wasmtime/runtime/component/func.rs
1use crate::component::instance::Instance;
2use crate::component::matching::InstanceType;
3use crate::component::storage::storage_as_slice;
4use crate::component::types::Type;
5use crate::component::values::Val;
6use crate::prelude::*;
7use crate::runtime::vm::component::{ComponentInstance, ResourceTables};
8use crate::runtime::vm::{Export, ExportFunction};
9use crate::store::StoreOpaque;
10use crate::{AsContext, AsContextMut, StoreContextMut, ValRaw};
11use core::mem::{self, MaybeUninit};
12use core::ptr::NonNull;
13use wasmtime_environ::component::{
14 ExportIndex, InterfaceType, MAX_FLAT_PARAMS, MAX_FLAT_RESULTS, TypeFuncIndex, TypeTuple,
15};
16
17mod host;
18mod options;
19mod typed;
20pub use self::host::*;
21pub use self::options::*;
22pub use self::typed::*;
23
24#[repr(C)]
25union ParamsAndResults<Params: Copy, Return: Copy> {
26 params: Params,
27 ret: Return,
28}
29
30/// A WebAssembly component function which can be called.
31///
32/// This type is the dual of [`wasmtime::Func`](crate::Func) for component
33/// functions. An instance of [`Func`] represents a component function from a
34/// component [`Instance`](crate::component::Instance). Like with
35/// [`wasmtime::Func`](crate::Func) it's possible to call functions either
36/// synchronously or asynchronously and either typed or untyped.
37#[derive(Copy, Clone, Debug)]
38#[repr(C)] // here for the C API.
39pub struct Func {
40 instance: Instance,
41 index: ExportIndex,
42}
43
44// Double-check that the C representation in `component/instance.h` matches our
45// in-Rust representation here in terms of size/alignment/etc.
46const _: () = {
47 #[repr(C)]
48 struct T(u64, u32);
49 #[repr(C)]
50 struct C(T, u32);
51 assert!(core::mem::size_of::<C>() == core::mem::size_of::<Func>());
52 assert!(core::mem::align_of::<C>() == core::mem::align_of::<Func>());
53 assert!(core::mem::offset_of!(Func, instance) == 0);
54};
55
56impl Func {
57 pub(crate) fn from_lifted_func(instance: Instance, index: ExportIndex) -> Func {
58 Func { instance, index }
59 }
60
61 /// Attempt to cast this [`Func`] to a statically typed [`TypedFunc`] with
62 /// the provided `Params` and `Return`.
63 ///
64 /// This function will perform a type-check at runtime that the [`Func`]
65 /// takes `Params` as parameters and returns `Return`. If the type-check
66 /// passes then a [`TypedFunc`] will be returned which can be used to
67 /// invoke the function in an efficient, statically-typed, and ergonomic
68 /// manner.
69 ///
70 /// The `Params` type parameter here is a tuple of the parameters to the
71 /// function. A function which takes no arguments should use `()`, a
72 /// function with one argument should use `(T,)`, etc. Note that all
73 /// `Params` must also implement the [`Lower`] trait since they're going
74 /// into wasm.
75 ///
76 /// The `Return` type parameter is the return value of this function. A
77 /// return value of `()` means that there's no return (similar to a Rust
78 /// unit return) and otherwise a type `T` can be specified. Note that the
79 /// `Return` must also implement the [`Lift`] trait since it's coming from
80 /// wasm.
81 ///
82 /// Types specified here must implement the [`ComponentType`] trait. This
83 /// trait is implemented for built-in types to Rust such as integer
84 /// primitives, floats, `Option<T>`, `Result<T, E>`, strings, `Vec<T>`, and
85 /// more. As parameters you'll be passing native Rust types.
86 ///
87 /// See the documentation for [`ComponentType`] for more information about
88 /// supported types.
89 ///
90 /// # Errors
91 ///
92 /// If the function does not actually take `Params` as its parameters or
93 /// return `Return` then an error will be returned.
94 ///
95 /// # Panics
96 ///
97 /// This function will panic if `self` is not owned by the `store`
98 /// specified.
