Skip to main content

wasmtime/runtime/
func.rs

1use crate::prelude::*;
2use crate::runtime::vm::{
3    self, InterpreterRef, SendSyncPtr, StoreBox, VMArrayCallHostFuncContext,
4    VMCommonStackInformation, VMContext, VMFuncRef, VMFunctionImport, VMOpaqueContext,
5    VMStoreContext,
6};
7use crate::store::{Asyncness, AutoAssertNoGc, InstanceId, StoreId, StoreOpaque};
8use crate::type_registry::RegisteredType;
9use crate::{
10    AsContext, AsContextMut, CallHook, Engine, Extern, FuncType, Instance, ModuleExport, Ref,
11    StoreContext, StoreContextMut, Val, ValRaw, ValType,
12};
13use alloc::sync::Arc;
14use core::convert::Infallible;
15use core::ffi::c_void;
16#[cfg(feature = "async")]
17use core::future::Future;
18use core::mem::{self, MaybeUninit};
19use core::ptr::NonNull;
20use wasmtime_environ::VMSharedTypeIndex;
21
22/// A reference to the abstract `nofunc` heap value.
23///
24/// The are no instances of `(ref nofunc)`: it is an uninhabited type.
25///
26/// There is precisely one instance of `(ref null nofunc)`, aka `nullfuncref`:
27/// the null reference.
28///
29/// This `NoFunc` Rust type's sole purpose is for use with [`Func::wrap`]- and
30/// [`Func::typed`]-style APIs for statically typing a function as taking or
31/// returning a `(ref null nofunc)` (aka `Option<NoFunc>`) which is always
32/// `None`.
33///
34/// # Example
35///
36/// ```
37/// # use wasmtime::*;
38/// # fn _foo() -> Result<()> {
39/// let mut config = Config::new();
40/// config.wasm_function_references(true);
41/// let engine = Engine::new(&config)?;
42///
43/// let module = Module::new(
44///     &engine,
45///     r#"
46///         (module
47///             (func (export "f") (param (ref null nofunc))
48///                 ;; If the reference is null, return.
49///                 local.get 0
50///                 ref.is_null nofunc
51///                 br_if 0
52///
53///                 ;; If the reference was not null (which is impossible)
54///                 ;; then raise a trap.
55///                 unreachable
56///             )
57///         )
58///     "#,
59/// )?;
60///
61/// let mut store = Store::new(&engine, ());
62/// let instance = Instance::new(&mut store, &module, &[])?;
63/// let f = instance.get_func(&mut store, "f").unwrap();
64///
65/// // We can cast a `(ref null nofunc)`-taking function into a typed function that
66/// // takes an `Option<NoFunc>` via the `Func::typed` method.
67/// let f = f.typed::<Option<NoFunc>, ()>(&store)?;
68///
69/// // We can call the typed function, passing the null `nofunc` reference.
70/// let result = f.call(&mut store, NoFunc::null());
71///
72/// // The function should not have trapped, because the reference we gave it was
73/// // null (as it had to be, since `NoFunc` is uninhabited).
74/// assert!(result.is_ok());
75/// # Ok(())
76/// # }
77/// ```
78#[derive(Copy, Clone, Debug, PartialEq, Eq)]
79pub struct NoFunc {
80    _inner: Infallible,
81}
82
83impl NoFunc {
84    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference.
85    #[inline]
86    pub fn null() -> Option<NoFunc> {
87        None
88    }
89
90    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
91    /// [`Ref`].
92    #[inline]
93    pub fn null_ref() -> Ref {
94        Ref::Func(None)
95    }
96
97    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
98    /// [`Val`].
99    #[inline]
100    pub fn null_val() -> Val {
101        Val::FuncRef(None)
102    }
103}
104
105/// A WebAssembly function which can be called.
106///
107/// This type typically represents an exported function from a WebAssembly
108/// module instance. In this case a [`Func`] belongs to an [`Instance`] and is
109/// loaded from there. A [`Func`] may also represent a host function as well in
110/// some cases, too.
