1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//! Cranelift ValueType hierarchy

use std::fmt;

use crate::shared::types as shared_types;
use cranelift_codegen_shared::constants;

// Rust name prefix used for the `rust_name` method.
static RUST_NAME_PREFIX: &str = "ir::types::";

// ValueType variants (i8, i32, ...) are provided in `shared::types.rs`.

/// A concrete SSA value type.
///
/// All SSA values have a type that is described by an instance of `ValueType`
/// or one of its subclasses.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub(crate) enum ValueType {
    Lane(LaneType),
    Reference(ReferenceType),
    Vector(VectorType),
    DynamicVector(DynamicVectorType),
}

impl ValueType {
    /// Iterate through all of the lane types.
    pub fn all_lane_types() -> LaneTypeIterator {
        LaneTypeIterator::new()
    }

    pub fn all_reference_types() -> ReferenceTypeIterator {
        ReferenceTypeIterator::new()
    }

    /// Return a string containing the documentation comment for this type.
    pub fn doc(&self) -> String {
        match *self {
            ValueType::Lane(l) => l.doc(),
            ValueType::Reference(r) => r.doc(),
            ValueType::Vector(ref v) => v.doc(),
            ValueType::DynamicVector(ref v) => v.doc(),
        }
    }

    /// Return the number of bits in a lane.
    pub fn lane_bits(&self) -> u64 {
        match *self {
            ValueType::Lane(l) => l.lane_bits(),
            ValueType::Reference(r) => r.lane_bits(),
            ValueType::Vector(ref v) => v.lane_bits(),
            ValueType::DynamicVector(ref v) => v.lane_bits(),
        }
    }

    /// Return the number of lanes.
    pub fn lane_count(&self) -> u64 {
        match *self {
            ValueType::Vector(ref v) => v.lane_count(),
            _ => 1,
        }
    }

    /// Find the number of bytes that this type occupies in memory.
    pub fn membytes(&self) -> u64 {
        self.width() / 8
    }

    /// Find the unique number associated with this type.
    pub fn number(&self) -> u16 {
        match *self {
            ValueType::Lane(l) => l.number(),
            ValueType::Reference(r) => r.number(),
            ValueType::Vector(ref v) => v.number(),
            ValueType::DynamicVector(ref v) => v.number(),
        }
    }

    /// Return the name of this type for generated Rust source files.
    pub fn rust_name(&self) -> String {
        format!("{}{}", RUST_NAME_PREFIX, self.to_string().to_uppercase())
    }

    /// Return the total number of bits of an instance of this type.
    pub fn width(&self) -> u64 {
        self.lane_count() * self.lane_bits()
    }
}

impl fmt::Display for ValueType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            ValueType::Lane(l) => l.fmt(f),
            ValueType::Reference(r) => r.fmt(f),
            ValueType::Vector(ref v) => v.fmt(f),
            ValueType::DynamicVector(ref v) => v.fmt(f),
        }
    }
}

/// Create a ValueType from a given lane type.
impl From<LaneType> for ValueType {
    fn from(lane: LaneType) -> Self {
        ValueType::Lane(lane)
    }
}

/// Create a ValueType from a given reference type.
impl From<ReferenceType> for ValueType {
    fn from(reference: ReferenceType) -> Self {
        ValueType::Reference(reference)
    }
}

/// Create a ValueType from a given vector type.
impl From<VectorType> for ValueType {
    fn from(vector: VectorType) -> Self {
        ValueType::Vector(vector)
    }
}

/// Create a ValueType from a given dynamic vector type.
impl From<DynamicVectorType> for ValueType {
    fn from(vector: DynamicVectorType) -> Self {
        ValueType::DynamicVector(vector)
    }
}

/// A concrete scalar type that can appear as a vector lane too.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) enum LaneType {
    Float(shared_types::Float),
    Int(shared_types::Int),
}

impl LaneType {
    /// Return a string containing the documentation comment for this lane type.
    pub fn doc(self) -> String {
        match self {
            LaneType::Float(shared_types::Float::F32) => String::from(
                "A 32-bit floating point type represented in the IEEE 754-2008
                *binary32* interchange format. This corresponds to the :c:type:`float`
                type in most C implementations.",
            ),
            LaneType::Float(shared_types::Float::F64) => String::from(
                "A 64-bit floating point type represented in the IEEE 754-2008
                *binary64* interchange format. This corresponds to the :c:type:`double`
                type in most C implementations.",
            ),
            LaneType::Int(_) if self.lane_bits() < 32 => format!(
                "An integer type with {} bits.
                WARNING: arithmetic on {}bit integers is incomplete",
                self.lane_bits(),
                self.lane_bits()
            ),
            LaneType::Int(_) => format!("An integer type with {} bits.", self.lane_bits()),
        }
    }

