wasmtime/runtime/component/func.rs
1use crate::component::RuntimeInstance;
2use crate::component::instance::Instance;
3use crate::component::matching::InstanceType;
4use crate::component::storage::storage_as_slice;
5use crate::component::types::ComponentFunc;
6use crate::component::values::Val;
7use crate::prelude::*;
8use crate::runtime::vm::component::{ComponentInstance, InstanceFlags, ResourceTables};
9use crate::runtime::vm::{Export, VMFuncRef};
10use crate::store::StoreOpaque;
11use crate::{AsContext, AsContextMut, StoreContextMut, ValRaw};
12use core::mem::{self, MaybeUninit};
13use core::ptr::NonNull;
14use wasmtime_environ::component::{
15 CanonicalOptions, ExportIndex, InterfaceType, MAX_FLAT_PARAMS, MAX_FLAT_RESULTS, OptionsIndex,
16 TypeFuncIndex, TypeTuple,
17};
18
19#[cfg(feature = "component-model-async")]
20use crate::component::concurrent::{self, AsAccessor, PreparedCall};
21
22mod host;
23mod options;
24mod typed;
25pub use self::host::*;
26pub use self::options::*;
27pub use self::typed::*;
28
29/// A WebAssembly component function which can be called.
30///
31/// This type is the dual of [`wasmtime::Func`](crate::Func) for component
32/// functions. An instance of [`Func`] represents a component function from a
33/// component [`Instance`](crate::component::Instance). Like with
34/// [`wasmtime::Func`](crate::Func) it's possible to call functions either
35/// synchronously or asynchronously and either typed or untyped.
36#[derive(Copy, Clone, Debug)]
37#[repr(C)] // here for the C API.
38pub struct Func {
39 instance: Instance,
40 index: ExportIndex,
41}
42
43// Double-check that the C representation in `component/instance.h` matches our
44// in-Rust representation here in terms of size/alignment/etc.
45const _: () = {
46 #[repr(C)]
47 struct T(u64, u32);
48 #[repr(C)]
49 struct C(T, u32);
50 assert!(core::mem::size_of::<C>() == core::mem::size_of::<Func>());
51 assert!(core::mem::align_of::<C>() == core::mem::align_of::<Func>());
52 assert!(core::mem::offset_of!(Func, instance) == 0);
53};
54
55impl Func {
56 pub(crate) fn from_lifted_func(instance: Instance, index: ExportIndex) -> Func {
57 Func { instance, index }
58 }
59
60 /// Attempt to cast this [`Func`] to a statically typed [`TypedFunc`] with
61 /// the provided `Params` and `Return`.
62 ///
63 /// This function will perform a type-check at runtime that the [`Func`]
64 /// takes `Params` as parameters and returns `Return`. If the type-check
65 /// passes then a [`TypedFunc`] will be returned which can be used to
66 /// invoke the function in an efficient, statically-typed, and ergonomic
67 /// manner.
68 ///
69 /// The `Params` type parameter here is a tuple of the parameters to the
70 /// function. A function which takes no arguments should use `()`, a
71 /// function with one argument should use `(T,)`, etc. Note that all
72 /// `Params` must also implement the [`Lower`] trait since they're going
73 /// into wasm.
74 ///
75 /// The `Return` type parameter is the return value of this function. A
76 /// return value of `()` means that there's no return (similar to a Rust
77 /// unit return) and otherwise a type `T` can be specified. Note that the
78 /// `Return` must also implement the [`Lift`] trait since it's coming from
79 /// wasm.
80 ///
81 /// Types specified here must implement the [`ComponentType`] trait. This
82 /// trait is implemented for built-in types to Rust such as integer
83 /// primitives, floats, `Option<T>`, `Result<T, E>`, strings, `Vec<T>`, and
84 /// more. As parameters you'll be passing native Rust types.
85 ///
86 /// See the documentation for [`ComponentType`] for more information about
87 /// supported types.
88 ///
89 /// # Errors
90 ///
91 /// If the function does not actually take `Params` as its parameters or
92 /// return `Return` then an error will be returned.
93 ///
94 /// # Panics
95 ///
96 /// This function will panic if `self` is not owned by the `store`
97 /// specified.
