wasmtime_environ/builtin.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/// Helper macro to iterate over all builtin functions and their signatures.
#[macro_export]
macro_rules! foreach_builtin_function {
($mac:ident) => {
$mac! {
// Returns an index for wasm's `memory.grow` builtin function.
memory32_grow(vmctx: vmctx, delta: i64, index: i32) -> pointer;
// Returns an index for wasm's `table.copy` when both tables are locally
// defined.
table_copy(vmctx: vmctx, dst_index: i32, src_index: i32, dst: i64, src: i64, len: i64) -> bool;
// Returns an index for wasm's `table.init`.
table_init(vmctx: vmctx, table: i32, elem: i32, dst: i64, src: i64, len: i64) -> bool;
// Returns an index for wasm's `elem.drop`.
elem_drop(vmctx: vmctx, elem: i32);
// Returns an index for wasm's `memory.copy`
memory_copy(vmctx: vmctx, dst_index: i32, dst: i64, src_index: i32, src: i64, len: i64) -> bool;
// Returns an index for wasm's `memory.fill` instruction.
memory_fill(vmctx: vmctx, memory: i32, dst: i64, val: i32, len: i64) -> bool;
// Returns an index for wasm's `memory.init` instruction.
memory_init(vmctx: vmctx, memory: i32, data: i32, dst: i64, src: i32, len: i32) -> bool;
// Returns a value for wasm's `ref.func` instruction.
ref_func(vmctx: vmctx, func: i32) -> pointer;
// Returns an index for wasm's `data.drop` instruction.
data_drop(vmctx: vmctx, data: i32);
// Returns a table entry after lazily initializing it.
table_get_lazy_init_func_ref(vmctx: vmctx, table: i32, index: i64) -> pointer;
// Returns an index for Wasm's `table.grow` instruction for `funcref`s.
table_grow_func_ref(vmctx: vmctx, table: i32, delta: i64, init: pointer) -> pointer;
// Returns an index for Wasm's `table.fill` instruction for `funcref`s.
table_fill_func_ref(vmctx: vmctx, table: i32, dst: i64, val: pointer, len: i64) -> bool;
// Returns an index for wasm's `memory.atomic.notify` instruction.
#[cfg(feature = "threads")]
memory_atomic_notify(vmctx: vmctx, memory: i32, addr: i64, count: i32) -> i64;
// Returns an index for wasm's `memory.atomic.wait32` instruction.
#[cfg(feature = "threads")]
memory_atomic_wait32(vmctx: vmctx, memory: i32, addr: i64, expected: i32, timeout: i64) -> i64;
// Returns an index for wasm's `memory.atomic.wait64` instruction.
#[cfg(feature = "threads")]
memory_atomic_wait64(vmctx: vmctx, memory: i32, addr: i64, expected: i64, timeout: i64) -> i64;
// Invoked when fuel has run out while executing a function.
out_of_gas(vmctx: vmctx) -> bool;
// Invoked when we reach a new epoch.
new_epoch(vmctx: vmctx) -> i64;
// Invoked before malloc returns.
#[cfg(feature = "wmemcheck")]
check_malloc(vmctx: vmctx, addr: i32, len: i32) -> bool;
// Invoked before the free returns.
#[cfg(feature = "wmemcheck")]
check_free(vmctx: vmctx, addr: i32) -> bool;
// Invoked before a load is executed.
#[cfg(feature = "wmemcheck")]
check_load(vmctx: vmctx, num_bytes: i32, addr: i32, offset: i32) -> bool;
// Invoked before a store is executed.
#[cfg(feature = "wmemcheck")]
check_store(vmctx: vmctx, num_bytes: i32, addr: i32, offset: i32) -> bool;
// Invoked after malloc is called.
#[cfg(feature = "wmemcheck")]
malloc_start(vmctx: vmctx);
// Invoked after free is called.
#[cfg(feature = "wmemcheck")]
free_start(vmctx: vmctx);
// Invoked when wasm stack pointer is updated.
#[cfg(feature = "wmemcheck")]
update_stack_pointer(vmctx: vmctx, value: i32);
// Invoked before memory.grow is called.
#[cfg(feature = "wmemcheck")]
update_mem_size(vmctx: vmctx, num_bytes: i32);
// Drop a non-stack GC reference (eg an overwritten table entry)
// once it will no longer be used again. (Note: `val` is not of type
// `reference` because it needn't appear in any stack maps, as it
// must not be live after this call.)
