cranelift_codegen/remove_constant_phis.rs
1//! A Constant-Phi-Node removal pass.
2
3use crate::dominator_tree::DominatorTree;
4use crate::ir;
5use crate::ir::Function;
6use crate::ir::{Block, BlockCall, Inst, Value};
7use crate::timing;
8use bumpalo::Bump;
9use cranelift_entity::SecondaryMap;
10use rustc_hash::{FxHashMap, FxHashSet};
11use smallvec::SmallVec;
12
13// A note on notation. For the sake of clarity, this file uses the phrase
14// "formal parameters" to mean the `Value`s listed in the block head, and
15// "actual parameters" to mean the `Value`s passed in a branch or a jump:
16//
17// block4(v16: i32, v18: i32): <-- formal parameters
18// ...
19// brif v27, block7(v22, v24), block6 <-- actual parameters
20
21// This transformation pass (conceptually) partitions all values in the
22// function into two groups:
23//
24// * Group A: values defined by block formal parameters, except for the entry block.
25//
26// * Group B: All other values: that is, values defined by instructions,
27// and the formals of the entry block.
28//
29// For each value in Group A, it attempts to establish whether it will have
30// the value of exactly one member of Group B. If so, the formal parameter is
31// deleted, all corresponding actual parameters (in jumps/branches to the
32// defining block) are deleted, and a rename is inserted.
33//
34// The entry block is special-cased because (1) we don't know what values flow
35// to its formals and (2) in any case we can't change its formals.
36//
37// Work proceeds in three phases.
38//
39// * Phase 1: examine all instructions. For each block, make up a useful
40// grab-bag of information, `BlockSummary`, that summarises the block's
41// formals and jump/branch instruction. This is used by Phases 2 and 3.
42//
43// * Phase 2: for each value in Group A, try to find a single Group B value
44// that flows to it. This is done using a classical iterative forward
45// dataflow analysis over a simple constant-propagation style lattice. It
46// converges quickly in practice -- I have seen at most 4 iterations. This
47// is relatively cheap because the iteration is done over the
48// `BlockSummary`s, and does not visit each instruction. The resulting
49// fixed point is stored in a `SolverState`.
50//
51// * Phase 3: using the `SolverState` and `BlockSummary`, edit the function to
52// remove redundant formals and actuals, and to insert suitable renames.
53//
54// Note that the effectiveness of the analysis depends on on the fact that
55// there are no copy instructions in Cranelift's IR. If there were, the
56// computation of `actual_absval` in Phase 2 would have to be extended to
57// chase through such copies.
58//
59// For large functions, the analysis cost using the new AArch64 backend is about
60// 0.6% of the non-optimising compile time, as measured by instruction counts.
61// This transformation usually pays for itself several times over, though, by
62// reducing the isel/regalloc cost downstream. Gains of up to 7% have been
63// seen for large functions.
64
65/// The `Value`s (Group B) that can flow to a formal parameter (Group A).
66#[derive(Clone, Copy, Debug, PartialEq)]
67enum AbstractValue {
68 /// Two or more values flow to this formal.
69 Many,
70
71 /// Exactly one value, as stated, flows to this formal. The `Value`s that
72 /// can appear here are exactly: `Value`s defined by `Inst`s, plus the
73 /// `Value`s defined by the formals of the entry block. Note that this is
74 /// exactly the set of `Value`s that are *not* tracked in the solver below
75 /// (see `SolverState`).
76 One(Value /*Group B*/),
77
78 /// No value flows to this formal.
