wasmtime/runtime/component/func.rs
1use crate::component::instance::Instance;
2use crate::component::matching::InstanceType;
3use crate::component::storage::storage_as_slice;
4use crate::component::types::ComponentFunc;
5use crate::component::values::Val;
6use crate::prelude::*;
7use crate::runtime::vm::component::{ComponentInstance, InstanceFlags, ResourceTables};
8use crate::runtime::vm::{Export, VMFuncRef};
9use crate::store::StoreOpaque;
10use crate::{AsContext, AsContextMut, StoreContextMut, ValRaw};
11use anyhow::Context as _;
12use core::mem::{self, MaybeUninit};
13use core::ptr::NonNull;
14use wasmtime_environ::component::{
15 CanonicalOptions, ExportIndex, InterfaceType, MAX_FLAT_PARAMS, MAX_FLAT_RESULTS, OptionsIndex,
16 TypeFuncIndex, TypeTuple,
17};
18
19#[cfg(feature = "component-model-async")]
20use crate::component::concurrent::{self, AsAccessor, PreparedCall};
21
22mod host;
23mod options;
24mod typed;
25pub use self::host::*;
26pub use self::options::*;
27pub use self::typed::*;
28
29/// A WebAssembly component function which can be called.
30///
31/// This type is the dual of [`wasmtime::Func`](crate::Func) for component
32/// functions. An instance of [`Func`] represents a component function from a
33/// component [`Instance`](crate::component::Instance). Like with
34/// [`wasmtime::Func`](crate::Func) it's possible to call functions either
35/// synchronously or asynchronously and either typed or untyped.
36#[derive(Copy, Clone, Debug)]
37#[repr(C)] // here for the C API.
38pub struct Func {
39 instance: Instance,
40 index: ExportIndex,
41}
42
43// Double-check that the C representation in `component/instance.h` matches our
44// in-Rust representation here in terms of size/alignment/etc.
45const _: () = {
46 #[repr(C)]
47 struct T(u64, u32);
48 #[repr(C)]
49 struct C(T, u32);
50 assert!(core::mem::size_of::<C>() == core::mem::size_of::<Func>());
51 assert!(core::mem::align_of::<C>() == core::mem::align_of::<Func>());
52 assert!(core::mem::offset_of!(Func, instance) == 0);
53};
54
55impl Func {
56 pub(crate) fn from_lifted_func(instance: Instance, index: ExportIndex) -> Func {
57 Func { instance, index }
58 }
59
60 /// Attempt to cast this [`Func`] to a statically typed [`TypedFunc`] with
61 /// the provided `Params` and `Return`.
62 ///
63 /// This function will perform a type-check at runtime that the [`Func`]
64 /// takes `Params` as parameters and returns `Return`. If the type-check
65 /// passes then a [`TypedFunc`] will be returned which can be used to
66 /// invoke the function in an efficient, statically-typed, and ergonomic
67 /// manner.
68 ///
69 /// The `Params` type parameter here is a tuple of the parameters to the
70 /// function. A function which takes no arguments should use `()`, a
71 /// function with one argument should use `(T,)`, etc. Note that all
72 /// `Params` must also implement the [`Lower`] trait since they're going
73 /// into wasm.
74 ///
75 /// The `Return` type parameter is the return value of this function. A
76 /// return value of `()` means that there's no return (similar to a Rust
77 /// unit return) and otherwise a type `T` can be specified. Note that the
78 /// `Return` must also implement the [`Lift`] trait since it's coming from
79 /// wasm.
80 ///
81 /// Types specified here must implement the [`ComponentType`] trait. This
82 /// trait is implemented for built-in types to Rust such as integer
83 /// primitives, floats, `Option<T>`, `Result<T, E>`, strings, `Vec<T>`, and
84 /// more. As parameters you'll be passing native Rust types.
85 ///
86 /// See the documentation for [`ComponentType`] for more information about
87 /// supported types.
88 ///
89 /// # Errors
90 ///
91 /// If the function does not actually take `Params` as its parameters or
92 /// return `Return` then an error will be returned.
93 ///
94 /// # Panics
95 ///
96 /// This function will panic if `self` is not owned by the `store`
97 /// specified.
