value type, panicking if it is not a
    /// value type.
    pub fn unwrap_val_type(&self) -> &ValType {
        self.as_val_type().unwrap()
    }

    /// Unpack this (possibly packed) storage type into a full `ValType`.
    ///
    /// If this is a `StorageType::ValType`, then the inner `ValType` is
    /// returned as-is.
    ///
    /// If this is a packed `StorageType::I8` or `StorageType::I16, then a
    /// `ValType::I32` is returned.
    pub fn unpack(&self) -> &ValType {
        match self {
            StorageType::I8 | StorageType::I16 => &ValType::I32,
            StorageType::ValType(ty) => ty,
        }
    }

    /// Does this field type match the other field type?
    ///
    /// That is, is this field type a subtype of the other field type?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &Self) -> bool {
        match (self, other) {
            (StorageType::I8, StorageType::I8) => true,
            (StorageType::I8, _) => false,
            (StorageType::I16, StorageType::I16) => true,
            (StorageType::I16, _) => false,
            (StorageType::ValType(a), StorageType::ValType(b)) => a.matches(b),
            (StorageType::ValType(_), _) => false,
        }
    }

    /// Is field type `a` precisely equal to field type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same field type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn eq(a: &Self, b: &Self) -> bool {
        match (a, b) {
            (StorageType::I8, StorageType::I8) => true,
            (StorageType::I8, _) => false,
            (StorageType::I16, StorageType::I16) => true,
            (StorageType::I16, _) => false,
            (StorageType::ValType(a), StorageType::ValType(b)) => ValType::eq(a, b),
            (StorageType::ValType(_), _) => false,
        }
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        match self {
            StorageType::I8 | StorageType::I16 => true,
            StorageType::ValType(v) => v.comes_from_same_engine(engine),
        }
    }

    pub(crate) fn from_wasm_storage_type(engine: &Engine, ty: &WasmStorageType) -> Self {
        match ty {
            WasmStorageType::I8 => Self::I8,
            WasmStorageType::I16 => Self::I16,
            WasmStorageType::Val(v) => ValType::from_wasm_type(engine, &v).into(),
        }
    }

    pub(crate) fn to_wasm_storage_type(&self) -> WasmStorageType {
        match self {
            Self::I8 => WasmStorageType::I8,
            Self::I16 => WasmStorageType::I16,
            Self::ValType(v) => WasmStorageType::Val(v.to_wasm_type()),
        }
    }

    /// The byte size of this type, if it has a defined size in the spec.
    ///
    /// See
    /// https://webassembly.github.io/gc/core/syntax/types.html#bitwidth-fieldtype
    /// and
    /// https://webassembly.github.io/gc/core/syntax/types.html#bitwidth-valtype
    pub(crate) fn data_byte_size(&self) -> Option<u32> {
        match self {
            StorageType::I8 => Some(1),
            StorageType::I16 => Some(2),
            StorageType::ValType(ValType::I32 | ValType::F32) => Some(4),
            StorageType::ValType(ValType::I64 | ValType::F64) => Some(8),
            StorageType::ValType(ValType::V128) => Some(16),
            StorageType::ValType(ValType::Ref(_)) => None,
        }
    }
}

/// The type of a `struct` field or an `array`'s elements.
///
/// This is a pair of both the field's storage type and its mutability
/// (i.e. whether the field can be updated or not).
#[derive(Clone, Hash)]
pub struct FieldType {
    mutability: Mutability,
    element_type: StorageType,
}

impl fmt::Display for FieldType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.mutability.is_var() {
            write!(f, "(mut {})", self.element_type)
        } else {
            fmt::Display::fmt(&self.element_type, f)
        }
    }
}

impl FieldType {
    /// Construct a new field type from the given parts.
    #[inline]
    pub fn new(mutability: Mutability, element_type: StorageType) -> Self {
        Self {
            mutability,
            element_type,
        }
    }

    /// Get whether or not this field type is mutable.
    #[inline]
    pub fn mutability(&self) -> Mutability {
        self.mutability
    }

    /// Get this field type's storage type.
    #[inline]
    pub fn element_type(&self) -> &StorageType {
        &self.element_type
    }

    /// Does this field type match the other field type?
    ///
    /// That is, is this field type a subtype of the other field type?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &Self) -> bool {
        // Our storage type must match `other`'s storage type and either
        //
        // 1. Both field types are immutable, or
        //
        // 2. Both field types are mutable and `other`'s storage type must match
        //    ours, i.e. the storage types are exactly the same.
        use Mutability as M;
        match (self.mutability, other.mutability) {
            // Case 1
            (M::Const, M::Const) => self.element_type.matches(&other.element_type),
            // Case 2
            (M::Var, M::Var) => StorageType::eq(&self.element_type, &other.element_type),
            // Does not match.
            _ => false,
        }
    }

    /// Is field type `a` precisely equal to field type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same field type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn eq(a: &Self, b: &Self) -> bool {
        a.matches(b) && b.matches(a)
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        self.element_type.comes_from_same_engine(engine)
    }

    pub(crate) fn from_wasm_field_type(engine: &Engine, ty: &WasmFieldType) -> Self {
        Self {
            mutability: if ty.mutable {
                Mutability::Var
            } else {
                Mutability::Const
            },
            element_type: StorageType::from_wasm_storage_type(engine, &ty.element_type),
        }
    }

    pub(crate) fn to_wasm_field_type(&self) -> WasmFieldType {
        WasmFieldType {
            element_type: self.element_type.to_wasm_storage_type(),
            mutable: matches!(self.mutability, Mutability::Var),
        }
    }
}

