wasmtime/runtime/component/func.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
use crate::component::instance::{Instance, InstanceData};
use crate::component::storage::storage_as_slice;
use crate::component::types::Type;
use crate::component::values::Val;
use crate::prelude::*;
use crate::runtime::vm::component::ResourceTables;
use crate::runtime::vm::{Export, ExportFunction};
use crate::store::{StoreOpaque, Stored};
use crate::{AsContext, AsContextMut, StoreContextMut, ValRaw};
use alloc::sync::Arc;
use core::mem::{self, MaybeUninit};
use core::ptr::NonNull;
use wasmtime_environ::component::{
CanonicalOptions, ComponentTypes, CoreDef, InterfaceType, RuntimeComponentInstanceIndex,
TypeFuncIndex, TypeTuple, MAX_FLAT_PARAMS, MAX_FLAT_RESULTS,
};
mod host;
mod options;
mod typed;
pub use self::host::*;
pub use self::options::*;
pub use self::typed::*;
#[repr(C)]
union ParamsAndResults<Params: Copy, Return: Copy> {
params: Params,
ret: Return,
}
/// A WebAssembly component function which can be called.
///
/// This type is the dual of [`wasmtime::Func`](crate::Func) for component
/// functions. An instance of [`Func`] represents a component function from a
/// component [`Instance`](crate::component::Instance). Like with
/// [`wasmtime::Func`](crate::Func) it's possible to call functions either
/// synchronously or asynchronously and either typed or untyped.
#[derive(Copy, Clone, Debug)]
pub struct Func(Stored<FuncData>);
#[doc(hidden)]
pub struct FuncData {
export: ExportFunction,
ty: TypeFuncIndex,
types: Arc<ComponentTypes>,
options: Options,
instance: Instance,
component_instance: RuntimeComponentInstanceIndex,
post_return: Option<ExportFunction>,
post_return_arg: Option<ValRaw>,
}
impl Func {
pub(crate) fn from_lifted_func(
store: &mut StoreOpaque,
instance: &Instance,
data: &InstanceData,
ty: TypeFuncIndex,
func: &CoreDef,
options: &CanonicalOptions,
) -> Func {
let export = match data.lookup_def(store, func) {
Export::Function(f) => f,
_ => unreachable!(),
};
let memory = options
.memory
.map(|i| NonNull::new(data.instance().runtime_memory(i)).unwrap());
let realloc = options.realloc.map(|i| data.instance().runtime_realloc(i));
let post_return = options.post_return.map(|i| {
let func_ref = data.instance().runtime_post_return(i);
ExportFunction { func_ref }
});
let component_instance = options.instance;
let options = unsafe { Options::new(store.id(), memory, realloc, options.string_encoding) };
Func(store.store_data_mut().insert(FuncData {
export,
options,
ty,
types: data.component_types().clone(),
instance: *instance,
component_instance,
post_return,
post_return_arg: None,
}))
}
/// Attempt to cast this [`Func`] to a statically typed [`TypedFunc`] with
/// the provided `Params` and `Return`.
///
/// This function will perform a type-check at runtime that the [`Func`]
/// takes `Params` as parameters and returns `Return`. If the type-check
/// passes then a [`TypedFunc`] will be returned which can be used to
/// invoke the function in an efficient, statically-typed, and ergonomic
/// manner.
///
/// The `Params` type parameter here is a tuple of the parameters to the
/// function. A function which takes no arguments should use `()`, a
/// function with one argument should use `(T,)`, etc. Note that all
/// `Params` must also implement the [`Lower`] trait since they're going
/// into wasm.
///
/// The `Return` type parameter is the return value of this function. A
/// return value of `()` means that there's no return (similar to a Rust
/// unit return) and otherwise a type `T` can be specified. Note that the
/// `Return` must also implement the [`Lift`] trait since it's coming from
/// wasm.
///
/// Types specified here must implement the [`ComponentType`] trait. This
/// trait is implemented for built-in types to Rust such as integer
/// primitives, floats, `Option<T>`, `Result<T, E>`, strings, `Vec<T>`, and
/// more. As parameters you'll be passing native Rust types.
///
/// See the documentation for [`ComponentType`] for more information about
/// supported types.
///
/// # Errors
///
/// If the function does not actually take `Params` as its parameters or
/// return `Return` then an error will be returned.
///
/// # Panics
///
/// This function will panic if `self` is not owned by the `store`
/// specified.