99 ///
100 /// # Examples
101 ///
102 /// Calling a function which takes no parameters and has no return value:
103 ///
104 /// ```
105 /// # use wasmtime::component::Func;
106 /// # use wasmtime::Store;
107 /// # fn foo(func: &Func, store: &mut Store<()>) -> anyhow::Result<()> {
108 /// let typed = func.typed::<(), ()>(&store)?;
109 /// typed.call(store, ())?;
110 /// # Ok(())
111 /// # }
112 /// ```
113 ///
114 /// Calling a function which takes one string parameter and returns a
115 /// string:
116 ///
117 /// ```
118 /// # use wasmtime::component::Func;
119 /// # use wasmtime::Store;
120 /// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
121 /// let typed = func.typed::<(&str,), (String,)>(&store)?;
122 /// let ret = typed.call(&mut store, ("Hello, ",))?.0;
123 /// println!("returned string was: {}", ret);
124 /// # Ok(())
125 /// # }
126 /// ```
127 ///
128 /// Calling a function which takes multiple parameters and returns a boolean:
129 ///
130 /// ```
131 /// # use wasmtime::component::Func;
132 /// # use wasmtime::Store;
133 /// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
134 /// let typed = func.typed::<(u32, Option<&str>, &[u8]), (bool,)>(&store)?;
135 /// let ok: bool = typed.call(&mut store, (1, Some("hello"), b"bytes!"))?.0;
136 /// println!("return value was: {ok}");
137 /// # Ok(())
138 /// # }
139 /// ```
140 pub fn typed<Params, Return>(&self, store: impl AsContext) -> Result<TypedFunc<Params, Return>>
141 where
142 Params: ComponentNamedList + Lower,
143 Return: ComponentNamedList + Lift,
144 {
145 self._typed(store.as_context().0, None)
146 }
147
148 pub(crate) fn _typed<Params, Return>(
149 &self,
150 store: &StoreOpaque,
151 instance: Option<&ComponentInstance>,
152 ) -> Result<TypedFunc<Params, Return>>
153 where
154 Params: ComponentNamedList + Lower,
155 Return: ComponentNamedList + Lift,
156 {
157 self.typecheck::<Params, Return>(store, instance)?;
158 unsafe { Ok(TypedFunc::new_unchecked(*self)) }
159 }
160
161 fn typecheck<Params, Return>(
162 &self,
163 store: &StoreOpaque,
164 instance: Option<&ComponentInstance>,
165 ) -> Result<()>
166 where
167 Params: ComponentNamedList + Lower,
168 Return: ComponentNamedList + Lift,
169 {
170 let cx = InstanceType::new(instance.unwrap_or_else(|| &store[self.instance.id()]));
171 let ty = &cx.types[self.ty(store)];
172
173 Params::typecheck(&InterfaceType::Tuple(ty.params), &cx)
174 .context("type mismatch with parameters")?;
175 Return::typecheck(&InterfaceType::Tuple(ty.results), &cx)
176 .context("type mismatch with results")?;
177
178 Ok(())
179 }
180
181 /// Get the parameter names and types for this function.
182 pub fn params(&self, store: impl AsContext) -> Box<[(String, Type)]> {
183 let store = store.as_context();
184 let instance = &store[self.instance.id()];
185 let types = instance.component().types();
186 let func_ty = &types[self.ty(store.0)];
187 types[func_ty.params]
188 .types
189 .iter()
190 .zip(&func_ty.param_names)
191 .map(|(ty, name)| (name.clone(), Type::from(ty, &InstanceType::new(instance))))
192 .collect()
193 }
194
195 /// Get the result types for this function.
196 pub fn results(&self, store: impl AsContext) -> Box<[Type]> {
197 let store = store.as_context();
198 let instance = &store[self.instance.id()];
199 let types = instance.component().types();
200 let ty = self.ty(store.0);
201 types[types[ty].results]
202 .types
203 .iter()
204 .map(|ty| Type::from(ty, &InstanceType::new(instance)))
205 .collect()
206 }
207
208 fn ty(&self, store: &StoreOpaque) -> TypeFuncIndex {
209 let instance = &store[self.instance.id()];
210 let (ty, _, _) = instance.component().export_lifted_function(self.index);
211 ty
212 }
213
214 /// Invokes this function with the `params` given and returns the result.
215 ///
216 /// The `params` provided must match the parameters that this function takes
217 /// in terms of their types and the number of parameters. Results will be
218 /// written to the `results` slice provided if the call completes
219 /// successfully. The initial types of the values in `results` are ignored
220 /// and values are overwritten to write the result. It's required that the
221 /// size of `results` exactly matches the number of results that this
222 /// function produces.