98 ///
99 /// # Examples
100 ///
101 /// Calling a function which takes no parameters and has no return value:
102 ///
103 /// ```
104 /// # use wasmtime::component::Func;
105 /// # use wasmtime::Store;
106 /// # fn foo(func: &Func, store: &mut Store<()>) -> wasmtime::Result<()> {
107 /// let typed = func.typed::<(), ()>(&store)?;
108 /// typed.call(store, ())?;
109 /// # Ok(())
110 /// # }
111 /// ```
112 ///
113 /// Calling a function which takes one string parameter and returns a
114 /// string:
115 ///
116 /// ```
117 /// # use wasmtime::component::Func;
118 /// # use wasmtime::Store;
119 /// # fn foo(func: &Func, mut store: Store<()>) -> wasmtime::Result<()> {
120 /// let typed = func.typed::<(&str,), (String,)>(&store)?;
121 /// let ret = typed.call(&mut store, ("Hello, ",))?.0;
122 /// println!("returned string was: {}", ret);
123 /// # Ok(())
124 /// # }
125 /// ```
126 ///
127 /// Calling a function which takes multiple parameters and returns a boolean:
128 ///
129 /// ```
130 /// # use wasmtime::component::Func;
131 /// # use wasmtime::Store;
132 /// # fn foo(func: &Func, mut store: Store<()>) -> wasmtime::Result<()> {
133 /// let typed = func.typed::<(u32, Option<&str>, &[u8]), (bool,)>(&store)?;
134 /// let ok: bool = typed.call(&mut store, (1, Some("hello"), b"bytes!"))?.0;
135 /// println!("return value was: {ok}");
136 /// # Ok(())
137 /// # }
138 /// ```
139 pub fn typed<Params, Return>(&self, store: impl AsContext) -> Result<TypedFunc<Params, Return>>
140 where
141 Params: ComponentNamedList + Lower,
142 Return: ComponentNamedList + Lift,
143 {
144 self._typed(store.as_context().0, None)
145 }
146
147 pub(crate) fn _typed<Params, Return>(
148 &self,
149 store: &StoreOpaque,
150 instance: Option<&ComponentInstance>,
151 ) -> Result<TypedFunc<Params, Return>>
152 where
153 Params: ComponentNamedList + Lower,
154 Return: ComponentNamedList + Lift,
155 {
156 self.typecheck::<Params, Return>(store, instance)?;
157 unsafe { Ok(TypedFunc::new_unchecked(*self)) }
158 }
159
160 fn typecheck<Params, Return>(
161 &self,
162 store: &StoreOpaque,
163 instance: Option<&ComponentInstance>,
164 ) -> Result<()>
165 where
166 Params: ComponentNamedList + Lower,
167 Return: ComponentNamedList + Lift,
168 {
169 let cx = InstanceType::new(instance.unwrap_or_else(|| self.instance.id().get(store)));
170 let ty = &cx.types[self.ty_index(store)];
171
172 Params::typecheck(&InterfaceType::Tuple(ty.params), &cx)
173 .context("type mismatch with parameters")?;
174 Return::typecheck(&InterfaceType::Tuple(ty.results), &cx)
175 .context("type mismatch with results")?;
176
177 Ok(())
178 }
179
180 /// Get the type of this function.
181 pub fn ty(&self, store: impl AsContext) -> ComponentFunc {
182 self.ty_(store.as_context().0)
183 }
184
185 fn ty_(&self, store: &StoreOpaque) -> ComponentFunc {
186 let cx = InstanceType::new(self.instance.id().get(store));
187 let ty = self.ty_index(store);
188 ComponentFunc::from(ty, &cx)
189 }
190
191 fn ty_index(&self, store: &StoreOpaque) -> TypeFuncIndex {
192 let instance = self.instance.id().get(store);
193 let (ty, _, _) = instance.component().export_lifted_function(self.index);
194 ty
195 }
196
197 /// Invokes this function with the `params` given and returns the result.
198 ///
199 /// The `params` provided must match the parameters that this function takes
200 /// in terms of their types and the number of parameters. Results will be
201 /// written to the `results` slice provided if the call completes
202 /// successfully. The initial types of the values in `results` are ignored
203 /// and values are overwritten to write the result. It's required that the
204 /// size of `results` exactly matches the number of results that this
205 /// function produces.
206 ///
207 /// Note that after a function is invoked the embedder needs to invoke
208 /// [`Func::post_return`] to execute any final cleanup required by the
209 /// guest. This function call is required to either call the function again
210 /// or to call another function.
211 ///
212 /// For more detailed information see the documentation of
213 /// [`TypedFunc::call`].
214 ///
215 /// # Errors
216 ///
217 /// Returns an error in situations including but not limited to:
218 ///
219 /// * `params` is not the right size or if the values have the wrong type
220 /// * `results` is not the right size
221 /// * A trap occurs while executing the function
222 /// * The function calls a host function which returns an error
223 /// * The `store` used requires the use of [`Func::call_async`] instead. See
224 /// [store documentation](crate#async) for more information.
225 ///
226 /// See [`TypedFunc::call`] for more information in addition to
227 /// [`wasmtime::Func::call`](crate::Func::call).
228 ///
229 /// # Panics
230 ///
231 /// Panics if `store` does not own this function.
232 pub fn call(
233 &self,
234 mut store: impl AsContextMut,
235 params: &[Val],
236 results: &mut [Val],
237 ) -> Result<()> {
238 let mut store = store.as_context_mut();
239 store.0.validate_sync_call()?;
240 self.call_impl(&mut store.as_context_mut(), params, results)
241 }
242
243 /// Exactly like [`Self::call`] except for use on async stores.
244 ///
245 /// Note that after this [`Func::post_return_async`] will be used instead of
246 /// the synchronous version at [`Func::post_return`].
