wasmtime_environ/
builtin.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/// Helper macro to iterate over all builtin functions and their signatures.
#[macro_export]
macro_rules! foreach_builtin_function {
    ($mac:ident) => {
        $mac! {
            // Returns an index for wasm's `memory.grow` builtin function.
            memory32_grow(vmctx: vmctx, delta: i64, index: i32) -> pointer;
            // Returns an index for wasm's `table.copy` when both tables are locally
            // defined.
            table_copy(vmctx: vmctx, dst_index: i32, src_index: i32, dst: i64, src: i64, len: i64) -> bool;
            // Returns an index for wasm's `table.init`.
            table_init(vmctx: vmctx, table: i32, elem: i32, dst: i64, src: i64, len: i64) -> bool;
            // Returns an index for wasm's `elem.drop`.
            elem_drop(vmctx: vmctx, elem: i32);
            // Returns an index for wasm's `memory.copy`
            memory_copy(vmctx: vmctx, dst_index: i32, dst: i64, src_index: i32, src: i64, len: i64) -> bool;
            // Returns an index for wasm's `memory.fill` instruction.
            memory_fill(vmctx: vmctx, memory: i32, dst: i64, val: i32, len: i64) -> bool;
            // Returns an index for wasm's `memory.init` instruction.
            memory_init(vmctx: vmctx, memory: i32, data: i32, dst: i64, src: i32, len: i32) -> bool;
            // Returns a value for wasm's `ref.func` instruction.
            ref_func(vmctx: vmctx, func: i32) -> pointer;
            // Returns an index for wasm's `data.drop` instruction.
            data_drop(vmctx: vmctx, data: i32);
            // Returns a table entry after lazily initializing it.
            table_get_lazy_init_func_ref(vmctx: vmctx, table: i32, index: i64) -> pointer;
            // Returns an index for Wasm's `table.grow` instruction for `funcref`s.
            table_grow_func_ref(vmctx: vmctx, table: i32, delta: i64, init: pointer) -> pointer;
            // Returns an index for Wasm's `table.fill` instruction for `funcref`s.
            table_fill_func_ref(vmctx: vmctx, table: i32, dst: i64, val: pointer, len: i64) -> bool;
            // Returns an index for wasm's `memory.atomic.notify` instruction.
            #[cfg(feature = "threads")]
            memory_atomic_notify(vmctx: vmctx, memory: i32, addr: i64, count: i32) -> i64;
            // Returns an index for wasm's `memory.atomic.wait32` instruction.
            #[cfg(feature = "threads")]
            memory_atomic_wait32(vmctx: vmctx, memory: i32, addr: i64, expected: i32, timeout: i64) -> i64;
            // Returns an index for wasm's `memory.atomic.wait64` instruction.
            #[cfg(feature = "threads")]
            memory_atomic_wait64(vmctx: vmctx, memory: i32, addr: i64, expected: i64, timeout: i64) -> i64;
            // Invoked when fuel has run out while executing a function.
            out_of_gas(vmctx: vmctx) -> bool;
            // Invoked when we reach a new epoch.
            new_epoch(vmctx: vmctx) -> i64;
            // Invoked before malloc returns.
            #[cfg(feature = "wmemcheck")]
            check_malloc(vmctx: vmctx, addr: i32, len: i32) -> bool;
            // Invoked before the free returns.
            #[cfg(feature = "wmemcheck")]
            check_free(vmctx: vmctx, addr: i32) -> bool;
            // Invoked before a load is executed.
            #[cfg(feature = "wmemcheck")]
            check_load(vmctx: vmctx, num_bytes: i32, addr: i32, offset: i32) -> bool;
            // Invoked before a store is executed.
            #[cfg(feature = "wmemcheck")]
            check_store(vmctx: vmctx, num_bytes: i32, addr: i32, offset: i32) -> bool;
            // Invoked after malloc is called.
            #[cfg(feature = "wmemcheck")]
            malloc_start(vmctx: vmctx);
            // Invoked after free is called.
            #[cfg(feature = "wmemcheck")]
            free_start(vmctx: vmctx);
            // Invoked when wasm stack pointer is updated.
            #[cfg(feature = "wmemcheck")]
            update_stack_pointer(vmctx: vmctx, value: i32);
            // Invoked before memory.grow is called.
            #[cfg(feature = "wmemcheck")]
            update_mem_size(vmctx: vmctx, num_bytes: i32);

            // Drop a non-stack GC reference (eg an overwritten table entry)
            // once it will no longer be used again. (Note: `val` is not of type
            // `reference` because it needn't appear in any stack maps, as it
            // must not be live after this call.)
            #[cfg(feature = "gc-drc")]
            drop_gc_ref(vmctx: vmctx, val: i32);