223 ///
224 /// Note that after a function is invoked the embedder needs to invoke
225 /// [`Func::post_return`] to execute any final cleanup required by the
226 /// guest. This function call is required to either call the function again
227 /// or to call another function.
228 ///
229 /// For more detailed information see the documentation of
230 /// [`TypedFunc::call`].
231 ///
232 /// # Errors
233 ///
234 /// Returns an error in situations including but not limited to:
235 ///
236 /// * `params` is not the right size or if the values have the wrong type
237 /// * `results` is not the right size
238 /// * A trap occurs while executing the function
239 /// * The function calls a host function which returns an error
240 ///
241 /// See [`TypedFunc::call`] for more information in addition to
242 /// [`wasmtime::Func::call`](crate::Func::call).
243 ///
244 /// # Panics
245 ///
246 /// Panics if this is called on a function in an asynchronous store. This
247 /// only works with functions defined within a synchronous store. Also
248 /// panics if `store` does not own this function.
249 pub fn call(
250 &self,
251 mut store: impl AsContextMut,
252 params: &[Val],
253 results: &mut [Val],
254 ) -> Result<()> {
255 let mut store = store.as_context_mut();
256 assert!(
257 !store.0.async_support(),
258 "must use `call_async` when async support is enabled on the config"
259 );
260 self.call_impl(&mut store.as_context_mut(), params, results)
261 }
262
263 /// Exactly like [`Self::call`] except for use on async stores.
264 ///
265 /// Note that after this [`Func::post_return_async`] will be used instead of
266 /// the synchronous version at [`Func::post_return`].
267 ///
268 /// # Panics
269 ///
270 /// Panics if this is called on a function in a synchronous store. This
271 /// only works with functions defined within an asynchronous store. Also
272 /// panics if `store` does not own this function.
273 #[cfg(feature = "async")]
274 pub async fn call_async(
275 &self,
276 mut store: impl AsContextMut<Data: Send>,
277 params: &[Val],
278 results: &mut [Val],
279 ) -> Result<()> {
280 let mut store = store.as_context_mut();
281 assert!(
282 store.0.async_support(),
283 "cannot use `call_async` without enabling async support in the config"
284 );
285 store
286 .on_fiber(|store| self.call_impl(store, params, results))
287 .await?
288 }
289
290 fn call_impl(
291 &self,
292 mut store: impl AsContextMut,
293 params: &[Val],
294 results: &mut [Val],
295 ) -> Result<()> {
296 let store = &mut store.as_context_mut();
297
298 let param_tys = self.params(&store);
299 let result_tys = self.results(&store);
300
301 if param_tys.len() != params.len() {
302 bail!(
303 "expected {} argument(s), got {}",
304 param_tys.len(),
305 params.len()
306 );
307 }
308 if result_tys.len() != results.len() {
309 bail!(
310 "expected {} results(s), got {}",
311 result_tys.len(),
312 results.len()
313 );
314 }
315
316 self.call_raw(
317 store,
318 params,
319 |cx, params, params_ty, dst: &mut MaybeUninit<[ValRaw; MAX_FLAT_PARAMS]>| {
320 let params_ty = match params_ty {
321 InterfaceType::Tuple(i) => &cx.types[i],
322 _ => unreachable!(),
323 };
324 if params_ty.abi.flat_count(MAX_FLAT_PARAMS).is_some() {
325 let dst = &mut unsafe {
326 mem::transmute::<_, &mut [MaybeUninit<ValRaw>; MAX_FLAT_PARAMS]>(dst)
327 }
328 .iter_mut();
329
330 params
331 .iter()
332 .zip(params_ty.types.iter())
333 .try_for_each(|(param, ty)| param.lower(cx, *ty, dst))
334 } else {
335 self.store_args(cx, ¶ms_ty, params, dst)
336 }
337 },
338 |cx, results_ty, src: &[ValRaw; MAX_FLAT_RESULTS]| {
339 let results_ty = match results_ty {
340 InterfaceType::Tuple(i) => &cx.types[i],
341 _ => unreachable!(),
342 };
343 if results_ty.abi.flat_count(MAX_FLAT_RESULTS).is_some() {
344 let mut flat = src.iter();
345 for (ty, slot) in results_ty.types.iter().zip(results) {
346 *slot = Val::lift(cx, *ty, &mut flat)?;
347 }
348 Ok(())
349 } else {
350 Self::load_results(cx, results_ty, results, &mut src.iter())
351 }
352 },
353 )
354 }
355
356 /// Invokes the underlying wasm function, lowering arguments and lifting the
357 /// result.