///
/// # Examples
///
/// Calling a function which takes no parameters and has no return value:
///
/// ```
/// # use wasmtime::component::Func;
/// # use wasmtime::Store;
/// # fn foo(func: &Func, store: &mut Store<()>) -> anyhow::Result<()> {
/// let typed = func.typed::<(), ()>(&store)?;
/// typed.call(store, ())?;
/// # Ok(())
/// # }
/// ```
///
/// Calling a function which takes one string parameter and returns a
/// string:
///
/// ```
/// # use wasmtime::component::Func;
/// # use wasmtime::Store;
/// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
/// let typed = func.typed::<(&str,), (String,)>(&store)?;
/// let ret = typed.call(&mut store, ("Hello, ",))?.0;
/// println!("returned string was: {}", ret);
/// # Ok(())
/// # }
/// ```
///
/// Calling a function which takes multiple parameters and returns a boolean:
///
/// ```
/// # use wasmtime::component::Func;
/// # use wasmtime::Store;
/// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
/// let typed = func.typed::<(u32, Option<&str>, &[u8]), (bool,)>(&store)?;
/// let ok: bool = typed.call(&mut store, (1, Some("hello"), b"bytes!"))?.0;
/// println!("return value was: {ok}");
/// # Ok(())
/// # }
/// ```
pub fn typed<Params, Return>(&self, store: impl AsContext) -> Result<TypedFunc<Params, Return>>
where
Params: ComponentNamedList + Lower,
Return: ComponentNamedList + Lift,
{
self._typed(store.as_context().0, None)
}
pub(crate) fn _typed<Params, Return>(
&self,
store: &StoreOpaque,
instance: Option<&InstanceData>,
) -> Result<TypedFunc<Params, Return>>
where
Params: ComponentNamedList + Lower,
Return: ComponentNamedList + Lift,
{
self.typecheck::<Params, Return>(store, instance)?;
unsafe { Ok(TypedFunc::new_unchecked(*self)) }
}
fn typecheck<Params, Return>(
&self,
store: &StoreOpaque,
instance: Option<&InstanceData>,
) -> Result<()>
where
Params: ComponentNamedList + Lower,
Return: ComponentNamedList + Lift,
{
let data = &store[self.0];
let cx = instance
.unwrap_or_else(|| &store[data.instance.0].as_ref().unwrap())
.ty();
let ty = &cx.types[data.ty];
Params::typecheck(&InterfaceType::Tuple(ty.params), &cx)
.context("type mismatch with parameters")?;
Return::typecheck(&InterfaceType::Tuple(ty.results), &cx)
.context("type mismatch with results")?;
Ok(())
}
/// Get the parameter names and types for this function.
pub fn params(&self, store: impl AsContext) -> Box<[(String, Type)]> {
let store = store.as_context();
let data = &store[self.0];
let instance = store[data.instance.0].as_ref().unwrap();
let func_ty = &data.types[data.ty];
data.types[func_ty.params]
.types
.iter()
.zip(&func_ty.param_names)
.map(|(ty, name)| (name.clone(), Type::from(ty, &instance.ty())))
.collect()
}
/// Get the result types for this function.
pub fn results(&self, store: impl AsContext) -> Box<[Type]> {
let store = store.as_context();
let data = &store[self.0];
let instance = store[data.instance.0].as_ref().unwrap();
data.types[data.types[data.ty].results]
.types
.iter()
.map(|ty| Type::from(ty, &instance.ty()))
.collect()
}
/// Invokes this function with the `params` given and returns the result.
///
/// The `params` provided must match the parameters that this function takes
/// in terms of their types and the number of parameters. Results will be
/// written to the `results` slice provided if the call completes
/// successfully. The initial types of the values in `results` are ignored
/// and values are overwritten to write the result. It's required that the
/// size of `results` exactly matches the number of results that this
/// function produces.
///
/// Note that after a function is invoked the embedder needs to invoke
/// [`Func::post_return`] to execute any final cleanup required by the
/// guest. This function call is required to either call the function again
/// or to call another function.
///
/// For more detailed information see the documentation of
/// [`TypedFunc::call`].
///
/// # Errors
///
/// Returns an error in situations including but not limited to:
///
/// * `params` is not the right size or if the values have the wrong type
/// * `results` is not the right size
/// * A trap occurs while executing the function
/// * The function calls a host function which returns an error
///
/// See [`TypedFunc::call`] for more information in addition to
/// [`wasmtime::Func::call`](crate::Func::call).
///
/// # Panics
///
/// Panics if this is called on a function in an asynchronous store. This
/// only works with functions defined within a synchronous store. Also
/// panics if `store` does not own this function.
pub fn call(
&self,
mut store: impl AsContextMut,
params: &[Val],
results: &mut [Val],
) -> Result<()> {
let mut store = store.as_context_mut();
assert!(
!store.0.async_support(),
"must use `call_async` when async support is enabled on the config"
);
self.call_impl(&mut store.as_context_mut(), params, results)
}
/// Exactly like [`Self::call`] except for use on async stores.