/// The type of a WebAssembly struct.
///
/// WebAssembly structs are a static, fixed-length, ordered sequence of
/// fields. Fields are named by index, not an identifier. Each field is mutable
/// or constant and stores unpacked [`Val`][crate::Val]s or packed 8-/16-bit
/// integers.
///
/// # Subtyping and Equality
///
/// `StructType` does not implement `Eq`, because reference types have a
/// subtyping relationship, and so 99.99% of the time you actually want to check
/// whether one type matches (i.e. is a subtype of) another type. You can use
/// the [`StructType::matches`] method to perform these types of checks. If,
/// however, you are in that 0.01% scenario where you need to check precise
/// equality between types, you can use the [`StructType::eq`] method.
//
// TODO: Once we have struct values, update above docs with a reference to the
// future `Struct::matches_ty` method
#[derive(Debug, Clone, Hash)]
pub struct StructType {
    registered_type: RegisteredType,
}

impl fmt::Display for StructType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(struct")?;
        for field in self.fields() {
            write!(f, " (field {field})")?;
        }
        write!(f, ")")?;
        Ok(())
    }
}

impl StructType {
    /// Construct a new `StructType` with the given field types.
    ///
    /// This `StructType` will be final and without a supertype.
    ///
    /// The result will be associated with the given engine, and attempts to use
    /// it with other engines will panic (for example, checking whether it is a
    /// subtype of another struct type that is associated with a different
    /// engine).
    ///
    /// Returns an error if the number of fields exceeds the implementation
    /// limit.
    ///
    /// # Panics
    ///
    /// Panics if any given field type is not associated with the given engine.
    pub fn new(engine: &Engine, fields: impl IntoIterator<Item = FieldType>) -> Result<Self> {
        Self::with_finality_and_supertype(engine, Finality::Final, None, fields)
    }

    /// Construct a new `StructType` with the given finality, supertype, and
    /// fields.
    ///
    /// The result will be associated with the given engine, and attempts to use
    /// it with other engines will panic (for example, checking whether it is a
    /// subtype of another struct type that is associated with a different
    /// engine).
    ///
    /// Returns an error if the number of fields exceeds the implementation
    /// limit, if the supertype is final, or if this type does not match the
    /// supertype.
    ///
    /// # Panics
    ///
    /// Panics if any given field type is not associated with the given engine.
    pub fn with_finality_and_supertype(
        engine: &Engine,
        finality: Finality,
        supertype: Option<&Self>,
        fields: impl IntoIterator<Item = FieldType>,
    ) -> Result<Self> {
        let fields = fields.into_iter();

        let mut wasmtime_fields = Vec::with_capacity({
            let size_hint = fields.size_hint();
            let cap = size_hint.1.unwrap_or(size_hint.0);
            // Only reserve space if we have a supertype, as that is the only time
            // that this vec is used.
            supertype.is_some() as usize * cap
        });

        // Same as in `FuncType::new`: we must prevent any `RegisteredType`s
        // from being reclaimed while constructing this struct type.
        let mut registrations = smallvec::SmallVec::<[_; 4]>::new();

        let fields = fields
            .map(|ty: FieldType| {
                assert!(ty.comes_from_same_engine(engine));

                if supertype.is_some() {
                    wasmtime_fields.push(ty.clone());
                }

                if let Some(r) = ty.element_type.as_val_type().and_then(|v| v.as_ref()) {
                    if let Some(r) = r.heap_type().as_registered_type() {
                        registrations.push(r.clone());
                    }
                }

                ty.to_wasm_field_type()
            })
            .collect();

        if let Some(supertype) = supertype {
            ensure!(
                supertype.finality().is_non_final(),
                "cannot create a subtype of a final supertype"
            );
            ensure!(
                Self::fields_match(wasmtime_fields.into_iter(), supertype.fields()),
                "struct fields must match their supertype's fields"
            );
        }

        Self::from_wasm_struct_type(
            engine,
            finality.is_final(),
            false,
            supertype.map(|ty| ty.type_index().into()),
            WasmStructType { fields },
        )
    }

    /// Get the engine that this struct type is associated with.
    pub fn engine(&self) -> &Engine {
        self.registered_type.engine()
    }

    /// Get the finality of this struct type.
    pub fn finality(&self) -> Finality {
        match self.registered_type.is_final {
            true => Finality::Final,
            false => Finality::NonFinal,
        }
    }

    /// Get the supertype of this struct type, if any.
    pub fn supertype(&self) -> Option<Self> {
        self.registered_type
            .supertype
            .map(|ty| Self::from_shared_type_index(self.engine(), ty.unwrap_engine_type_index()))
    }

    /// Get the `i`th field type.
    ///
    /// Returns `None` if `i` is out of bounds.
    pub fn field(&self, i: usize) -> Option<FieldType> {
        let engine = self.engine();
        self.as_wasm_struct_type()
            .fields
            .get(i)
            .map(|ty| FieldType::from_wasm_field_type(engine, ty))
    }

    /// Returns the list of field types for this function.
    #[inline]
    pub fn fields(&self) -> impl ExactSizeIterator<Item = FieldType> + '_ {
        let engine = self.engine();
        self.as_wasm_struct_type()
            .fields
            .iter()
            .map(|ty| FieldType::from_wasm_field_type(engine, ty))
    }

    /// Does this struct type match the other struct type?
    ///
    /// That is, is this function type a subtype of the other struct type?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &StructType) -> bool {
        assert!(self.comes_from_same_engine(other.engine()));

        self.engine()
            .signatures()
            .is_subtype(self.type_index(), other.type_index())
    }

    fn fields_match(
        a: impl ExactSizeIterator<Item = FieldType>,
        b: impl ExactSizeIterator<Item = FieldType>,
    ) -> bool {
        a.len() >= b.len() && a.zip(b).all(|(a, b)| a.matches(&b))
    }

    /// Is struct type `a` precisely equal to struct type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same struct type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn eq(a: &StructType, b: &StructType) -> bool {
        assert!(a.comes_from_same_engine(b.engine()));
        a.type_index() == b.type_index()
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        Engine::same(self.registered_type().engine(), engine)
    }

    pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
        self.registered_type().index()
    }

    pub(crate) fn as_wasm_struct_type(&self) -> &WasmStructType {
        self.registered_type().unwrap_struct()
    }

    pub(crate) fn registered_type(&self) -> &RegisteredType {
        &self.registered_type
    }