98 ///
99 /// # Examples
100 ///
101 /// Calling a function which takes no parameters and has no return value:
102 ///
103 /// ```
104 /// # use wasmtime::component::Func;
105 /// # use wasmtime::Store;
106 /// # fn foo(func: &Func, store: &mut Store<()>) -> anyhow::Result<()> {
107 /// let typed = func.typed::<(), ()>(&store)?;
108 /// typed.call(store, ())?;
109 /// # Ok(())
110 /// # }
111 /// ```
112 ///
113 /// Calling a function which takes one string parameter and returns a
114 /// string:
115 ///
116 /// ```
117 /// # use wasmtime::component::Func;
118 /// # use wasmtime::Store;
119 /// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
120 /// let typed = func.typed::<(&str,), (String,)>(&store)?;
121 /// let ret = typed.call(&mut store, ("Hello, ",))?.0;
122 /// println!("returned string was: {}", ret);
123 /// # Ok(())
124 /// # }
125 /// ```
126 ///
127 /// Calling a function which takes multiple parameters and returns a boolean:
128 ///
129 /// ```
130 /// # use wasmtime::component::Func;
131 /// # use wasmtime::Store;
132 /// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
133 /// let typed = func.typed::<(u32, Option<&str>, &[u8]), (bool,)>(&store)?;
134 /// let ok: bool = typed.call(&mut store, (1, Some("hello"), b"bytes!"))?.0;
135 /// println!("return value was: {ok}");
136 /// # Ok(())
137 /// # }
138 /// ```
139 pub fn typed<Params, Return>(&self, store: impl AsContext) -> Result<TypedFunc<Params, Return>>
140 where
141 Params: ComponentNamedList + Lower,
142 Return: ComponentNamedList + Lift,
143 {
144 self._typed(store.as_context().0, None)
145 }
146
147 pub(crate) fn _typed<Params, Return>(
148 &self,
149 store: &StoreOpaque,
150 instance: Option<&ComponentInstance>,
151 ) -> Result<TypedFunc<Params, Return>>
152 where
153 Params: ComponentNamedList + Lower,
154 Return: ComponentNamedList + Lift,
155 {
156 self.typecheck::<Params, Return>(store, instance)?;
157 unsafe { Ok(TypedFunc::new_unchecked(*self)) }
158 }
159
160 fn typecheck<Params, Return>(
161 &self,
162 store: &StoreOpaque,
163 instance: Option<&ComponentInstance>,
164 ) -> Result<()>
165 where
166 Params: ComponentNamedList + Lower,
167 Return: ComponentNamedList + Lift,
168 {
169 let cx = InstanceType::new(instance.unwrap_or_else(|| self.instance.id().get(store)));
170 let ty = &cx.types[self.ty_index(store)];
171
172 Params::typecheck(&InterfaceType::Tuple(ty.params), &cx)
173 .context("type mismatch with parameters")?;
174 Return::typecheck(&InterfaceType::Tuple(ty.results), &cx)
175 .context("type mismatch with results")?;
176
177 Ok(())
178 }
179
180 /// Get the type of this function.
181 pub fn ty(&self, store: impl AsContext) -> ComponentFunc {
182 self.ty_(store.as_context().0)
183 }
184
185 fn ty_(&self, store: &StoreOpaque) -> ComponentFunc {
186 let cx = InstanceType::new(self.instance.id().get(store));
187 let ty = self.ty_index(store);
188 ComponentFunc::from(ty, &cx)
189 }
190
191 fn ty_index(&self, store: &StoreOpaque) -> TypeFuncIndex {
192 let instance = self.instance.id().get(store);
193 let (ty, _, _) = instance.component().export_lifted_function(self.index);
194 ty
195 }
196
197 /// Invokes this function with the `params` given and returns the result.
198 ///
199 /// The `params` provided must match the parameters that this function takes
200 /// in terms of their types and the number of parameters. Results will be
201 /// written to the `results` slice provided if the call completes
202 /// successfully. The initial types of the values in `results` are ignored
203 /// and values are overwritten to write the result. It's required that the
204 /// size of `results` exactly matches the number of results that this
205 /// function produces.
206 ///
207 /// Note that after a function is invoked the embedder needs to invoke
208 /// [`Func::post_return`] to execute any final cleanup required by the
209 /// guest. This function call is required to either call the function again
210 /// or to call another function.
211 ///
212 /// For more detailed information see the documentation of
213 /// [`TypedFunc::call`].
214 ///
215 /// # Errors
216 ///
217 /// Returns an error in situations including but not limited to:
218 ///
219 /// * `params` is not the right size or if the values have the wrong type
220 /// * `results` is not the right size
221 /// * A trap occurs while executing the function
222 /// * The function calls a host function which returns an error
223 ///
224 /// See [`TypedFunc::call`] for more information in addition to
225 /// [`wasmtime::Func::call`](crate::Func::call).
226 ///
227 /// # Panics
228 ///
229 /// Panics if this is called on a function in an asynchronous store. This
230 /// only works with functions defined within a synchronous store. Also
231 /// panics if `store` does not own this function.
232 pub fn call(
233 &self,
234 mut store: impl AsContextMut,
235 params: &[Val],
236 results: &mut [Val],
237 ) -> Result<()> {
238 let mut store = store.as_context_mut();
239 assert!(
240 !store.0.async_support(),
241 "must use `call_async` when async support is enabled on the config"
242 );
243 self.call_impl(&mut store.as_context_mut(), params, results)
244 }
245
246 /// Exactly like [`Self::call`] except for use on async stores.
247 ///
248 /// Note that after this [`Func::post_return_async`] will be used instead of
249 /// the synchronous version at [`Func::post_return`].