247 ///
248 /// # Panics
249 ///
250 /// Panics if `store` does not own this function.
251 #[cfg(feature = "async")]
252 pub async fn call_async(
253 &self,
254 mut store: impl AsContextMut<Data: Send>,
255 params: &[Val],
256 results: &mut [Val],
257 ) -> Result<()> {
258 let store = store.as_context_mut();
259
260 #[cfg(feature = "component-model-async")]
261 if store.0.concurrency_support() {
262 return store
263 .run_concurrent_trap_on_idle(async |store| {
264 self.call_concurrent_dynamic(store, params, results, false)
265 .await
266 .map(drop)
267 })
268 .await?;
269 }
270
271 let mut store = store;
272 store
273 .on_fiber(|store| self.call_impl(store, params, results))
274 .await?
275 }
276
277 fn check_params_results<T>(
278 &self,
279 store: StoreContextMut<T>,
280 params: &[Val],
281 results: &mut [Val],
282 ) -> Result<()> {
283 let ty = self.ty(&store);
284 if ty.params().len() != params.len() {
285 bail!(
286 "expected {} argument(s), got {}",
287 ty.params().len(),
288 params.len(),
289 );
290 }
291
292 if ty.results().len() != results.len() {
293 bail!(
294 "expected {} result(s), got {}",
295 ty.results().len(),
296 results.len(),
297 );
298 }
299
300 Ok(())
301 }
302
303 /// Start a concurrent call to this function.
304 ///
305 /// Concurrency is achieved by relying on the [`Accessor`] argument, which
306 /// can be obtained by calling [`StoreContextMut::run_concurrent`].
307 ///
308 /// Unlike [`Self::call`] and [`Self::call_async`] (both of which require
309 /// exclusive access to the store until the completion of the call), calls
310 /// made using this method may run concurrently with other calls to the same
311 /// instance. In addition, the runtime will call the `post-return` function
312 /// (if any) automatically when the guest task completes -- no need to
313 /// explicitly call `Func::post_return` afterward.
314 ///
315 /// This returns a [`TaskExit`] representing the completion of the guest
316 /// task and any transitive subtasks it might create.
317 ///
318 /// # Progress
319 ///
320 /// For the wasm task being created in `call_concurrent` to make progress it
321 /// must be run within the scope of [`run_concurrent`]. If there are no
322 /// active calls to [`run_concurrent`] then the wasm task will appear as
323 /// stalled. This is typically not a concern as an [`Accessor`] is bound
324 /// by default to a scope of [`run_concurrent`].
325 ///
326 /// One situation in which this can arise, for example, is that if a
327 /// [`run_concurrent`] computation finishes its async closure before all
328 /// wasm tasks have completed, then there will be no scope of
329 /// [`run_concurrent`] anywhere. In this situation the wasm tasks that have
330 /// not yet completed will not make progress until [`run_concurrent`] is
331 /// called again.
332 ///
333 /// Embedders will need to ensure that this future is `await`'d within the
334 /// scope of [`run_concurrent`] to ensure that the value can be produced
335 /// during the `await` call.
336 ///
337 /// # Cancellation
338 ///
339 /// Cancelling an async task created via `call_concurrent`, at this time, is
340 /// only possible by dropping the store that the computation runs within.
341 /// With [#11833] implemented then it will be possible to request
342 /// cancellation of a task, but that is not yet implemented. Hard-cancelling
343 /// a task will only ever be possible by dropping the entire store and it is
344 /// not possible to remove just one task from a store.
345 ///
346 /// This async function behaves more like a "spawn" than a normal Rust async
347 /// function. When this function is invoked then metadata for the function
348 /// call is recorded in the store connected to the `accessor` argument and
349 /// the wasm invocation is from then on connected to the store. If the
350 /// future created by this function is dropped it does not cancel the
351 /// in-progress execution of the wasm task. Dropping the future
352 /// relinquishes the host's ability to learn about the result of the task
353 /// but the task will still progress and invoke callbacks and such until
354 /// completion.
355 ///
356 /// This function will return an error if [`Config::concurrency_support`] is
357 /// disabled.
358 ///
359 /// [`Config::concurrency_support`]: crate::Config::concurrency_support
360 /// [`run_concurrent`]: crate::Store::run_concurrent
361 /// [#11833]: https://github.com/bytecodealliance/wasmtime/issues/11833
362 /// [`Accessor`]: crate::component::Accessor
363 ///
364 /// # Panics
365 ///
366 /// Panics if the store that the [`Accessor`] is derived from does not own
367 /// this function.
