wasmtime_environ/component/types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
use crate::component::{MAX_FLAT_PARAMS, MAX_FLAT_RESULTS};
use crate::prelude::*;
use crate::{EntityType, ModuleInternedTypeIndex, ModuleTypes, PrimaryMap};
use core::hash::{Hash, Hasher};
use core::ops::Index;
use serde_derive::{Deserialize, Serialize};
use wasmparser::component_types::ComponentAnyTypeId;
use wasmtime_component_util::{DiscriminantSize, FlagsSize};
pub use crate::StaticModuleIndex;
macro_rules! indices {
($(
$(#[$a:meta])*
pub struct $name:ident(u32);
)*) => ($(
$(#[$a])*
#[derive(
Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug,
Serialize, Deserialize,
)]
#[repr(transparent)]
pub struct $name(u32);
cranelift_entity::entity_impl!($name);
)*);
}
indices! {
// ========================================================================
// These indices are used during compile time only when we're translating a
// component at this time. The actual indices are not persisted beyond the
// compile phase to when we're actually working with the component at
// runtime.
/// Index within a component's component type index space.
pub struct ComponentTypeIndex(u32);
/// Index within a component's module index space.
pub struct ModuleIndex(u32);
/// Index within a component's component index space.
pub struct ComponentIndex(u32);
/// Index within a component's module instance index space.
pub struct ModuleInstanceIndex(u32);
/// Index within a component's component instance index space.
pub struct ComponentInstanceIndex(u32);
/// Index within a component's component function index space.
pub struct ComponentFuncIndex(u32);
// ========================================================================
// These indices are used to lookup type information within a `TypeTables`
// structure. These represent generally deduplicated type information across
// an entire component and are a form of RTTI in a sense.
/// Index pointing to a component's type (exports/imports with
/// component-model types)
pub struct TypeComponentIndex(u32);
/// Index pointing to a component instance's type (exports with
/// component-model types, no imports)
pub struct TypeComponentInstanceIndex(u32);
/// Index pointing to a core wasm module's type (exports/imports with
/// core wasm types)
pub struct TypeModuleIndex(u32);
/// Index pointing to a component model function type with arguments/result
/// as interface types.
pub struct TypeFuncIndex(u32);
/// Index pointing to a record type in the component model (aka a struct).
pub struct TypeRecordIndex(u32);
/// Index pointing to a variant type in the component model (aka an enum).
pub struct TypeVariantIndex(u32);
/// Index pointing to a tuple type in the component model.
pub struct TypeTupleIndex(u32);
/// Index pointing to a flags type in the component model.
pub struct TypeFlagsIndex(u32);
/// Index pointing to an enum type in the component model.
pub struct TypeEnumIndex(u32);
/// Index pointing to an option type in the component model (aka a
/// `Option<T, E>`)
pub struct TypeOptionIndex(u32);
/// Index pointing to an result type in the component model (aka a
/// `Result<T, E>`)
pub struct TypeResultIndex(u32);
/// Index pointing to a list type in the component model.
pub struct TypeListIndex(u32);
/// Index pointing to a resource table within a component.
///
/// This is a Wasmtime-specific type index which isn't part of the component
/// model per-se (or at least not the binary format). This index represents
/// a pointer to a table of runtime information tracking state for resources
/// within a component. Tables are generated per-resource-per-component
/// meaning that if the exact same resource is imported into 4 subcomponents
/// then that's 5 tables: one for the defining component and one for each
/// subcomponent.
///
/// All resource-related intrinsics operate on table-local indices which
/// indicate which table the intrinsic is modifying. Each resource table has
/// an origin resource type (defined by `ResourceIndex`) along with a
/// component instance that it's recorded for.
pub struct TypeResourceTableIndex(u32);
/// Index pointing to a resource within a component.
///
/// This index space covers all unique resource type definitions. For
/// example all unique imports come first and then all locally-defined
/// resources come next. Note that this does not count the number of runtime
/// tables required to track resources (that's `TypeResourceTableIndex`
/// instead). Instead this is a count of the number of unique
/// `(type (resource (rep ..)))` declarations within a component, plus
/// imports.
///
/// This is then used for correlating various information such as
/// destructors, origin information, etc.
pub struct ResourceIndex(u32);
/// Index pointing to a local resource defined within a component.
///
/// This is similar to `FooIndex` and `DefinedFooIndex` for core wasm and
/// the idea here is that this is guaranteed to be a wasm-defined resource
/// which is connected to a component instance for example.
pub struct DefinedResourceIndex(u32);
// ========================================================================
// Index types used to identify modules and components during compilation.