250 ///
251 /// # Panics
252 ///
253 /// Panics if this is called on a function in a synchronous store. This
254 /// only works with functions defined within an asynchronous store. Also
255 /// panics if `store` does not own this function.
256 #[cfg(feature = "async")]
257 pub async fn call_async(
258 &self,
259 mut store: impl AsContextMut<Data: Send>,
260 params: &[Val],
261 results: &mut [Val],
262 ) -> Result<()> {
263 let store = store.as_context_mut();
264
265 #[cfg(feature = "component-model-async")]
266 {
267 store
268 .run_concurrent_trap_on_idle(async |store| {
269 self.call_concurrent_dynamic(store, params, results, false)
270 .await
271 .map(drop)
272 })
273 .await?
274 }
275 #[cfg(not(feature = "component-model-async"))]
276 {
277 assert!(
278 store.0.async_support(),
279 "cannot use `call_async` without enabling async support in the config"
280 );
281 let mut store = store;
282 store
283 .on_fiber(|store| self.call_impl(store, params, results))
284 .await?
285 }
286 }
287
288 fn check_params_results<T>(
289 &self,
290 store: StoreContextMut<T>,
291 params: &[Val],
292 results: &mut [Val],
293 ) -> Result<()> {
294 let ty = self.ty(&store);
295 if ty.params().len() != params.len() {
296 bail!(
297 "expected {} argument(s), got {}",
298 ty.params().len(),
299 params.len(),
300 );
301 }
302
303 if ty.results().len() != results.len() {
304 bail!(
305 "expected {} result(s), got {}",
306 ty.results().len(),
307 results.len(),
308 );
309 }
310
311 Ok(())
312 }
313
314 /// Start a concurrent call to this function.
315 ///
316 /// Unlike [`Self::call`] and [`Self::call_async`] (both of which require
317 /// exclusive access to the store until the completion of the call), calls
318 /// made using this method may run concurrently with other calls to the same
319 /// instance. In addition, the runtime will call the `post-return` function
320 /// (if any) automatically when the guest task completes -- no need to
321 /// explicitly call `Func::post_return` afterward.
322 ///
323 /// This returns a [`TaskExit`] representing the completion of the guest
324 /// task and any transitive subtasks it might create.
325 ///
326 /// # Progress
327 ///
328 /// For the wasm task being created in `call_concurrent` to make progress it
329 /// must be run within the scope of [`run_concurrent`]. If there are no
330 /// active calls to [`run_concurrent`] then the wasm task will appear as
331 /// stalled. This is typically not a concern as an [`Accessor`] is bound
332 /// by default to a scope of [`run_concurrent`].
333 ///
334 /// One situation in which this can arise, for example, is that if a
335 /// [`run_concurrent`] computation finishes its async closure before all
336 /// wasm tasks have completed, then there will be no scope of
337 /// [`run_concurrent`] anywhere. In this situation the wasm tasks that have
338 /// not yet completed will not make progress until [`run_concurrent`] is
339 /// called again.
340 ///
341 /// Embedders will need to ensure that this future is `await`'d within the
342 /// scope of [`run_concurrent`] to ensure that the value can be produced
343 /// during the `await` call.
344 ///
345 /// # Cancellation
346 ///
347 /// Cancelling an async task created via `call_concurrent`, at this time, is
348 /// only possible by dropping the store that the computation runs within.
349 /// With [#11833] implemented then it will be possible to request
350 /// cancellation of a task, but that is not yet implemented. Hard-cancelling
351 /// a task will only ever be possible by dropping the entire store and it is
352 /// not possible to remove just one task from a store.
353 ///
354 /// This async function behaves more like a "spawn" than a normal Rust async
355 /// function. When this function is invoked then metadata for the function
356 /// call is recorded in the store connected to the `accessor` argument and
357 /// the wasm invocation is from then on connected to the store. If the
358 /// future created by this function is dropped it does not cancel the
359 /// in-progress execution of the wasm task. Dropping the future
360 /// relinquishes the host's ability to learn about the result of the task
361 /// but the task will still progress and invoke callbacks and such until
362 /// completion.
363 ///
364 /// [`run_concurrent`]: crate::Store::run_concurrent
365 /// [#11833]: https://github.com/bytecodealliance/wasmtime/issues/11833
366 /// [`Accessor`]: crate::component::Accessor
367 ///
368 /// # Panics
369 ///
370 /// Panics if the store that the [`Accessor`] is derived from does not own
371 /// this function.
372 #[cfg(feature = "component-model-async")]
373 pub async fn call_concurrent(
374 self,
375 accessor: impl AsAccessor<Data: Send>,
376 params: &[Val],
377 results: &mut [Val],
378 ) -> Result<TaskExit> {
379 self.call_concurrent_dynamic(accessor, params, results, true)
380 .await
381 }
382
383 /// Internal helper function for `call_async` and `call_concurrent`.
