wasmtime_environ/component/
types.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
use crate::component::{MAX_FLAT_PARAMS, MAX_FLAT_RESULTS};
use crate::prelude::*;
use crate::{EntityType, ModuleInternedTypeIndex, ModuleTypes, PrimaryMap};
use core::hash::{Hash, Hasher};
use core::ops::Index;
use serde_derive::{Deserialize, Serialize};
use wasmparser::component_types::ComponentAnyTypeId;
use wasmtime_component_util::{DiscriminantSize, FlagsSize};

pub use crate::StaticModuleIndex;

macro_rules! indices {
    ($(
        $(#[$a:meta])*
        pub struct $name:ident(u32);
    )*) => ($(
        $(#[$a])*
        #[derive(
            Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug,
            Serialize, Deserialize,
        )]
        #[repr(transparent)]
        pub struct $name(u32);
        cranelift_entity::entity_impl!($name);
    )*);
}

indices! {
    // ========================================================================
    // These indices are used during compile time only when we're translating a
    // component at this time. The actual indices are not persisted beyond the
    // compile phase to when we're actually working with the component at
    // runtime.

    /// Index within a component's component type index space.
    pub struct ComponentTypeIndex(u32);

    /// Index within a component's module index space.
    pub struct ModuleIndex(u32);

    /// Index within a component's component index space.
    pub struct ComponentIndex(u32);

    /// Index within a component's module instance index space.
    pub struct ModuleInstanceIndex(u32);

    /// Index within a component's component instance index space.
    pub struct ComponentInstanceIndex(u32);

    /// Index within a component's component function index space.
    pub struct ComponentFuncIndex(u32);

    // ========================================================================
    // These indices are used to lookup type information within a `TypeTables`
    // structure. These represent generally deduplicated type information across
    // an entire component and are a form of RTTI in a sense.

    /// Index pointing to a component's type (exports/imports with
    /// component-model types)
    pub struct TypeComponentIndex(u32);

    /// Index pointing to a component instance's type (exports with
    /// component-model types, no imports)
    pub struct TypeComponentInstanceIndex(u32);

    /// Index pointing to a core wasm module's type (exports/imports with
    /// core wasm types)
    pub struct TypeModuleIndex(u32);

    /// Index pointing to a component model function type with arguments/result
    /// as interface types.
    pub struct TypeFuncIndex(u32);

    /// Index pointing to a record type in the component model (aka a struct).
    pub struct TypeRecordIndex(u32);
    /// Index pointing to a variant type in the component model (aka an enum).
    pub struct TypeVariantIndex(u32);
    /// Index pointing to a tuple type in the component model.
    pub struct TypeTupleIndex(u32);
    /// Index pointing to a flags type in the component model.
    pub struct TypeFlagsIndex(u32);
    /// Index pointing to an enum type in the component model.
    pub struct TypeEnumIndex(u32);
    /// Index pointing to an option type in the component model (aka a
    /// `Option<T, E>`)
    pub struct TypeOptionIndex(u32);
    /// Index pointing to an result type in the component model (aka a
    /// `Result<T, E>`)
    pub struct TypeResultIndex(u32);
    /// Index pointing to a list type in the component model.
    pub struct TypeListIndex(u32);

    /// Index pointing to a resource table within a component.
    ///
    /// This is a Wasmtime-specific type index which isn't part of the component
    /// model per-se (or at least not the binary format). This index represents
    /// a pointer to a table of runtime information tracking state for resources
    /// within a component. Tables are generated per-resource-per-component
    /// meaning that if the exact same resource is imported into 4 subcomponents
    /// then that's 5 tables: one for the defining component and one for each
    /// subcomponent.
    ///
    /// All resource-related intrinsics operate on table-local indices which
    /// indicate which table the intrinsic is modifying. Each resource table has
    /// an origin resource type (defined by `ResourceIndex`) along with a
    /// component instance that it's recorded for.
    pub struct TypeResourceTableIndex(u32);

    /// Index pointing to a resource within a component.
    ///
    /// This index space covers all unique resource type definitions. For
    /// example all unique imports come first and then all locally-defined
    /// resources come next. Note that this does not count the number of runtime
    /// tables required to track resources (that's `TypeResourceTableIndex`
    /// instead). Instead this is a count of the number of unique
    /// `(type (resource (rep ..)))` declarations within a component, plus
    /// imports.
    ///
    /// This is then used for correlating various information such as
    /// destructors, origin information, etc.
    pub struct ResourceIndex(u32);

    /// Index pointing to a local resource defined within a component.
    ///
    /// This is similar to `FooIndex` and `DefinedFooIndex` for core wasm and
    /// the idea here is that this is guaranteed to be a wasm-defined resource
    /// which is connected to a component instance for example.
    pub struct DefinedResourceIndex(u32);

    // ========================================================================
    // Index types used to identify modules and components during compilation.