/// Index into a "closed over variables" list for components used to
/// implement outer aliases. For more information on this see the
/// documentation for the `LexicalScope` structure.
pub struct ModuleUpvarIndex(u32);
/// Same as `ModuleUpvarIndex` but for components.
pub struct ComponentUpvarIndex(u32);
/// Same as `StaticModuleIndex` but for components.
pub struct StaticComponentIndex(u32);
// ========================================================================
// These indices are actually used at runtime when managing a component at
// this time.
/// Index that represents a core wasm instance created at runtime.
///
/// This is used to keep track of when instances are created and is able to
/// refer back to previously created instances for exports and such.
pub struct RuntimeInstanceIndex(u32);
/// Same as `RuntimeInstanceIndex` but tracks component instances instead.
pub struct RuntimeComponentInstanceIndex(u32);
/// Used to index imports into a `Component`
///
/// This does not correspond to anything in the binary format for the
/// component model.
pub struct ImportIndex(u32);
/// Index that represents a leaf item imported into a component where a
/// "leaf" means "not an instance".
///
/// This does not correspond to anything in the binary format for the
/// component model.
pub struct RuntimeImportIndex(u32);
/// Index that represents a lowered host function and is used to represent
/// host function lowerings with options and such.
///
/// This does not correspond to anything in the binary format for the
/// component model.
pub struct LoweredIndex(u32);
/// Index representing a linear memory extracted from a wasm instance
/// which is stored in a `VMComponentContext`. This is used to deduplicate
/// references to the same linear memory where it's only stored once in a
/// `VMComponentContext`.
///
/// This does not correspond to anything in the binary format for the
/// component model.
pub struct RuntimeMemoryIndex(u32);
/// Same as `RuntimeMemoryIndex` except for the `realloc` function.
pub struct RuntimeReallocIndex(u32);
/// Same as `RuntimeMemoryIndex` except for the `post-return` function.
pub struct RuntimePostReturnIndex(u32);
/// Index for all trampolines that are compiled in Cranelift for a
/// component.
///
/// This is used to point to various bits of metadata within a compiled
/// component and is stored in the final compilation artifact. This does not
/// have a direct corresponance to any wasm definition.
pub struct TrampolineIndex(u32);
/// An index into `Component::export_items` at the end of compilation.
pub struct ExportIndex(u32);
}
// Reexport for convenience some core-wasm indices which are also used in the
// component model, typically for when aliasing exports of core wasm modules.
pub use crate::{FuncIndex, GlobalIndex, MemoryIndex, TableIndex};
/// Equivalent of `EntityIndex` but for the component model instead of core
/// wasm.
#[derive(Debug, Clone, Copy)]
#[allow(missing_docs)]
pub enum ComponentItem {
Func(ComponentFuncIndex),
Module(ModuleIndex),
Component(ComponentIndex),
ComponentInstance(ComponentInstanceIndex),
Type(ComponentAnyTypeId),
}
/// Runtime information about the type information contained within a component.
///
/// One of these is created per top-level component which describes all of the
/// types contained within the top-level component itself. Each sub-component
/// will have a pointer to this value as well.
#[derive(Default, Serialize, Deserialize)]
pub struct ComponentTypes {
pub(super) modules: PrimaryMap<TypeModuleIndex, TypeModule>,
pub(super) components: PrimaryMap<TypeComponentIndex, TypeComponent>,
pub(super) component_instances: PrimaryMap<TypeComponentInstanceIndex, TypeComponentInstance>,
pub(super) functions: PrimaryMap<TypeFuncIndex, TypeFunc>,
pub(super) lists: PrimaryMap<TypeListIndex, TypeList>,
pub(super) records: PrimaryMap<TypeRecordIndex, TypeRecord>,
pub(super) variants: PrimaryMap<TypeVariantIndex, TypeVariant>,
pub(super) tuples: PrimaryMap<TypeTupleIndex, TypeTuple>,
pub(super) enums: PrimaryMap<TypeEnumIndex, TypeEnum>,
pub(super) flags: PrimaryMap<TypeFlagsIndex, TypeFlags>,
pub(super) options: PrimaryMap<TypeOptionIndex, TypeOption>,
pub(super) results: PrimaryMap<TypeResultIndex, TypeResult>,
pub(super) resource_tables: PrimaryMap<TypeResourceTableIndex, TypeResourceTable>,
pub(super) module_types: Option<ModuleTypes>,
}
impl ComponentTypes {
/// Returns the core wasm module types known within this component.