///
/// Note that after this [`Func::post_return_async`] will be used instead of
/// the synchronous version at [`Func::post_return`].
///
/// # Panics
///
/// Panics if this is called on a function in a synchronous store. This
/// only works with functions defined within an asynchronous store. Also
/// panics if `store` does not own this function.
#[cfg(feature = "async")]
pub async fn call_async<T>(
&self,
mut store: impl AsContextMut<Data = T>,
params: &[Val],
results: &mut [Val],
) -> Result<()>
where
T: Send,
{
let mut store = store.as_context_mut();
assert!(
store.0.async_support(),
"cannot use `call_async` without enabling async support in the config"
);
store
.on_fiber(|store| self.call_impl(store, params, results))
.await?
}
fn call_impl(
&self,
mut store: impl AsContextMut,
params: &[Val],
results: &mut [Val],
) -> Result<()> {
let store = &mut store.as_context_mut();
let param_tys = self.params(&store);
let result_tys = self.results(&store);
if param_tys.len() != params.len() {
bail!(
"expected {} argument(s), got {}",
param_tys.len(),
params.len()
);
}
if result_tys.len() != results.len() {
bail!(
"expected {} results(s), got {}",
result_tys.len(),
results.len()
);
}
self.call_raw(
store,
params,
|cx, params, params_ty, dst: &mut MaybeUninit<[ValRaw; MAX_FLAT_PARAMS]>| {
let params_ty = match params_ty {
InterfaceType::Tuple(i) => &cx.types[i],
_ => unreachable!(),
};
if params_ty.abi.flat_count(MAX_FLAT_PARAMS).is_some() {
let dst = &mut unsafe {
mem::transmute::<_, &mut [MaybeUninit<ValRaw>; MAX_FLAT_PARAMS]>(dst)
}
.iter_mut();
params
.iter()
.zip(params_ty.types.iter())
.try_for_each(|(param, ty)| param.lower(cx, *ty, dst))
} else {
self.store_args(cx, ¶ms_ty, params, dst)
}
},
|cx, results_ty, src: &[ValRaw; MAX_FLAT_RESULTS]| {
let results_ty = match results_ty {
InterfaceType::Tuple(i) => &cx.types[i],
_ => unreachable!(),
};
if results_ty.abi.flat_count(MAX_FLAT_RESULTS).is_some() {
let mut flat = src.iter();
for (ty, slot) in results_ty.types.iter().zip(results) {
*slot = Val::lift(cx, *ty, &mut flat)?;
}
Ok(())
} else {
Self::load_results(cx, results_ty, results, &mut src.iter())
}
},
)
}
/// Invokes the underlying wasm function, lowering arguments and lifting the
/// result.
///
/// The `lower` function and `lift` function provided here are what actually
/// do the lowering and lifting. The `LowerParams` and `LowerReturn` types
/// are what will be allocated on the stack for this function call. They
/// should be appropriately sized for the lowering/lifting operation
/// happening.
fn call_raw<T, Params: ?Sized, Return, LowerParams, LowerReturn>(
&self,
store: &mut StoreContextMut<'_, T>,
params: &Params,
lower: impl FnOnce(
&mut LowerContext<'_, T>,
&Params,
InterfaceType,
&mut MaybeUninit<LowerParams>,
) -> Result<()>,
lift: impl FnOnce(&mut LiftContext<'_>, InterfaceType, &LowerReturn) -> Result<Return>,
) -> Result<Return>
where
LowerParams: Copy,
LowerReturn: Copy,
{
let FuncData {
export,
options,
instance,
component_instance,
ty,
..
} = store.0[self.0];
let space = &mut MaybeUninit::<ParamsAndResults<LowerParams, LowerReturn>>::uninit();
// Double-check the size/alignment of `space`, just in case.
//
// Note that this alone is not enough to guarantee the validity of the
// `unsafe` block below, but it's definitely required. In any case LLVM
// should be able to trivially see through these assertions and remove
// them in release mode.
let val_size = mem::size_of::<ValRaw>();
let val_align = mem::align_of::<ValRaw>();
assert!(mem::size_of_val(space) % val_size == 0);
assert!(mem::size_of_val(map_maybe_uninit!(space.params)) % val_size == 0);
assert!(mem::size_of_val(map_maybe_uninit!(space.ret)) % val_size == 0);
assert!(mem::align_of_val(space) == val_align);
assert!(mem::align_of_val(map_maybe_uninit!(space.params)) == val_align);
assert!(mem::align_of_val(map_maybe_uninit!(space.ret)) == val_align);
let instance = store.0[instance.0].as_ref().unwrap();
let types = instance.component_types().clone();
let mut flags = instance.instance().instance_flags(component_instance);
unsafe {
// Test the "may enter" flag which is a "lock" on this instance.