    /// Index into a "closed over variables" list for components used to
    /// implement outer aliases. For more information on this see the
    /// documentation for the `LexicalScope` structure.
    pub struct ModuleUpvarIndex(u32);

    /// Same as `ModuleUpvarIndex` but for components.
    pub struct ComponentUpvarIndex(u32);

    /// Same as `StaticModuleIndex` but for components.
    pub struct StaticComponentIndex(u32);

    // ========================================================================
    // These indices are actually used at runtime when managing a component at
    // this time.

    /// Index that represents a core wasm instance created at runtime.
    ///
    /// This is used to keep track of when instances are created and is able to
    /// refer back to previously created instances for exports and such.
    pub struct RuntimeInstanceIndex(u32);

    /// Same as `RuntimeInstanceIndex` but tracks component instances instead.
    pub struct RuntimeComponentInstanceIndex(u32);

    /// Used to index imports into a `Component`
    ///
    /// This does not correspond to anything in the binary format for the
    /// component model.
    pub struct ImportIndex(u32);

    /// Index that represents a leaf item imported into a component where a
    /// "leaf" means "not an instance".
    ///
    /// This does not correspond to anything in the binary format for the
    /// component model.
    pub struct RuntimeImportIndex(u32);

    /// Index that represents a lowered host function and is used to represent
    /// host function lowerings with options and such.
    ///
    /// This does not correspond to anything in the binary format for the
    /// component model.
    pub struct LoweredIndex(u32);

    /// Index representing a linear memory extracted from a wasm instance
    /// which is stored in a `VMComponentContext`. This is used to deduplicate
    /// references to the same linear memory where it's only stored once in a
    /// `VMComponentContext`.
    ///
    /// This does not correspond to anything in the binary format for the
    /// component model.
    pub struct RuntimeMemoryIndex(u32);

    /// Same as `RuntimeMemoryIndex` except for the `realloc` function.
    pub struct RuntimeReallocIndex(u32);

    /// Same as `RuntimeMemoryIndex` except for the `post-return` function.
    pub struct RuntimePostReturnIndex(u32);

    /// Index for all trampolines that are compiled in Cranelift for a
    /// component.
    ///
    /// This is used to point to various bits of metadata within a compiled
    /// component and is stored in the final compilation artifact. This does not
    /// have a direct corresponance to any wasm definition.
    pub struct TrampolineIndex(u32);

    /// An index into `Component::export_items` at the end of compilation.
    pub struct ExportIndex(u32);
}

// Reexport for convenience some core-wasm indices which are also used in the
// component model, typically for when aliasing exports of core wasm modules.
pub use crate::{FuncIndex, GlobalIndex, MemoryIndex, TableIndex};

/// Equivalent of `EntityIndex` but for the component model instead of core
/// wasm.
#[derive(Debug, Clone, Copy)]
#[allow(missing_docs)]
pub enum ComponentItem {
    Func(ComponentFuncIndex),
    Module(ModuleIndex),
    Component(ComponentIndex),
    ComponentInstance(ComponentInstanceIndex),
    Type(ComponentAnyTypeId),
}

/// Runtime information about the type information contained within a component.
///
/// One of these is created per top-level component which describes all of the
/// types contained within the top-level component itself. Each sub-component
/// will have a pointer to this value as well.
#[derive(Default, Serialize, Deserialize)]
pub struct ComponentTypes {
    pub(super) modules: PrimaryMap<TypeModuleIndex, TypeModule>,
    pub(super) components: PrimaryMap<TypeComponentIndex, TypeComponent>,
    pub(super) component_instances: PrimaryMap<TypeComponentInstanceIndex, TypeComponentInstance>,
    pub(super) functions: PrimaryMap<TypeFuncIndex, TypeFunc>,
    pub(super) lists: PrimaryMap<TypeListIndex, TypeList>,
    pub(super) records: PrimaryMap<TypeRecordIndex, TypeRecord>,
    pub(super) variants: PrimaryMap<TypeVariantIndex, TypeVariant>,
    pub(super) tuples: PrimaryMap<TypeTupleIndex, TypeTuple>,
    pub(super) enums: PrimaryMap<TypeEnumIndex, TypeEnum>,
    pub(super) flags: PrimaryMap<TypeFlagsIndex, TypeFlags>,
    pub(super) options: PrimaryMap<TypeOptionIndex, TypeOption>,
    pub(super) results: PrimaryMap<TypeResultIndex, TypeResult>,
    pub(super) resource_tables: PrimaryMap<TypeResourceTableIndex, TypeResourceTable>,

    pub(super) module_types: Option<ModuleTypes>,
}

impl ComponentTypes {
    /// Returns the core wasm module types known within this component.
    pub fn module_types(&self) -> &ModuleTypes {
        self.module_types.as_ref().unwrap()
    }