#[cfg(feature = "gc-drc")]
drop_gc_ref(vmctx: vmctx, val: i32);
// Do a GC, treating the optional `root` as a GC root and returning
// the updated `root` (so that, in the case of moving collectors,
// callers have a valid version of `root` again).
#[cfg(feature = "gc-drc")]
gc(vmctx: vmctx, root: i32) -> i64;
// Allocate a new, uninitialized GC object and return a reference to
// it.
#[cfg(feature = "gc-drc")]
gc_alloc_raw(
vmctx: vmctx,
kind: i32,
module_interned_type_index: i32,
size: i32,
align: i32
) -> i64;
// Intern a `funcref` into the GC heap, returning its
// `FuncRefTableId`.
//
// This libcall may not GC.
#[cfg(feature = "gc")]
intern_func_ref_for_gc_heap(
vmctx: vmctx,
func_ref: pointer
) -> i64;
// Get the raw `VMFuncRef` pointer associated with a
// `FuncRefTableId` from an earlier `intern_func_ref_for_gc_heap`
// call.
//
// This libcall may not GC.
//
// Passes in the `ModuleInternedTypeIndex` of the funcref's expected
// type, or `ModuleInternedTypeIndex::reserved_value()` if we are
// getting the function reference as an untyped `funcref` rather
// than a typed `(ref $ty)`.
//
// TODO: We will want to eventually expose the table directly to
// Wasm code, so that it doesn't need to make a libcall to go from
// id to `VMFuncRef`. That will be a little tricky: it will also
// require updating the pointer to the slab in the `VMContext` (or
// `VMRuntimeLimits` or wherever we put it) when the slab is
// resized.
#[cfg(feature = "gc")]
get_interned_func_ref(
vmctx: vmctx,
func_ref_id: i32,
module_interned_type_index: i32
) -> pointer;
// Builtin implementation of the `array.new_data` instruction.
#[cfg(feature = "gc")]
array_new_data(
vmctx: vmctx,
array_interned_type_index: i32,
data_index: i32,
data_offset: i32,
len: i32
) -> i64;
// Builtin implementation of the `array.new_elem` instruction.
#[cfg(feature = "gc")]
array_new_elem(
vmctx: vmctx,
array_interned_type_index: i32,
elem_index: i32,
elem_offset: i32,
len: i32
) -> i64;
// Builtin implementation of the `array.copy` instruction.
#[cfg(feature = "gc")]
array_copy(
vmctx: vmctx,
dst_array: i32,
dst_index: i32,
src_array: i32,
src_index: i32,
len: i32
) -> bool;
// Builtin implementation of the `array.init_data` instruction.
#[cfg(feature = "gc")]
array_init_data(
vmctx: vmctx,
array_interned_type_index: i32,
array: i32,
dst_index: i32,
data_index: i32,
data_offset: i32,
len: i32
) -> bool;
// Builtin implementation of the `array.init_elem` instruction.
#[cfg(feature = "gc")]
array_init_elem(
vmctx: vmctx,
array_interned_type_index: i32,
array: i32,
dst: i32,
elem_index: i32,
src: i32,
len: i32
) -> bool;
// Returns whether `actual_engine_type` is a subtype of
// `expected_engine_type`.
#[cfg(feature = "gc")]
is_subtype(
vmctx: vmctx,
actual_engine_type: i32,
expected_engine_type: i32
) -> i32;
// Returns an index for Wasm's `table.grow` instruction for GC references.
#[cfg(feature = "gc")]
table_grow_gc_ref(vmctx: vmctx, table: i32, delta: i64, init: i32) -> pointer;
// Returns an index for Wasm's `table.fill` instruction for GC references.
#[cfg(feature = "gc")]
table_fill_gc_ref(vmctx: vmctx, table: i32, dst: i64, val: i32, len: i64) -> bool;
// Raises an unconditional trap with the specified code.
//
// This is used when signals-based-traps are disabled for backends
// when an illegal instruction can't be executed for example.
trap(vmctx: vmctx, code: u8);
// Raises an unconditional trap where the trap information must have
// been previously filled in.
raise(vmctx: vmctx);
}
};
}
/// Helper macro to define a builtin type such as `BuiltinFunctionIndex` and
/// `ComponentBuiltinFunctionIndex` using the iterator macro, e.g.