111///
112/// Functions can be called in a few different ways, either synchronous or async
113/// and either typed or untyped (more on this below). Note that host functions
114/// are normally inserted directly into a [`Linker`](crate::Linker) rather than
115/// using this directly, but both options are available.
116///
117/// # `Func` and `async`
118///
119/// Functions from the perspective of WebAssembly are always synchronous. You
120/// might have an `async` function in Rust, however, which you'd like to make
121/// available from WebAssembly. Wasmtime supports asynchronously calling
122/// WebAssembly through native stack switching. You can get some more
123/// information about [asynchronous configs](crate#async), but
124/// from the perspective of `Func` it's important to know that whether or not
125/// your [`Store`](crate::Store) is asynchronous will dictate whether you call
126/// functions through [`Func::call`] or [`Func::call_async`] (or the typed
127/// wrappers such as [`TypedFunc::call`] vs [`TypedFunc::call_async`]).
128///
129/// # To `Func::call` or to `Func::typed().call()`
130///
131/// There's a 2x2 matrix of methods to call [`Func`]. Invocations can either be
132/// asynchronous or synchronous. They can also be statically typed or not.
133/// Whether or not an invocation is asynchronous is indicated via the method
134/// being `async` and [`call_async`](Func::call_async) being the entry point.
135/// Otherwise for statically typed or not your options are:
136///
137/// * Dynamically typed - if you don't statically know the signature of the
138///   function that you're calling you'll be using [`Func::call`] or
139///   [`Func::call_async`]. These functions take a variable-length slice of
140///   "boxed" arguments in their [`Val`] representation. Additionally the
141///   results are returned as an owned slice of [`Val`]. These methods are not
142///   optimized due to the dynamic type checks that must occur, in addition to
143///   some dynamic allocations for where to put all the arguments. While this
144///   allows you to call all possible wasm function signatures, if you're
145///   looking for a speedier alternative you can also use...
146///
147/// * Statically typed - if you statically know the type signature of the wasm
148///   function you're calling, then you'll want to use the [`Func::typed`]
149///   method to acquire an instance of [`TypedFunc`]. This structure is static proof
150///   that the underlying wasm function has the ascripted type, and type
151///   validation is only done once up-front. The [`TypedFunc::call`] and
152///   [`TypedFunc::call_async`] methods are much more efficient than [`Func::call`]
153///   and [`Func::call_async`] because the type signature is statically known.
154///   This eschews runtime checks as much as possible to get into wasm as fast
155///   as possible.
156///
157/// # Examples
158///
159/// One way to get a `Func` is from an [`Instance`] after you've instantiated
160/// it:
161///
162/// ```
163/// # use wasmtime::*;
164/// # fn main() -> Result<()> {
165/// let engine = Engine::default();
166/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
167/// let mut store = Store::new(&engine, ());
168/// let instance = Instance::new(&mut store, &module, &[])?;
169/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
170///
171/// // Work with `foo` as a `Func` at this point, such as calling it
172/// // dynamically...
173/// match foo.call(&mut store, &[], &mut []) {
174///     Ok(()) => { /* ... */ }
175///     Err(trap) => {
176///         panic!("execution of `foo` resulted in a wasm trap: {}", trap);
177///     }
178/// }
179/// foo.call(&mut store, &[], &mut [])?;
180///
181/// // ... or we can make a static assertion about its signature and call it.
182/// // Our first call here can fail if the signatures don't match, and then the
183/// // second call can fail if the function traps (like the `match` above).
184/// let foo = foo.typed::<(), ()>(&store)?;
185/// foo.call(&mut store, ())?;
186/// # Ok(())
187/// # }
188/// ```
189///
190/// You can also use the [`wrap` function](Func::wrap) to create a
191/// `Func`
192///
193/// ```
194/// # use wasmtime::*;
195/// # fn main() -> Result<()> {
196/// let mut store = Store::<()>::default();
197///
198/// // Create a custom `Func` which can execute arbitrary code inside of the
199/// // closure.