    /// Returns the canonical ABI information about the specified type.
    pub fn canonical_abi(&self, ty: &InterfaceType) -> &CanonicalAbiInfo {
        match ty {
            InterfaceType::U8 | InterfaceType::S8 | InterfaceType::Bool => {
                &CanonicalAbiInfo::SCALAR1
            }

            InterfaceType::U16 | InterfaceType::S16 => &CanonicalAbiInfo::SCALAR2,

            InterfaceType::U32
            | InterfaceType::S32
            | InterfaceType::Float32
            | InterfaceType::Char
            | InterfaceType::Own(_)
            | InterfaceType::Borrow(_) => &CanonicalAbiInfo::SCALAR4,

            InterfaceType::U64 | InterfaceType::S64 | InterfaceType::Float64 => {
                &CanonicalAbiInfo::SCALAR8
            }

            InterfaceType::String | InterfaceType::List(_) => &CanonicalAbiInfo::POINTER_PAIR,

            InterfaceType::Record(i) => &self[*i].abi,
            InterfaceType::Variant(i) => &self[*i].abi,
            InterfaceType::Tuple(i) => &self[*i].abi,
            InterfaceType::Flags(i) => &self[*i].abi,
            InterfaceType::Enum(i) => &self[*i].abi,
            InterfaceType::Option(i) => &self[*i].abi,
            InterfaceType::Result(i) => &self[*i].abi,
        }
    }

    /// Adds a new `table` to the list of resource tables for this component.
    pub fn push_resource_table(&mut self, table: TypeResourceTable) -> TypeResourceTableIndex {
        self.resource_tables.push(table)
    }
}

macro_rules! impl_index {
    ($(impl Index<$ty:ident> for ComponentTypes { $output:ident => $field:ident })*) => ($(
        impl core::ops::Index<$ty> for ComponentTypes {
            type Output = $output;
            #[inline]
            fn index(&self, idx: $ty) -> &$output {
                &self.$field[idx]
            }
        }

        #[cfg(feature = "compile")]
        impl core::ops::Index<$ty> for super::ComponentTypesBuilder {
            type Output = $output;
            #[inline]
            fn index(&self, idx: $ty) -> &$output {
                &self.component_types()[idx]
            }
        }
    )*)
}

impl_index! {
    impl Index<TypeModuleIndex> for ComponentTypes { TypeModule => modules }
    impl Index<TypeComponentIndex> for ComponentTypes { TypeComponent => components }
    impl Index<TypeComponentInstanceIndex> for ComponentTypes { TypeComponentInstance => component_instances }
    impl Index<TypeFuncIndex> for ComponentTypes { TypeFunc => functions }
    impl Index<TypeRecordIndex> for ComponentTypes { TypeRecord => records }
    impl Index<TypeVariantIndex> for ComponentTypes { TypeVariant => variants }
    impl Index<TypeTupleIndex> for ComponentTypes { TypeTuple => tuples }
    impl Index<TypeEnumIndex> for ComponentTypes { TypeEnum => enums }
    impl Index<TypeFlagsIndex> for ComponentTypes { TypeFlags => flags }
    impl Index<TypeOptionIndex> for ComponentTypes { TypeOption => options }
    impl Index<TypeResultIndex> for ComponentTypes { TypeResult => results }
    impl Index<TypeListIndex> for ComponentTypes { TypeList => lists }
    impl Index<TypeResourceTableIndex> for ComponentTypes { TypeResourceTable => resource_tables }
}

// Additionally forward anything that can index `ModuleTypes` to `ModuleTypes`
// (aka `SignatureIndex`)
impl<T> Index<T> for ComponentTypes
where
    ModuleTypes: Index<T>,
{
    type Output = <ModuleTypes as Index<T>>::Output;
    fn index(&self, idx: T) -> &Self::Output {
        self.module_types.as_ref().unwrap().index(idx)
    }
}

/// Types of imports and exports in the component model.
///
/// These types are what's available for import and export in components. Note
/// that all indirect indices contained here are intended to be looked up
/// through a sibling `ComponentTypes` structure.
#[derive(Copy, Clone, Debug, Serialize, Deserialize)]
pub enum TypeDef {
    /// A component and its type.
    Component(TypeComponentIndex),
    /// An instance of a component.
    ComponentInstance(TypeComponentInstanceIndex),
    /// A component function, not to be confused with a core wasm function.
    ComponentFunc(TypeFuncIndex),
    /// An type in an interface.
    Interface(InterfaceType),
    /// A core wasm module and its type.
    Module(TypeModuleIndex),
    /// A core wasm function using only core wasm types.
    CoreFunc(ModuleInternedTypeIndex),
    /// A resource type which operates on the specified resource table.
    ///
    /// Note that different resource tables may point to the same underlying
    /// actual resource type, but that's a private detail.
    Resource(TypeResourceTableIndex),
}

