1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//! Encodes instructions in the standard x86 encoding mode. This is called IA-32E mode in the Intel
//! manuals but corresponds to the addition of the REX-prefix format (hence the name of this module)
//! that allowed encoding instructions in both compatibility mode (32-bit instructions running on a
//! 64-bit OS) and in 64-bit mode (using the full 64-bit address space).
//!
//! For all of the routines that take both a memory-or-reg operand (sometimes called "E" in the
//! Intel documentation, see the Intel Developer's manual, vol. 2, section A.2) and a reg-only
//! operand ("G" in Intelese), the order is always G first, then E. The term "enc" in the following
//! means "hardware register encoding number".

use crate::machinst::{Reg, RegClass};
use crate::{
    isa::x64::inst::{
        args::{Amode, OperandSize},
        regs, Inst, LabelUse,
    },
    machinst::MachBuffer,
};

pub(crate) fn low8_will_sign_extend_to_64(x: u32) -> bool {
    let xs = (x as i32) as i64;
    xs == ((xs << 56) >> 56)
}

pub(crate) fn low8_will_sign_extend_to_32(x: u32) -> bool {
    let xs = x as i32;
    xs == ((xs << 24) >> 24)
}

/// Encode the ModR/M byte.
#[inline(always)]
pub fn encode_modrm(m0d: u8, enc_reg_g: u8, rm_e: u8) -> u8 {
    debug_assert!(m0d < 4);
    debug_assert!(enc_reg_g < 8);
    debug_assert!(rm_e < 8);
    ((m0d & 3) << 6) | ((enc_reg_g & 7) << 3) | (rm_e & 7)
}

#[inline(always)]
pub(crate) fn encode_sib(shift: u8, enc_index: u8, enc_base: u8) -> u8 {
    debug_assert!(shift < 4);
    debug_assert!(enc_index < 8);
    debug_assert!(enc_base < 8);
    ((shift & 3) << 6) | ((enc_index & 7) << 3) | (enc_base & 7)
}

/// Get the encoding number of a GPR.
#[inline(always)]
pub(crate) fn int_reg_enc(reg: impl Into<Reg>) -> u8 {
    let reg = reg.into();
    debug_assert!(reg.is_real(), "reg = {reg:?}");
    debug_assert_eq!(reg.class(), RegClass::Int);
    reg.to_real_reg().unwrap().hw_enc()
}

/// Get the encoding number of any register.
#[inline(always)]
pub(crate) fn reg_enc(reg: impl Into<Reg>) -> u8 {
    let reg = reg.into();
    debug_assert!(reg.is_real());
    reg.to_real_reg().unwrap().hw_enc()
}

/// A small bit field to record a REX prefix specification:
/// - bit 0 set to 1 indicates REX.W must be 0 (cleared).
/// - bit 1 set to 1 indicates the REX prefix must always be emitted.
#[repr(transparent)]
#[derive(Clone, Copy)]
pub struct RexFlags(u8);

impl RexFlags {
    /// By default, set the W field, and don't always emit.
    #[inline(always)]
    pub fn set_w() -> Self {
        Self(0)
    }

    /// Creates a new RexPrefix for which the REX.W bit will be cleared.
    #[inline(always)]
    pub fn clear_w() -> Self {
        Self(1)
    }

    /// Require that the REX prefix is emitted.
    #[inline(always)]
    pub fn always_emit(&mut self) -> &mut Self {
        self.0 = self.0 | 2;
        self
    }

    /// Emit the rex prefix if the referenced register would require it for 8-bit operations.
    #[inline(always)]
    pub fn always_emit_if_8bit_needed(&mut self, reg: Reg) -> &mut Self {
        let enc_reg = int_reg_enc(reg);
        if enc_reg >= 4 && enc_reg <= 7 {
            self.always_emit();
        }
        self
    }

    /// True if 64-bit operands are used.
    #[inline(always)]
    pub fn must_clear_w(&self) -> bool {
        (self.0 & 1) != 0
    }

    /// True if the REX prefix must always be emitted.
    #[inline(always)]
    pub fn must_always_emit(&self) -> bool {
        (self.0 & 2) != 0
    }