200/// let add = Func::wrap(&mut store, |a: i32, b: i32| -> i32 { a + b });
201///
202/// // Next we can hook that up to a wasm module which uses it.
203/// let module = Module::new(
204///     store.engine(),
205///     r#"
206///         (module
207///             (import "" "" (func $add (param i32 i32) (result i32)))
208///             (func (export "call_add_twice") (result i32)
209///                 i32.const 1
210///                 i32.const 2
211///                 call $add
212///                 i32.const 3
213///                 i32.const 4
214///                 call $add
215///                 i32.add))
216///     "#,
217/// )?;
218/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
219/// let call_add_twice = instance.get_typed_func::<(), i32>(&mut store, "call_add_twice")?;
220///
221/// assert_eq!(call_add_twice.call(&mut store, ())?, 10);
222/// # Ok(())
223/// # }
224/// ```
225///
226/// Or you could also create an entirely dynamic `Func`!
227///
228/// ```
229/// # use wasmtime::*;
230/// # fn main() -> Result<()> {
231/// let mut store = Store::<()>::default();
232///
233/// // Here we need to define the type signature of our `Double` function and
234/// // then wrap it up in a `Func`
235/// let double_type = wasmtime::FuncType::new(
236///     store.engine(),
237///     [wasmtime::ValType::I32].iter().cloned(),
238///     [wasmtime::ValType::I32].iter().cloned(),
239/// );
240/// let double = Func::new(&mut store, double_type, |_, params, results| {
241///     let mut value = params[0].unwrap_i32();
242///     value *= 2;
243///     results[0] = value.into();
244///     Ok(())
245/// });
246///
247/// let module = Module::new(
248///     store.engine(),
249///     r#"
250///         (module
251///             (import "" "" (func $double (param i32) (result i32)))
252///             (func $start
253///                 i32.const 1
254///                 call $double
255///                 drop)
256///             (start $start))
257///     "#,
258/// )?;
259/// let instance = Instance::new(&mut store, &module, &[double.into()])?;
260/// // .. work with `instance` if necessary
261/// # Ok(())
262/// # }
263/// ```
264#[derive(Copy, Clone, Debug)]
265#[repr(C)] // here for the C API
266pub struct Func {
267    /// The store that the below pointer belongs to.
268    ///
269    /// It's only safe to look at the contents of the pointer below when the
270    /// `StoreOpaque` matching this id is in-scope.
271    store: StoreId,
272
273    /// The raw `VMFuncRef`, whose lifetime is bound to the store this func
274    /// belongs to.
275    ///
276    /// Note that this field has an `unsafe_*` prefix to discourage use of it.
277    /// This is only safe to read/use if `self.store` is validated to belong to
278    /// an ambiently provided `StoreOpaque` or similar. Use the
279    /// `self.func_ref()` method instead of this field to perform this check.
280    unsafe_func_ref: SendSyncPtr<VMFuncRef>,
281}
282
283// Double-check that the C representation in `extern.h` matches our in-Rust
284// representation here in terms of size/alignment/etc.
285const _: () = {
286    #[repr(C)]
287    struct C(u64, *mut u8);
288    assert!(core::mem::size_of::<C>() == core::mem::size_of::<Func>());
289    assert!(core::mem::align_of::<C>() == core::mem::align_of::<Func>());
290    assert!(core::mem::offset_of!(Func, store) == 0);
291};
292
293macro_rules! for_each_function_signature {
294    ($mac:ident) => {
295        $mac!(0);
296        $mac!(1 A1);
297        $mac!(2 A1 A2);
298        $mac!(3 A1 A2 A3);
299        $mac!(4 A1 A2 A3 A4);
300        $mac!(5 A1 A2 A3 A4 A5);
301        $mac!(6 A1 A2 A3 A4 A5 A6);
302        $mac!(7 A1 A2 A3 A4 A5 A6 A7);
303        $mac!(8 A1 A2 A3 A4 A5 A6 A7 A8);
304        $mac!(9 A1 A2 A3 A4 A5 A6 A7 A8 A9);
305        $mac!(10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10);
306        $mac!(11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11);
307        $mac!(12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12);
308        $mac!(13 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13);
309        $mac!(14 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14);
310        $mac!(15 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15);
311        $mac!(16 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16);
312        $mac!(17 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17);
313    };
314}
315
316mod typed;
317use crate::runtime::vm::VMStackChain;
318pub use typed::*;
319
320impl Func {
321    /// Creates a new `Func` with the given arguments, typically to create a
322    /// host-defined function to pass as an import to a module.