384 #[cfg(feature = "component-model-async")]
385 async fn call_concurrent_dynamic(
386 self,
387 accessor: impl AsAccessor<Data: Send>,
388 params: &[Val],
389 results: &mut [Val],
390 call_post_return_automatically: bool,
391 ) -> Result<TaskExit> {
392 let result = accessor.as_accessor().with(|mut store| {
393 assert!(
394 store.as_context_mut().0.async_support(),
395 "cannot use `call_concurrent` when async support is not enabled on the config"
396 );
397 self.check_params_results(store.as_context_mut(), params, results)?;
398 let prepared = self.prepare_call_dynamic(
399 store.as_context_mut(),
400 params.to_vec(),
401 call_post_return_automatically,
402 )?;
403 concurrent::queue_call(store.as_context_mut(), prepared)
404 })?;
405
406 let (run_results, rx) = result.await?;
407 assert_eq!(run_results.len(), results.len());
408 for (result, slot) in run_results.into_iter().zip(results) {
409 *slot = result;
410 }
411 Ok(TaskExit(rx))
412 }
413
414 /// Calls `concurrent::prepare_call` with monomorphized functions for
415 /// lowering the parameters and lifting the result.
416 #[cfg(feature = "component-model-async")]
417 fn prepare_call_dynamic<'a, T: Send + 'static>(
418 self,
419 mut store: StoreContextMut<'a, T>,
420 params: Vec<Val>,
421 call_post_return_automatically: bool,
422 ) -> Result<PreparedCall<Vec<Val>>> {
423 let store = store.as_context_mut();
424
425 concurrent::prepare_call(
426 store,
427 self,
428 MAX_FLAT_PARAMS,
429 false,
430 call_post_return_automatically,
431 move |func, store, params_out| {
432 func.with_lower_context(store, call_post_return_automatically, |cx, ty| {
433 Self::lower_args(cx, ¶ms, ty, params_out)
434 })
435 },
436 move |func, store, results| {
437 let max_flat = if func.abi_async(store) {
438 MAX_FLAT_PARAMS
439 } else {
440 MAX_FLAT_RESULTS
441 };
442 let results = func.with_lift_context(store, |cx, ty| {
443 Self::lift_results(cx, ty, results, max_flat)?.collect::<Result<Vec<_>>>()
444 })?;
445 Ok(Box::new(results))
446 },
447 )
448 }
449
450 fn call_impl(
451 &self,
452 mut store: impl AsContextMut,
453 params: &[Val],
454 results: &mut [Val],
455 ) -> Result<()> {
456 let mut store = store.as_context_mut();
457
458 self.check_params_results(store.as_context_mut(), params, results)?;
459
460 if self.abi_async(store.0) {
461 unreachable!(
462 "async-lifted exports should have failed validation \
463 when `component-model-async` feature disabled"
464 );
465 }
466
467 // SAFETY: the chosen representations of type parameters to `call_raw`
468 // here should be generally safe to work with:
469 //
470 // * parameters use `MaybeUninit<[MaybeUninit<ValRaw>; MAX_FLAT_PARAMS]>`
471 // which represents the maximal possible number of parameters that can
472 // be passed to lifted component functions. This is modeled with
473 // `MaybeUninit` to represent how it all starts as uninitialized and
474 // thus can't be safely read during lowering.
475 //
476 // * results are modeled as `[ValRaw; MAX_FLAT_RESULTS]` which
477 // represents the maximal size of values that can be returned. Note
478 // that if the function doesn't actually have a return value then the
479 // `ValRaw` inside the array will have undefined contents. That is
480 // safe in Rust, however, due to `ValRaw` being a `union`. The
481 // contents should dynamically not be read due to the type of the
482 // function used here matching the actual lift.
483 unsafe {
484 self.call_raw(
485 store,
486 |cx, ty, dst: &mut MaybeUninit<[MaybeUninit<ValRaw>; MAX_FLAT_PARAMS]>| {
487 // SAFETY: it's safe to assume that
488 // `MaybeUninit<array-of-maybe-uninit>` is initialized because
489 // each individual element is still considered uninitialized.