    /// Emit a unary instruction.
    #[inline(always)]
    pub fn emit_one_op(&self, sink: &mut MachBuffer<Inst>, enc_e: u8) {
        // Register Operand coded in Opcode Byte
        // REX.R and REX.X unused
        // REX.B == 1 accesses r8-r15
        let w = if self.must_clear_w() { 0 } else { 1 };
        let r = 0;
        let x = 0;
        let b = (enc_e >> 3) & 1;
        let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
        if rex != 0x40 || self.must_always_emit() {
            sink.put1(rex);
        }
    }

    /// Emit a binary instruction.
    #[inline(always)]
    pub fn emit_two_op(&self, sink: &mut MachBuffer<Inst>, enc_g: u8, enc_e: u8) {
        let w = if self.must_clear_w() { 0 } else { 1 };
        let r = (enc_g >> 3) & 1;
        let x = 0;
        let b = (enc_e >> 3) & 1;
        let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
        if rex != 0x40 || self.must_always_emit() {
            sink.put1(rex);
        }
    }

    /// Emit a ternary instruction.
    #[inline(always)]
    pub fn emit_three_op(
        &self,
        sink: &mut MachBuffer<Inst>,
        enc_g: u8,
        enc_index: u8,
        enc_base: u8,
    ) {
        let w = if self.must_clear_w() { 0 } else { 1 };
        let r = (enc_g >> 3) & 1;
        let x = (enc_index >> 3) & 1;
        let b = (enc_base >> 3) & 1;
        let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
        if rex != 0x40 || self.must_always_emit() {
            sink.put1(rex);
        }
    }
}

/// Generate the proper Rex flags for the given operand size.
impl From<OperandSize> for RexFlags {
    fn from(size: OperandSize) -> Self {
        match size {
            OperandSize::Size64 => RexFlags::set_w(),
            _ => RexFlags::clear_w(),
        }
    }
}
/// Generate Rex flags for an OperandSize/register tuple.
impl From<(OperandSize, Reg)> for RexFlags {
    fn from((size, reg): (OperandSize, Reg)) -> Self {
        let mut rex = RexFlags::from(size);
        if size == OperandSize::Size8 {
            rex.always_emit_if_8bit_needed(reg);
        }
        rex
    }
}

/// Allows using the same opcode byte in different "opcode maps" to allow for more instruction
/// encodings. See appendix A in the Intel Software Developer's Manual, volume 2A, for more details.
#[allow(missing_docs)]
#[derive(PartialEq)]
pub enum OpcodeMap {
    None,
    _0F,
    _0F38,
    _0F3A,
}

impl OpcodeMap {
    /// Normally the opcode map is specified as bytes in the instruction, but some x64 encoding
    /// formats pack this information as bits in a prefix (e.g. VEX / EVEX).
    pub(crate) fn bits(&self) -> u8 {
        match self {
            OpcodeMap::None => 0b00,
            OpcodeMap::_0F => 0b01,
            OpcodeMap::_0F38 => 0b10,
            OpcodeMap::_0F3A => 0b11,
        }
    }
}

impl Default for OpcodeMap {
    fn default() -> Self {
        Self::None
    }
}

/// We may need to include one or more legacy prefix bytes before the REX prefix.  This enum
/// covers only the small set of possibilities that we actually need.
#[derive(PartialEq)]
pub enum LegacyPrefixes {
    /// No prefix bytes.
    None,
    /// Operand Size Override -- here, denoting "16-bit operation".
    _66,
    /// The Lock prefix.
    _F0,
    /// Operand size override and Lock.
    _66F0,
    /// REPNE, but no specific meaning here -- is just an opcode extension.
    _F2,
    /// REP/REPE, but no specific meaning here -- is just an opcode extension.
    _F3,
    /// Operand size override and same effect as F3.
    _66F3,
}

impl LegacyPrefixes {
    /// Emit the legacy prefix as bytes (e.g. in REX instructions).
    #[inline(always)]
    pub(crate) fn emit(&self, sink: &mut MachBuffer<Inst>) {
        match self {
            Self::_66 => sink.put1(0x66),
            Self::_F0 => sink.put1(0xF0),
            Self::_66F0 => {
                // I don't think the order matters, but in any case, this is the same order that
                // the GNU assembler uses.
                sink.put1(0x66);
                sink.put1(0xF0);
            }
            Self::_F2 => sink.put1(0xF2),
            Self::_F3 => sink.put1(0xF3),
            Self::_66F3 => {
                sink.put1(0x66);
                sink.put1(0xF3);
            }
            Self::None => (),
        }
    }