impl TypeDef {
    /// A human readable description of what kind of type definition this is.
    pub fn desc(&self) -> &str {
        match self {
            TypeDef::Component(_) => "component",
            TypeDef::ComponentInstance(_) => "instance",
            TypeDef::ComponentFunc(_) => "function",
            TypeDef::Interface(_) => "type",
            TypeDef::Module(_) => "core module",
            TypeDef::CoreFunc(_) => "core function",
            TypeDef::Resource(_) => "resource",
        }
    }
}

// NB: Note that maps below are stored as an `IndexMap` now but the order
// typically does not matter. As a minor implementation detail we want the
// serialization of this type to always be deterministic and using `IndexMap`
// gets us that over using a `HashMap` for example.

/// The type of a module in the component model.
///
/// Note that this is not to be confused with `TypeComponent` below. This is
/// intended only for core wasm modules, not for components.
#[derive(Serialize, Deserialize, Default)]
pub struct TypeModule {
    /// The values that this module imports.
    ///
    /// Note that the value of this map is a core wasm `EntityType`, not a
    /// component model `TypeRef`. Additionally note that this reflects the
    /// two-level namespace of core WebAssembly, but unlike core wasm all import
    /// names are required to be unique to describe a module in the component
    /// model.
    pub imports: IndexMap<(String, String), EntityType>,

    /// The values that this module exports.
    ///
    /// Note that the value of this map is the core wasm `EntityType` to
    /// represent that core wasm items are being exported.
    pub exports: IndexMap<String, EntityType>,
}

/// The type of a component in the component model.
#[derive(Serialize, Deserialize, Default)]
pub struct TypeComponent {
    /// The named values that this component imports.
    pub imports: IndexMap<String, TypeDef>,
    /// The named values that this component exports.
    pub exports: IndexMap<String, TypeDef>,
}

/// The type of a component instance in the component model, or an instantiated
/// component.
///
/// Component instances only have exports of types in the component model.
#[derive(Serialize, Deserialize, Default)]
pub struct TypeComponentInstance {
    /// The list of exports that this component has along with their types.
    pub exports: IndexMap<String, TypeDef>,
}

/// A component function type in the component model.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeFunc {
    /// Names of parameters.
    pub param_names: Vec<String>,
    /// Parameters to the function represented as a tuple.
    pub params: TypeTupleIndex,
    /// Results of the function represented as a tuple.
    pub results: TypeTupleIndex,
}

/// All possible interface types that values can have.
///
/// This list represents an exhaustive listing of interface types and the
/// shapes that they can take. Note that this enum is considered an "index" of
/// forms where for non-primitive types a `ComponentTypes` structure is used to
/// lookup further information based on the index found here.
#[derive(Serialize, Deserialize, Copy, Clone, Hash, Eq, PartialEq, Debug)]
#[allow(missing_docs)]
pub enum InterfaceType {
    Bool,
    S8,
    U8,
    S16,
    U16,
    S32,
    U32,
    S64,
    U64,
    Float32,
    Float64,
    Char,
    String,
    Record(TypeRecordIndex),
    Variant(TypeVariantIndex),
    List(TypeListIndex),
    Tuple(TypeTupleIndex),
    Flags(TypeFlagsIndex),
    Enum(TypeEnumIndex),
    Option(TypeOptionIndex),
    Result(TypeResultIndex),
    Own(TypeResourceTableIndex),
    Borrow(TypeResourceTableIndex),
}

impl From<&wasmparser::PrimitiveValType> for InterfaceType {
    fn from(ty: &wasmparser::PrimitiveValType) -> InterfaceType {
        match ty {
            wasmparser::PrimitiveValType::Bool => InterfaceType::Bool,
            wasmparser::PrimitiveValType::S8 => InterfaceType::S8,
            wasmparser::PrimitiveValType::U8 => InterfaceType::U8,
            wasmparser::PrimitiveValType::S16 => InterfaceType::S16,
            wasmparser::PrimitiveValType::U16 => InterfaceType::U16,
            wasmparser::PrimitiveValType::S32 => InterfaceType::S32,
            wasmparser::PrimitiveValType::U32 => InterfaceType::U32,
            wasmparser::PrimitiveValType::S64 => InterfaceType::S64,
            wasmparser::PrimitiveValType::U64 => InterfaceType::U64,
            wasmparser::PrimitiveValType::F32 => InterfaceType::Float32,
            wasmparser::PrimitiveValType::F64 => InterfaceType::Float64,
            wasmparser::PrimitiveValType::Char => InterfaceType::Char,
            wasmparser::PrimitiveValType::String => InterfaceType::String,
        }
    }
}