490 let dst: &mut [MaybeUninit<ValRaw>] = dst.assume_init_mut();
491 Self::lower_args(cx, params, ty, dst)
492 },
493 |cx, results_ty, src: &[ValRaw; MAX_FLAT_RESULTS]| {
494 let max_flat = MAX_FLAT_RESULTS;
495 for (result, slot) in
496 Self::lift_results(cx, results_ty, src, max_flat)?.zip(results)
497 {
498 *slot = result?;
499 }
500 Ok(())
501 },
502 )
503 }
504 }
505
506 pub(crate) fn lifted_core_func(&self, store: &mut StoreOpaque) -> NonNull<VMFuncRef> {
507 let def = {
508 let instance = self.instance.id().get(store);
509 let (_ty, def, _options) = instance.component().export_lifted_function(self.index);
510 def.clone()
511 };
512 match self.instance.lookup_vmdef(store, &def) {
513 Export::Function(f) => f.vm_func_ref(store),
514 _ => unreachable!(),
515 }
516 }
517
518 pub(crate) fn post_return_core_func(&self, store: &StoreOpaque) -> Option<NonNull<VMFuncRef>> {
519 let instance = self.instance.id().get(store);
520 let component = instance.component();
521 let (_ty, _def, options) = component.export_lifted_function(self.index);
522 let post_return = component.env_component().options[options].post_return;
523 post_return.map(|i| instance.runtime_post_return(i))
524 }
525
526 pub(crate) fn abi_async(&self, store: &StoreOpaque) -> bool {
527 let instance = self.instance.id().get(store);
528 let component = instance.component();
529 let (_ty, _def, options) = component.export_lifted_function(self.index);
530 component.env_component().options[options].async_
531 }
532
533 pub(crate) fn abi_info<'a>(
534 &self,
535 store: &'a StoreOpaque,
536 ) -> (
537 OptionsIndex,
538 InstanceFlags,
539 TypeFuncIndex,
540 &'a CanonicalOptions,
541 ) {
542 let vminstance = self.instance.id().get(store);
543 let component = vminstance.component();
544 let (ty, _def, options_index) = component.export_lifted_function(self.index);
545 let raw_options = &component.env_component().options[options_index];
546 (
547 options_index,
548 vminstance.instance_flags(raw_options.instance),
549 ty,
550 raw_options,
551 )
552 }
553
554 /// Invokes the underlying wasm function, lowering arguments and lifting the
555 /// result.
556 ///
557 /// The `lower` function and `lift` function provided here are what actually
558 /// do the lowering and lifting. The `LowerParams` and `LowerReturn` types
559 /// are what will be allocated on the stack for this function call. They
560 /// should be appropriately sized for the lowering/lifting operation
561 /// happening.
562 ///
563 /// # Safety
564 ///
565 /// The safety of this function relies on the correct definitions of the
566 /// `LowerParams` and `LowerReturn` type. They must match the type of `self`
567 /// for the params/results that are going to be produced. Additionally
568 /// these types must be representable with a sequence of `ValRaw` values.
569 unsafe fn call_raw<T, Return, LowerParams, LowerReturn>(
570 &self,
571 mut store: StoreContextMut<'_, T>,
572 lower: impl FnOnce(
573 &mut LowerContext<'_, T>,
574 InterfaceType,
575 &mut MaybeUninit<LowerParams>,
576 ) -> Result<()>,
577 lift: impl FnOnce(&mut LiftContext<'_>, InterfaceType, &LowerReturn) -> Result<Return>,
578 ) -> Result<Return>
579 where
580 LowerParams: Copy,
581 LowerReturn: Copy,
582 {
583 let export = self.lifted_core_func(store.0);
584
585 #[repr(C)]
586 union Union<Params: Copy, Return: Copy> {
587 params: Params,
588 ret: Return,
589 }
590
591 let space = &mut MaybeUninit::<Union<LowerParams, LowerReturn>>::uninit();
592
593 // Double-check the size/alignment of `space`, just in case.
594 //
595 // Note that this alone is not enough to guarantee the validity of the
596 // `unsafe` block below, but it's definitely required. In any case LLVM
597 // should be able to trivially see through these assertions and remove
598 // them in release mode.
599 let val_size = mem::size_of::<ValRaw>();
600 let val_align = mem::align_of::<ValRaw>();
601 assert!(mem::size_of_val(space) % val_size == 0);
602 assert!(mem::size_of_val(map_maybe_uninit!(space.params)) % val_size == 0);
603 assert!(mem::size_of_val(map_maybe_uninit!(space.ret)) % val_size == 0);
604 assert!(mem::align_of_val(space) == val_align);
605 assert!(mem::align_of_val(map_maybe_uninit!(space.params)) == val_align);
606 assert!(mem::align_of_val(map_maybe_uninit!(space.ret)) == val_align);
607
608 self.with_lower_context(store.as_context_mut(), false, |cx, ty| {
609 cx.enter_call();
610 lower(cx, ty, map_maybe_uninit!(space.params))
611 })?;
612
613 // SAFETY: We are providing the guarantee that all the inputs are valid.
614 // The various pointers passed in for the function are all valid since
615 // they're coming from our store, and the `params_and_results` should
616 // have the correct layout for the core wasm function we're calling.
617 // Note that this latter point relies on the correctness of this module
618 // and `ComponentType` implementations, hence `ComponentType` being an
619 // `unsafe` trait.