    /// Emit the legacy prefix as bits (e.g. for EVEX instructions).
    #[inline(always)]
    pub(crate) fn bits(&self) -> u8 {
        match self {
            Self::None => 0b00,
            Self::_66 => 0b01,
            Self::_F3 => 0b10,
            Self::_F2 => 0b11,
            _ => panic!(
                "VEX and EVEX bits can only be extracted from single prefixes: None, 66, F3, F2"
            ),
        }
    }
}

impl Default for LegacyPrefixes {
    fn default() -> Self {
        Self::None
    }
}

/// This is the core 'emit' function for instructions that reference memory.
///
/// For an instruction that has as operands a reg encoding `enc_g` and a memory address `mem_e`,
/// create and emit:
/// - first the legacy prefixes, if any
/// - then the REX prefix, if needed
/// - then caller-supplied opcode byte(s) (`opcodes` and `num_opcodes`),
/// - then the MOD/RM byte,
/// - then optionally, a SIB byte,
/// - and finally optionally an immediate that will be derived from the `mem_e` operand.
///
/// For most instructions up to and including SSE4.2, that will be the whole instruction: this is
/// what we call "standard" instructions, and abbreviate "std" in the name here. VEX-prefixed
/// instructions will require their own emitter functions.
///
/// This will also work for 32-bits x86 instructions, assuming no REX prefix is provided.
///
/// The opcodes are written bigendianly for the convenience of callers.  For example, if the opcode
/// bytes to be emitted are, in this order, F3 0F 27, then the caller should pass `opcodes` ==
/// 0xF3_0F_27 and `num_opcodes` == 3.
///
/// The register operand is represented here not as a `Reg` but as its hardware encoding, `enc_g`.
/// `rex` can specify special handling for the REX prefix.  By default, the REX prefix will
/// indicate a 64-bit operation and will be deleted if it is redundant (0x40).  Note that for a
/// 64-bit operation, the REX prefix will normally never be redundant, since REX.W must be 1 to
/// indicate a 64-bit operation.
pub(crate) fn emit_std_enc_mem(
    sink: &mut MachBuffer<Inst>,
    prefixes: LegacyPrefixes,
    opcodes: u32,
    mut num_opcodes: usize,
    enc_g: u8,
    mem_e: &Amode,
    rex: RexFlags,
    bytes_at_end: u8,
) {
    // General comment for this function: the registers in `mem_e` must be
    // 64-bit integer registers, because they are part of an address
    // expression.  But `enc_g` can be derived from a register of any class.

    if let Some(trap_code) = mem_e.get_flags().trap_code() {
        sink.add_trap(trap_code);
    }

    prefixes.emit(sink);

    // After prefixes, first emit the REX byte depending on the kind of
    // addressing mode that's being used.
    match *mem_e {
        Amode::ImmReg { base, .. } => {
            let enc_e = int_reg_enc(base);
            rex.emit_two_op(sink, enc_g, enc_e);
        }

        Amode::ImmRegRegShift {
            base: reg_base,
            index: reg_index,
            ..
        } => {
            let enc_base = int_reg_enc(*reg_base);
            let enc_index = int_reg_enc(*reg_index);
            rex.emit_three_op(sink, enc_g, enc_index, enc_base);
        }

        Amode::RipRelative { .. } => {
            // note REX.B = 0.
            rex.emit_two_op(sink, enc_g, 0);
        }
    }

    // Now the opcode(s).  These include any other prefixes the caller
    // hands to us.
    while num_opcodes > 0 {
        num_opcodes -= 1;
        sink.put1(((opcodes >> (num_opcodes << 3)) & 0xFF) as u8);
    }