368 ///
369 /// # Example
370 ///
371 /// Using [`StoreContextMut::run_concurrent`] to get an [`Accessor`]:
372 ///
373 /// ```
374 /// # use {
375 /// # wasmtime::{
376 /// # error::{Result},
377 /// # component::{Component, Linker, ResourceTable},
378 /// # Config, Engine, Store
379 /// # },
380 /// # };
381 /// #
382 /// # struct Ctx { table: ResourceTable }
383 /// #
384 /// # async fn foo() -> Result<()> {
385 /// # let mut config = Config::new();
386 /// # let engine = Engine::new(&config)?;
387 /// # let mut store = Store::new(&engine, Ctx { table: ResourceTable::new() });
388 /// # let mut linker = Linker::new(&engine);
389 /// # let component = Component::new(&engine, "")?;
390 /// # let instance = linker.instantiate_async(&mut store, &component).await?;
391 /// let my_func = instance.get_func(&mut store, "my_func").unwrap();
392 /// store.run_concurrent(async |accessor| -> wasmtime::Result<_> {
393 /// my_func.call_concurrent(accessor, &[], &mut Vec::new()).await?;
394 /// Ok(())
395 /// }).await??;
396 /// # Ok(())
397 /// # }
398 /// ```
399 #[cfg(feature = "component-model-async")]
400 pub async fn call_concurrent(
401 self,
402 accessor: impl AsAccessor<Data: Send>,
403 params: &[Val],
404 results: &mut [Val],
405 ) -> Result<TaskExit> {
406 self.call_concurrent_dynamic(accessor, params, results, true)
407 .await
408 }
409
410 /// Internal helper function for `call_async` and `call_concurrent`.
411 #[cfg(feature = "component-model-async")]
412 async fn call_concurrent_dynamic(
413 self,
414 accessor: impl AsAccessor<Data: Send>,
415 params: &[Val],
416 results: &mut [Val],
417 call_post_return_automatically: bool,
418 ) -> Result<TaskExit> {
419 let result = accessor.as_accessor().with(|mut store| {
420 self.check_params_results(store.as_context_mut(), params, results)?;
421 let prepared = self.prepare_call_dynamic(
422 store.as_context_mut(),
423 params.to_vec(),
424 call_post_return_automatically,
425 )?;
426 concurrent::queue_call(store.as_context_mut(), prepared)
427 })?;
428
429 let (run_results, rx) = result.await?;
430 assert_eq!(run_results.len(), results.len());
431 for (result, slot) in run_results.into_iter().zip(results) {
432 *slot = result;
433 }
434 Ok(TaskExit(rx))
435 }
436
437 /// Calls `concurrent::prepare_call` with monomorphized functions for
438 /// lowering the parameters and lifting the result.
439 #[cfg(feature = "component-model-async")]
440 fn prepare_call_dynamic<'a, T: Send + 'static>(
441 self,
442 mut store: StoreContextMut<'a, T>,
443 params: Vec<Val>,
444 call_post_return_automatically: bool,
445 ) -> Result<PreparedCall<Vec<Val>>> {
446 let store = store.as_context_mut();
447
448 concurrent::prepare_call(
449 store,
450 self,
451 MAX_FLAT_PARAMS,
452 false,
453 call_post_return_automatically,
454 move |func, store, params_out| {
455 func.with_lower_context(store, call_post_return_automatically, |cx, ty| {
456 Self::lower_args(cx, ¶ms, ty, params_out)
457 })
458 },
459 move |func, store, results| {
460 let max_flat = if func.abi_async(store) {
461 MAX_FLAT_PARAMS
462 } else {
463 MAX_FLAT_RESULTS
464 };
465 let results = func.with_lift_context(store, |cx, ty| {
466 Self::lift_results(cx, ty, results, max_flat)?.collect::<Result<Vec<_>>>()
467 })?;
468 Ok(Box::new(results))
469 },
470 )
471 }
472
473 fn call_impl(
474 &self,
475 mut store: impl AsContextMut,
476 params: &[Val],
477 results: &mut [Val],
478 ) -> Result<()> {
479 let mut store = store.as_context_mut();
480
481 self.check_params_results(store.as_context_mut(), params, results)?;
482
483 if self.abi_async(store.0) {
484 unreachable!(
485 "async-lifted exports should have failed validation \
486 when `component-model-async` feature disabled"
487 );
488 }
489
490 // SAFETY: the chosen representations of type parameters to `call_raw`
491 // here should be generally safe to work with:
492 //
493 // * parameters use `MaybeUninit<[MaybeUninit<ValRaw>; MAX_FLAT_PARAMS]>`
494 // which represents the maximal possible number of parameters that can
495 // be passed to lifted component functions. This is modeled with
496 // `MaybeUninit` to represent how it all starts as uninitialized and
497 // thus can't be safely read during lowering.
498 //
499 // * results are modeled as `[ValRaw; MAX_FLAT_RESULTS]` which
500 // represents the maximal size of values that can be returned. Note
501 // that if the function doesn't actually have a return value then the
502 // `ValRaw` inside the array will have undefined contents. That is
503 // safe in Rust, however, due to `ValRaw` being a `union`. The
504 // contents should dynamically not be read due to the type of the
505 // function used here matching the actual lift.