// This is immediately set to `false` afterwards and note that
// there's no on-cleanup setting this flag back to true. That's an
// intentional design aspect where if anything goes wrong internally
// from this point on the instance is considered "poisoned" and can
// never be entered again. The only time this flag is set to `true`
// again is after post-return logic has completed successfully.
if !flags.may_enter() {
bail!(crate::Trap::CannotEnterComponent);
}
flags.set_may_enter(false);
debug_assert!(flags.may_leave());
flags.set_may_leave(false);
let instance_ptr = instance.instance_ptr();
let mut cx = LowerContext::new(store.as_context_mut(), &options, &types, instance_ptr);
cx.enter_call();
let result = lower(
&mut cx,
params,
InterfaceType::Tuple(types[ty].params),
map_maybe_uninit!(space.params),
);
flags.set_may_leave(true);
result?;
// This is unsafe as we are providing the guarantee that all the
// inputs are valid. The various pointers passed in for the function
// are all valid since they're coming from our store, and the
// `params_and_results` should have the correct layout for the core
// wasm function we're calling. Note that this latter point relies
// on the correctness of this module and `ComponentType`
// implementations, hence `ComponentType` being an `unsafe` trait.
crate::Func::call_unchecked_raw(
store,
export.func_ref,
NonNull::new(core::ptr::slice_from_raw_parts_mut(
space.as_mut_ptr().cast(),
mem::size_of_val(space) / mem::size_of::<ValRaw>(),
))
.unwrap(),
)?;
// Note that `.assume_init_ref()` here is unsafe but we're relying
// on the correctness of the structure of `LowerReturn` and the
// type-checking performed to acquire the `TypedFunc` to make this
// safe. It should be the case that `LowerReturn` is the exact
// representation of the return value when interpreted as
// `[ValRaw]`, and additionally they should have the correct types
// for the function we just called (which filled in the return
// values).
let ret = map_maybe_uninit!(space.ret).assume_init_ref();
// Lift the result into the host while managing post-return state
// here as well.
//
// After a successful lift the return value of the function, which
// is currently required to be 0 or 1 values according to the
// canonical ABI, is saved within the `Store`'s `FuncData`. This'll
// later get used in post-return.
flags.set_needs_post_return(true);
let val = lift(
&mut LiftContext::new(store.0, &options, &types, instance_ptr),
InterfaceType::Tuple(types[ty].results),
ret,
)?;
let ret_slice = storage_as_slice(ret);
let data = &mut store.0[self.0];
assert!(data.post_return_arg.is_none());
match ret_slice.len() {
0 => data.post_return_arg = Some(ValRaw::i32(0)),
1 => data.post_return_arg = Some(ret_slice[0]),
_ => unreachable!(),
}
return Ok(val);
}
}
/// Invokes the `post-return` canonical ABI option, if specified, after a
/// [`Func::call`] has finished.
///
/// This function is a required method call after a [`Func::call`] completes
/// successfully. After the embedder has finished processing the return
/// value then this function must be invoked.
///
/// # Errors
///
/// This function will return an error in the case of a WebAssembly trap
/// happening during the execution of the `post-return` function, if
/// specified.
///
/// # Panics
///
/// This function will panic if it's not called under the correct
/// conditions. This can only be called after a previous invocation of
/// [`Func::call`] completes successfully, and this function can only
/// be called for the same [`Func`] that was `call`'d.
///
/// If this function is called when [`Func::call`] was not previously
/// called, then it will panic. If a different [`Func`] for the same
/// component instance was invoked then this function will also panic
/// because the `post-return` needs to happen for the other function.
///
/// Panics if this is called on a function in an asynchronous store.
/// This only works with functions defined within a synchronous store.
#[inline]
pub fn post_return(&self, mut store: impl AsContextMut) -> Result<()> {
let store = store.as_context_mut();
assert!(
!store.0.async_support(),
"must use `post_return_async` when async support is enabled on the config"
);
self.post_return_impl(store)
}
/// Exactly like [`Self::post_return`] except for use on async stores.
///
/// # Panics
///
/// Panics if this is called on a function in a synchronous store. This
/// only works with functions defined within an asynchronous store.