            // Do a GC, treating the optional `root` as a GC root and returning
            // the updated `root` (so that, in the case of moving collectors,
            // callers have a valid version of `root` again).
            #[cfg(feature = "gc-drc")]
            gc(vmctx: vmctx, root: i32) -> i64;

            // Allocate a new, uninitialized GC object and return a reference to
            // it.
            #[cfg(feature = "gc-drc")]
            gc_alloc_raw(
                vmctx: vmctx,
                kind: i32,
                module_interned_type_index: i32,
                size: i32,
                align: i32
            ) -> i64;

            // Intern a `funcref` into the GC heap, returning its
            // `FuncRefTableId`.
            //
            // This libcall may not GC.
            #[cfg(feature = "gc")]
            intern_func_ref_for_gc_heap(
                vmctx: vmctx,
                func_ref: pointer
            ) -> i64;

            // Get the raw `VMFuncRef` pointer associated with a
            // `FuncRefTableId` from an earlier `intern_func_ref_for_gc_heap`
            // call.
            //
            // This libcall may not GC.
            //
            // Passes in the `ModuleInternedTypeIndex` of the funcref's expected
            // type, or `ModuleInternedTypeIndex::reserved_value()` if we are
            // getting the function reference as an untyped `funcref` rather
            // than a typed `(ref $ty)`.
            //
            // TODO: We will want to eventually expose the table directly to
            // Wasm code, so that it doesn't need to make a libcall to go from
            // id to `VMFuncRef`. That will be a little tricky: it will also
            // require updating the pointer to the slab in the `VMContext` (or
            // `VMRuntimeLimits` or wherever we put it) when the slab is
            // resized.
            #[cfg(feature = "gc")]
            get_interned_func_ref(
                vmctx: vmctx,
                func_ref_id: i32,
                module_interned_type_index: i32
            ) -> pointer;

            // Builtin implementation of the `array.new_data` instruction.
            #[cfg(feature = "gc")]
            array_new_data(
                vmctx: vmctx,
                array_interned_type_index: i32,
                data_index: i32,
                data_offset: i32,
                len: i32
            ) -> i64;

            // Builtin implementation of the `array.new_elem` instruction.
            #[cfg(feature = "gc")]
            array_new_elem(
                vmctx: vmctx,
                array_interned_type_index: i32,
                elem_index: i32,
                elem_offset: i32,
                len: i32
            ) -> i64;

            // Builtin implementation of the `array.copy` instruction.
            #[cfg(feature = "gc")]
            array_copy(
                vmctx: vmctx,
                dst_array: i32,
                dst_index: i32,
                src_array: i32,
                src_index: i32,
                len: i32
            ) -> bool;

            // Builtin implementation of the `array.init_data` instruction.
            #[cfg(feature = "gc")]
            array_init_data(
                vmctx: vmctx,
                array_interned_type_index: i32,
                array: i32,
                dst_index: i32,
                data_index: i32,
                data_offset: i32,
                len: i32
            ) -> bool;

            // Builtin implementation of the `array.init_elem` instruction.
            #[cfg(feature = "gc")]
            array_init_elem(
                vmctx: vmctx,
                array_interned_type_index: i32,
                array: i32,
                dst: i32,
                elem_index: i32,
                src: i32,
                len: i32
            ) -> bool;

            // Returns whether `actual_engine_type` is a subtype of
            // `expected_engine_type`.
            #[cfg(feature = "gc")]
            is_subtype(
                vmctx: vmctx,
                actual_engine_type: i32,
                expected_engine_type: i32
            ) -> i32;

            // Returns an index for Wasm's `table.grow` instruction for GC references.
            #[cfg(feature = "gc")]
            table_grow_gc_ref(vmctx: vmctx, table: i32, delta: i64, init: i32) -> pointer;

            // Returns an index for Wasm's `table.fill` instruction for GC references.
            #[cfg(feature = "gc")]
            table_fill_gc_ref(vmctx: vmctx, table: i32, dst: i64, val: i32, len: i64) -> bool;

            // Raises an unconditional trap with the specified code.
            //
            // This is used when signals-based-traps are disabled for backends
            // when an illegal instruction can't be executed for example.
            trap(vmctx: vmctx, code: u8);

            // Raises an unconditional trap where the trap information must have
            // been previously filled in.
            raise(vmctx: vmctx);
        }
    };
}

/// Helper macro to define a builtin type such as `BuiltinFunctionIndex` and
/// `ComponentBuiltinFunctionIndex` using the iterator macro, e.g.
/// `foreach_builtin_function`, as the way to generate accessor methods.
macro_rules! declare_builtin_index {
    ($index_name:ident, $iter:ident) => {
        /// An index type for builtin functions.
        #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
        pub struct $index_name(u32);

        impl $index_name {
            /// Create a new builtin from its raw index
            pub const fn from_u32(i: u32) -> Self {
                assert!(i < Self::len());
                Self(i)
            }