    // And finally encode the mod/rm bytes and all further information.
    emit_modrm_sib_disp(sink, enc_g, mem_e, bytes_at_end, None)
}

pub(crate) fn emit_modrm_sib_disp(
    sink: &mut MachBuffer<Inst>,
    enc_g: u8,
    mem_e: &Amode,
    bytes_at_end: u8,
    evex_scaling: Option<i8>,
) {
    match *mem_e {
        Amode::ImmReg { simm32, base, .. } => {
            let enc_e = int_reg_enc(base);
            let mut imm = Imm::new(simm32, evex_scaling);

            // Most base registers allow for a single ModRM byte plus an
            // optional immediate. If rsp is the base register, however, then a
            // SIB byte must be used.
            let enc_e_low3 = enc_e & 7;
            if enc_e_low3 != regs::ENC_RSP {
                // If the base register is rbp and there's no offset then force
                // a 1-byte zero offset since otherwise the encoding would be
                // invalid.
                if enc_e_low3 == regs::ENC_RBP {
                    imm.force_immediate();
                }
                sink.put1(encode_modrm(imm.m0d(), enc_g & 7, enc_e & 7));
                imm.emit(sink);
            } else {
                // Displacement from RSP is encoded with a SIB byte where
                // the index and base are both encoded as RSP's encoding of
                // 0b100. This special encoding means that the index register
                // isn't used and the base is 0b100 with or without a
                // REX-encoded 4th bit (e.g. rsp or r12)
                sink.put1(encode_modrm(imm.m0d(), enc_g & 7, 0b100));
                sink.put1(0b00_100_100);
                imm.emit(sink);
            }
        }

        Amode::ImmRegRegShift {
            simm32,
            base: reg_base,
            index: reg_index,
            shift,
            ..
        } => {
            let enc_base = int_reg_enc(*reg_base);
            let enc_index = int_reg_enc(*reg_index);

            // Encoding of ModRM/SIB bytes don't allow the index register to
            // ever be rsp. Note, though, that the encoding of r12, whose three
            // lower bits match the encoding of rsp, is explicitly allowed with
            // REX bytes so only rsp is disallowed.
            assert!(enc_index != regs::ENC_RSP);

            // If the offset is zero then there is no immediate. Note, though,
            // that if the base register's lower three bits are `101` then an
            // offset must be present. This is a special case in the encoding of
            // the SIB byte and requires an explicit displacement with rbp/r13.
            let mut imm = Imm::new(simm32, evex_scaling);
            if enc_base & 7 == regs::ENC_RBP {
                imm.force_immediate();
            }

            // With the above determined encode the ModRM byte, then the SIB
            // byte, then any immediate as necessary.
            sink.put1(encode_modrm(imm.m0d(), enc_g & 7, 0b100));
            sink.put1(encode_sib(shift, enc_index & 7, enc_base & 7));
            imm.emit(sink);
        }

        Amode::RipRelative { ref target } => {
            // RIP-relative is mod=00, rm=101.
            sink.put1(encode_modrm(0b00, enc_g & 7, 0b101));

            let offset = sink.cur_offset();
            sink.use_label_at_offset(offset, *target, LabelUse::JmpRel32);
            // N.B.: some instructions (XmmRmRImm format for example)
            // have bytes *after* the RIP-relative offset. The
            // addressed location is relative to the end of the
            // instruction, but the relocation is nominally relative
            // to the end of the u32 field. So, to compensate for
            // this, we emit a negative extra offset in the u32 field
            // initially, and the relocation will add to it.
            sink.put4(-(i32::from(bytes_at_end)) as u32);
        }
    }
}

#[derive(Copy, Clone)]
enum Imm {
    None,
    Imm8(i8),
    Imm32(i32),
}

impl Imm {
    /// Classifies the 32-bit immediate `val` as how this can be encoded
    /// with ModRM/SIB bytes.
    ///
    /// For `evex_scaling` according to Section 2.7.5 of Intel's manual:
    ///
    /// > EVEX-encoded instructions always use a compressed displacement scheme
    /// > by multiplying disp8 in conjunction with a scaling factor N that is
    /// > determined based on the vector length, the value of EVEX.b bit
    /// > (embedded broadcast) and the input element size of the instruction
    ///
    /// The `evex_scaling` factor provided here is `Some(N)` for EVEX
    /// instructions.  This is taken into account where the `Imm` value
    /// contained is the raw byte offset.
    fn new(val: i32, evex_scaling: Option<i8>) -> Imm {
        if val == 0 {
            return Imm::None;
        }
        match evex_scaling {
            Some(scaling) => {
                if val % i32::from(scaling) == 0 {
                    let scaled = val / i32::from(scaling);
                    if low8_will_sign_extend_to_32(scaled as u32) {
                        return Imm::Imm8(scaled as i8);
                    }
                }
                Imm::Imm32(val)
            }
            None => match i8::try_from(val) {
                Ok(val) => Imm::Imm8(val),
                Err(_) => Imm::Imm32(val),
            },
        }
    }