    /// Return the number of bits in a lane.
    pub fn lane_bits(self) -> u64 {
        match self {
            LaneType::Float(ref f) => *f as u64,
            LaneType::Int(ref i) => *i as u64,
        }
    }

    /// Find the unique number associated with this lane type.
    pub fn number(self) -> u16 {
        constants::LANE_BASE
            + match self {
                LaneType::Int(shared_types::Int::I8) => 6,
                LaneType::Int(shared_types::Int::I16) => 7,
                LaneType::Int(shared_types::Int::I32) => 8,
                LaneType::Int(shared_types::Int::I64) => 9,
                LaneType::Int(shared_types::Int::I128) => 10,
                LaneType::Float(shared_types::Float::F32) => 11,
                LaneType::Float(shared_types::Float::F64) => 12,
            }
    }

    pub fn int_from_bits(num_bits: u16) -> LaneType {
        LaneType::Int(match num_bits {
            8 => shared_types::Int::I8,
            16 => shared_types::Int::I16,
            32 => shared_types::Int::I32,
            64 => shared_types::Int::I64,
            128 => shared_types::Int::I128,
            _ => unreachable!("unxpected num bits for int"),
        })
    }

    pub fn float_from_bits(num_bits: u16) -> LaneType {
        LaneType::Float(match num_bits {
            32 => shared_types::Float::F32,
            64 => shared_types::Float::F64,
            _ => unreachable!("unxpected num bits for float"),
        })
    }

    pub fn by(self, lanes: u16) -> ValueType {
        if lanes == 1 {
            self.into()
        } else {
            ValueType::Vector(VectorType::new(self, lanes.into()))
        }
    }

    pub fn to_dynamic(self, lanes: u16) -> ValueType {
        ValueType::DynamicVector(DynamicVectorType::new(self, lanes.into()))
    }
}

impl fmt::Display for LaneType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            LaneType::Float(_) => write!(f, "f{}", self.lane_bits()),
            LaneType::Int(_) => write!(f, "i{}", self.lane_bits()),
        }
    }
}

impl fmt::Debug for LaneType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let inner_msg = format!("bits={}", self.lane_bits());
        write!(
            f,
            "{}",
            match *self {
                LaneType::Float(_) => format!("FloatType({})", inner_msg),
                LaneType::Int(_) => format!("IntType({})", inner_msg),
            }
        )
    }
}

/// Create a LaneType from a given float variant.
impl From<shared_types::Float> for LaneType {
    fn from(f: shared_types::Float) -> Self {
        LaneType::Float(f)
    }
}

/// Create a LaneType from a given int variant.
impl From<shared_types::Int> for LaneType {
    fn from(i: shared_types::Int) -> Self {
        LaneType::Int(i)
    }
}

/// An iterator for different lane types.
pub(crate) struct LaneTypeIterator {
    int_iter: shared_types::IntIterator,
    float_iter: shared_types::FloatIterator,
}

impl LaneTypeIterator {
    /// Create a new lane type iterator.
    fn new() -> Self {
        Self {
            int_iter: shared_types::IntIterator::new(),
            float_iter: shared_types::FloatIterator::new(),
        }
    }
}

impl Iterator for LaneTypeIterator {
    type Item = LaneType;
    fn next(&mut self) -> Option<Self::Item> {
        if let Some(i) = self.int_iter.next() {
            Some(LaneType::from(i))
        } else if let Some(f) = self.float_iter.next() {
            Some(LaneType::from(f))
        } else {
            None
        }
    }
}

/// A concrete SIMD vector type.
///
/// A vector type has a lane type which is an instance of `LaneType`,
/// and a positive number of lanes.
#[derive(Clone, PartialEq, Eq, Hash)]
pub(crate) struct VectorType {
    base: LaneType,
    lanes: u64,
}

impl VectorType {
    /// Initialize a new integer type with `n` bits.
    pub fn new(base: LaneType, lanes: u64) -> Self {
        Self { base, lanes }
    }

    /// Return a string containing the documentation comment for this vector type.
    pub fn doc(&self) -> String {
        format!(
            "A SIMD vector with {} lanes containing a `{}` each.",
            self.lane_count(),
            self.base
        )
    }

    /// Return the number of bits in a lane.
    pub fn lane_bits(&self) -> u64 {
        self.base.lane_bits()
    }

    /// Return the number of lanes.
    pub fn lane_count(&self) -> u64 {
        self.lanes
    }

    /// Return the lane type.
    pub fn lane_type(&self) -> LaneType {
        self.base
    }