            /// Return the index as an u32 number.
            pub const fn index(&self) -> u32 {
                self.0
            }

            $iter!(declare_builtin_index_constructors);
        }
    };
}

/// Helper macro used by the above macro.
macro_rules! declare_builtin_index_constructors {
    (
        $(
            $( #[$attr:meta] )*
            $name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
        )*
    ) => {
        declare_builtin_index_constructors!(
            @indices;
            0;
            $( $( #[$attr] )* $name; )*
        );

        /// Returns a symbol name for this builtin.
        pub fn name(&self) -> &'static str {
            $(
                $( #[$attr] )*
                if *self == Self::$name() {
                    return stringify!($name);
                }
            )*
            unreachable!()
        }
    };

    // Base case: no more indices to declare, so define the total number of
    // function indices.
    (
        @indices;
        $len:expr;
    ) => {
        /// Returns the total number of builtin functions.
        pub const fn len() -> u32 {
            $len
        }
    };

    // Recursive case: declare the next index, and then keep declaring the rest of
    // the indices.
    (
         @indices;
         $index:expr;
         $( #[$this_attr:meta] )*
         $this_name:ident;
         $(
             $( #[$rest_attr:meta] )*
             $rest_name:ident;
         )*
    ) => {
        $( #[$this_attr] )*
        #[allow(missing_docs, reason = "macro-generated")]
        pub const fn $this_name() -> Self {
            Self($index)
        }

        declare_builtin_index_constructors!(
            @indices;
            ($index + 1);
            $( $( #[$rest_attr] )* $rest_name; )*
        );
    }
}

// Define `struct BuiltinFunctionIndex`
declare_builtin_index!(BuiltinFunctionIndex, foreach_builtin_function);

/// Return value of [`BuiltinFunctionIndex::trap_sentinel`].
pub enum TrapSentinel {
    /// A falsy or zero value indicates a trap.
    Falsy,
    /// The value `-2` indicates a trap (used for growth-related builtins).
    NegativeTwo,
    /// The value `-1` indicates a trap .
    NegativeOne,
    /// Any negative value indicates a trap.
    Negative,
}

impl BuiltinFunctionIndex {
    /// Describes the return value of this builtin and what represents a trap.
    ///
    /// Libcalls don't raise traps themselves and instead delegate to compilers
    /// to do so. This means that some return values of libcalls indicate a trap
    /// is happening and this is represented with sentinel values. This function
    /// returns the description of the sentinel value which indicates a trap, if
    /// any. If `None` is returned from this function then this builtin cannot
    /// generate a trap.
    #[allow(unreachable_code, unused_macro_rules, reason = "macro-generated code")]
    pub fn trap_sentinel(&self) -> Option<TrapSentinel> {
        macro_rules! trap_sentinel {
            (
                $(
                    $( #[$attr:meta] )*
                    $name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
                )*
            ) => {{
                $(
                    $(#[$attr])*
                    if *self == BuiltinFunctionIndex::$name() {
                        let mut _ret = None;
                        $(_ret = Some(trap_sentinel!(@get $name $result));)?
                        return _ret;
                    }
                )*

                None
            }};

            // Growth-related functions return -2 as a sentinel.
            (@get memory32_grow pointer) => (TrapSentinel::NegativeTwo);
            (@get table_grow_func_ref pointer) => (TrapSentinel::NegativeTwo);
            (@get table_grow_gc_ref pointer) => (TrapSentinel::NegativeTwo);

            // Atomics-related functions return a negative value indicating trap
            // indicate a trap.
            (@get memory_atomic_notify i64) => (TrapSentinel::Negative);
            (@get memory_atomic_wait32 i64) => (TrapSentinel::Negative);
            (@get memory_atomic_wait64 i64) => (TrapSentinel::Negative);

            // GC-related functions return a 64-bit value which is negative to
            // indicate a trap.
            (@get gc i64) => (TrapSentinel::Negative);
            (@get gc_alloc_raw i64) => (TrapSentinel::Negative);
            (@get array_new_data i64) => (TrapSentinel::Negative);
            (@get array_new_elem i64) => (TrapSentinel::Negative);

            // The final epoch represents a trap
            (@get new_epoch i64) => (TrapSentinel::NegativeOne);

            // These libcalls can't trap
            (@get ref_func pointer) => (return None);
            (@get table_get_lazy_init_func_ref pointer) => (return None);
            (@get get_interned_func_ref pointer) => (return None);
            (@get intern_func_ref_for_gc_heap i64) => (return None);
            (@get is_subtype i32) => (return None);

            // Bool-returning functions use `false` as an indicator of a trap.
            (@get $name:ident bool) => (TrapSentinel::Falsy);

            (@get $name:ident $ret:ident) => (
                compile_error!(concat!("no trap sentinel registered for ", stringify!($name)))
            )
        }

        foreach_builtin_function!(trap_sentinel)
    }
}