pub fn module_types(&self) -> &ModuleTypes {
self.module_types.as_ref().unwrap()
}
/// Returns the canonical ABI information about the specified type.
pub fn canonical_abi(&self, ty: &InterfaceType) -> &CanonicalAbiInfo {
match ty {
InterfaceType::U8 | InterfaceType::S8 | InterfaceType::Bool => {
&CanonicalAbiInfo::SCALAR1
}
InterfaceType::U16 | InterfaceType::S16 => &CanonicalAbiInfo::SCALAR2,
InterfaceType::U32
| InterfaceType::S32
| InterfaceType::Float32
| InterfaceType::Char
| InterfaceType::Own(_)
| InterfaceType::Borrow(_) => &CanonicalAbiInfo::SCALAR4,
InterfaceType::U64 | InterfaceType::S64 | InterfaceType::Float64 => {
&CanonicalAbiInfo::SCALAR8
}
InterfaceType::String | InterfaceType::List(_) => &CanonicalAbiInfo::POINTER_PAIR,
InterfaceType::Record(i) => &self[*i].abi,
InterfaceType::Variant(i) => &self[*i].abi,
InterfaceType::Tuple(i) => &self[*i].abi,
InterfaceType::Flags(i) => &self[*i].abi,
InterfaceType::Enum(i) => &self[*i].abi,
InterfaceType::Option(i) => &self[*i].abi,
InterfaceType::Result(i) => &self[*i].abi,
}
}
/// Adds a new `table` to the list of resource tables for this component.
pub fn push_resource_table(&mut self, table: TypeResourceTable) -> TypeResourceTableIndex {
self.resource_tables.push(table)
}
}
macro_rules! impl_index {
($(impl Index<$ty:ident> for ComponentTypes { $output:ident => $field:ident })*) => ($(
impl core::ops::Index<$ty> for ComponentTypes {
type Output = $output;
#[inline]
fn index(&self, idx: $ty) -> &$output {
&self.$field[idx]
}
}
#[cfg(feature = "compile")]
impl core::ops::Index<$ty> for super::ComponentTypesBuilder {
type Output = $output;
#[inline]
fn index(&self, idx: $ty) -> &$output {
&self.component_types()[idx]
}
}
)*)
}
impl_index! {
impl Index<TypeModuleIndex> for ComponentTypes { TypeModule => modules }
impl Index<TypeComponentIndex> for ComponentTypes { TypeComponent => components }
impl Index<TypeComponentInstanceIndex> for ComponentTypes { TypeComponentInstance => component_instances }
impl Index<TypeFuncIndex> for ComponentTypes { TypeFunc => functions }
impl Index<TypeRecordIndex> for ComponentTypes { TypeRecord => records }
impl Index<TypeVariantIndex> for ComponentTypes { TypeVariant => variants }
impl Index<TypeTupleIndex> for ComponentTypes { TypeTuple => tuples }
impl Index<TypeEnumIndex> for ComponentTypes { TypeEnum => enums }
impl Index<TypeFlagsIndex> for ComponentTypes { TypeFlags => flags }
impl Index<TypeOptionIndex> for ComponentTypes { TypeOption => options }
impl Index<TypeResultIndex> for ComponentTypes { TypeResult => results }
impl Index<TypeListIndex> for ComponentTypes { TypeList => lists }
impl Index<TypeResourceTableIndex> for ComponentTypes { TypeResourceTable => resource_tables }
}
// Additionally forward anything that can index `ModuleTypes` to `ModuleTypes`
// (aka `SignatureIndex`)
impl<T> Index<T> for ComponentTypes
where
ModuleTypes: Index<T>,
{
type Output = <ModuleTypes as Index<T>>::Output;
fn index(&self, idx: T) -> &Self::Output {
self.module_types.as_ref().unwrap().index(idx)
}
}
/// Types of imports and exports in the component model.
///
/// These types are what's available for import and export in components. Note
/// that all indirect indices contained here are intended to be looked up
/// through a sibling `ComponentTypes` structure.
#[derive(Copy, Clone, Debug, Serialize, Deserialize)]
pub enum TypeDef {
/// A component and its type.
Component(TypeComponentIndex),
/// An instance of a component.
ComponentInstance(TypeComponentInstanceIndex),
/// A component function, not to be confused with a core wasm function.
ComponentFunc(TypeFuncIndex),
/// An type in an interface.
Interface(InterfaceType),
/// A core wasm module and its type.
Module(TypeModuleIndex),
/// A core wasm function using only core wasm types.