#[cfg(feature = "async")]
pub async fn post_return_async<T: Send>(
&self,
mut store: impl AsContextMut<Data = T>,
) -> Result<()> {
let mut store = store.as_context_mut();
assert!(
store.0.async_support(),
"cannot use `call_async` without enabling async support in the config"
);
// Future optimization opportunity: conditionally use a fiber here since
// some func's post_return will not need the async context (i.e. end up
// calling async host functionality)
store.on_fiber(|store| self.post_return_impl(store)).await?
}
fn post_return_impl(&self, mut store: impl AsContextMut) -> Result<()> {
let mut store = store.as_context_mut();
let data = &mut store.0[self.0];
let instance = data.instance;
let post_return = data.post_return;
let component_instance = data.component_instance;
let post_return_arg = data.post_return_arg.take();
let instance = store.0[instance.0].as_ref().unwrap().instance_ptr();
unsafe {
let mut flags = (*instance).instance_flags(component_instance);
// First assert that the instance is in a "needs post return" state.
// This will ensure that the previous action on the instance was a
// function call above. This flag is only set after a component
// function returns so this also can't be called (as expected)
// during a host import for example.
//
// Note, though, that this assert is not sufficient because it just
// means some function on this instance needs its post-return
// called. We need a precise post-return for a particular function
// which is the second assert here (the `.expect`). That will assert
// that this function itself needs to have its post-return called.
//
// The theory at least is that these two asserts ensure component
// model semantics are upheld where the host properly calls
// `post_return` on the right function despite the call being a
// separate step in the API.
assert!(
flags.needs_post_return(),
"post_return can only be called after a function has previously been called",
);
let post_return_arg = post_return_arg.expect("calling post_return on wrong function");
// This is a sanity-check assert which shouldn't ever trip.
assert!(!flags.may_enter());
// Unset the "needs post return" flag now that post-return is being
// processed. This will cause future invocations of this method to
// panic, even if the function call below traps.
flags.set_needs_post_return(false);
// If the function actually had a `post-return` configured in its
// canonical options that's executed here.
//
// Note that if this traps (returns an error) this function
// intentionally leaves the instance in a "poisoned" state where it
// can no longer be entered because `may_enter` is `false`.
if let Some(func) = post_return {
crate::Func::call_unchecked_raw(
&mut store,
func.func_ref,
NonNull::new(core::ptr::slice_from_raw_parts(&post_return_arg, 1).cast_mut())
.unwrap(),
)?;
}
// And finally if everything completed successfully then the "may
// enter" flag is set to `true` again here which enables further use
// of the component.
flags.set_may_enter(true);
let (calls, host_table, _) = store.0.component_resource_state();
ResourceTables {
calls,
host_table: Some(host_table),
tables: Some((*instance).component_resource_tables()),
}
.exit_call()?;
}
Ok(())
}
fn store_args<T>(
&self,
cx: &mut LowerContext<'_, T>,
params_ty: &TypeTuple,
args: &[Val],
dst: &mut MaybeUninit<[ValRaw; MAX_FLAT_PARAMS]>,
) -> Result<()> {
let size = usize::try_from(params_ty.abi.size32).unwrap();
let ptr = cx.realloc(0, 0, params_ty.abi.align32, size)?;
let mut offset = ptr;
for (ty, arg) in params_ty.types.iter().zip(args) {
let abi = cx.types.canonical_abi(ty);
arg.store(cx, *ty, abi.next_field32_size(&mut offset))?;
}
map_maybe_uninit!(dst[0]).write(ValRaw::i64(ptr as i64));
Ok(())
}
fn load_results(
cx: &mut LiftContext<'_>,
results_ty: &TypeTuple,
results: &mut [Val],
src: &mut core::slice::Iter<'_, ValRaw>,
) -> Result<()> {
// FIXME(#4311): needs to read an i64 for memory64
let ptr = usize::try_from(src.next().unwrap().get_u32())?;
if ptr % usize::try_from(results_ty.abi.align32)? != 0 {
bail!("return pointer not aligned");
}
let bytes = cx
.memory()
.get(ptr..)
.and_then(|b| b.get(..usize::try_from(results_ty.abi.size32).unwrap()))
.ok_or_else(|| anyhow::anyhow!("pointer out of bounds of memory"))?;
let mut offset = 0;
for (ty, slot) in results_ty.types.iter().zip(results) {
let abi = cx.types.canonical_abi(ty);
let offset = abi.next_field32_size(&mut offset);
*slot = Val::load(cx, *ty, &bytes[offset..][..abi.size32 as usize])?;
}
Ok(())
}
}