506 unsafe {
507 self.call_raw(
508 store,
509 |cx, ty, dst: &mut MaybeUninit<[MaybeUninit<ValRaw>; MAX_FLAT_PARAMS]>| {
510 // SAFETY: it's safe to assume that
511 // `MaybeUninit<array-of-maybe-uninit>` is initialized because
512 // each individual element is still considered uninitialized.
513 let dst: &mut [MaybeUninit<ValRaw>] = dst.assume_init_mut();
514 Self::lower_args(cx, params, ty, dst)
515 },
516 |cx, results_ty, src: &[ValRaw; MAX_FLAT_RESULTS]| {
517 let max_flat = MAX_FLAT_RESULTS;
518 for (result, slot) in
519 Self::lift_results(cx, results_ty, src, max_flat)?.zip(results)
520 {
521 *slot = result?;
522 }
523 Ok(())
524 },
525 )
526 }
527 }
528
529 pub(crate) fn lifted_core_func(&self, store: &mut StoreOpaque) -> NonNull<VMFuncRef> {
530 let def = {
531 let instance = self.instance.id().get(store);
532 let (_ty, def, _options) = instance.component().export_lifted_function(self.index);
533 def.clone()
534 };
535 match self.instance.lookup_vmdef(store, &def) {
536 Export::Function(f) => f.vm_func_ref(store),
537 _ => unreachable!(),
538 }
539 }
540
541 pub(crate) fn post_return_core_func(&self, store: &StoreOpaque) -> Option<NonNull<VMFuncRef>> {
542 let instance = self.instance.id().get(store);
543 let component = instance.component();
544 let (_ty, _def, options) = component.export_lifted_function(self.index);
545 let post_return = component.env_component().options[options].post_return;
546 post_return.map(|i| instance.runtime_post_return(i))
547 }
548
549 pub(crate) fn abi_async(&self, store: &StoreOpaque) -> bool {
550 let instance = self.instance.id().get(store);
551 let component = instance.component();
552 let (_ty, _def, options) = component.export_lifted_function(self.index);
553 component.env_component().options[options].async_
554 }
555
556 pub(crate) fn abi_info<'a>(
557 &self,
558 store: &'a StoreOpaque,
559 ) -> (
560 OptionsIndex,
561 InstanceFlags,
562 TypeFuncIndex,
563 &'a CanonicalOptions,
564 ) {
565 let vminstance = self.instance.id().get(store);
566 let component = vminstance.component();
567 let (ty, _def, options_index) = component.export_lifted_function(self.index);
568 let raw_options = &component.env_component().options[options_index];
569 (
570 options_index,
571 vminstance.instance_flags(raw_options.instance),
572 ty,
573 raw_options,
574 )
575 }
576
577 /// Invokes the underlying wasm function, lowering arguments and lifting the
578 /// result.
579 ///
580 /// The `lower` function and `lift` function provided here are what actually
581 /// do the lowering and lifting. The `LowerParams` and `LowerReturn` types
582 /// are what will be allocated on the stack for this function call. They
583 /// should be appropriately sized for the lowering/lifting operation
584 /// happening.
585 ///
586 /// # Safety
587 ///
588 /// The safety of this function relies on the correct definitions of the
589 /// `LowerParams` and `LowerReturn` type. They must match the type of `self`
590 /// for the params/results that are going to be produced. Additionally
591 /// these types must be representable with a sequence of `ValRaw` values.
592 unsafe fn call_raw<T, Return, LowerParams, LowerReturn>(
593 &self,
594 mut store: StoreContextMut<'_, T>,
595 lower: impl FnOnce(
596 &mut LowerContext<'_, T>,
597 InterfaceType,
598 &mut MaybeUninit<LowerParams>,
599 ) -> Result<()>,
600 lift: impl FnOnce(&mut LiftContext<'_>, InterfaceType, &LowerReturn) -> Result<Return>,
601 ) -> Result<Return>
602 where
603 LowerParams: Copy,
604 LowerReturn: Copy,
605 {
606 let export = self.lifted_core_func(store.0);
607 let (_options, _flags, _ty, raw_options) = self.abi_info(store.0);
608 let instance = RuntimeInstance {
609 instance: self.instance.id().instance(),
610 index: raw_options.instance,
611 };
612
613 if !store.0.may_enter(instance) {
614 bail!(crate::Trap::CannotEnterComponent);
615 }
616
617 if store.0.concurrency_support() {
618 let async_type = self.abi_async(store.0);
619 store.0.enter_sync_call(None, async_type, instance)?;
620 }
621
622 #[repr(C)]
623 union Union<Params: Copy, Return: Copy> {
624 params: Params,
625 ret: Return,
626 }
627
628 let space = &mut MaybeUninit::<Union<LowerParams, LowerReturn>>::uninit();
629
630 // Double-check the size/alignment of `space`, just in case.
631 //
632 // Note that this alone is not enough to guarantee the validity of the
633 // `unsafe` block below, but it's definitely required. In any case LLVM
634 // should be able to trivially see through these assertions and remove
635 // them in release mode.