CoreFunc(ModuleInternedTypeIndex),
/// A resource type which operates on the specified resource table.
///
/// Note that different resource tables may point to the same underlying
/// actual resource type, but that's a private detail.
Resource(TypeResourceTableIndex),
}
impl TypeDef {
/// A human readable description of what kind of type definition this is.
pub fn desc(&self) -> &str {
match self {
TypeDef::Component(_) => "component",
TypeDef::ComponentInstance(_) => "instance",
TypeDef::ComponentFunc(_) => "function",
TypeDef::Interface(_) => "type",
TypeDef::Module(_) => "core module",
TypeDef::CoreFunc(_) => "core function",
TypeDef::Resource(_) => "resource",
}
}
}
// NB: Note that maps below are stored as an `IndexMap` now but the order
// typically does not matter. As a minor implementation detail we want the
// serialization of this type to always be deterministic and using `IndexMap`
// gets us that over using a `HashMap` for example.
/// The type of a module in the component model.
///
/// Note that this is not to be confused with `TypeComponent` below. This is
/// intended only for core wasm modules, not for components.
#[derive(Serialize, Deserialize, Default)]
pub struct TypeModule {
/// The values that this module imports.
///
/// Note that the value of this map is a core wasm `EntityType`, not a
/// component model `TypeRef`. Additionally note that this reflects the
/// two-level namespace of core WebAssembly, but unlike core wasm all import
/// names are required to be unique to describe a module in the component
/// model.
pub imports: IndexMap<(String, String), EntityType>,
/// The values that this module exports.
///
/// Note that the value of this map is the core wasm `EntityType` to
/// represent that core wasm items are being exported.
pub exports: IndexMap<String, EntityType>,
}
/// The type of a component in the component model.
#[derive(Serialize, Deserialize, Default)]
pub struct TypeComponent {
/// The named values that this component imports.
pub imports: IndexMap<String, TypeDef>,
/// The named values that this component exports.
pub exports: IndexMap<String, TypeDef>,
}
/// The type of a component instance in the component model, or an instantiated
/// component.
///
/// Component instances only have exports of types in the component model.
#[derive(Serialize, Deserialize, Default)]
pub struct TypeComponentInstance {
/// The list of exports that this component has along with their types.
pub exports: IndexMap<String, TypeDef>,
}
/// A component function type in the component model.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeFunc {
/// Parameters to the function represented as a tuple.
pub params: TypeTupleIndex,
/// Results of the function represented as a tuple.
pub results: TypeTupleIndex,
}
/// All possible interface types that values can have.
///
/// This list represents an exhaustive listing of interface types and the
/// shapes that they can take. Note that this enum is considered an "index" of
/// forms where for non-primitive types a `ComponentTypes` structure is used to
/// lookup further information based on the index found here.
#[derive(Serialize, Deserialize, Copy, Clone, Hash, Eq, PartialEq, Debug)]
#[allow(missing_docs)]
pub enum InterfaceType {
Bool,
S8,
U8,
S16,
U16,
S32,
U32,
S64,
U64,
Float32,
Float64,
Char,
String,
Record(TypeRecordIndex),
Variant(TypeVariantIndex),
List(TypeListIndex),
Tuple(TypeTupleIndex),
Flags(TypeFlagsIndex),
Enum(TypeEnumIndex),
Option(TypeOptionIndex),
Result(TypeResultIndex),
Own(TypeResourceTableIndex),
Borrow(TypeResourceTableIndex),
}
impl From<&wasmparser::PrimitiveValType> for InterfaceType {
fn from(ty: &wasmparser::PrimitiveValType) -> InterfaceType {
match ty {
wasmparser::PrimitiveValType::Bool => InterfaceType::Bool,
wasmparser::PrimitiveValType::S8 => InterfaceType::S8,
wasmparser::PrimitiveValType::U8 => InterfaceType::U8,
wasmparser::PrimitiveValType::S16 => InterfaceType::S16,
wasmparser::PrimitiveValType::U16 => InterfaceType::U16,
wasmparser::PrimitiveValType::S32 => InterfaceType::S32,
wasmparser::PrimitiveValType::U32 => InterfaceType::U32,
wasmparser::PrimitiveValType::S64 => InterfaceType::S64,
wasmparser::PrimitiveValType::U64 => InterfaceType::U64,
wasmparser::PrimitiveValType::F32 => InterfaceType::Float32,
wasmparser::PrimitiveValType::F64 => InterfaceType::Float64,
wasmparser::PrimitiveValType::Char => InterfaceType::Char,
wasmparser::PrimitiveValType::String => InterfaceType::String,
}
}
}
/// Bye information about a type in the canonical ABI, with metadata for both
/// memory32 and memory64-based types.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct CanonicalAbiInfo {
/// The byte-size of this type in a 32-bit memory.
