1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//! This module provides a set of primitives that allow implementing an incremental cache on top of
//! Cranelift, making it possible to reuse previous compiled artifacts for functions that have been
//! compiled previously.
//!
//! This set of operation is experimental and can be enabled using the Cargo feature
//! `incremental-cache`.
//!
//! This can bring speedups in different cases: change-code-and-immediately-recompile iterations
//! get faster, modules sharing lots of code can reuse each other's artifacts, etc.
//!
//! The three main primitives are the following:
//! - `compute_cache_key` is used to compute the cache key associated to a `Function`. This is
//! basically the content of the function, modulo a few things the caching system is resilient to.
//! - `serialize_compiled` is used to serialize the result of a compilation, so it can be reused
//! later on by...
//! - `try_finish_recompile`, which reads binary blobs serialized with `serialize_compiled`,
//! re-creating the compilation artifact from those.
//!
//! The `CacheStore` trait and `Context::compile_with_cache` method are provided as
//! high-level, easy-to-use facilities to make use of that cache, and show an example of how to use
//! the above three primitives to form a full incremental caching system.

use core::fmt;

use crate::alloc::string::String;
use crate::alloc::vec::Vec;
use crate::ir::function::{FunctionStencil, VersionMarker};
use crate::ir::Function;
use crate::machinst::{CompiledCode, CompiledCodeStencil};
use crate::result::CompileResult;
use crate::{isa::TargetIsa, timing};
use crate::{trace, CompileError, Context};
use alloc::borrow::{Cow, ToOwned as _};
use alloc::string::ToString as _;
use cranelift_control::ControlPlane;

impl Context {
    /// Compile the function, as in `compile`, but tries to reuse compiled artifacts from former
    /// compilations using the provided cache store.
    pub fn compile_with_cache(
        &mut self,
        isa: &dyn TargetIsa,
        cache_store: &mut dyn CacheKvStore,
        ctrl_plane: &mut ControlPlane,
    ) -> CompileResult<(&CompiledCode, bool)> {
        let cache_key_hash = {
            let _tt = timing::try_incremental_cache();

            let cache_key_hash = compute_cache_key(isa, &self.func);

            if let Some(blob) = cache_store.get(&cache_key_hash.0) {
                match try_finish_recompile(&self.func, &blob) {
                    Ok(compiled_code) => {
                        let info = compiled_code.code_info();

                        if isa.flags().enable_incremental_compilation_cache_checks() {
                            let actual_result = self.compile(isa, ctrl_plane)?;
                            assert_eq!(*actual_result, compiled_code);
                            assert_eq!(actual_result.code_info(), info);
                            // no need to set `compiled_code` here, it's set by `compile()`.
                            return Ok((actual_result, true));
                        }

                        let compiled_code = self.compiled_code.insert(compiled_code);
                        return Ok((compiled_code, true));
                    }
                    Err(err) => {
                        trace!("error when finishing recompilation: {err}");
                    }
                }
            }

            cache_key_hash
        };

        let stencil = self
            .compile_stencil(isa, ctrl_plane)
            .map_err(|err| CompileError {
                inner: err,
                func: &self.func,
            })?;

        let stencil = {
            let _tt = timing::store_incremental_cache();
            let (stencil, res) = serialize_compiled(stencil);
            if let Ok(blob) = res {
                cache_store.insert(&cache_key_hash.0, blob);
            }
            stencil
        };

        let compiled_code = self
            .compiled_code
            .insert(stencil.apply_params(&self.func.params));

        Ok((compiled_code, false))
    }
}

/// Backing storage for an incremental compilation cache, when enabled.
pub trait CacheKvStore {
    /// Given a cache key hash, retrieves the associated opaque serialized data.
    fn get(&self, key: &[u8]) -> Option<Cow<[u8]>>;

    /// Given a new cache key and a serialized blob obtained from `serialize_compiled`, stores it
    /// in the cache store.
    fn insert(&mut self, key: &[u8], val: Vec<u8>);
}

/// Hashed `CachedKey`, to use as an identifier when looking up whether a function has already been
/// compiled or not.
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct CacheKeyHash([u8; 32]);

impl std::fmt::Display for CacheKeyHash {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        write!(f, "CacheKeyHash:{:?}", self.0)
    }
}