    /// Construct a `StructType` from a `WasmStructType`.
    ///
    /// This method should only be used when something has already registered --
    /// and is *keeping registered* -- any other concrete Wasm types referenced
    /// by the given `WasmStructType`.
    ///
    /// For example, this method may be called to convert an struct type from
    /// within a Wasm module's `ModuleTypes` since the Wasm module itself is
    /// holding a strong reference to all of its types, including any `(ref null
    /// <index>)` types used as the element type for this struct type.
    pub(crate) fn from_wasm_struct_type(
        engine: &Engine,
        is_final: bool,
        is_shared: bool,
        supertype: Option<EngineOrModuleTypeIndex>,
        ty: WasmStructType,
    ) -> Result<StructType> {
        const MAX_FIELDS: usize = 10_000;
        let fields_len = ty.fields.len();
        ensure!(
            fields_len <= MAX_FIELDS,
            "attempted to define a struct type with {fields_len} fields, but \
             that is more than the maximum supported number of fields \
             ({MAX_FIELDS})",
        );

        let ty = RegisteredType::new(
            engine,
            WasmSubType {
                is_final,
                supertype,
                composite_type: WasmCompositeType {
                    shared: is_shared,
                    inner: WasmCompositeInnerType::Struct(ty),
                },
            },
        );
        Ok(Self {
            registered_type: ty,
        })
    }

    pub(crate) fn from_shared_type_index(engine: &Engine, index: VMSharedTypeIndex) -> StructType {
        let ty = RegisteredType::root(engine, index).expect(
            "VMSharedTypeIndex is not registered in the Engine! Wrong \
             engine? Didn't root the index somewhere?",
        );
        Self::from_registered_type(ty)
    }

    pub(crate) fn from_registered_type(registered_type: RegisteredType) -> Self {
        debug_assert!(registered_type.is_struct());
        Self { registered_type }
    }
}

/// The type of a WebAssembly array.
///
/// WebAssembly arrays are dynamically-sized, but not resizable. They contain
/// either unpacked [`Val`][crate::Val]s or packed 8-/16-bit integers.
///
/// # Subtyping and Equality
///
/// `ArrayType` does not implement `Eq`, because reference types have a
/// subtyping relationship, and so 99.99% of the time you actually want to check
/// whether one type matches (i.e. is a subtype of) another type. You can use
/// the [`ArrayType::matches`] method to perform these types of checks. If,
/// however, you are in that 0.01% scenario where you need to check precise
/// equality between types, you can use the [`ArrayType::eq`] method.
//
// TODO: Once we have array values, update above docs with a reference to the
// future `Array::matches_ty` method
#[derive(Debug, Clone, Hash)]
pub struct ArrayType {
    registered_type: RegisteredType,
}

impl fmt::Display for ArrayType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let field_ty = self.field_type();
        write!(f, "(array (field {field_ty}))")?;
        Ok(())
    }
}

impl ArrayType {
    /// Construct a new `ArrayType` with the given field type's mutability and
    /// storage type.
    ///
    /// The new `ArrayType` will be final and without a supertype.
    ///
    /// The result will be associated with the given engine, and attempts to use
    /// it with other engines will panic (for example, checking whether it is a
    /// subtype of another array type that is associated with a different
    /// engine).
    ///
    /// # Panics
    ///
    /// Panics if the given field type is not associated with the given engine.
    pub fn new(engine: &Engine, field_type: FieldType) -> Self {
        Self::with_finality_and_supertype(engine, Finality::Final, None, field_type)
            .expect("cannot fail without a supertype")
    }

    /// Construct a new `StructType` with the given finality, supertype, and
    /// fields.
    ///
    /// The result will be associated with the given engine, and attempts to use
    /// it with other engines will panic (for example, checking whether it is a
    /// subtype of another struct type that is associated with a different
    /// engine).
    ///
    /// Returns an error if the supertype is final, or if this type does not
    /// match the supertype.
    ///
    /// # Panics
    ///
    /// Panics if the given field type is not associated with the given engine.
    pub fn with_finality_and_supertype(
        engine: &Engine,
        finality: Finality,
        supertype: Option<&Self>,
        field_type: FieldType,
    ) -> Result<Self> {
        if let Some(supertype) = supertype {
            assert!(supertype.comes_from_same_engine(engine));
            ensure!(
                supertype.finality().is_non_final(),
                "cannot create a subtype of a final supertype"
            );
            ensure!(
                field_type.matches(&supertype.field_type()),
                "array field type must match its supertype's field type"
            );
        }

        // Same as in `FuncType::new`: we must prevent any `RegisteredType` in
        // `field_type` from being reclaimed while constructing this array type.
        let _registration = field_type
            .element_type
            .as_val_type()
            .and_then(|v| v.as_ref())
            .and_then(|r| r.heap_type().as_registered_type());

        assert!(field_type.comes_from_same_engine(engine));
        let wasm_ty = WasmArrayType(field_type.to_wasm_field_type());

        Ok(Self::from_wasm_array_type(
            engine,
            finality.is_final(),
            supertype.map(|ty| ty.type_index().into()),
            wasm_ty,
        ))
    }

    /// Get the engine that this array type is associated with.
    pub fn engine(&self) -> &Engine {
        self.registered_type.engine()
    }

    /// Get the finality of this array type.
    pub fn finality(&self) -> Finality {
        match self.registered_type.is_final {
            true => Finality::Final,
            false => Finality::NonFinal,
        }
    }

    /// Get the supertype of this array type, if any.
    pub fn supertype(&self) -> Option<Self> {
        self.registered_type
            .supertype
            .map(|ty| Self::from_shared_type_index(self.engine(), ty.unwrap_engine_type_index()))
    }

    /// Get this array's underlying field type.
    ///
    /// The field type contains information about both this array type's
    /// mutability and the storage type used for its elements.
    pub fn field_type(&self) -> FieldType {
        FieldType::from_wasm_field_type(self.engine(), &self.as_wasm_array_type().0)
    }

    /// Get this array type's mutability and whether its instances' elements can
    /// be updated or not.
    ///
    /// This is a convenience method providing a short-hand for
    /// `my_array_type.field_type().mutability()`.
    pub fn mutability(&self) -> Mutability {
        if self.as_wasm_array_type().0.mutable {
            Mutability::Var
        } else {
            Mutability::Const
        }
    }

    /// Get the storage type used for this array type's elements.
    ///
    /// This is a convenience method providing a short-hand for
    /// `my_array_type.field_type().element_type()`.
    pub fn element_type(&self) -> StorageType {
        StorageType::from_wasm_storage_type(
            self.engine(),
            &self.registered_type.unwrap_array().0.element_type,
        )
    }