pub size32: u32,
/// The byte-alignment of this type in a 32-bit memory.
pub align32: u32,
/// The byte-size of this type in a 64-bit memory.
pub size64: u32,
/// The byte-alignment of this type in a 64-bit memory.
pub align64: u32,
/// The number of types it takes to represents this type in the "flat"
/// representation of the canonical abi where everything is passed as
/// immediate arguments or results.
///
/// If this is `None` then this type is not representable in the flat ABI
/// because it is too large.
pub flat_count: Option<u8>,
}
impl Default for CanonicalAbiInfo {
fn default() -> CanonicalAbiInfo {
CanonicalAbiInfo {
size32: 0,
align32: 1,
size64: 0,
align64: 1,
flat_count: Some(0),
}
}
}
const fn align_to(a: u32, b: u32) -> u32 {
assert!(b.is_power_of_two());
(a + (b - 1)) & !(b - 1)
}
const fn max(a: u32, b: u32) -> u32 {
if a > b {
a
} else {
b
}
}
impl CanonicalAbiInfo {
/// ABI information for zero-sized types.
const ZERO: CanonicalAbiInfo = CanonicalAbiInfo {
size32: 0,
align32: 1,
size64: 0,
align64: 1,
flat_count: Some(0),
};
/// ABI information for one-byte scalars.
pub const SCALAR1: CanonicalAbiInfo = CanonicalAbiInfo::scalar(1);
/// ABI information for two-byte scalars.
pub const SCALAR2: CanonicalAbiInfo = CanonicalAbiInfo::scalar(2);
/// ABI information for four-byte scalars.
pub const SCALAR4: CanonicalAbiInfo = CanonicalAbiInfo::scalar(4);
/// ABI information for eight-byte scalars.
pub const SCALAR8: CanonicalAbiInfo = CanonicalAbiInfo::scalar(8);
const fn scalar(size: u32) -> CanonicalAbiInfo {
CanonicalAbiInfo {
size32: size,
align32: size,
size64: size,
align64: size,
flat_count: Some(1),
}
}
/// ABI information for lists/strings which are "pointer pairs"
pub const POINTER_PAIR: CanonicalAbiInfo = CanonicalAbiInfo {
size32: 8,
align32: 4,
size64: 16,
align64: 8,
flat_count: Some(2),
};
/// Returns the abi for a record represented by the specified fields.
pub fn record<'a>(fields: impl Iterator<Item = &'a CanonicalAbiInfo>) -> CanonicalAbiInfo {
// NB: this is basically a duplicate copy of
// `CanonicalAbiInfo::record_static` and the two should be kept in sync.
let mut ret = CanonicalAbiInfo::default();
for field in fields {
ret.size32 = align_to(ret.size32, field.align32) + field.size32;
ret.align32 = ret.align32.max(field.align32);
ret.size64 = align_to(ret.size64, field.align64) + field.size64;
ret.align64 = ret.align64.max(field.align64);
ret.flat_count = add_flat(ret.flat_count, field.flat_count);
}
ret.size32 = align_to(ret.size32, ret.align32);
ret.size64 = align_to(ret.size64, ret.align64);
return ret;
}
/// Same as `CanonicalAbiInfo::record` but in a `const`-friendly context.
pub const fn record_static(fields: &[CanonicalAbiInfo]) -> CanonicalAbiInfo {
// NB: this is basically a duplicate copy of `CanonicalAbiInfo::record`
// and the two should be kept in sync.
let mut ret = CanonicalAbiInfo::ZERO;
let mut i = 0;
while i < fields.len() {
let field = &fields[i];
ret.size32 = align_to(ret.size32, field.align32) + field.size32;
ret.align32 = max(ret.align32, field.align32);
ret.size64 = align_to(ret.size64, field.align64) + field.size64;
ret.align64 = max(ret.align64, field.align64);
ret.flat_count = add_flat(ret.flat_count, field.flat_count);
i += 1;
}
ret.size32 = align_to(ret.size32, ret.align32);
ret.size64 = align_to(ret.size64, ret.align64);
return ret;
}
/// Returns the delta from the current value of `offset` to align properly
/// and read the next record field of type `abi` for 32-bit memories.