#[derive(serde_derive::Serialize, serde_derive::Deserialize)]
struct CachedFunc {
    // Note: The version marker must be first to ensure deserialization stops in case of a version
    // mismatch before attempting to deserialize the actual compiled code.
    version_marker: VersionMarker,
    stencil: CompiledCodeStencil,
}

/// Key for caching a single function's compilation.
///
/// If two functions get the same `CacheKey`, then we can reuse the compiled artifacts, modulo some
/// fixups.
///
/// Note: the key will be invalidated across different versions of cranelift, as the
/// `FunctionStencil` contains a `VersionMarker` itself.
#[derive(Hash)]
struct CacheKey<'a> {
    stencil: &'a FunctionStencil,
    parameters: CompileParameters,
}

#[derive(Clone, PartialEq, Hash, serde_derive::Serialize, serde_derive::Deserialize)]
struct CompileParameters {
    isa: String,
    triple: String,
    flags: String,
    isa_flags: Vec<String>,
}

impl CompileParameters {
    fn from_isa(isa: &dyn TargetIsa) -> Self {
        Self {
            isa: isa.name().to_owned(),
            triple: isa.triple().to_string(),
            flags: isa.flags().to_string(),
            isa_flags: isa
                .isa_flags()
                .into_iter()
                .map(|v| v.value_string())
                .collect(),
        }
    }
}

impl<'a> CacheKey<'a> {
    /// Creates a new cache store key for a function.
    ///
    /// This is a bit expensive to compute, so it should be cached and reused as much as possible.
    fn new(isa: &dyn TargetIsa, f: &'a Function) -> Self {
        CacheKey {
            stencil: &f.stencil,
            parameters: CompileParameters::from_isa(isa),
        }
    }
}

/// Compute a cache key, and hash it on your behalf.
///
/// Since computing the `CacheKey` is a bit expensive, it should be done as least as possible.
pub fn compute_cache_key(isa: &dyn TargetIsa, func: &Function) -> CacheKeyHash {
    use core::hash::{Hash as _, Hasher};
    use sha2::Digest as _;

    struct Sha256Hasher(sha2::Sha256);

    impl Hasher for Sha256Hasher {
        fn finish(&self) -> u64 {
            panic!("Sha256Hasher doesn't support finish!");
        }
        fn write(&mut self, bytes: &[u8]) {
            self.0.update(bytes);
        }
    }

    let cache_key = CacheKey::new(isa, func);

    let mut hasher = Sha256Hasher(sha2::Sha256::new());
    cache_key.hash(&mut hasher);
    let hash: [u8; 32] = hasher.0.finalize().into();

    CacheKeyHash(hash)
}

/// Given a function that's been successfully compiled, serialize it to a blob that the caller may
/// store somewhere for future use by `try_finish_recompile`.
///
/// As this function requires ownership on the `CompiledCodeStencil`, it gives it back at the end
/// of the function call. The value is left untouched.
pub fn serialize_compiled(
    result: CompiledCodeStencil,
) -> (CompiledCodeStencil, Result<Vec<u8>, postcard::Error>) {
    let cached = CachedFunc {
        version_marker: VersionMarker,
        stencil: result,
    };
    let result = postcard::to_allocvec(&cached);
    (cached.stencil, result)
}

/// An error returned when recompiling failed.
#[derive(Debug)]
pub enum RecompileError {
    /// The version embedded in the cache entry isn't the same as cranelift's current version.
    VersionMismatch,
    /// An error occurred while deserializing the cache entry.
    Deserialize(postcard::Error),
}

impl fmt::Display for RecompileError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            RecompileError::VersionMismatch => write!(f, "cranelift version mismatch",),
            RecompileError::Deserialize(err) => {
                write!(f, "postcard failed during deserialization: {err}")
            }
        }
    }
}

/// Given a function that's been precompiled and its entry in the caching storage, try to shortcut
/// compilation of the given function.
///
/// Precondition: the bytes must have retrieved from a cache store entry which hash value
/// is strictly the same as the `Function`'s computed hash retrieved from `compute_cache_key`.
pub fn try_finish_recompile(func: &Function, bytes: &[u8]) -> Result<CompiledCode, RecompileError> {
    match postcard::from_bytes::<CachedFunc>(bytes) {
        Ok(result) => {
            if result.version_marker != func.stencil.version_marker {
                Err(RecompileError::VersionMismatch)
            } else {
                Ok(result.stencil.apply_params(&func.params))
            }
        }
        Err(err) => Err(RecompileError::Deserialize(err)),
    }
}