    /// Does this array type match the other array type?
    ///
    /// That is, is this function type a subtype of the other array type?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &ArrayType) -> bool {
        assert!(self.comes_from_same_engine(other.engine()));

        self.engine()
            .signatures()
            .is_subtype(self.type_index(), other.type_index())
    }

    /// Is array type `a` precisely equal to array type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same array type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn eq(a: &ArrayType, b: &ArrayType) -> bool {
        assert!(a.comes_from_same_engine(b.engine()));
        a.type_index() == b.type_index()
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        Engine::same(self.registered_type.engine(), engine)
    }

    pub(crate) fn registered_type(&self) -> &RegisteredType {
        &self.registered_type
    }

    pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
        self.registered_type.index()
    }

    pub(crate) fn as_wasm_array_type(&self) -> &WasmArrayType {
        self.registered_type.unwrap_array()
    }

    /// Construct a `ArrayType` from a `WasmArrayType`.
    ///
    /// This method should only be used when something has already registered --
    /// and is *keeping registered* -- any other concrete Wasm types referenced
    /// by the given `WasmArrayType`.
    ///
    /// For example, this method may be called to convert an array type from
    /// within a Wasm module's `ModuleTypes` since the Wasm module itself is
    /// holding a strong reference to all of its types, including any `(ref null
    /// <index>)` types used as the element type for this array type.
    pub(crate) fn from_wasm_array_type(
        engine: &Engine,
        is_final: bool,
        supertype: Option<EngineOrModuleTypeIndex>,
        ty: WasmArrayType,
    ) -> ArrayType {
        let ty = RegisteredType::new(
            engine,
            WasmSubType {
                is_final,
                supertype,
                composite_type: WasmCompositeType {
                    shared: false,
                    inner: WasmCompositeInnerType::Array(ty),
                },
            },
        );
        Self {
            registered_type: ty,
        }
    }

    pub(crate) fn from_shared_type_index(engine: &Engine, index: VMSharedTypeIndex) -> ArrayType {
        let ty = RegisteredType::root(engine, index).expect(
            "VMSharedTypeIndex is not registered in the Engine! Wrong \
             engine? Didn't root the index somewhere?",
        );
        Self::from_registered_type(ty)
    }

    pub(crate) fn from_registered_type(registered_type: RegisteredType) -> Self {
        debug_assert!(registered_type.is_array());
        Self { registered_type }
    }
}

/// The type of a WebAssembly function.
///
/// WebAssembly functions can have 0 or more parameters and results.
///
/// # Subtyping and Equality
///
/// `FuncType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`FuncType::matches`] and [`Func::matches_ty`][crate::Func::matches_ty]
/// methods to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`FuncType::eq`] method.
#[derive(Debug, Clone, Hash)]
pub struct FuncType {
    registered_type: RegisteredType,
}

impl Display for FuncType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(type (func")?;
        if self.params().len() > 0 {
            write!(f, " (param")?;
            for p in self.params() {
                write!(f, " {p}")?;
            }
            write!(f, ")")?;
        }
        if self.results().len() > 0 {
            write!(f, " (result")?;
            for r in self.results() {
                write!(f, " {r}")?;
            }
            write!(f, ")")?;
        }
        write!(f, "))")
    }
}

impl FuncType {
    /// Creates a new function type from the given parameters and results.
    ///
    /// The function type returned will represent a function which takes
    /// `params` as arguments and returns `results` when it is finished.
    ///
    /// The resulting function type will be final and without a supertype.
    ///
    /// # Panics
    ///
    /// Panics if any parameter or value type is not associated with the given
    /// engine.
    pub fn new(
        engine: &Engine,
        params: impl IntoIterator<Item = ValType>,
        results: impl IntoIterator<Item = ValType>,
    ) -> FuncType {
        Self::with_finality_and_supertype(engine, Finality::Final, None, params, results)
            .expect("cannot fail without a supertype")
    }

    /// Create a new function type with the given finality, supertype, parameter
    /// types, and result types.
    ///
    /// Returns an error if the supertype is final, or if this function type
    /// does not match the supertype.
    ///
    /// # Panics
    ///
    /// Panics if any parameter or value type is not associated with the given
    /// engine.
    pub fn with_finality_and_supertype(
        engine: &Engine,
        finality: Finality,
        supertype: Option<&Self>,
        params: impl IntoIterator<Item = ValType>,
        results: impl IntoIterator<Item = ValType>,
    ) -> Result<Self> {
        let params = params.into_iter();
        let results = results.into_iter();

        let mut wasmtime_params = Vec::with_capacity({
            let size_hint = params.size_hint();
            let cap = size_hint.1.unwrap_or(size_hint.0);
            // Only reserve space if we have a supertype, as that is the only time
            // that this vec is used.
            supertype.is_some() as usize * cap
        });

        let mut wasmtime_results = Vec::with_capacity({
            let size_hint = results.size_hint();
            let cap = size_hint.1.unwrap_or(size_hint.0);
            // Same as above.
            supertype.is_some() as usize * cap
        });

        // Keep any of our parameters' and results' `RegisteredType`s alive
        // across `Self::from_wasm_func_type`. If one of our given `ValType`s is
        // the only thing keeping a type in the registry, we don't want to
        // unregister it when we convert the `ValType` into a `WasmValType` just
        // before we register our new `WasmFuncType` that will reference it.
        let mut registrations = smallvec::SmallVec::<[_; 4]>::new();

        let mut to_wasm_type = |ty: ValType, vec: &mut Vec<_>| {
            assert!(ty.comes_from_same_engine(engine));

            if supertype.is_some() {
                vec.push(ty.clone());
            }

            if let Some(r) = ty.as_ref() {
                if let Some(r) = r.heap_type().as_registered_type() {
                    registrations.push(r.clone());
                }
            }

            ty.to_wasm_type()
        };

        let wasm_func_ty = WasmFuncType::new(
            params
                .map(|p| to_wasm_type(p, &mut wasmtime_params))
                .collect(),
            results
                .map(|r| to_wasm_type(r, &mut wasmtime_results))
                .collect(),
        );