636 let val_size = mem::size_of::<ValRaw>();
637 let val_align = mem::align_of::<ValRaw>();
638 assert!(mem::size_of_val(space) % val_size == 0);
639 assert!(mem::size_of_val(map_maybe_uninit!(space.params)) % val_size == 0);
640 assert!(mem::size_of_val(map_maybe_uninit!(space.ret)) % val_size == 0);
641 assert!(mem::align_of_val(space) == val_align);
642 assert!(mem::align_of_val(map_maybe_uninit!(space.params)) == val_align);
643 assert!(mem::align_of_val(map_maybe_uninit!(space.ret)) == val_align);
644
645 self.with_lower_context(store.as_context_mut(), false, |cx, ty| {
646 cx.enter_call();
647 lower(cx, ty, map_maybe_uninit!(space.params))
648 })?;
649
650 // SAFETY: We are providing the guarantee that all the inputs are valid.
651 // The various pointers passed in for the function are all valid since
652 // they're coming from our store, and the `params_and_results` should
653 // have the correct layout for the core wasm function we're calling.
654 // Note that this latter point relies on the correctness of this module
655 // and `ComponentType` implementations, hence `ComponentType` being an
656 // `unsafe` trait.
657 unsafe {
658 crate::Func::call_unchecked_raw(
659 &mut store,
660 export,
661 NonNull::new(core::ptr::slice_from_raw_parts_mut(
662 space.as_mut_ptr().cast(),
663 mem::size_of_val(space) / mem::size_of::<ValRaw>(),
664 ))
665 .unwrap(),
666 )?;
667 }
668
669 // SAFETY: We're relying on the correctness of the structure of
670 // `LowerReturn` and the type-checking performed to acquire the
671 // `TypedFunc` to make this safe. It should be the case that
672 // `LowerReturn` is the exact representation of the return value when
673 // interpreted as `[ValRaw]`, and additionally they should have the
674 // correct types for the function we just called (which filled in the
675 // return values).
676 let ret: &LowerReturn = unsafe { map_maybe_uninit!(space.ret).assume_init_ref() };
677
678 // Lift the result into the host while managing post-return state
679 // here as well.
680 //
681 // After a successful lift the return value of the function, which
682 // is currently required to be 0 or 1 values according to the
683 // canonical ABI, is saved within the `Store`'s `FuncData`. This'll
684 // later get used in post-return.
685 // flags.set_needs_post_return(true);
686 let val = self.with_lift_context(store.0, |cx, ty| lift(cx, ty, ret))?;
687
688 // SAFETY: it's a contract of this function that `LowerReturn` is an
689 // appropriate representation of the result of this function.
690 let ret_slice = unsafe { storage_as_slice(ret) };
691
692 self.instance.id().get_mut(store.0).post_return_arg_set(
693 self.index,
694 match ret_slice.len() {
695 0 => ValRaw::i32(0),
696 1 => ret_slice[0],
697 _ => unreachable!(),
698 },
699 );
700
701 return Ok(val);
702 }
703
704 /// Invokes the `post-return` canonical ABI option, if specified, after a
705 /// [`Func::call`] has finished.
706 ///
707 /// This function is a required method call after a [`Func::call`] completes
708 /// successfully. After the embedder has finished processing the return
709 /// value then this function must be invoked.
710 ///
711 /// # Errors
712 ///
713 /// This function will return an error in the case of a WebAssembly trap
714 /// happening during the execution of the `post-return` function, if
715 /// specified.
716 ///
717 /// # Panics
718 ///
719 /// This function will panic if it's not called under the correct
720 /// conditions. This can only be called after a previous invocation of
721 /// [`Func::call`] completes successfully, and this function can only
722 /// be called for the same [`Func`] that was `call`'d.
723 ///
724 /// If this function is called when [`Func::call`] was not previously
725 /// called, then it will panic. If a different [`Func`] for the same
726 /// component instance was invoked then this function will also panic
727 /// because the `post-return` needs to happen for the other function.
728 #[inline]
729 pub fn post_return(&self, mut store: impl AsContextMut) -> Result<()> {
730 let store = store.as_context_mut();
731 store.0.validate_sync_call()?;
732 self.post_return_impl(store, false)
733 }
734
735 /// Exactly like [`Self::post_return`] except for invoke WebAssembly
736 /// [asynchronously](crate#async).
737 #[cfg(feature = "async")]
738 pub async fn post_return_async(&self, mut store: impl AsContextMut<Data: Send>) -> Result<()> {
739 let mut store = store.as_context_mut();
740 // Future optimization opportunity: conditionally use a fiber here since
741 // some func's post_return will not need the async context (i.e. end up
742 // calling async host functionality)
743 store
744 .on_fiber(|store| self.post_return_impl(store, true))
745 .await?