358 ///
359 /// The `lower` function and `lift` function provided here are what actually
360 /// do the lowering and lifting. The `LowerParams` and `LowerReturn` types
361 /// are what will be allocated on the stack for this function call. They
362 /// should be appropriately sized for the lowering/lifting operation
363 /// happening.
364 fn call_raw<T, Params: ?Sized, Return, LowerParams, LowerReturn>(
365 &self,
366 store: &mut StoreContextMut<'_, T>,
367 params: &Params,
368 lower: impl FnOnce(
369 &mut LowerContext<'_, T>,
370 &Params,
371 InterfaceType,
372 &mut MaybeUninit<LowerParams>,
373 ) -> Result<()>,
374 lift: impl FnOnce(&mut LiftContext<'_>, InterfaceType, &LowerReturn) -> Result<Return>,
375 ) -> Result<Return>
376 where
377 LowerParams: Copy,
378 LowerReturn: Copy,
379 {
380 let vminstance = &store[self.instance.id()];
381 let (ty, def, options) = vminstance.component().export_lifted_function(self.index);
382 let export = match vminstance.lookup_def(store.0, def) {
383 Export::Function(f) => f,
384 _ => unreachable!(),
385 };
386 let component_instance = options.instance;
387 let memory = options
388 .memory
389 .map(|i| NonNull::new(vminstance.runtime_memory(i)).unwrap());
390 let realloc = options.realloc.map(|i| vminstance.runtime_realloc(i));
391 let options =
392 unsafe { Options::new(store.0.id(), memory, realloc, options.string_encoding) };
393
394 let space = &mut MaybeUninit::<ParamsAndResults<LowerParams, LowerReturn>>::uninit();
395
396 // Double-check the size/alignment of `space`, just in case.
397 //
398 // Note that this alone is not enough to guarantee the validity of the
399 // `unsafe` block below, but it's definitely required. In any case LLVM
400 // should be able to trivially see through these assertions and remove
401 // them in release mode.
402 let val_size = mem::size_of::<ValRaw>();
403 let val_align = mem::align_of::<ValRaw>();
404 assert!(mem::size_of_val(space) % val_size == 0);
405 assert!(mem::size_of_val(map_maybe_uninit!(space.params)) % val_size == 0);
406 assert!(mem::size_of_val(map_maybe_uninit!(space.ret)) % val_size == 0);
407 assert!(mem::align_of_val(space) == val_align);
408 assert!(mem::align_of_val(map_maybe_uninit!(space.params)) == val_align);
409 assert!(mem::align_of_val(map_maybe_uninit!(space.ret)) == val_align);
410
411 let types = vminstance.component().types().clone();
412 let mut flags = vminstance.instance_flags(component_instance);
413
414 unsafe {
415 // Test the "may enter" flag which is a "lock" on this instance.
416 // This is immediately set to `false` afterwards and note that
417 // there's no on-cleanup setting this flag back to true. That's an
418 // intentional design aspect where if anything goes wrong internally
419 // from this point on the instance is considered "poisoned" and can
420 // never be entered again. The only time this flag is set to `true`
421 // again is after post-return logic has completed successfully.
422 if !flags.may_enter() {
423 bail!(crate::Trap::CannotEnterComponent);
424 }
425 flags.set_may_enter(false);
426
427 debug_assert!(flags.may_leave());
428 flags.set_may_leave(false);
429 let instance_ptr = self.instance.instance_ptr(store.0).as_ptr();
430 let mut cx = LowerContext::new(store.as_context_mut(), &options, &types, self.instance);
431 cx.enter_call();
432 let result = lower(
433 &mut cx,
434 params,
435 InterfaceType::Tuple(types[ty].params),
436 map_maybe_uninit!(space.params),
437 );
438 flags.set_may_leave(true);
439 result?;
440
441 // This is unsafe as we are providing the guarantee that all the
442 // inputs are valid. The various pointers passed in for the function
443 // are all valid since they're coming from our store, and the
444 // `params_and_results` should have the correct layout for the core
445 // wasm function we're calling. Note that this latter point relies
446 // on the correctness of this module and `ComponentType`
447 // implementations, hence `ComponentType` being an `unsafe` trait.