        if let Some(supertype) = supertype {
            assert!(supertype.comes_from_same_engine(engine));
            ensure!(
                supertype.finality().is_non_final(),
                "cannot create a subtype of a final supertype"
            );
            ensure!(
                Self::matches_impl(
                    wasmtime_params.iter().cloned(),
                    supertype.params(),
                    wasmtime_results.iter().cloned(),
                    supertype.results()
                ),
                "function type must match its supertype: found (func{params}{results}), expected \
                 {supertype}",
                params = if wasmtime_params.is_empty() {
                    String::new()
                } else {
                    let mut s = format!(" (params");
                    for p in &wasmtime_params {
                        write!(&mut s, " {p}").unwrap();
                    }
                    s.push(')');
                    s
                },
                results = if wasmtime_results.is_empty() {
                    String::new()
                } else {
                    let mut s = format!(" (results");
                    for r in &wasmtime_results {
                        write!(&mut s, " {r}").unwrap();
                    }
                    s.push(')');
                    s
                },
            );
        }

        Ok(Self::from_wasm_func_type(
            engine,
            finality.is_final(),
            supertype.map(|ty| ty.type_index().into()),
            wasm_func_ty,
        ))
    }

    /// Get the engine that this function type is associated with.
    pub fn engine(&self) -> &Engine {
        self.registered_type.engine()
    }

    /// Get the finality of this function type.
    pub fn finality(&self) -> Finality {
        match self.registered_type.is_final {
            true => Finality::Final,
            false => Finality::NonFinal,
        }
    }

    /// Get the supertype of this function type, if any.
    pub fn supertype(&self) -> Option<Self> {
        self.registered_type
            .supertype
            .map(|ty| Self::from_shared_type_index(self.engine(), ty.unwrap_engine_type_index()))
    }

    /// Get the `i`th parameter type.
    ///
    /// Returns `None` if `i` is out of bounds.
    pub fn param(&self, i: usize) -> Option<ValType> {
        let engine = self.engine();
        self.registered_type
            .unwrap_func()
            .params()
            .get(i)
            .map(|ty| ValType::from_wasm_type(engine, ty))
    }

    /// Returns the list of parameter types for this function.
    #[inline]
    pub fn params(&self) -> impl ExactSizeIterator<Item = ValType> + '_ {
        let engine = self.engine();
        self.registered_type
            .unwrap_func()
            .params()
            .iter()
            .map(|ty| ValType::from_wasm_type(engine, ty))
    }

    /// Get the `i`th result type.
    ///
    /// Returns `None` if `i` is out of bounds.
    pub fn result(&self, i: usize) -> Option<ValType> {
        let engine = self.engine();
        self.registered_type
            .unwrap_func()
            .returns()
            .get(i)
            .map(|ty| ValType::from_wasm_type(engine, ty))
    }

    /// Returns the list of result types for this function.
    #[inline]
    pub fn results(&self) -> impl ExactSizeIterator<Item = ValType> + '_ {
        let engine = self.engine();
        self.registered_type
            .unwrap_func()
            .returns()
            .iter()
            .map(|ty| ValType::from_wasm_type(engine, ty))
    }

    /// Does this function type match the other function type?
    ///
    /// That is, is this function type a subtype of the other function type?
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn matches(&self, other: &FuncType) -> bool {
        assert!(self.comes_from_same_engine(other.engine()));

        // Avoid matching on structure for subtyping checks when we have
        // precisely the same type.
        if self.type_index() == other.type_index() {
            return true;
        }

        Self::matches_impl(
            self.params(),
            other.params(),
            self.results(),
            other.results(),
        )
    }

    fn matches_impl(
        a_params: impl ExactSizeIterator<Item = ValType>,
        b_params: impl ExactSizeIterator<Item = ValType>,
        a_results: impl ExactSizeIterator<Item = ValType>,
        b_results: impl ExactSizeIterator<Item = ValType>,
    ) -> bool {
        a_params.len() == b_params.len()
            && a_results.len() == b_results.len()
            // Params are contravariant and results are covariant. For more
            // details and a refresher on variance, read
            // https://github.com/bytecodealliance/wasm-tools/blob/f1d89a4/crates/wasmparser/src/readers/core/types/matches.rs#L137-L174
            && a_params
                .zip(b_params)
                .all(|(a, b)| b.matches(&a))
            && a_results
                .zip(b_results)
                .all(|(a, b)| a.matches(&b))
    }

    /// Is function type `a` precisely equal to function type `b`?
    ///
    /// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
    /// are not exactly the same function type.
    ///
    /// # Panics
    ///
    /// Panics if either type is associated with a different engine from the
    /// other.
    pub fn eq(a: &FuncType, b: &FuncType) -> bool {
        assert!(a.comes_from_same_engine(b.engine()));
        a.type_index() == b.type_index()
    }

    pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
        Engine::same(self.registered_type.engine(), engine)
    }

    pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
        self.registered_type.index()
    }

    pub(crate) fn as_wasm_func_type(&self) -> &WasmFuncType {
        self.registered_type.unwrap_func()
    }

    pub(crate) fn into_registered_type(self) -> RegisteredType {
        self.registered_type
    }

    /// Construct a `FuncType` from a `WasmFuncType`.
    ///
    /// This method should only be used when something has already registered --
    /// and is *keeping registered* -- any other concrete Wasm types referenced
    /// by the given `WasmFuncType`.
    ///
    /// For example, this method may be called to convert a function type from
    /// within a Wasm module's `ModuleTypes` since the Wasm module itself is
    /// holding a strong reference to all of its types, including any `(ref null
    /// <index>)` types used in the function's parameters and results.
    pub(crate) fn from_wasm_func_type(
        engine: &Engine,
        is_final: bool,
        supertype: Option<EngineOrModuleTypeIndex>,
        ty: WasmFuncType,
    ) -> FuncType {
        let ty = RegisteredType::new(
            engine,
            WasmSubType {
                is_final,
                supertype,
                composite_type: WasmCompositeType {
                    shared: false,
                    inner: WasmCompositeInnerType::Func(ty),
                },
            },
        );
        Self {
            registered_type: ty,
        }
    }

    pub(crate) fn from_shared_type_index(engine: &Engine, index: VMSharedTypeIndex) -> FuncType {
        let ty = RegisteredType::root(engine, index).expect(
            "VMSharedTypeIndex is not registered in the Engine! Wrong \
             engine? Didn't root the index somewhere?",
        );
        Self::from_registered_type(ty)
    }

    pub(crate) fn from_registered_type(registered_type: RegisteredType) -> Self {
        debug_assert!(registered_type.is_func());
        Self { registered_type }
    }
}