/// Bye information about a type in the canonical ABI, with metadata for both
/// memory32 and memory64-based types.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct CanonicalAbiInfo {
    /// The byte-size of this type in a 32-bit memory.
    pub size32: u32,
    /// The byte-alignment of this type in a 32-bit memory.
    pub align32: u32,
    /// The byte-size of this type in a 64-bit memory.
    pub size64: u32,
    /// The byte-alignment of this type in a 64-bit memory.
    pub align64: u32,
    /// The number of types it takes to represents this type in the "flat"
    /// representation of the canonical abi where everything is passed as
    /// immediate arguments or results.
    ///
    /// If this is `None` then this type is not representable in the flat ABI
    /// because it is too large.
    pub flat_count: Option<u8>,
}

impl Default for CanonicalAbiInfo {
    fn default() -> CanonicalAbiInfo {
        CanonicalAbiInfo {
            size32: 0,
            align32: 1,
            size64: 0,
            align64: 1,
            flat_count: Some(0),
        }
    }
}

const fn align_to(a: u32, b: u32) -> u32 {
    assert!(b.is_power_of_two());
    (a + (b - 1)) & !(b - 1)
}

const fn max(a: u32, b: u32) -> u32 {
    if a > b {
        a
    } else {
        b
    }
}

impl CanonicalAbiInfo {
    /// ABI information for zero-sized types.
    const ZERO: CanonicalAbiInfo = CanonicalAbiInfo {
        size32: 0,
        align32: 1,
        size64: 0,
        align64: 1,
        flat_count: Some(0),
    };

    /// ABI information for one-byte scalars.
    pub const SCALAR1: CanonicalAbiInfo = CanonicalAbiInfo::scalar(1);
    /// ABI information for two-byte scalars.
    pub const SCALAR2: CanonicalAbiInfo = CanonicalAbiInfo::scalar(2);
    /// ABI information for four-byte scalars.
    pub const SCALAR4: CanonicalAbiInfo = CanonicalAbiInfo::scalar(4);
    /// ABI information for eight-byte scalars.
    pub const SCALAR8: CanonicalAbiInfo = CanonicalAbiInfo::scalar(8);

    const fn scalar(size: u32) -> CanonicalAbiInfo {
        CanonicalAbiInfo {
            size32: size,
            align32: size,
            size64: size,
            align64: size,
            flat_count: Some(1),
        }
    }

    /// ABI information for lists/strings which are "pointer pairs"
    pub const POINTER_PAIR: CanonicalAbiInfo = CanonicalAbiInfo {
        size32: 8,
        align32: 4,
        size64: 16,
        align64: 8,
        flat_count: Some(2),
    };

    /// Returns the abi for a record represented by the specified fields.
    pub fn record<'a>(fields: impl Iterator<Item = &'a CanonicalAbiInfo>) -> CanonicalAbiInfo {
        // NB: this is basically a duplicate copy of
        // `CanonicalAbiInfo::record_static` and the two should be kept in sync.

        let mut ret = CanonicalAbiInfo::default();
        for field in fields {
            ret.size32 = align_to(ret.size32, field.align32) + field.size32;
            ret.align32 = ret.align32.max(field.align32);
            ret.size64 = align_to(ret.size64, field.align64) + field.size64;
            ret.align64 = ret.align64.max(field.align64);
            ret.flat_count = add_flat(ret.flat_count, field.flat_count);
        }
        ret.size32 = align_to(ret.size32, ret.align32);
        ret.size64 = align_to(ret.size64, ret.align64);
        return ret;
    }

    /// Same as `CanonicalAbiInfo::record` but in a `const`-friendly context.
    pub const fn record_static(fields: &[CanonicalAbiInfo]) -> CanonicalAbiInfo {
        // NB: this is basically a duplicate copy of `CanonicalAbiInfo::record`
        // and the two should be kept in sync.

        let mut ret = CanonicalAbiInfo::ZERO;
        let mut i = 0;
        while i < fields.len() {
            let field = &fields[i];
            ret.size32 = align_to(ret.size32, field.align32) + field.size32;
            ret.align32 = max(ret.align32, field.align32);
            ret.size64 = align_to(ret.size64, field.align64) + field.size64;
            ret.align64 = max(ret.align64, field.align64);
            ret.flat_count = add_flat(ret.flat_count, field.flat_count);
            i += 1;
        }
        ret.size32 = align_to(ret.size32, ret.align32);
        ret.size64 = align_to(ret.size64, ret.align64);
        return ret;
    }