620 unsafe {
621 crate::Func::call_unchecked_raw(
622 &mut store,
623 export,
624 NonNull::new(core::ptr::slice_from_raw_parts_mut(
625 space.as_mut_ptr().cast(),
626 mem::size_of_val(space) / mem::size_of::<ValRaw>(),
627 ))
628 .unwrap(),
629 )?;
630 }
631
632 // SAFETY: We're relying on the correctness of the structure of
633 // `LowerReturn` and the type-checking performed to acquire the
634 // `TypedFunc` to make this safe. It should be the case that
635 // `LowerReturn` is the exact representation of the return value when
636 // interpreted as `[ValRaw]`, and additionally they should have the
637 // correct types for the function we just called (which filled in the
638 // return values).
639 let ret: &LowerReturn = unsafe { map_maybe_uninit!(space.ret).assume_init_ref() };
640
641 // Lift the result into the host while managing post-return state
642 // here as well.
643 //
644 // After a successful lift the return value of the function, which
645 // is currently required to be 0 or 1 values according to the
646 // canonical ABI, is saved within the `Store`'s `FuncData`. This'll
647 // later get used in post-return.
648 // flags.set_needs_post_return(true);
649 let val = self.with_lift_context(store.0, |cx, ty| lift(cx, ty, ret))?;
650
651 // SAFETY: it's a contract of this function that `LowerReturn` is an
652 // appropriate representation of the result of this function.
653 let ret_slice = unsafe { storage_as_slice(ret) };
654
655 self.instance.id().get_mut(store.0).post_return_arg_set(
656 self.index,
657 match ret_slice.len() {
658 0 => ValRaw::i32(0),
659 1 => ret_slice[0],
660 _ => unreachable!(),
661 },
662 );
663 return Ok(val);
664 }
665
666 /// Invokes the `post-return` canonical ABI option, if specified, after a
667 /// [`Func::call`] has finished.
668 ///
669 /// This function is a required method call after a [`Func::call`] completes
670 /// successfully. After the embedder has finished processing the return
671 /// value then this function must be invoked.
672 ///
673 /// # Errors
674 ///
675 /// This function will return an error in the case of a WebAssembly trap
676 /// happening during the execution of the `post-return` function, if
677 /// specified.
678 ///
679 /// # Panics
680 ///
681 /// This function will panic if it's not called under the correct
682 /// conditions. This can only be called after a previous invocation of
683 /// [`Func::call`] completes successfully, and this function can only
684 /// be called for the same [`Func`] that was `call`'d.
685 ///
686 /// If this function is called when [`Func::call`] was not previously
687 /// called, then it will panic. If a different [`Func`] for the same
688 /// component instance was invoked then this function will also panic
689 /// because the `post-return` needs to happen for the other function.
690 ///
691 /// Panics if this is called on a function in an asynchronous store.
692 /// This only works with functions defined within a synchronous store.
693 #[inline]
694 pub fn post_return(&self, mut store: impl AsContextMut) -> Result<()> {
695 let store = store.as_context_mut();
696 assert!(
697 !store.0.async_support(),
698 "must use `post_return_async` when async support is enabled on the config"
699 );
700 self.post_return_impl(store)
701 }
702
703 /// Exactly like [`Self::post_return`] except for use on async stores.
704 ///
705 /// # Panics
706 ///
707 /// Panics if this is called on a function in a synchronous store. This
708 /// only works with functions defined within an asynchronous store.
709 #[cfg(feature = "async")]
710 pub async fn post_return_async(&self, mut store: impl AsContextMut<Data: Send>) -> Result<()> {
711 let mut store = store.as_context_mut();
712 assert!(
713 store.0.async_support(),
714 "cannot use `post_return_async` without enabling async support in the config"
715 );
716 // Future optimization opportunity: conditionally use a fiber here since
717 // some func's post_return will not need the async context (i.e. end up
718 // calling async host functionality)
719 store.on_fiber(|store| self.post_return_impl(store)).await?
720 }
721
722 fn post_return_impl(&self, mut store: impl AsContextMut) -> Result<()> {
723 let mut store = store.as_context_mut();
724
725 let index = self.index;
726 let vminstance = self.instance.id().get(store.0);
727 let component = vminstance.component();
728 let (_ty, _def, options) = component.export_lifted_function(index);
729 let post_return = self.post_return_core_func(store.0);
730 let mut flags =
731 vminstance.instance_flags(component.env_component().options[options].instance);
732 let mut instance = self.instance.id().get_mut(store.0);
733 let post_return_arg = instance.as_mut().post_return_arg_take(index);
734
735 unsafe {
736 // First assert that the instance is in a "needs post return" state.
737 // This will ensure that the previous action on the instance was a
738 // function call above. This flag is only set after a component
739 // function returns so this also can't be called (as expected)
740 // during a host import for example.
741 //
742 // Note, though, that this assert is not sufficient because it just
743 // means some function on this instance needs its post-return
744 // called. We need a precise post-return for a particular function
745 // which is the second assert here (the `.expect`). That will assert
746 // that this function itself needs to have its post-return called.
747 //
748 // The theory at least is that these two asserts ensure component
749 // model semantics are upheld where the host properly calls
750 // `post_return` on the right function despite the call being a
751 // separate step in the API.