// Global Types

/// A WebAssembly global descriptor.
///
/// This type describes an instance of a global in a WebAssembly module. Globals
/// are local to an [`Instance`](crate::Instance) and are either immutable or
/// mutable.
#[derive(Debug, Clone, Hash)]
pub struct GlobalType {
    content: ValType,
    mutability: Mutability,
}

impl GlobalType {
    /// Creates a new global descriptor of the specified `content` type and
    /// whether or not it's mutable.
    pub fn new(content: ValType, mutability: Mutability) -> GlobalType {
        GlobalType {
            content,
            mutability,
        }
    }

    /// Returns the value type of this global descriptor.
    pub fn content(&self) -> &ValType {
        &self.content
    }

    /// Returns whether or not this global is mutable.
    pub fn mutability(&self) -> Mutability {
        self.mutability
    }

    pub(crate) fn to_wasm_type(&self) -> Global {
        let wasm_ty = self.content().to_wasm_type();
        let mutability = matches!(self.mutability(), Mutability::Var);
        Global {
            wasm_ty,
            mutability,
        }
    }

    /// Returns `None` if the wasmtime global has a type that we can't
    /// represent, but that should only very rarely happen and indicate a bug.
    pub(crate) fn from_wasmtime_global(engine: &Engine, global: &Global) -> GlobalType {
        let ty = ValType::from_wasm_type(engine, &global.wasm_ty);
        let mutability = if global.mutability {
            Mutability::Var
        } else {
            Mutability::Const
        };
        GlobalType::new(ty, mutability)
    }
}

// Table Types

/// A descriptor for a table in a WebAssembly module.
///
/// Tables are contiguous chunks of a specific element, typically a `funcref` or
/// an `externref`. The most common use for tables is a function table through
/// which `call_indirect` can invoke other functions.
#[derive(Debug, Clone, Hash)]
pub struct TableType {
    // Keep a `wasmtime::RefType` so that `TableType::element` doesn't need to
    // take an `&Engine`.
    element: RefType,
    ty: Table,
}

impl TableType {
    /// Creates a new table descriptor which will contain the specified
    /// `element` and have the `limits` applied to its length.
    pub fn new(element: RefType, min: u32, max: Option<u32>) -> TableType {
        let ref_type = element.to_wasm_type();

        debug_assert!(
            ref_type.is_canonicalized_for_runtime_usage(),
            "should be canonicalized for runtime usage: {ref_type:?}"
        );

        let limits = Limits {
            min: u64::from(min),
            max: max.map(|x| u64::from(x)),
        };

        TableType {
            element,
            ty: Table {
                idx_type: IndexType::I32,
                limits,
                ref_type,
            },
        }
    }

    /// Crates a new descriptor for a 64-bit table.
    ///
    /// Note that 64-bit tables are part of the memory64 proposal for
    /// WebAssembly which is not standardized yet.
    pub fn new64(element: RefType, min: u64, max: Option<u64>) -> TableType {
        let ref_type = element.to_wasm_type();

        debug_assert!(
            ref_type.is_canonicalized_for_runtime_usage(),
            "should be canonicalized for runtime usage: {ref_type:?}"
        );

        TableType {
            element,
            ty: Table {
                ref_type,
                idx_type: IndexType::I64,
                limits: Limits { min, max },
            },
        }
    }

    /// Returns whether or not this table is a 64-bit table.
    ///
    /// Note that 64-bit tables are part of the memory64 proposal for
    /// WebAssembly which is not standardized yet.
    pub fn is_64(&self) -> bool {
        matches!(self.ty.idx_type, IndexType::I64)
    }

    /// Returns the element value type of this table.
    pub fn element(&self) -> &RefType {
        &self.element
    }

    /// Returns minimum number of elements this table must have
    pub fn minimum(&self) -> u64 {
        self.ty.limits.min
    }

    /// Returns the optionally-specified maximum number of elements this table
    /// can have.
    ///
    /// If this returns `None` then the table is not limited in size.
    pub fn maximum(&self) -> Option<u64> {
        self.ty.limits.max
    }

    pub(crate) fn from_wasmtime_table(engine: &Engine, table: &Table) -> TableType {
        let element = RefType::from_wasm_type(engine, &table.ref_type);
        TableType {
            element,
            ty: *table,
        }
    }

    pub(crate) fn wasmtime_table(&self) -> &Table {
        &self.ty
    }
}

// Memory Types

/// A builder for [`MemoryType`][crate::MemoryType]s.
///
/// A new builder can be constructed via its `Default` implementation.
///
/// When you're done configuring, get the underlying
/// [`MemoryType`][crate::MemoryType] by calling the
/// [`build`][crate::MemoryTypeBuilder::build] method.
///
/// # Example
///
/// ```
/// # fn foo() -> wasmtime::Result<()> {
/// use wasmtime::MemoryTypeBuilder;
///
/// let memory_type = MemoryTypeBuilder::new()
///     // Set the minimum size, in pages.
///     .min(4096)
///     // Set the maximum size, in pages.
///     .max(Some(4096))
///     // Set the page size to 1 byte (aka 2**0).
///     .page_size_log2(0)
///     // Get the underlying memory type.
///     .build()?;
/// #   Ok(())
/// # }
/// ```
pub struct MemoryTypeBuilder {
    ty: Memory,
}

impl Default for MemoryTypeBuilder {
    fn default() -> Self {
        MemoryTypeBuilder {
            ty: Memory {
                idx_type: IndexType::I32,
                limits: Limits { min: 0, max: None },
                shared: false,
                page_size_log2: Memory::DEFAULT_PAGE_SIZE_LOG2,
            },
        }
    }
}