    /// Returns the delta from the current value of `offset` to align properly
    /// and read the next record field of type `abi` for 32-bit memories.
    pub fn next_field32(&self, offset: &mut u32) -> u32 {
        *offset = align_to(*offset, self.align32) + self.size32;
        *offset - self.size32
    }

    /// Same as `next_field32`, but bumps a usize pointer
    pub fn next_field32_size(&self, offset: &mut usize) -> usize {
        let cur = u32::try_from(*offset).unwrap();
        let cur = align_to(cur, self.align32) + self.size32;
        *offset = usize::try_from(cur).unwrap();
        usize::try_from(cur - self.size32).unwrap()
    }

    /// Returns the delta from the current value of `offset` to align properly
    /// and read the next record field of type `abi` for 64-bit memories.
    pub fn next_field64(&self, offset: &mut u32) -> u32 {
        *offset = align_to(*offset, self.align64) + self.size64;
        *offset - self.size64
    }

    /// Same as `next_field64`, but bumps a usize pointer
    pub fn next_field64_size(&self, offset: &mut usize) -> usize {
        let cur = u32::try_from(*offset).unwrap();
        let cur = align_to(cur, self.align64) + self.size64;
        *offset = usize::try_from(cur).unwrap();
        usize::try_from(cur - self.size64).unwrap()
    }

    /// Returns ABI information for a structure which contains `count` flags.
    pub const fn flags(count: usize) -> CanonicalAbiInfo {
        let (size, align, flat_count) = match FlagsSize::from_count(count) {
            FlagsSize::Size0 => (0, 1, 0),
            FlagsSize::Size1 => (1, 1, 1),
            FlagsSize::Size2 => (2, 2, 1),
            FlagsSize::Size4Plus(n) => ((n as u32) * 4, 4, n),
        };
        CanonicalAbiInfo {
            size32: size,
            align32: align,
            size64: size,
            align64: align,
            flat_count: Some(flat_count),
        }
    }

    fn variant<'a, I>(cases: I) -> CanonicalAbiInfo
    where
        I: IntoIterator<Item = Option<&'a CanonicalAbiInfo>>,
        I::IntoIter: ExactSizeIterator,
    {
        // NB: this is basically a duplicate definition of
        // `CanonicalAbiInfo::variant_static`, these should be kept in sync.

        let cases = cases.into_iter();
        let discrim_size = u32::from(DiscriminantSize::from_count(cases.len()).unwrap());
        let mut max_size32 = 0;
        let mut max_align32 = discrim_size;
        let mut max_size64 = 0;
        let mut max_align64 = discrim_size;
        let mut max_case_count = Some(0);
        for case in cases {
            if let Some(case) = case {
                max_size32 = max_size32.max(case.size32);
                max_align32 = max_align32.max(case.align32);
                max_size64 = max_size64.max(case.size64);
                max_align64 = max_align64.max(case.align64);
                max_case_count = max_flat(max_case_count, case.flat_count);
            }
        }
        CanonicalAbiInfo {
            size32: align_to(
                align_to(discrim_size, max_align32) + max_size32,
                max_align32,
            ),
            align32: max_align32,
            size64: align_to(
                align_to(discrim_size, max_align64) + max_size64,
                max_align64,
            ),
            align64: max_align64,
            flat_count: add_flat(max_case_count, Some(1)),
        }
    }

    /// Same as `CanonicalAbiInfo::variant` but `const`-safe
    pub const fn variant_static(cases: &[Option<CanonicalAbiInfo>]) -> CanonicalAbiInfo {
        // NB: this is basically a duplicate definition of
        // `CanonicalAbiInfo::variant`, these should be kept in sync.

        let discrim_size = match DiscriminantSize::from_count(cases.len()) {
            Some(size) => size.byte_size(),
            None => unreachable!(),
        };
        let mut max_size32 = 0;
        let mut max_align32 = discrim_size;
        let mut max_size64 = 0;
        let mut max_align64 = discrim_size;
        let mut max_case_count = Some(0);
        let mut i = 0;
        while i < cases.len() {
            let case = &cases[i];
            if let Some(case) = case {
                max_size32 = max(max_size32, case.size32);
                max_align32 = max(max_align32, case.align32);
                max_size64 = max(max_size64, case.size64);
                max_align64 = max(max_align64, case.align64);
                max_case_count = max_flat(max_case_count, case.flat_count);
            }
            i += 1;
        }
        CanonicalAbiInfo {
            size32: align_to(
                align_to(discrim_size, max_align32) + max_size32,
                max_align32,
            ),
            align32: max_align32,
            size64: align_to(
                align_to(discrim_size, max_align64) + max_size64,
                max_align64,
            ),
            align64: max_align64,
            flat_count: add_flat(max_case_count, Some(1)),
        }
    }