/// `foreach_builtin_function`, as the way to generate accessor methods.
macro_rules! declare_builtin_index {
($index_name:ident, $iter:ident) => {
/// An index type for builtin functions.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $index_name(u32);
impl $index_name {
/// Create a new builtin from its raw index
pub const fn from_u32(i: u32) -> Self {
assert!(i < Self::len());
Self(i)
}
/// Return the index as an u32 number.
pub const fn index(&self) -> u32 {
self.0
}
$iter!(declare_builtin_index_constructors);
}
};
}
/// Helper macro used by the above macro.
macro_rules! declare_builtin_index_constructors {
(
$(
$( #[$attr:meta] )*
$name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
)*
) => {
declare_builtin_index_constructors!(
@indices;
0;
$( $( #[$attr] )* $name; )*
);
/// Returns a symbol name for this builtin.
pub fn name(&self) -> &'static str {
$(
$( #[$attr] )*
if *self == Self::$name() {
return stringify!($name);
}
)*
unreachable!()
}
};
// Base case: no more indices to declare, so define the total number of
// function indices.
(
@indices;
$len:expr;
) => {
/// Returns the total number of builtin functions.
pub const fn len() -> u32 {
$len
}
};
// Recursive case: declare the next index, and then keep declaring the rest of
// the indices.
(
@indices;
$index:expr;
$( #[$this_attr:meta] )*
$this_name:ident;
$(
$( #[$rest_attr:meta] )*
$rest_name:ident;
)*
) => {
$( #[$this_attr] )*
#[allow(missing_docs, reason = "macro-generated")]
pub const fn $this_name() -> Self {
Self($index)
}
declare_builtin_index_constructors!(
@indices;
($index + 1);
$( $( #[$rest_attr] )* $rest_name; )*
);
}
}
// Define `struct BuiltinFunctionIndex`
declare_builtin_index!(BuiltinFunctionIndex, foreach_builtin_function);
/// Return value of [`BuiltinFunctionIndex::trap_sentinel`].
pub enum TrapSentinel {
/// A falsy or zero value indicates a trap.
Falsy,
/// The value `-2` indicates a trap (used for growth-related builtins).
NegativeTwo,
/// The value `-1` indicates a trap .
NegativeOne,
/// Any negative value indicates a trap.
Negative,
}
impl BuiltinFunctionIndex {
/// Describes the return value of this builtin and what represents a trap.
///
/// Libcalls don't raise traps themselves and instead delegate to compilers
/// to do so. This means that some return values of libcalls indicate a trap
/// is happening and this is represented with sentinel values. This function
/// returns the description of the sentinel value which indicates a trap, if
/// any. If `None` is returned from this function then this builtin cannot
/// generate a trap.
#[allow(unreachable_code, unused_macro_rules, reason = "macro-generated code")]
pub fn trap_sentinel(&self) -> Option<TrapSentinel> {
macro_rules! trap_sentinel {
(
$(
$( #[$attr:meta] )*
$name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
)*
) => {{
$(
$(#[$attr])*
if *self == BuiltinFunctionIndex::$name() {
let mut _ret = None;
$(_ret = Some(trap_sentinel!(@get $name $result));)?
return _ret;
}
)*
None
}};
// Growth-related functions return -2 as a sentinel.
(@get memory32_grow pointer) => (TrapSentinel::NegativeTwo);
(@get table_grow_func_ref pointer) => (TrapSentinel::NegativeTwo);
(@get table_grow_gc_ref pointer) => (TrapSentinel::NegativeTwo);
// Atomics-related functions return a negative value indicating trap
// indicate a trap.
(@get memory_atomic_notify i64) => (TrapSentinel::Negative);
(@get memory_atomic_wait32 i64) => (TrapSentinel::Negative);
(@get memory_atomic_wait64 i64) => (TrapSentinel::Negative);
// GC-related functions return a 64-bit value which is negative to
// indicate a trap.
(@get gc i64) => (TrapSentinel::Negative);
(@get gc_alloc_raw i64) => (TrapSentinel::Negative);
(@get array_new_data i64) => (TrapSentinel::Negative);
(@get array_new_elem i64) => (TrapSentinel::Negative);
// The final epoch represents a trap
(@get new_epoch i64) => (TrapSentinel::NegativeOne);
// These libcalls can't trap
(@get ref_func pointer) => (return None);
(@get table_get_lazy_init_func_ref pointer) => (return None);
(@get get_interned_func_ref pointer) => (return None);
(@get intern_func_ref_for_gc_heap i64) => (return None);
(@get is_subtype i32) => (return None);
// Bool-returning functions use `false` as an indicator of a trap.
(@get $name:ident bool) => (TrapSentinel::Falsy);
(@get $name:ident $ret:ident) => (
compile_error!(concat!("no trap sentinel registered for ", stringify!($name)))
)
}
foreach_builtin_function!(trap_sentinel)
}
}