79 None,
80}
81
82impl AbstractValue {
83 fn join(self, other: AbstractValue) -> AbstractValue {
84 match (self, other) {
85 // Joining with `None` has no effect
86 (AbstractValue::None, p2) => p2,
87 (p1, AbstractValue::None) => p1,
88 // Joining with `Many` produces `Many`
89 (AbstractValue::Many, _p2) => AbstractValue::Many,
90 (_p1, AbstractValue::Many) => AbstractValue::Many,
91 // The only interesting case
92 (AbstractValue::One(v1), AbstractValue::One(v2)) => {
93 if v1 == v2 {
94 AbstractValue::One(v1)
95 } else {
96 AbstractValue::Many
97 }
98 }
99 }
100 }
101
102 fn is_one(self) -> bool {
103 matches!(self, AbstractValue::One(_))
104 }
105}
106
107#[derive(Clone, Copy, Debug)]
108struct OutEdge<'a> {
109 /// An instruction that transfers control.
110 inst: Inst,
111 /// The index into branch_destinations for this instruction that corresponds
112 /// to this edge.
113 branch_index: u32,
114 /// The block that control is transferred to.
115 block: Block,
116 /// The arguments to that block.
117 ///
118 /// These values can be from both groups A and B.
119 args: &'a [Value],
120}
121
122impl<'a> OutEdge<'a> {
123 /// Construct a new `OutEdge` for the given instruction.
124 ///
125 /// Returns `None` if this is an edge without any block arguments, which
126 /// means we can ignore it for this analysis's purposes.
127 #[inline]
128 fn new(
129 bump: &'a Bump,
130 dfg: &ir::DataFlowGraph,
131 inst: Inst,
132 branch_index: usize,
133 block: BlockCall,
134 ) -> Option<Self> {
135 let inst_var_args = block.args_slice(&dfg.value_lists);
136
137 // Skip edges without params.
138 if inst_var_args.is_empty() {
139 return None;
140 }
141
142 Some(OutEdge {
143 inst,
144 branch_index: branch_index as u32,
145 block: block.block(&dfg.value_lists),
146 args: bump.alloc_slice_fill_iter(
147 inst_var_args
148 .iter()
149 .map(|value| dfg.resolve_aliases(*value)),
150 ),
151 })
152 }
153}
154
155/// For some block, a useful bundle of info. The `Block` itself is not stored
156/// here since it will be the key in the associated `FxHashMap` -- see
157/// `summaries` below. For the `SmallVec` tuning params: most blocks have
158/// few parameters, hence `4`. And almost all blocks have either one or two
159/// successors, hence `2`.
160#[derive(Clone, Debug, Default)]
161struct BlockSummary<'a> {
162 /// Formal parameters for this `Block`.
163 ///
164 /// These values are from group A.
165 formals: &'a [Value],
166
167 /// Each outgoing edge from this block.
168 ///
169 /// We don't bother to include transfers that pass zero parameters
170 /// since that makes more work for the solver for no purpose.
171 ///
172 /// We optimize for the case where a branch instruction has up to two
173 /// outgoing edges, as unconditional jumps and conditional branches are
174 /// more prominent than br_table.
175 dests: SmallVec<[OutEdge<'a>; 2]>,
176}
177
178impl<'a> BlockSummary<'a> {
179 /// Construct a new `BlockSummary`, using `values` as its backing storage.
180 #[inline]
181 fn new(bump: &'a Bump, formals: &[Value]) -> Self {
182 Self {
183 formals: bump.alloc_slice_copy(formals),
184 dests: Default::default(),
185 }
186 }
187}
188
189/// Solver state. This holds a AbstractValue for each formal parameter, except
190/// for those from the entry block.
191struct SolverState {
192 absvals: FxHashMap<Value /*Group A*/, AbstractValue>,
193}
194
195impl SolverState {
196 fn new() -> Self {
197 Self {
198 absvals: FxHashMap::default(),
199 }
200 }
201
202 fn get(&self, actual: Value) -> AbstractValue {
203 *self
204 .absvals
205 .get(&actual)
206 .unwrap_or_else(|| panic!("SolverState::get: formal param {actual:?} is untracked?!"))