impl MemoryTypeBuilder {
    /// Create a new builder for a [`MemoryType`] with the default settings.
    ///
    /// By default memory types have the following properties:
    ///
    /// * The minimum memory size is 0 pages.
    /// * The maximum memory size is unspecified.
    /// * Memories use 32-bit indexes.
    /// * The page size is 64KiB.
    ///
    /// Each option can be configued through the methods on the returned
    /// builder.
    pub fn new() -> MemoryTypeBuilder {
        MemoryTypeBuilder::default()
    }

    fn validate(&self) -> Result<()> {
        if self
            .ty
            .limits
            .max
            .map_or(false, |max| max < self.ty.limits.min)
        {
            bail!("maximum page size cannot be smaller than the minimum page size");
        }

        match self.ty.page_size_log2 {
            0 | Memory::DEFAULT_PAGE_SIZE_LOG2 => {}
            x => bail!(
                "page size must be 2**16 or 2**0, but was given 2**{x}; note \
                 that future Wasm extensions might allow any power of two page \
                 size, but only 2**16 and 2**0 are currently valid",
            ),
        }

        if self.ty.shared && self.ty.limits.max.is_none() {
            bail!("shared memories must have a maximum size");
        }

        let absolute_max = self.ty.max_size_based_on_index_type();
        let min = self
            .ty
            .minimum_byte_size()
            .context("memory's minimum byte size must fit in a u64")?;
        if min > absolute_max {
            bail!("minimum size is too large for this memory type's index type");
        }
        if self
            .ty
            .maximum_byte_size()
            .map_or(false, |max| max > absolute_max)
        {
            bail!("maximum size is too large for this memory type's index type");
        }

        Ok(())
    }

    /// Set the minimum size, in units of pages, for the memory type being
    /// built.
    ///
    /// The default minimum is `0`.
    pub fn min(&mut self, minimum: u64) -> &mut Self {
        self.ty.limits.min = minimum;
        self
    }

    /// Set the maximum size, in units of pages, for the memory type being
    /// built.
    ///
    /// The default maximum is `None`.
    pub fn max(&mut self, maximum: Option<u64>) -> &mut Self {
        self.ty.limits.max = maximum;
        self
    }

    /// Set whether this is a 64-bit memory or not.
    ///
    /// If a memory is not a 64-bit memory, then it is a 32-bit memory.
    ///
    /// The default is `false`, aka 32-bit memories.
    ///
    /// Note that 64-bit memories are part of [the memory64
    /// proposal](https://github.com/WebAssembly/memory64) for WebAssembly which
    /// is not fully standardized yet.
    pub fn memory64(&mut self, memory64: bool) -> &mut Self {
        self.ty.idx_type = match memory64 {
            true => IndexType::I64,
            false => IndexType::I32,
        };
        self
    }

    /// Set the sharedness for the memory type being built.
    ///
    /// The default is `false`, aka unshared.
    ///
    /// Note that shared memories are part of [the threads
    /// proposal](https://github.com/WebAssembly/threads) for WebAssembly which
    /// is not fully standardized yet.
    pub fn shared(&mut self, shared: bool) -> &mut Self {
        self.ty.shared = shared;
        self
    }

    /// Set the log base 2 of the page size, in bytes, for the memory type being
    /// built.
    ///
    /// The default value is `16`, which results in the default Wasm page size
    /// of 64KiB (aka 2<sup>16</sup> or 65536).
    ///
    /// Other than `16`, the only valid value is `0`, which results in a page
    /// size of one byte (aka 2<sup>0</sup>). Single-byte page sizes can be used
    /// to get fine-grained control over a Wasm memory's resource consumption
    /// and run Wasm in embedded environments with less than 64KiB of RAM, for
    /// example.
    ///
    /// Future extensions to the core WebAssembly language might relax these
    /// constraints and introduce more valid page sizes, such as any power of
    /// two between 1 and 65536 inclusive.
    ///
    /// Note that non-default page sizes are part of [the custom-page-sizes
    /// proposal](https://github.com/WebAssembly/custom-page-sizes) for
    /// WebAssembly which is not fully standardized yet.
    pub fn page_size_log2(&mut self, page_size_log2: u8) -> &mut Self {
        self.ty.page_size_log2 = page_size_log2;
        self
    }

    /// Get the underlying memory type that this builder has been building.
    ///
    /// # Errors
    ///
    /// Returns an error if the configured memory type is invalid, for example
    /// if the maximum size is smaller than the minimum size.
    pub fn build(&self) -> Result<MemoryType> {
        self.validate()?;
        Ok(MemoryType { ty: self.ty })
    }
}

/// A descriptor for a WebAssembly memory type.
///
/// Memories are described in units of pages (64KB) and represent contiguous
/// chunks of addressable memory.
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
pub struct MemoryType {
    ty: Memory,
}

impl MemoryType {
    /// Creates a new descriptor for a 32-bit WebAssembly memory given the
    /// specified limits of the memory.
    ///
    /// The `minimum` and `maximum` values here are specified in units of
    /// WebAssembly pages, which are 64KiB by default. Use
    /// [`MemoryTypeBuilder`][crate::MemoryTypeBuilder] if you want a
    /// non-default page size.
    ///
    /// # Panics
    ///
    /// Panics if the minimum is greater than the maximum or if the minimum or
    /// maximum number of pages can result in a byte size that is not
    /// addressable with a 32-bit integer.
    pub fn new(minimum: u32, maximum: Option<u32>) -> MemoryType {
        MemoryTypeBuilder::default()
            .min(minimum.into())
            .max(maximum.map(Into::into))
            .build()
            .unwrap()
    }

    /// Creates a new descriptor for a 64-bit WebAssembly memory given the
    /// specified limits of the memory.
    ///
    /// The `minimum` and `maximum` values here are specified in units of
    /// WebAssembly pages, which are 64KiB by default. Use
    /// [`MemoryTypeBuilder`][crate::MemoryTypeBuilder] if you want a
    /// non-default page size.
    ///
    /// Note that 64-bit memories are part of [the memory64
    /// proposal](https://github.com/WebAssembly/memory64) for WebAssembly which
    /// is not fully standardized yet.
    ///
    /// # Panics
    ///
    /// Panics if the minimum is greater than the maximum or if the minimum or
    /// maximum number of pages can result in a byte size that is not
    /// addressable with a 64-bit integer.
    pub fn new64(minimum: u64, maximum: Option<u64>) -> MemoryType {
        MemoryTypeBuilder::default()
            .memory64(true)
            .min(minimum)
            .max(maximum)
            .build()
            .unwrap()
    }