752 assert!(
753 flags.needs_post_return(),
754 "post_return can only be called after a function has previously been called",
755 );
756 let post_return_arg = post_return_arg.expect("calling post_return on wrong function");
757
758 // This is a sanity-check assert which shouldn't ever trip.
759 assert!(!flags.may_enter());
760
761 // Unset the "needs post return" flag now that post-return is being
762 // processed. This will cause future invocations of this method to
763 // panic, even if the function call below traps.
764 flags.set_needs_post_return(false);
765
766 // Post return functions are forbidden from calling imports or
767 // intrinsics.
768 flags.set_may_leave(false);
769
770 // If the function actually had a `post-return` configured in its
771 // canonical options that's executed here.
772 //
773 // Note that if this traps (returns an error) this function
774 // intentionally leaves the instance in a "poisoned" state where it
775 // can no longer be entered because `may_enter` is `false`.
776 if let Some(func) = post_return {
777 crate::Func::call_unchecked_raw(
778 &mut store,
779 func,
780 NonNull::new(core::ptr::slice_from_raw_parts(&post_return_arg, 1).cast_mut())
781 .unwrap(),
782 )?;
783 }
784
785 // And finally if everything completed successfully then the "may
786 // enter" and "may leave" flags are set to `true` again here which
787 // enables further use of the component.
788 flags.set_may_enter(true);
789 flags.set_may_leave(true);
790
791 let (calls, host_table, _, instance) = store
792 .0
793 .component_resource_state_with_instance(self.instance);
794 ResourceTables {
795 host_table: Some(host_table),
796 calls,
797 guest: Some(instance.guest_tables()),
798 }
799 .exit_call()?;
800 }
801 Ok(())
802 }
803
804 fn lower_args<T>(
805 cx: &mut LowerContext<'_, T>,
806 params: &[Val],
807 params_ty: InterfaceType,
808 dst: &mut [MaybeUninit<ValRaw>],
809 ) -> Result<()> {
810 let params_ty = match params_ty {
811 InterfaceType::Tuple(i) => &cx.types[i],
812 _ => unreachable!(),
813 };
814 if params_ty.abi.flat_count(MAX_FLAT_PARAMS).is_some() {
815 let dst = &mut dst.iter_mut();
816
817 params
818 .iter()
819 .zip(params_ty.types.iter())
820 .try_for_each(|(param, ty)| param.lower(cx, *ty, dst))
821 } else {
822 Self::store_args(cx, ¶ms_ty, params, dst)
823 }
824 }
825
826 fn store_args<T>(
827 cx: &mut LowerContext<'_, T>,
828 params_ty: &TypeTuple,
829 args: &[Val],
830 dst: &mut [MaybeUninit<ValRaw>],
831 ) -> Result<()> {
832 let size = usize::try_from(params_ty.abi.size32).unwrap();
833 let ptr = cx.realloc(0, 0, params_ty.abi.align32, size)?;
834 let mut offset = ptr;
835 for (ty, arg) in params_ty.types.iter().zip(args) {
836 let abi = cx.types.canonical_abi(ty);
837 arg.store(cx, *ty, abi.next_field32_size(&mut offset))?;
838 }
839
840 dst[0].write(ValRaw::i64(ptr as i64));
841
842 Ok(())
843 }
844
845 fn lift_results<'a, 'b>(
846 cx: &'a mut LiftContext<'b>,
847 results_ty: InterfaceType,
848 src: &'a [ValRaw],
849 max_flat: usize,
850 ) -> Result<Box<dyn Iterator<Item = Result<Val>> + 'a>> {
851 let results_ty = match results_ty {
852 InterfaceType::Tuple(i) => &cx.types[i],
853 _ => unreachable!(),
854 };
855 if results_ty.abi.flat_count(max_flat).is_some() {
856 let mut flat = src.iter();
857 Ok(Box::new(
858 results_ty
859 .types
860 .iter()
861 .map(move |ty| Val::lift(cx, *ty, &mut flat)),
862 ))
863 } else {
864 let iter = Self::load_results(cx, results_ty, &mut src.iter())?;
865 Ok(Box::new(iter))
866 }
867 }
868
869 fn load_results<'a, 'b>(
870 cx: &'a mut LiftContext<'b>,
871 results_ty: &'a TypeTuple,
872 src: &mut core::slice::Iter<'_, ValRaw>,
873 ) -> Result<impl Iterator<Item = Result<Val>> + use<'a, 'b>> {
874 // FIXME(#4311): needs to read an i64 for memory64
875 let ptr = usize::try_from(src.next().unwrap().get_u32())?;
876 if ptr % usize::try_from(results_ty.abi.align32)? != 0 {
877 bail!("return pointer not aligned");
878 }
879
880 let bytes = cx
881 .memory()
882 .get(ptr..)