    /// Forces `Imm::None` to become `Imm::Imm8(0)`, used for special cases
    /// where some base registers require an immediate.
    fn force_immediate(&mut self) {
        if let Imm::None = self {
            *self = Imm::Imm8(0);
        }
    }

    /// Returns the two "mod" bits present at the upper bits of the mod/rm
    /// byte.
    fn m0d(&self) -> u8 {
        match self {
            Imm::None => 0b00,
            Imm::Imm8(_) => 0b01,
            Imm::Imm32(_) => 0b10,
        }
    }

    fn emit(&self, sink: &mut MachBuffer<Inst>) {
        match self {
            Imm::None => {}
            Imm::Imm8(n) => sink.put1(*n as u8),
            Imm::Imm32(n) => sink.put4(*n as u32),
        }
    }
}

/// This is the core 'emit' function for instructions that do not reference memory.
///
/// This is conceptually the same as emit_modrm_sib_enc_ge, except it is for the case where the E
/// operand is a register rather than memory.  Hence it is much simpler.
pub(crate) fn emit_std_enc_enc(
    sink: &mut MachBuffer<Inst>,
    prefixes: LegacyPrefixes,
    opcodes: u32,
    mut num_opcodes: usize,
    enc_g: u8,
    enc_e: u8,
    rex: RexFlags,
) {
    // EncG and EncE can be derived from registers of any class, and they
    // don't even have to be from the same class.  For example, for an
    // integer-to-FP conversion insn, one might be RegClass::I64 and the other
    // RegClass::V128.

    // The legacy prefixes.
    prefixes.emit(sink);

    // The rex byte.
    rex.emit_two_op(sink, enc_g, enc_e);

    // All other prefixes and opcodes.
    while num_opcodes > 0 {
        num_opcodes -= 1;
        sink.put1(((opcodes >> (num_opcodes << 3)) & 0xFF) as u8);
    }

    // Now the mod/rm byte.  The instruction we're generating doesn't access
    // memory, so there is no SIB byte or immediate -- we're done.
    sink.put1(encode_modrm(0b11, enc_g & 7, enc_e & 7));
}

// These are merely wrappers for the above two functions that facilitate passing
// actual `Reg`s rather than their encodings.

pub(crate) fn emit_std_reg_mem(
    sink: &mut MachBuffer<Inst>,
    prefixes: LegacyPrefixes,
    opcodes: u32,
    num_opcodes: usize,
    reg_g: Reg,
    mem_e: &Amode,
    rex: RexFlags,
    bytes_at_end: u8,
) {
    let enc_g = reg_enc(reg_g);
    emit_std_enc_mem(
        sink,
        prefixes,
        opcodes,
        num_opcodes,
        enc_g,
        mem_e,
        rex,
        bytes_at_end,
    );
}

pub(crate) fn emit_std_reg_reg(
    sink: &mut MachBuffer<Inst>,
    prefixes: LegacyPrefixes,
    opcodes: u32,
    num_opcodes: usize,
    reg_g: Reg,
    reg_e: Reg,
    rex: RexFlags,
) {
    let enc_g = reg_enc(reg_g);
    let enc_e = reg_enc(reg_e);
    emit_std_enc_enc(sink, prefixes, opcodes, num_opcodes, enc_g, enc_e, rex);
}

/// Write a suitable number of bits from an imm64 to the sink.
pub(crate) fn emit_simm(sink: &mut MachBuffer<Inst>, size: u8, simm32: u32) {
    match size {
        8 | 4 => sink.put4(simm32),
        2 => sink.put2(simm32 as u16),
        1 => sink.put1(simm32 as u8),
        _ => unreachable!(),
    }
}