448 crate::Func::call_unchecked_raw(
449 store,
450 export.func_ref,
451 NonNull::new(core::ptr::slice_from_raw_parts_mut(
452 space.as_mut_ptr().cast(),
453 mem::size_of_val(space) / mem::size_of::<ValRaw>(),
454 ))
455 .unwrap(),
456 )?;
457
458 // Note that `.assume_init_ref()` here is unsafe but we're relying
459 // on the correctness of the structure of `LowerReturn` and the
460 // type-checking performed to acquire the `TypedFunc` to make this
461 // safe. It should be the case that `LowerReturn` is the exact
462 // representation of the return value when interpreted as
463 // `[ValRaw]`, and additionally they should have the correct types
464 // for the function we just called (which filled in the return
465 // values).
466 let ret = map_maybe_uninit!(space.ret).assume_init_ref();
467
468 // Lift the result into the host while managing post-return state
469 // here as well.
470 //
471 // After a successful lift the return value of the function, which
472 // is currently required to be 0 or 1 values according to the
473 // canonical ABI, is saved within the `Store`'s `FuncData`. This'll
474 // later get used in post-return.
475 flags.set_needs_post_return(true);
476 let val = lift(
477 &mut LiftContext::new(store.0, &options, &types, self.instance),
478 InterfaceType::Tuple(types[ty].results),
479 ret,
480 )?;
481 let ret_slice = storage_as_slice(ret);
482 (*instance_ptr).post_return_arg_set(
483 self.index,
484 match ret_slice.len() {
485 0 => ValRaw::i32(0),
486 1 => ret_slice[0],
487 _ => unreachable!(),
488 },
489 );
490 return Ok(val);
491 }
492 }
493
494 /// Invokes the `post-return` canonical ABI option, if specified, after a
495 /// [`Func::call`] has finished.
496 ///
497 /// This function is a required method call after a [`Func::call`] completes
498 /// successfully. After the embedder has finished processing the return
499 /// value then this function must be invoked.
500 ///
501 /// # Errors
502 ///
503 /// This function will return an error in the case of a WebAssembly trap
504 /// happening during the execution of the `post-return` function, if
505 /// specified.
506 ///
507 /// # Panics
508 ///
509 /// This function will panic if it's not called under the correct
510 /// conditions. This can only be called after a previous invocation of
511 /// [`Func::call`] completes successfully, and this function can only
512 /// be called for the same [`Func`] that was `call`'d.
513 ///
514 /// If this function is called when [`Func::call`] was not previously
515 /// called, then it will panic. If a different [`Func`] for the same
516 /// component instance was invoked then this function will also panic
517 /// because the `post-return` needs to happen for the other function.
518 ///
519 /// Panics if this is called on a function in an asynchronous store.
520 /// This only works with functions defined within a synchronous store.
521 #[inline]
522 pub fn post_return(&self, mut store: impl AsContextMut) -> Result<()> {
523 let store = store.as_context_mut();
524 assert!(
525 !store.0.async_support(),
526 "must use `post_return_async` when async support is enabled on the config"
527 );
528 self.post_return_impl(store)
529 }
530
531 /// Exactly like [`Self::post_return`] except for use on async stores.
532 ///
533 /// # Panics
534 ///
535 /// Panics if this is called on a function in a synchronous store. This
536 /// only works with functions defined within an asynchronous store.
537 #[cfg(feature = "async")]
538 pub async fn post_return_async(&self, mut store: impl AsContextMut<Data: Send>) -> Result<()> {
539 let mut store = store.as_context_mut();
540 assert!(
541 store.0.async_support(),
542 "cannot use `call_async` without enabling async support in the config"
543 );
544 // Future optimization opportunity: conditionally use a fiber here since
545 // some func's post_return will not need the async context (i.e. end up
546 // calling async host functionality)
547 store.on_fiber(|store| self.post_return_impl(store)).await?
548 }
549
550 fn post_return_impl(&self, mut store: impl AsContextMut) -> Result<()> {
551 let mut store = store.as_context_mut();
552 let index = self.index;
553 let vminstance = &store.0[self.instance.id()];
554 let (_ty, _def, options) = vminstance.component().export_lifted_function(index);
555 let post_return = options.post_return.map(|i| {
556 let func_ref = vminstance.runtime_post_return(i);
557 ExportFunction { func_ref }
558 });
559 let instance = self.instance.instance_ptr(store.0).as_ptr();
560
561 unsafe {
562 let post_return_arg = (*instance).post_return_arg_take(index);
563 let mut flags = (*instance).instance_flags(options.instance);
564
565 // First assert that the instance is in a "needs post return" state.