    /// Find the unique number associated with this vector type.
    ///
    /// Vector types are encoded with the lane type in the low 4 bits and
    /// log2(lanes) in the high 4 bits, giving a range of 2-256 lanes.
    pub fn number(&self) -> u16 {
        let lanes_log_2: u32 = 63 - self.lane_count().leading_zeros();
        let base_num = u32::from(self.base.number());
        let num = (lanes_log_2 << 4) + base_num;
        num as u16
    }
}

impl fmt::Display for VectorType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}x{}", self.base, self.lane_count())
    }
}

impl fmt::Debug for VectorType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "VectorType(base={}, lanes={})",
            self.base,
            self.lane_count()
        )
    }
}

/// A concrete dynamic SIMD vector type.
///
/// A vector type has a lane type which is an instance of `LaneType`,
/// and a positive number of lanes.
#[derive(Clone, PartialEq, Eq, Hash)]
pub(crate) struct DynamicVectorType {
    base: LaneType,
    unscaled_lanes: u64,
}

impl DynamicVectorType {
    /// Initialize a new type with `base` lane type and a minimum number of lanes.
    pub fn new(base: LaneType, unscaled_lanes: u64) -> Self {
        Self {
            base,
            unscaled_lanes,
        }
    }

    /// Return a string containing the documentation comment for this vector type.
    pub fn doc(&self) -> String {
        format!(
            "A dynamically-scaled SIMD vector with a minimum of {} lanes containing `{}` bits each.",
            self.unscaled_lanes,
            self.base
        )
    }

    /// Return the number of bits in a lane.
    pub fn lane_bits(&self) -> u64 {
        self.base.lane_bits()
    }

    /// Return the number of lanes.
    pub fn minimum_lane_count(&self) -> u64 {
        self.unscaled_lanes
    }

    /// Return the lane type.
    pub fn lane_type(&self) -> LaneType {
        self.base
    }

    /// Find the unique number associated with this vector type.
    ///
    /// Dynamic vector types are encoded in the same manner as `VectorType`,
    /// with lane type in the low 4 bits and the log2(lane_count). We add the
    /// `VECTOR_BASE` to move these numbers into the range beyond the fixed
    /// SIMD types.
    pub fn number(&self) -> u16 {
        let base_num = u32::from(self.base.number());
        let lanes_log_2: u32 = 63 - self.minimum_lane_count().leading_zeros();
        let num = 0x80 + (lanes_log_2 << 4) + base_num;
        num as u16
    }
}

impl fmt::Display for DynamicVectorType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}x{}xN", self.base, self.minimum_lane_count())
    }
}

impl fmt::Debug for DynamicVectorType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "DynamicVectorType(base={}, lanes={})",
            self.base,
            self.minimum_lane_count(),
        )
    }
}

/// Reference type is scalar type, but not lane type.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) struct ReferenceType(pub shared_types::Reference);

impl ReferenceType {
    /// Return a string containing the documentation comment for this reference type.
    pub fn doc(self) -> String {
        format!("An opaque reference type with {} bits.", self.lane_bits())
    }

    /// Return the number of bits in a lane.
    pub fn lane_bits(self) -> u64 {
        match self.0 {
            shared_types::Reference::R32 => 32,
            shared_types::Reference::R64 => 64,
        }
    }

    /// Find the unique number associated with this reference type.
    pub fn number(self) -> u16 {
        constants::REFERENCE_BASE
            + match self {
                ReferenceType(shared_types::Reference::R32) => 0,
                ReferenceType(shared_types::Reference::R64) => 1,
            }
    }

    pub fn ref_from_bits(num_bits: u16) -> ReferenceType {
        ReferenceType(match num_bits {
            32 => shared_types::Reference::R32,
            64 => shared_types::Reference::R64,
            _ => unreachable!("unexpected number of bits for a reference type"),
        })
    }
}

impl fmt::Display for ReferenceType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "r{}", self.lane_bits())
    }
}

impl fmt::Debug for ReferenceType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ReferenceType(bits={})", self.lane_bits())
    }
}

/// Create a ReferenceType from a given reference variant.
impl From<shared_types::Reference> for ReferenceType {
    fn from(r: shared_types::Reference) -> Self {
        ReferenceType(r)
    }
}

/// An iterator for different reference types.
pub(crate) struct ReferenceTypeIterator {
    reference_iter: shared_types::ReferenceIterator,
}

impl ReferenceTypeIterator {
    /// Create a new reference type iterator.
    fn new() -> Self {
        Self {
            reference_iter: shared_types::ReferenceIterator::new(),
        }
    }
}

impl Iterator for ReferenceTypeIterator {
    type Item = ReferenceType;
    fn next(&mut self) -> Option<Self::Item> {
        self.reference_iter.next().map(ReferenceType::from)
    }
}