207 }
208
209 fn maybe_get(&self, actual: Value) -> Option<&AbstractValue> {
210 self.absvals.get(&actual)
211 }
212
213 fn set(&mut self, actual: Value, lp: AbstractValue) {
214 match self.absvals.insert(actual, lp) {
215 Some(_old_lp) => {}
216 None => panic!("SolverState::set: formal param {actual:?} is untracked?!"),
217 }
218 }
219}
220
221/// Detect phis in `func` that will only ever produce one value, using a
222/// classic forward dataflow analysis. Then remove them.
223#[inline(never)]
224pub fn do_remove_constant_phis(func: &mut Function, domtree: &mut DominatorTree) {
225 let _tt = timing::remove_constant_phis();
226 debug_assert!(domtree.is_valid());
227
228 // Phase 1 of 3: for each block, make a summary containing all relevant
229 // info. The solver will iterate over the summaries, rather than having
230 // to inspect each instruction in each block.
231 let bump =
232 Bump::with_capacity(domtree.cfg_postorder().len() * 4 * std::mem::size_of::<Value>());
233 let mut summaries =
234 SecondaryMap::<Block, BlockSummary>::with_capacity(domtree.cfg_postorder().len());
235
236 for b in domtree.cfg_rpo().copied() {
237 let formals = func.dfg.block_params(b);
238 let mut summary = BlockSummary::new(&bump, formals);
239
240 for inst in func.layout.block_insts(b) {
241 for (ix, dest) in func.dfg.insts[inst]
242 .branch_destination(&func.dfg.jump_tables)
243 .iter()
244 .enumerate()
245 {
246 if let Some(edge) = OutEdge::new(&bump, &func.dfg, inst, ix, *dest) {
247 summary.dests.push(edge);
248 }
249 }
250 }
251
252 // Ensure the invariant that all blocks (except for the entry) appear
253 // in the summary, *unless* they have neither formals nor any
254 // param-carrying branches/jumps.
255 if formals.len() > 0 || summary.dests.len() > 0 {
256 summaries[b] = summary;
257 }
258 }
259
260 // Phase 2 of 3: iterate over the summaries in reverse postorder,
261 // computing new `AbstractValue`s for each tracked `Value`. The set of
262 // tracked `Value`s is exactly Group A as described above.
263
264 let entry_block = func
265 .layout
266 .entry_block()
267 .expect("remove_constant_phis: entry block unknown");
268
269 // Set up initial solver state
270 let mut state = SolverState::new();
271
272 for b in domtree.cfg_rpo().copied() {
273 // For each block, get the formals
274 if b == entry_block {
275 continue;
276 }
277 let formals = func.dfg.block_params(b);
278 for formal in formals {
279 let mb_old_absval = state.absvals.insert(*formal, AbstractValue::None);
280 assert!(mb_old_absval.is_none());
281 }
282 }
283
284 // Solve: repeatedly traverse the blocks in reverse postorder, until there
285 // are no changes.
286 let mut iter_no = 0;
287 loop {
288 iter_no += 1;
289 let mut changed = false;
290
291 for src in domtree.cfg_rpo().copied() {
292 let src_summary = &summaries[src];
293 for edge in &src_summary.dests {
294 assert!(edge.block != entry_block);
295 // By contrast, the dst block must have a summary. Phase 1
296 // will have only included an entry in `src_summary.dests` if
297 // that branch/jump carried at least one parameter. So the
298 // dst block does take parameters, so it must have a summary.
299 let dst_summary = &summaries[edge.block];
300 let dst_formals = &dst_summary.formals;
301 assert_eq!(edge.args.len(), dst_formals.len());
302 for (formal, actual) in dst_formals.iter().zip(edge.args) {
303 // Find the abstract value for `actual`. If it is a block
304 // formal parameter then the most recent abstract value is
305 // to be found in the solver state. If not, then it's a
306 // real value defining point (not a phi), in which case
307 // return it itself.