323    ///
324    /// * `store` - the store in which to create this [`Func`], which will own
325    ///   the return value.
326    ///
327    /// * `ty` - the signature of this function, used to indicate what the
328    ///   inputs and outputs are.
329    ///
330    /// * `func` - the native code invoked whenever this `Func` will be called.
331    ///   This closure is provided a [`Caller`] as its first argument to learn
332    ///   information about the caller, and then it's passed a list of
333    ///   parameters as a slice along with a mutable slice of where to write
334    ///   results.
335    ///
336    /// Note that the implementation of `func` must adhere to the `ty` signature
337    /// given, error or traps may occur if it does not respect the `ty`
338    /// signature. For example if the function type declares that it returns one
339    /// i32 but the `func` closures does not write anything into the results
340    /// slice then a trap may be generated.
341    ///
342    /// Additionally note that this is quite a dynamic function since signatures
343    /// are not statically known. For a more performant and ergonomic `Func`
344    /// it's recommended to use [`Func::wrap`] if you can because with
345    /// statically known signatures Wasmtime can optimize the implementation
346    /// much more.
347    ///
348    /// For more information about `Send + Sync + 'static` requirements on the
349    /// `func`, see [`Func::wrap`](#why-send--sync--static).
350    ///
351    /// # Errors
352    ///
353    /// The host-provided function here returns a
354    /// [`Result<()>`](crate::Result). If the function returns `Ok(())` then
355    /// that indicates that the host function completed successfully and wrote
356    /// the result into the `&mut [Val]` argument.
357    ///
358    /// If the function returns `Err(e)`, however, then this is equivalent to
359    /// the host function triggering a trap for wasm. WebAssembly execution is
360    /// immediately halted and the original caller of [`Func::call`], for
361    /// example, will receive the error returned here (possibly with
362    /// [`WasmBacktrace`](crate::WasmBacktrace) context information attached).
363    ///
364    /// For more information about errors in Wasmtime see the [`Trap`]
365    /// documentation.
366    ///
367    /// [`Trap`]: crate::Trap
368    ///
369    /// # Panics
370    ///
371    /// Panics if the given function type is not associated with this store's
372    /// engine.
373    pub fn new<T: 'static>(
374        mut store: impl AsContextMut<Data = T>,
375        ty: FuncType,
376        func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
377    ) -> Self {
378        let store = store.as_context_mut().0;
379        let host = HostFunc::new(store.engine(), ty, func);
380
381        // SAFETY: the `T` used by `func` matches the `T` of the store we're
382        // inserting into via this function's type signature.
383        unsafe { host.into_func(store) }
384    }
385
386    /// Creates a new [`Func`] with the given arguments, although has fewer
387    /// runtime checks than [`Func::new`].
388    ///
389    /// This function takes a callback of a different signature than
390    /// [`Func::new`], instead receiving a raw pointer with a list of [`ValRaw`]
391    /// structures. These values have no type information associated with them
392    /// so it's up to the caller to provide a function that will correctly
393    /// interpret the list of values as those coming from the `ty` specified.
394    ///
395    /// If you're calling this from Rust it's recommended to either instead use
396    /// [`Func::new`] or [`Func::wrap`]. The [`Func::wrap`] API, in particular,
397    /// is both safer and faster than this API.
398    ///
399    /// # Errors
400    ///
401    /// See [`Func::new`] for the behavior of returning an error from the host
402    /// function provided here.