    /// Creates a new descriptor for shared WebAssembly memory given the
    /// specified limits of the memory.
    ///
    /// The `minimum` and `maximum` values here are specified in units of
    /// WebAssembly pages, which are 64KiB by default. Use
    /// [`MemoryTypeBuilder`][crate::MemoryTypeBuilder] if you want a
    /// non-default page size.
    ///
    /// Note that shared memories are part of [the threads
    /// proposal](https://github.com/WebAssembly/threads) for WebAssembly which
    /// is not fully standardized yet.
    ///
    /// # Panics
    ///
    /// Panics if the minimum is greater than the maximum or if the minimum or
    /// maximum number of pages can result in a byte size that is not
    /// addressable with a 32-bit integer.
    pub fn shared(minimum: u32, maximum: u32) -> MemoryType {
        MemoryTypeBuilder::default()
            .shared(true)
            .min(minimum.into())
            .max(Some(maximum.into()))
            .build()
            .unwrap()
    }

    /// Creates a new [`MemoryTypeBuilder`] to configure all the various knobs
    /// of the final memory type being created.
    ///
    /// This is a convenience function for [`MemoryTypeBuilder::new`].
    pub fn builder() -> MemoryTypeBuilder {
        MemoryTypeBuilder::new()
    }

    /// Returns whether this is a 64-bit memory or not.
    ///
    /// Note that 64-bit memories are part of the memory64 proposal for
    /// WebAssembly which is not standardized yet.
    pub fn is_64(&self) -> bool {
        matches!(self.ty.idx_type, IndexType::I64)
    }

    /// Returns whether this is a shared memory or not.
    ///
    /// Note that shared memories are part of the threads proposal for
    /// WebAssembly which is not standardized yet.
    pub fn is_shared(&self) -> bool {
        self.ty.shared
    }

    /// Returns minimum number of WebAssembly pages this memory must have.
    ///
    /// Note that the return value, while a `u64`, will always fit into a `u32`
    /// for 32-bit memories.
    pub fn minimum(&self) -> u64 {
        self.ty.limits.min
    }

    /// Returns the optionally-specified maximum number of pages this memory
    /// can have.
    ///
    /// If this returns `None` then the memory is not limited in size.
    ///
    /// Note that the return value, while a `u64`, will always fit into a `u32`
    /// for 32-bit memories.
    pub fn maximum(&self) -> Option<u64> {
        self.ty.limits.max
    }

    /// This memory's page size, in bytes.
    pub fn page_size(&self) -> u64 {
        self.ty.page_size()
    }

    /// The log2 of this memory's page size, in bytes.
    pub fn page_size_log2(&self) -> u8 {
        self.ty.page_size_log2
    }

    pub(crate) fn from_wasmtime_memory(memory: &Memory) -> MemoryType {
        MemoryType { ty: *memory }
    }

    pub(crate) fn wasmtime_memory(&self) -> &Memory {
        &self.ty
    }
}

// Import Types

/// A descriptor for an imported value into a wasm module.
///
/// This type is primarily accessed from the
/// [`Module::imports`](crate::Module::imports) API. Each [`ImportType`]
/// describes an import into the wasm module with the module/name that it's
/// imported from as well as the type of item that's being imported.
#[derive(Clone)]
pub struct ImportType<'module> {
    /// The module of the import.
    module: &'module str,

    /// The field of the import.
    name: &'module str,

    /// The type of the import.
    ty: EntityType,
    types: &'module ModuleTypes,
    engine: &'module Engine,
}

impl<'module> ImportType<'module> {
    /// Creates a new import descriptor which comes from `module` and `name` and
    /// is of type `ty`.
    pub(crate) fn new(
        module: &'module str,
        name: &'module str,
        ty: EntityType,
        types: &'module ModuleTypes,
        engine: &'module Engine,
    ) -> ImportType<'module> {
        assert!(ty.is_canonicalized_for_runtime_usage());
        ImportType {
            module,
            name,
            ty,
            types,
            engine,
        }
    }

    /// Returns the module name that this import is expected to come from.
    pub fn module(&self) -> &'module str {
        self.module
    }

    /// Returns the field name of the module that this import is expected to
    /// come from.
    pub fn name(&self) -> &'module str {
        self.name
    }

    /// Returns the expected type of this import.
    pub fn ty(&self) -> ExternType {
        ExternType::from_wasmtime(self.engine, self.types, &self.ty)
    }
}

impl<'module> fmt::Debug for ImportType<'module> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ImportType")
            .field("module", &self.module())
            .field("name", &self.name())
            .field("ty", &self.ty())
            .finish()
    }
}

// Export Types

/// A descriptor for an exported WebAssembly value.
///
/// This type is primarily accessed from the
/// [`Module::exports`](crate::Module::exports) accessor and describes what
/// names are exported from a wasm module and the type of the item that is
/// exported.
#[derive(Clone)]
pub struct ExportType<'module> {
    /// The name of the export.
    name: &'module str,

    /// The type of the export.
    ty: EntityType,
    types: &'module ModuleTypes,
    engine: &'module Engine,
}

impl<'module> ExportType<'module> {
    /// Creates a new export which is exported with the given `name` and has the
    /// given `ty`.
    pub(crate) fn new(
        name: &'module str,
        ty: EntityType,
        types: &'module ModuleTypes,
        engine: &'module Engine,
    ) -> ExportType<'module> {
        ExportType {
            name,
            ty,
            types,
            engine,
        }
    }

    /// Returns the name by which this export is known.
    pub fn name(&self) -> &'module str {
        self.name
    }

    /// Returns the type of this export.
    pub fn ty(&self) -> ExternType {
        ExternType::from_wasmtime(self.engine, self.types, &self.ty)
    }
}

impl<'module> fmt::Debug for ExportType<'module> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ExportType")
            .field("name", &self.name().to_owned())
            .field("ty", &self.ty())
            .finish()
    }
}