    /// Calculates ABI information for an enum with `cases` cases.
    pub const fn enum_(cases: usize) -> CanonicalAbiInfo {
        // NB: this is basically a duplicate definition of
        // `CanonicalAbiInfo::variant`, these should be kept in sync.

        let discrim_size = match DiscriminantSize::from_count(cases) {
            Some(size) => size.byte_size(),
            None => unreachable!(),
        };
        CanonicalAbiInfo {
            size32: discrim_size,
            align32: discrim_size,
            size64: discrim_size,
            align64: discrim_size,
            flat_count: Some(1),
        }
    }

    /// Returns the flat count of this ABI information so long as the count
    /// doesn't exceed the `max` specified.
    pub fn flat_count(&self, max: usize) -> Option<usize> {
        let flat = usize::from(self.flat_count?);
        if flat > max {
            None
        } else {
            Some(flat)
        }
    }
}

/// ABI information about the representation of a variant.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct VariantInfo {
    /// The size of the discriminant used.
    #[serde(with = "serde_discrim_size")]
    pub size: DiscriminantSize,
    /// The offset of the payload from the start of the variant in 32-bit
    /// memories.
    pub payload_offset32: u32,
    /// The offset of the payload from the start of the variant in 64-bit
    /// memories.
    pub payload_offset64: u32,
}

impl VariantInfo {
    /// Returns the abi information for a variant represented by the specified
    /// cases.
    pub fn new<'a, I>(cases: I) -> (VariantInfo, CanonicalAbiInfo)
    where
        I: IntoIterator<Item = Option<&'a CanonicalAbiInfo>>,
        I::IntoIter: ExactSizeIterator,
    {
        let cases = cases.into_iter();
        let size = DiscriminantSize::from_count(cases.len()).unwrap();
        let abi = CanonicalAbiInfo::variant(cases);
        (
            VariantInfo {
                size,
                payload_offset32: align_to(u32::from(size), abi.align32),
                payload_offset64: align_to(u32::from(size), abi.align64),
            },
            abi,
        )
    }
    /// TODO
    pub const fn new_static(cases: &[Option<CanonicalAbiInfo>]) -> VariantInfo {
        let size = match DiscriminantSize::from_count(cases.len()) {
            Some(size) => size,
            None => unreachable!(),
        };
        let abi = CanonicalAbiInfo::variant_static(cases);
        VariantInfo {
            size,
            payload_offset32: align_to(size.byte_size(), abi.align32),
            payload_offset64: align_to(size.byte_size(), abi.align64),
        }
    }
}

mod serde_discrim_size {
    use super::DiscriminantSize;
    use serde::{de::Error, Deserialize, Deserializer, Serialize, Serializer};

    pub fn serialize<S>(disc: &DiscriminantSize, ser: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        u32::from(*disc).serialize(ser)
    }

    pub fn deserialize<'de, D>(deser: D) -> Result<DiscriminantSize, D::Error>
    where
        D: Deserializer<'de>,
    {
        match u32::deserialize(deser)? {
            1 => Ok(DiscriminantSize::Size1),
            2 => Ok(DiscriminantSize::Size2),
            4 => Ok(DiscriminantSize::Size4),
            _ => Err(D::Error::custom("invalid discriminant size")),
        }
    }
}

/// Shape of a "record" type in interface types.
///
/// This is equivalent to a `struct` in Rust.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeRecord {
    /// The fields that are contained within this struct type.
    pub fields: Box<[RecordField]>,
    /// Byte information about this type in the canonical ABI.
    pub abi: CanonicalAbiInfo,
}

/// One field within a record.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct RecordField {
    /// The name of the field, unique amongst all fields in a record.
    pub name: String,
    /// The type that this field contains.
    pub ty: InterfaceType,
}

/// Shape of a "variant" type in interface types.
///
/// Variants are close to Rust `enum` declarations where a value is one of many
/// cases and each case has a unique name and an optional payload associated
/// with it.
#[derive(Serialize, Deserialize, Clone, Eq, PartialEq, Debug)]
pub struct TypeVariant {
    /// The list of cases that this variant can take.
    pub cases: IndexMap<String, Option<InterfaceType>>,
    /// Byte information about this type in the canonical ABI.
    pub abi: CanonicalAbiInfo,
    /// Byte information about this variant type.
    pub info: VariantInfo,
}

impl Hash for TypeVariant {
    fn hash<H: Hasher>(&self, h: &mut H) {
        let TypeVariant { cases, abi, info } = self;
        cases.len().hash(h);
        for pair in cases {
            pair.hash(h);
        }
        abi.hash(h);
        info.hash(h);
    }
}

/// Shape of a "tuple" type in interface types.
///
/// This is largely the same as a tuple in Rust, basically a record with
/// unnamed fields.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeTuple {
    /// The types that are contained within this tuple.
    pub types: Box<[InterfaceType]>,
    /// Byte information about this type in the canonical ABI.
    pub abi: CanonicalAbiInfo,
}