403    ///
404    /// # Unsafety
405    ///
406    /// This function is not safe because it's not known at compile time that
407    /// the `func` provided correctly interprets the argument types provided to
408    /// it, or that the results it produces will be of the correct type.
409    ///
410    /// # Panics
411    ///
412    /// Panics if the given function type is not associated with this store's
413    /// engine.
414    pub unsafe fn new_unchecked<T: 'static>(
415        mut store: impl AsContextMut<Data = T>,
416        ty: FuncType,
417        func: impl Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
418    ) -> Self {
419        let store = store.as_context_mut().0;
420
421        // SAFETY: the contract required by `new_unchecked` is the same as the
422        // contract required by this function itself.
423        let host = unsafe { HostFunc::new_unchecked(store.engine(), ty, func) };
424
425        // SAFETY: the `T` used by `func` matches the `T` of the store we're
426        // inserting into via this function's type signature.
427        unsafe { host.into_func(store) }
428    }
429
430    /// Creates a new host-defined WebAssembly function which, when called,
431    /// will run the asynchronous computation defined by `func` to completion
432    /// and then return the result to WebAssembly.
433    ///
434    /// This function is the asynchronous analogue of [`Func::new`] and much of
435    /// that documentation applies to this as well. The key difference is that
436    /// `func` returns a future instead of simply a `Result`. Note that the
437    /// returned future can close over any of the arguments, but it cannot close
438    /// over the state of the closure itself. It's recommended to store any
439    /// necessary async state in the `T` of the [`Store<T>`](crate::Store) which
440    /// can be accessed through [`Caller::data`] or [`Caller::data_mut`].
441    ///
442    /// For more information on `Send + Sync + 'static`, see
443    /// [`Func::wrap`](#why-send--sync--static).
444    ///
445    /// # Panics
446    ///
447    /// Panics if the given function type is not associated with this store's
448    /// engine.
449    ///
450    /// # Errors
451    ///
452    /// See [`Func::new`] for the behavior of returning an error from the host
453    /// function provided here.
454    ///
455    /// # Examples
456    ///
457    /// ```
458    /// # use wasmtime::*;
459    /// # fn main() -> Result<()> {
460    /// // Simulate some application-specific state as well as asynchronous
461    /// // functions to query that state.
462    /// struct MyDatabase {
463    ///     // ...
464    /// }
465    ///
466    /// impl MyDatabase {
467    ///     async fn get_row_count(&self) -> u32 {
468    ///         // ...
469    /// #       100
470    ///     }
471    /// }
472    ///
473    /// let my_database = MyDatabase {
474    ///     // ...
475    /// };
476    ///
477    /// // Using `new_async` we can hook up into calling our async
478    /// // `get_row_count` function.
479    /// let engine = Engine::default();
480    /// let mut store = Store::new(&engine, MyDatabase {
481    ///     // ...
482    /// });
483    /// let get_row_count_type = wasmtime::FuncType::new(
484    ///     &engine,
485    ///     None,
486    ///     Some(wasmtime::ValType::I32),
487    /// );
488    /// let get = Func::new_async(&mut store, get_row_count_type, |caller, _params, results| {
489    ///     Box::new(async move {
490    ///         let count = caller.data().get_row_count().await;
491    ///         results[0] = Val::I32(count as i32);
492    ///         Ok(())
493    ///     })
494    /// });
495    /// // ...
496    /// # Ok(())
497    /// # }
498    /// ```
499    #[cfg(feature = "async")]
500    pub fn new_async<T, F>(mut store: impl AsContextMut<Data = T>, ty: FuncType, func: F) -> Func
501    where
502        F: for<'a> Fn(
503                Caller<'a, T>,
504                &'a [Val],
505                &'a mut [Val],
506            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
507            + Send
508            + Sync
509            + 'static,
510        T: Send + 'static,
511    {
512        let store = store.as_context_mut().0;
513
514        let host = HostFunc::new_async(store.engine(), ty, func);
515
516        // SAFETY: the `T` used by `func` matches the `T` of the store we're
517        // inserting into via this function's type signature.