746 }
747
748 fn post_return_impl(&self, mut store: impl AsContextMut, async_: bool) -> Result<()> {
749 let mut store = store.as_context_mut();
750
751 let index = self.index;
752 let vminstance = self.instance.id().get(store.0);
753 let component = vminstance.component();
754 let (_ty, _def, options) = component.export_lifted_function(index);
755 let post_return = self.post_return_core_func(store.0);
756 let mut flags =
757 vminstance.instance_flags(component.env_component().options[options].instance);
758 let mut instance = self.instance.id().get_mut(store.0);
759 let post_return_arg = instance.as_mut().post_return_arg_take(index);
760
761 unsafe {
762 // First assert that the instance is in a "needs post return" state.
763 // This will ensure that the previous action on the instance was a
764 // function call above. This flag is only set after a component
765 // function returns so this also can't be called (as expected)
766 // during a host import for example.
767 //
768 // Note, though, that this assert is not sufficient because it just
769 // means some function on this instance needs its post-return
770 // called. We need a precise post-return for a particular function
771 // which is the second assert here (the `.expect`). That will assert
772 // that this function itself needs to have its post-return called.
773 //
774 // The theory at least is that these two asserts ensure component
775 // model semantics are upheld where the host properly calls
776 // `post_return` on the right function despite the call being a
777 // separate step in the API.
778 assert!(
779 flags.needs_post_return(),
780 "post_return can only be called after a function has previously been called",
781 );
782 let post_return_arg = post_return_arg.expect("calling post_return on wrong function");
783
784 // Unset the "needs post return" flag now that post-return is being
785 // processed. This will cause future invocations of this method to
786 // panic, even if the function call below traps.
787 flags.set_needs_post_return(false);
788
789 // Post return functions are forbidden from calling imports or
790 // intrinsics.
791 flags.set_may_leave(false);
792
793 // If the function actually had a `post-return` configured in its
794 // canonical options that's executed here.
795 if let Some(func) = post_return {
796 crate::Func::call_unchecked_raw(
797 &mut store,
798 func,
799 NonNull::new(core::ptr::slice_from_raw_parts(&post_return_arg, 1).cast_mut())
800 .unwrap(),
801 )?;
802 }
803
804 // And finally if everything completed successfully then the "may
805 // leave" flags is set to `true` again here which enables further
806 // use of the component.
807 flags.set_may_leave(true);
808
809 let (calls, host_table, _, instance) = store
810 .0
811 .component_resource_state_with_instance(self.instance);
812 ResourceTables {
813 host_table: Some(host_table),
814 calls,
815 guest: Some(instance.instance_states()),
816 }
817 .exit_call()?;
818
819 if !async_ && store.0.concurrency_support() {
820 store.0.exit_sync_call(false)?;
821 }
822 }
823 Ok(())
824 }
825
826 fn lower_args<T>(
827 cx: &mut LowerContext<'_, T>,
828 params: &[Val],
829 params_ty: InterfaceType,
830 dst: &mut [MaybeUninit<ValRaw>],
831 ) -> Result<()> {
832 let params_ty = match params_ty {
833 InterfaceType::Tuple(i) => &cx.types[i],
834 _ => unreachable!(),
835 };
836 if params_ty.abi.flat_count(MAX_FLAT_PARAMS).is_some() {
837 let dst = &mut dst.iter_mut();
838
839 params
840 .iter()
841 .zip(params_ty.types.iter())
842 .try_for_each(|(param, ty)| param.lower(cx, *ty, dst))
843 } else {
844 Self::store_args(cx, ¶ms_ty, params, dst)
845 }
846 }
847
848 fn store_args<T>(
849 cx: &mut LowerContext<'_, T>,
850 params_ty: &TypeTuple,
851 args: &[Val],
852 dst: &mut [MaybeUninit<ValRaw>],
853 ) -> Result<()> {
854 let size = usize::try_from(params_ty.abi.size32).unwrap();
855 let ptr = cx.realloc(0, 0, params_ty.abi.align32, size)?;
856 let mut offset = ptr;
857 for (ty, arg) in params_ty.types.iter().zip(args) {
858 let abi = cx.types.canonical_abi(ty);
859 arg.store(cx, *ty, abi.next_field32_size(&mut offset))?;
860 }
861
862 dst[0].write(ValRaw::i64(ptr as i64));
863
864 Ok(())
865 }
866
867 fn lift_results<'a, 'b>(
868 cx: &'a mut LiftContext<'b>,
869 results_ty: InterfaceType,
870 src: &'a [ValRaw],
871 max_flat: usize,
872 ) -> Result<Box<dyn Iterator<Item = Result<Val>> + 'a>> {
873 let results_ty = match results_ty {
874 InterfaceType::Tuple(i) => &cx.types[i],
875 _ => unreachable!(),
876 };
877 if results_ty.abi.flat_count(max_flat).is_some() {
878 let mut flat = src.iter();
879 Ok(Box::new(
880 results_ty
881 .types
882 .iter()
883 .map(move |ty| Val::lift(cx, *ty, &mut flat)),
884 ))
885 } else {
886 let iter = Self::load_results(cx, results_ty, &mut src.iter())?;
887 Ok(Box::new(iter))
888 }
889 }
890
891 fn load_results<'a, 'b>(
892 cx: &'a mut LiftContext<'b>,
893 results_ty: &'a TypeTuple,
894 src: &mut core::slice::Iter<'_, ValRaw>,
895 ) -> Result<impl Iterator<Item = Result<Val>> + use<'a, 'b>> {
896 // FIXME(#4311): needs to read an i64 for memory64
897 let ptr = usize::try_from(src.next().unwrap().get_u32())?;
898 if ptr % usize::try_from(results_ty.abi.align32)? != 0 {
899 bail!("return pointer not aligned");
900 }
901
902 let bytes = cx
903 .memory()
904 .get(ptr..)