pub fn next_field32(&self, offset: &mut u32) -> u32 {
*offset = align_to(*offset, self.align32) + self.size32;
*offset - self.size32
}
/// Same as `next_field32`, but bumps a usize pointer
pub fn next_field32_size(&self, offset: &mut usize) -> usize {
let cur = u32::try_from(*offset).unwrap();
let cur = align_to(cur, self.align32) + self.size32;
*offset = usize::try_from(cur).unwrap();
usize::try_from(cur - self.size32).unwrap()
}
/// Returns the delta from the current value of `offset` to align properly
/// and read the next record field of type `abi` for 64-bit memories.
pub fn next_field64(&self, offset: &mut u32) -> u32 {
*offset = align_to(*offset, self.align64) + self.size64;
*offset - self.size64
}
/// Same as `next_field64`, but bumps a usize pointer
pub fn next_field64_size(&self, offset: &mut usize) -> usize {
let cur = u32::try_from(*offset).unwrap();
let cur = align_to(cur, self.align64) + self.size64;
*offset = usize::try_from(cur).unwrap();
usize::try_from(cur - self.size64).unwrap()
}
/// Returns ABI information for a structure which contains `count` flags.
pub const fn flags(count: usize) -> CanonicalAbiInfo {
let (size, align, flat_count) = match FlagsSize::from_count(count) {
FlagsSize::Size0 => (0, 1, 0),
FlagsSize::Size1 => (1, 1, 1),
FlagsSize::Size2 => (2, 2, 1),
FlagsSize::Size4Plus(n) => ((n as u32) * 4, 4, n),
};
CanonicalAbiInfo {
size32: size,
align32: align,
size64: size,
align64: align,
flat_count: Some(flat_count),
}
}
fn variant<'a, I>(cases: I) -> CanonicalAbiInfo
where
I: IntoIterator<Item = Option<&'a CanonicalAbiInfo>>,
I::IntoIter: ExactSizeIterator,
{
// NB: this is basically a duplicate definition of
// `CanonicalAbiInfo::variant_static`, these should be kept in sync.
let cases = cases.into_iter();
let discrim_size = u32::from(DiscriminantSize::from_count(cases.len()).unwrap());
let mut max_size32 = 0;
let mut max_align32 = discrim_size;
let mut max_size64 = 0;
let mut max_align64 = discrim_size;
let mut max_case_count = Some(0);
for case in cases {
if let Some(case) = case {
max_size32 = max_size32.max(case.size32);
max_align32 = max_align32.max(case.align32);
max_size64 = max_size64.max(case.size64);
max_align64 = max_align64.max(case.align64);
max_case_count = max_flat(max_case_count, case.flat_count);
}
}
CanonicalAbiInfo {
size32: align_to(
align_to(discrim_size, max_align32) + max_size32,
max_align32,
),
align32: max_align32,
size64: align_to(
align_to(discrim_size, max_align64) + max_size64,
max_align64,
),
align64: max_align64,
flat_count: add_flat(max_case_count, Some(1)),
}
}
/// Same as `CanonicalAbiInfo::variant` but `const`-safe
pub const fn variant_static(cases: &[Option<CanonicalAbiInfo>]) -> CanonicalAbiInfo {
// NB: this is basically a duplicate definition of
// `CanonicalAbiInfo::variant`, these should be kept in sync.
let discrim_size = match DiscriminantSize::from_count(cases.len()) {
Some(size) => size.byte_size(),
None => unreachable!(),
};
let mut max_size32 = 0;
let mut max_align32 = discrim_size;
let mut max_size64 = 0;
let mut max_align64 = discrim_size;
let mut max_case_count = Some(0);
let mut i = 0;
while i < cases.len() {
let case = &cases[i];
if let Some(case) = case {
max_size32 = max(max_size32, case.size32);
max_align32 = max(max_align32, case.align32);
max_size64 = max(max_size64, case.size64);
max_align64 = max(max_align64, case.align64);
max_case_count = max_flat(max_case_count, case.flat_count);
}
i += 1;
}
CanonicalAbiInfo {
size32: align_to(
align_to(discrim_size, max_align32) + max_size32,
max_align32,
),
align32: max_align32,
size64: align_to(
align_to(discrim_size, max_align64) + max_size64,
max_align64,
),
align64: max_align64,
flat_count: add_flat(max_case_count, Some(1)),
}
}
/// Calculates ABI information for an enum with `cases` cases.
pub const fn enum_(cases: usize) -> CanonicalAbiInfo {
// NB: this is basically a duplicate definition of
// `CanonicalAbiInfo::variant`, these should be kept in sync.