883 .and_then(|b| b.get(..usize::try_from(results_ty.abi.size32).unwrap()))
884 .ok_or_else(|| anyhow::anyhow!("pointer out of bounds of memory"))?;
885
886 let mut offset = 0;
887 Ok(results_ty.types.iter().map(move |ty| {
888 let abi = cx.types.canonical_abi(ty);
889 let offset = abi.next_field32_size(&mut offset);
890 Val::load(cx, *ty, &bytes[offset..][..abi.size32 as usize])
891 }))
892 }
893
894 #[cfg(feature = "component-model-async")]
895 pub(crate) fn instance(self) -> Instance {
896 self.instance
897 }
898
899 #[cfg(feature = "component-model-async")]
900 pub(crate) fn index(self) -> ExportIndex {
901 self.index
902 }
903
904 /// Creates a `LowerContext` using the configuration values of this lifted
905 /// function.
906 ///
907 /// The `lower` closure provided should perform the actual lowering and
908 /// return the result of the lowering operation which is then returned from
909 /// this function as well.
910 fn with_lower_context<T>(
911 self,
912 mut store: StoreContextMut<T>,
913 may_enter: bool,
914 lower: impl FnOnce(&mut LowerContext<T>, InterfaceType) -> Result<()>,
915 ) -> Result<()> {
916 let (options_idx, mut flags, ty, options) = self.abi_info(store.0);
917 let async_ = options.async_;
918
919 // Test the "may enter" flag which is a "lock" on this instance.
920 // This is immediately set to `false` afterwards and note that
921 // there's no on-cleanup setting this flag back to true. That's an
922 // intentional design aspect where if anything goes wrong internally
923 // from this point on the instance is considered "poisoned" and can
924 // never be entered again. The only time this flag is set to `true`
925 // again is after post-return logic has completed successfully.
926 unsafe {
927 if !flags.may_enter() {
928 bail!(crate::Trap::CannotEnterComponent);
929 }
930 flags.set_may_enter(false);
931 }
932
933 // Perform the actual lowering, where while this is running the
934 // component is forbidden from calling imports.
935 unsafe {
936 debug_assert!(flags.may_leave());
937 flags.set_may_leave(false);
938 }
939 let mut cx = LowerContext::new(store.as_context_mut(), options_idx, self.instance);
940 let param_ty = InterfaceType::Tuple(cx.types[ty].params);
941 let result = lower(&mut cx, param_ty);
942 unsafe { flags.set_may_leave(true) };
943 result?;
944
945 // If this is an async function and `may_enter == true` then we're
946 // allowed to reenter the component at this point, and otherwise flag a
947 // post-return call being required as we're about to enter wasm and
948 // afterwards need a post-return.
949 unsafe {
950 if may_enter && async_ {
951 flags.set_may_enter(true);
952 } else {
953 flags.set_needs_post_return(true);
954 }
955 }
956
957 Ok(())
958 }
959
960 /// Creates a `LiftContext` using the configuration values with this lifted
961 /// function.
962 ///
963 /// The closure `lift` provided should actually perform the lift itself and
964 /// the result of that closure is returned from this function call as well.
965 fn with_lift_context<R>(
966 self,
967 store: &mut StoreOpaque,
968 lift: impl FnOnce(&mut LiftContext, InterfaceType) -> Result<R>,
969 ) -> Result<R> {
970 let (options, _flags, ty, _) = self.abi_info(store);
971 let mut cx = LiftContext::new(store, options, self.instance);
972 let ty = InterfaceType::Tuple(cx.types[ty].results);
973 lift(&mut cx, ty)
974 }
975}
976
977/// Represents the completion of a task created using
978/// `[Typed]Func::call_concurrent`.
979///
980/// In general, a guest task may continue running after returning a value.
981/// Moreover, any given guest task may create its own subtasks before or after
982/// returning and may exit before some or all of those subtasks have finished
983/// running. In that case, the still-running subtasks will be "reparented" to
984/// the nearest surviving caller, which may be the original host call. The
985/// future returned by `TaskExit::block` will resolve once all transitive
986/// subtasks created directly or indirectly by the original call to
987/// `Instance::call_concurrent` have exited.
988#[cfg(feature = "component-model-async")]
989pub struct TaskExit(futures::channel::oneshot::Receiver<()>);
990
991#[cfg(feature = "component-model-async")]
992impl TaskExit {
993 /// Returns a future which will resolve once all transitive subtasks created
994 /// directly or indirectly by the original call to
995 /// `Instance::call_concurrent` have exited.
996 pub async fn block(self, accessor: impl AsAccessor<Data: Send>) {
997 // The current implementation makes no use of `accessor`, but future
998 // implementations might (e.g. by using a more efficient mechanism than
999 // a oneshot channel).
1000 _ = accessor;
1001
1002 // We don't care whether the sender sent us a value or was dropped
1003 // first; either one counts as a notification, so we ignore the result
1004 // once the future resolves:
1005 _ = self.0.await;
1006 }
1007}