566 // This will ensure that the previous action on the instance was a
567 // function call above. This flag is only set after a component
568 // function returns so this also can't be called (as expected)
569 // during a host import for example.
570 //
571 // Note, though, that this assert is not sufficient because it just
572 // means some function on this instance needs its post-return
573 // called. We need a precise post-return for a particular function
574 // which is the second assert here (the `.expect`). That will assert
575 // that this function itself needs to have its post-return called.
576 //
577 // The theory at least is that these two asserts ensure component
578 // model semantics are upheld where the host properly calls
579 // `post_return` on the right function despite the call being a
580 // separate step in the API.
581 assert!(
582 flags.needs_post_return(),
583 "post_return can only be called after a function has previously been called",
584 );
585 let post_return_arg = post_return_arg.expect("calling post_return on wrong function");
586
587 // This is a sanity-check assert which shouldn't ever trip.
588 assert!(!flags.may_enter());
589
590 // Unset the "needs post return" flag now that post-return is being
591 // processed. This will cause future invocations of this method to
592 // panic, even if the function call below traps.
593 flags.set_needs_post_return(false);
594
595 // If the function actually had a `post-return` configured in its
596 // canonical options that's executed here.
597 //
598 // Note that if this traps (returns an error) this function
599 // intentionally leaves the instance in a "poisoned" state where it
600 // can no longer be entered because `may_enter` is `false`.
601 if let Some(func) = post_return {
602 crate::Func::call_unchecked_raw(
603 &mut store,
604 func.func_ref,
605 NonNull::new(core::ptr::slice_from_raw_parts(&post_return_arg, 1).cast_mut())
606 .unwrap(),
607 )?;
608 }
609
610 // And finally if everything completed successfully then the "may
611 // enter" flag is set to `true` again here which enables further use
612 // of the component.
613 flags.set_may_enter(true);
614
615 let (calls, host_table, _) = store.0.component_resource_state();
616 ResourceTables {
617 calls,
618 host_table: Some(host_table),
619 guest: Some((*instance).guest_tables()),
620 }
621 .exit_call()?;
622 }
623 Ok(())
624 }
625
626 fn store_args<T>(
627 &self,
628 cx: &mut LowerContext<'_, T>,
629 params_ty: &TypeTuple,
630 args: &[Val],
631 dst: &mut MaybeUninit<[ValRaw; MAX_FLAT_PARAMS]>,
632 ) -> Result<()> {
633 let size = usize::try_from(params_ty.abi.size32).unwrap();
634 let ptr = cx.realloc(0, 0, params_ty.abi.align32, size)?;
635 let mut offset = ptr;
636 for (ty, arg) in params_ty.types.iter().zip(args) {
637 let abi = cx.types.canonical_abi(ty);
638 arg.store(cx, *ty, abi.next_field32_size(&mut offset))?;
639 }
640
641 map_maybe_uninit!(dst[0]).write(ValRaw::i64(ptr as i64));
642
643 Ok(())
644 }
645
646 fn load_results(
647 cx: &mut LiftContext<'_>,
648 results_ty: &TypeTuple,
649 results: &mut [Val],
650 src: &mut core::slice::Iter<'_, ValRaw>,
651 ) -> Result<()> {
652 // FIXME(#4311): needs to read an i64 for memory64
653 let ptr = usize::try_from(src.next().unwrap().get_u32())?;
654 if ptr % usize::try_from(results_ty.abi.align32)? != 0 {
655 bail!("return pointer not aligned");
656 }
657
658 let bytes = cx
659 .memory()
660 .get(ptr..)
661 .and_then(|b| b.get(..usize::try_from(results_ty.abi.size32).unwrap()))
662 .ok_or_else(|| anyhow::anyhow!("pointer out of bounds of memory"))?;
663
664 let mut offset = 0;
665 for (ty, slot) in results_ty.types.iter().zip(results) {
666 let abi = cx.types.canonical_abi(ty);
667 let offset = abi.next_field32_size(&mut offset);
668 *slot = Val::load(cx, *ty, &bytes[offset..][..abi.size32 as usize])?;
669 }
670 Ok(())
671 }
672}