let discrim_size = match DiscriminantSize::from_count(cases) {
Some(size) => size.byte_size(),
None => unreachable!(),
};
CanonicalAbiInfo {
size32: discrim_size,
align32: discrim_size,
size64: discrim_size,
align64: discrim_size,
flat_count: Some(1),
}
}
/// Returns the flat count of this ABI information so long as the count
/// doesn't exceed the `max` specified.
pub fn flat_count(&self, max: usize) -> Option<usize> {
let flat = usize::from(self.flat_count?);
if flat > max {
None
} else {
Some(flat)
}
}
}
/// ABI information about the representation of a variant.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct VariantInfo {
/// The size of the discriminant used.
#[serde(with = "serde_discrim_size")]
pub size: DiscriminantSize,
/// The offset of the payload from the start of the variant in 32-bit
/// memories.
pub payload_offset32: u32,
/// The offset of the payload from the start of the variant in 64-bit
/// memories.
pub payload_offset64: u32,
}
impl VariantInfo {
/// Returns the abi information for a variant represented by the specified
/// cases.
pub fn new<'a, I>(cases: I) -> (VariantInfo, CanonicalAbiInfo)
where
I: IntoIterator<Item = Option<&'a CanonicalAbiInfo>>,
I::IntoIter: ExactSizeIterator,
{
let cases = cases.into_iter();
let size = DiscriminantSize::from_count(cases.len()).unwrap();
let abi = CanonicalAbiInfo::variant(cases);
(
VariantInfo {
size,
payload_offset32: align_to(u32::from(size), abi.align32),
payload_offset64: align_to(u32::from(size), abi.align64),
},
abi,
)
}
/// TODO
pub const fn new_static(cases: &[Option<CanonicalAbiInfo>]) -> VariantInfo {
let size = match DiscriminantSize::from_count(cases.len()) {
Some(size) => size,
None => unreachable!(),
};
let abi = CanonicalAbiInfo::variant_static(cases);
VariantInfo {
size,
payload_offset32: align_to(size.byte_size(), abi.align32),
payload_offset64: align_to(size.byte_size(), abi.align64),
}
}
}
mod serde_discrim_size {
use super::DiscriminantSize;
use serde::{de::Error, Deserialize, Deserializer, Serialize, Serializer};
pub fn serialize<S>(disc: &DiscriminantSize, ser: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
u32::from(*disc).serialize(ser)
}
pub fn deserialize<'de, D>(deser: D) -> Result<DiscriminantSize, D::Error>
where
D: Deserializer<'de>,
{
match u32::deserialize(deser)? {
1 => Ok(DiscriminantSize::Size1),
2 => Ok(DiscriminantSize::Size2),
4 => Ok(DiscriminantSize::Size4),
_ => Err(D::Error::custom("invalid discriminant size")),
}
}
}
/// Shape of a "record" type in interface types.
///
/// This is equivalent to a `struct` in Rust.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeRecord {
/// The fields that are contained within this struct type.
pub fields: Box<[RecordField]>,
/// Byte information about this type in the canonical ABI.
pub abi: CanonicalAbiInfo,
}
/// One field within a record.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct RecordField {
/// The name of the field, unique amongst all fields in a record.
pub name: String,
/// The type that this field contains.
pub ty: InterfaceType,
}
/// Shape of a "variant" type in interface types.
///
/// Variants are close to Rust `enum` declarations where a value is one of many
/// cases and each case has a unique name and an optional payload associated
/// with it.
#[derive(Serialize, Deserialize, Clone, Eq, PartialEq, Debug)]
pub struct TypeVariant {
/// The list of cases that this variant can take.
pub cases: IndexMap<String, Option<InterfaceType>>,
/// Byte information about this type in the canonical ABI.
pub abi: CanonicalAbiInfo,
/// Byte information about this variant type.
pub info: VariantInfo,
}
impl Hash for TypeVariant {
fn hash<H: Hasher>(&self, h: &mut H) {
let TypeVariant { cases, abi, info } = self;
cases.len().hash(h);
for pair in cases {
pair.hash(h);
}
abi.hash(h);
info.hash(h);
}
}
/// Shape of a "tuple" type in interface types.
///
/// This is largely the same as a tuple in Rust, basically a record with
/// unnamed fields.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeTuple {
/// The types that are contained within this tuple.
pub types: Box<[InterfaceType]>,
/// Byte information about this type in the canonical ABI.
pub abi: CanonicalAbiInfo,
}
/// Shape of a "flags" type in interface types.