/// Shape of a "flags" type in interface types.
///
/// This can be thought of as a record-of-bools, although the representation is
/// more efficient as bitflags.
#[derive(Serialize, Deserialize, Clone, Eq, PartialEq, Debug)]
pub struct TypeFlags {
    /// The names of all flags, all of which are unique.
    pub names: IndexSet<String>,
    /// Byte information about this type in the canonical ABI.
    pub abi: CanonicalAbiInfo,
}

impl Hash for TypeFlags {
    fn hash<H: Hasher>(&self, h: &mut H) {
        let TypeFlags { names, abi } = self;
        names.len().hash(h);
        for name in names {
            name.hash(h);
        }
        abi.hash(h);
    }
}

/// Shape of an "enum" type in interface types, not to be confused with a Rust
/// `enum` type.
///
/// In interface types enums are simply a bag of names, and can be seen as a
/// variant where all payloads are `Unit`.
#[derive(Serialize, Deserialize, Clone, Eq, PartialEq, Debug)]
pub struct TypeEnum {
    /// The names of this enum, all of which are unique.
    pub names: IndexSet<String>,
    /// Byte information about this type in the canonical ABI.
    pub abi: CanonicalAbiInfo,
    /// Byte information about this variant type.
    pub info: VariantInfo,
}

impl Hash for TypeEnum {
    fn hash<H: Hasher>(&self, h: &mut H) {
        let TypeEnum { names, abi, info } = self;
        names.len().hash(h);
        for name in names {
            name.hash(h);
        }
        abi.hash(h);
        info.hash(h);
    }
}

/// Shape of an "option" interface type.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeOption {
    /// The `T` in `Result<T, E>`
    pub ty: InterfaceType,
    /// Byte information about this type in the canonical ABI.
    pub abi: CanonicalAbiInfo,
    /// Byte information about this variant type.
    pub info: VariantInfo,
}

/// Shape of a "result" interface type.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeResult {
    /// The `T` in `Result<T, E>`
    pub ok: Option<InterfaceType>,
    /// The `E` in `Result<T, E>`
    pub err: Option<InterfaceType>,
    /// Byte information about this type in the canonical ABI.
    pub abi: CanonicalAbiInfo,
    /// Byte information about this variant type.
    pub info: VariantInfo,
}

/// Metadata about a resource table added to a component.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeResourceTable {
    /// The original resource that this table contains.
    ///
    /// This is used when destroying resources within this table since this
    /// original definition will know how to execute destructors.
    pub ty: ResourceIndex,

    /// The component instance that contains this resource table.
    pub instance: RuntimeComponentInstanceIndex,
}

/// Shape of a "list" interface type.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeList {
    /// The element type of the list.
    pub element: InterfaceType,
}

/// Maximum number of flat types, for either params or results.
pub const MAX_FLAT_TYPES: usize = if MAX_FLAT_PARAMS > MAX_FLAT_RESULTS {
    MAX_FLAT_PARAMS
} else {
    MAX_FLAT_RESULTS
};

const fn add_flat(a: Option<u8>, b: Option<u8>) -> Option<u8> {
    const MAX: u8 = MAX_FLAT_TYPES as u8;
    let sum = match (a, b) {
        (Some(a), Some(b)) => match a.checked_add(b) {
            Some(c) => c,
            None => return None,
        },
        _ => return None,
    };
    if sum > MAX {
        None
    } else {
        Some(sum)
    }
}

const fn max_flat(a: Option<u8>, b: Option<u8>) -> Option<u8> {
    match (a, b) {
        (Some(a), Some(b)) => {
            if a > b {
                Some(a)
            } else {
                Some(b)
            }
        }
        _ => None,
    }
}

/// Flat representation of a type in just core wasm types.
pub struct FlatTypes<'a> {
    /// The flat representation of this type in 32-bit memories.
    pub memory32: &'a [FlatType],
    /// The flat representation of this type in 64-bit memories.
    pub memory64: &'a [FlatType],
}

#[allow(missing_docs)]
impl FlatTypes<'_> {
    /// Returns the number of flat types used to represent this type.
    ///
    /// Note that this length is the same regardless to the size of memory.
    pub fn len(&self) -> usize {
        assert_eq!(self.memory32.len(), self.memory64.len());
        self.memory32.len()
    }
}

// Note that this is intentionally duplicated here to keep the size to 1 byte
// regardless to changes in the core wasm type system since this will only
// ever use integers/floats for the foreseeable future.
#[derive(PartialEq, Eq, Copy, Clone)]
#[allow(missing_docs)]
pub enum FlatType {
    I32,
    I64,
    F32,
    F64,
}