308 let actual_absval = match state.maybe_get(*actual) {
309 Some(pt) => *pt,
310 None => AbstractValue::One(*actual),
311 };
312
313 // And `join` the new value with the old.
314 let formal_absval_old = state.get(*formal);
315 let formal_absval_new = formal_absval_old.join(actual_absval);
316 if formal_absval_new != formal_absval_old {
317 changed = true;
318 state.set(*formal, formal_absval_new);
319 }
320 }
321 }
322 }
323
324 if !changed {
325 break;
326 }
327 }
328
329 let mut n_consts = 0;
330 for absval in state.absvals.values() {
331 if absval.is_one() {
332 n_consts += 1;
333 }
334 }
335
336 // Phase 3 of 3: edit the function to remove constant formals, using the
337 // summaries and the final solver state as a guide.
338
339 // Make up a set of blocks that need editing.
340 let mut need_editing = FxHashSet::<Block>::default();
341 for (block, summary) in summaries.iter() {
342 if block == entry_block {
343 continue;
344 }
345 for formal in summary.formals {
346 let formal_absval = state.get(*formal);
347 if formal_absval.is_one() {
348 need_editing.insert(block);
349 break;
350 }
351 }
352 }
353
354 // Firstly, deal with the formals. For each formal which is redundant,
355 // remove it, and also add a reroute from it to the constant value which
356 // it we know it to be.
357 for b in &need_editing {
358 let mut del_these = SmallVec::<[(Value, Value); 32]>::new();
359 let formals: &[Value] = func.dfg.block_params(*b);
360 for formal in formals {
361 // The state must give an absval for `formal`.
362 if let AbstractValue::One(replacement_val) = state.get(*formal) {
363 del_these.push((*formal, replacement_val));
364 }
365 }
366 // We can delete the formals in any order. However,
367 // `remove_block_param` works by sliding backwards all arguments to
368 // the right of the value it is asked to delete. Hence when removing more
369 // than one formal, it is significantly more efficient to ask it to
370 // remove the rightmost formal first, and hence this `rev()`.
371 for (redundant_formal, replacement_val) in del_these.into_iter().rev() {
372 func.dfg.remove_block_param(redundant_formal);
373 func.dfg.change_to_alias(redundant_formal, replacement_val);
374 }
375 }
376
377 // Secondly, visit all branch insns. If the destination has had its
378 // formals changed, change the actuals accordingly. Don't scan all insns,
379 // rather just visit those as listed in the summaries we prepared earlier.
380 let mut old_actuals = alloc::vec::Vec::new();
381 for summary in summaries.values() {
382 for edge in &summary.dests {
383 if !need_editing.contains(&edge.block) {
384 continue;
385 }
386
387 let dfg = &mut func.dfg;
388 let dests = dfg.insts[edge.inst].branch_destination_mut(&mut dfg.jump_tables);
389 let block = &mut dests[edge.branch_index as usize];
390
391 old_actuals.extend(block.args_slice(&dfg.value_lists));
392
393 // Check that the numbers of arguments make sense.
394 let formals = &summaries[edge.block].formals;
395 assert_eq!(formals.len(), old_actuals.len());
396
397 // Filter out redundant block arguments.
398 let mut formals = formals.iter();
399 old_actuals.retain(|_| {
400 let formal_i = formals.next().unwrap();
401 !state.get(*formal_i).is_one()
402 });
403
404 // Replace the block with a new one that only includes the non-redundant arguments.
405 // This leaks the value list from the old block,
406 // https://github.com/bytecodealliance/wasmtime/issues/5451 for more information.
407 let destination = block.block(&dfg.value_lists);
408 *block = BlockCall::new(destination, &old_actuals, &mut dfg.value_lists);
409 old_actuals.clear();
410 }
411 }
412
413 log::debug!(
414 "do_remove_constant_phis: done, {} iters. {} formals, of which {} const.",
415 iter_no,
416 state.absvals.len(),
417 n_consts
418 );
419}