///
/// This can be thought of as a record-of-bools, although the representation is
/// more efficient as bitflags.
#[derive(Serialize, Deserialize, Clone, Eq, PartialEq, Debug)]
pub struct TypeFlags {
/// The names of all flags, all of which are unique.
pub names: IndexSet<String>,
/// Byte information about this type in the canonical ABI.
pub abi: CanonicalAbiInfo,
}
impl Hash for TypeFlags {
fn hash<H: Hasher>(&self, h: &mut H) {
let TypeFlags { names, abi } = self;
names.len().hash(h);
for name in names {
name.hash(h);
}
abi.hash(h);
}
}
/// Shape of an "enum" type in interface types, not to be confused with a Rust
/// `enum` type.
///
/// In interface types enums are simply a bag of names, and can be seen as a
/// variant where all payloads are `Unit`.
#[derive(Serialize, Deserialize, Clone, Eq, PartialEq, Debug)]
pub struct TypeEnum {
/// The names of this enum, all of which are unique.
pub names: IndexSet<String>,
/// Byte information about this type in the canonical ABI.
pub abi: CanonicalAbiInfo,
/// Byte information about this variant type.
pub info: VariantInfo,
}
impl Hash for TypeEnum {
fn hash<H: Hasher>(&self, h: &mut H) {
let TypeEnum { names, abi, info } = self;
names.len().hash(h);
for name in names {
name.hash(h);
}
abi.hash(h);
info.hash(h);
}
}
/// Shape of an "option" interface type.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeOption {
/// The `T` in `Result<T, E>`
pub ty: InterfaceType,
/// Byte information about this type in the canonical ABI.
pub abi: CanonicalAbiInfo,
/// Byte information about this variant type.
pub info: VariantInfo,
}
/// Shape of a "result" interface type.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeResult {
/// The `T` in `Result<T, E>`
pub ok: Option<InterfaceType>,
/// The `E` in `Result<T, E>`
pub err: Option<InterfaceType>,
/// Byte information about this type in the canonical ABI.
pub abi: CanonicalAbiInfo,
/// Byte information about this variant type.
pub info: VariantInfo,
}
/// Metadata about a resource table added to a component.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeResourceTable {
/// The original resource that this table contains.
///
/// This is used when destroying resources within this table since this
/// original definition will know how to execute destructors.
pub ty: ResourceIndex,
/// The component instance that contains this resource table.
pub instance: RuntimeComponentInstanceIndex,
}
/// Shape of a "list" interface type.
#[derive(Serialize, Deserialize, Clone, Hash, Eq, PartialEq, Debug)]
pub struct TypeList {
/// The element type of the list.
pub element: InterfaceType,
}
/// Maximum number of flat types, for either params or results.
pub const MAX_FLAT_TYPES: usize = if MAX_FLAT_PARAMS > MAX_FLAT_RESULTS {
MAX_FLAT_PARAMS
} else {
MAX_FLAT_RESULTS
};
const fn add_flat(a: Option<u8>, b: Option<u8>) -> Option<u8> {
const MAX: u8 = MAX_FLAT_TYPES as u8;
let sum = match (a, b) {
(Some(a), Some(b)) => match a.checked_add(b) {
Some(c) => c,
None => return None,
},
_ => return None,
};
if sum > MAX {
None
} else {
Some(sum)
}
}
const fn max_flat(a: Option<u8>, b: Option<u8>) -> Option<u8> {
match (a, b) {
(Some(a), Some(b)) => {
if a > b {
Some(a)
} else {
Some(b)
}
}
_ => None,
}
}
/// Flat representation of a type in just core wasm types.
pub struct FlatTypes<'a> {
/// The flat representation of this type in 32-bit memories.
pub memory32: &'a [FlatType],
/// The flat representation of this type in 64-bit memories.
pub memory64: &'a [FlatType],
}
#[allow(missing_docs)]
impl FlatTypes<'_> {
/// Returns the number of flat types used to represent this type.
///
/// Note that this length is the same regardless to the size of memory.
pub fn len(&self) -> usize {
assert_eq!(self.memory32.len(), self.memory64.len());
self.memory32.len()
}
}
// Note that this is intentionally duplicated here to keep the size to 1 byte
// regardless to changes in the core wasm type system since this will only
// ever use integers/floats for the foreseeable future.
#[derive(PartialEq, Eq, Copy, Clone)]
#[allow(missing_docs)]
pub enum FlatType {
I32,
I64,
F32,
F64,
}