905 .and_then(|b| b.get(..usize::try_from(results_ty.abi.size32).unwrap()))
906 .ok_or_else(|| crate::format_err!("pointer out of bounds of memory"))?;
907
908 let mut offset = 0;
909 Ok(results_ty.types.iter().map(move |ty| {
910 let abi = cx.types.canonical_abi(ty);
911 let offset = abi.next_field32_size(&mut offset);
912 Val::load(cx, *ty, &bytes[offset..][..abi.size32 as usize])
913 }))
914 }
915
916 #[cfg(feature = "component-model-async")]
917 pub(crate) fn instance(self) -> Instance {
918 self.instance
919 }
920
921 #[cfg(feature = "component-model-async")]
922 pub(crate) fn index(self) -> ExportIndex {
923 self.index
924 }
925
926 /// Creates a `LowerContext` using the configuration values of this lifted
927 /// function.
928 ///
929 /// The `lower` closure provided should perform the actual lowering and
930 /// return the result of the lowering operation which is then returned from
931 /// this function as well.
932 fn with_lower_context<T>(
933 self,
934 mut store: StoreContextMut<T>,
935 call_post_return_automatically: bool,
936 lower: impl FnOnce(&mut LowerContext<T>, InterfaceType) -> Result<()>,
937 ) -> Result<()> {
938 let (options_idx, mut flags, ty, options) = self.abi_info(store.0);
939 let async_ = options.async_;
940
941 // Perform the actual lowering, where while this is running the
942 // component is forbidden from calling imports.
943 unsafe {
944 debug_assert!(flags.may_leave());
945 flags.set_may_leave(false);
946 }
947 let mut cx = LowerContext::new(store.as_context_mut(), options_idx, self.instance);
948 let param_ty = InterfaceType::Tuple(cx.types[ty].params);
949 let result = lower(&mut cx, param_ty);
950 unsafe { flags.set_may_leave(true) };
951 result?;
952
953 // If needed, flag a post-return call being required as we're about to
954 // enter wasm and afterwards need a post-return.
955 unsafe {
956 if !(call_post_return_automatically && async_) {
957 flags.set_needs_post_return(true);
958 }
959 }
960
961 Ok(())
962 }
963
964 /// Creates a `LiftContext` using the configuration values with this lifted
965 /// function.
966 ///
967 /// The closure `lift` provided should actually perform the lift itself and
968 /// the result of that closure is returned from this function call as well.
969 fn with_lift_context<R>(
970 self,
971 store: &mut StoreOpaque,
972 lift: impl FnOnce(&mut LiftContext, InterfaceType) -> Result<R>,
973 ) -> Result<R> {
974 let (options, _flags, ty, _) = self.abi_info(store);
975 let mut cx = LiftContext::new(store, options, self.instance);
976 let ty = InterfaceType::Tuple(cx.types[ty].results);
977 lift(&mut cx, ty)
978 }
979}
980
981/// Represents the completion of a task created using
982/// `[Typed]Func::call_concurrent`.
983///
984/// In general, a guest task may continue running after returning a value.
985/// Moreover, any given guest task may create its own subtasks before or after
986/// returning and may exit before some or all of those subtasks have finished
987/// running. In that case, the still-running subtasks will be "reparented" to
988/// the nearest surviving caller, which may be the original host call. The
989/// future returned by `TaskExit::block` will resolve once all transitive
990/// subtasks created directly or indirectly by the original call to
991/// `Instance::call_concurrent` have exited.
992#[cfg(feature = "component-model-async")]
993pub struct TaskExit(futures::channel::oneshot::Receiver<()>);
994
995#[cfg(feature = "component-model-async")]
996impl TaskExit {
997 /// Returns a future which will resolve once all transitive subtasks created
998 /// directly or indirectly by the original call to
999 /// `Instance::call_concurrent` have exited.
1000 pub async fn block(self, accessor: impl AsAccessor<Data: Send>) {
1001 // The current implementation makes no use of `accessor`, but future
1002 // implementations might (e.g. by using a more efficient mechanism than
1003 // a oneshot channel).
1004 _ = accessor;
1005
1006 // We don't care whether the sender sent us a value or was dropped
1007 // first; either one counts as a notification, so we ignore the result
1008 // once the future resolves:
1009 _ = self.0.await;
1010 }
1011}