518        unsafe { host.into_func(store) }
519    }
520
521    /// Creates a new `Func` from a store and a funcref within that store.
522    ///
523    /// # Safety
524    ///
525    /// The safety of this function requires that `func_ref` is a valid function
526    /// pointer owned by `store`.
527    pub(crate) unsafe fn from_vm_func_ref(store: StoreId, func_ref: NonNull<VMFuncRef>) -> Func {
528        // SAFETY: given the contract of this function it's safe to read the
529        // `type_index` field.
530        unsafe {
531            debug_assert!(func_ref.as_ref().type_index != VMSharedTypeIndex::default());
532        }
533        Func {
534            store,
535            unsafe_func_ref: func_ref.into(),
536        }
537    }
538
539    /// Creates a new `Func` from the given Rust closure.
540    ///
541    /// This function will create a new `Func` which, when called, will
542    /// execute the given Rust closure. Unlike [`Func::new`] the target
543    /// function being called is known statically so the type signature can
544    /// be inferred. Rust types will map to WebAssembly types as follows:
545    ///
546    /// | Rust Argument Type                | WebAssembly Type                          |
547    /// |-----------------------------------|-------------------------------------------|
548    /// | `i32`                             | `i32`                                     |
549    /// | `u32`                             | `i32`                                     |
550    /// | `i64`                             | `i64`                                     |
551    /// | `u64`                             | `i64`                                     |
552    /// | `f32`                             | `f32`                                     |
553    /// | `f64`                             | `f64`                                     |
554    /// | `V128` on x86-64 and aarch64 only | `v128`                                    |
555    /// | `Option<Func>`                    | `funcref` aka `(ref null func)`           |
556    /// | `Func`                            | `(ref func)`                              |
557    /// | `Option<Nofunc>`                  | `nullfuncref` aka `(ref null nofunc)`     |
558    /// | `NoFunc`                          | `(ref nofunc)`                            |
559    /// | `Option<Rooted<ExternRef>>`       | `externref` aka `(ref null extern)`       |
560    /// | `Rooted<ExternRef>`               | `(ref extern)`                            |
561    /// | `Option<NoExtern>`                | `nullexternref` aka `(ref null noextern)` |
562    /// | `NoExtern`                        | `(ref noextern)`                          |
563    /// | `Option<Rooted<AnyRef>>`          | `anyref` aka `(ref null any)`             |
564    /// | `Rooted<AnyRef>`                  | `(ref any)`                               |
565    /// | `Option<Rooted<EqRef>>`           | `eqref` aka `(ref null eq)`               |
566    /// | `Rooted<EqRef>`                   | `(ref eq)`                                |
567    /// | `Option<I31>`                     | `i31ref` aka `(ref null i31)`             |
568    /// | `I31`                             | `(ref i31)`                               |
569    /// | `Option<Rooted<StructRef>>`       | `(ref null struct)`                       |
570    /// | `Rooted<StructRef>`               | `(ref struct)`                            |
571    /// | `Option<Rooted<ArrayRef>>`        | `(ref null array)`                        |
572    /// | `Rooted<ArrayRef>`                | `(ref array)`                             |
573    /// | `Option<NoneRef>`                 | `nullref` aka `(ref null none)`           |
574    /// | `NoneRef`                         | `(ref none)`                              |
575    ///
576    /// Note that anywhere a `Rooted<T>` appears, a `OwnedRooted<T>` may also
577    /// be used.
578    ///
579    /// Any of the Rust types can be returned from the closure as well, in
580    /// addition to some extra types
581    ///
582    /// | Rust Return Type  | WebAssembly Return Type | Meaning               |
583    /// |-------------------|-------------------------|-----------------------|
584    /// | `()`              | nothing                 | no return value       |
585    /// | `T`               | `T`                     | a single return value |
586    /// | `(T1, T2, ...)`   | `T1 T2 ...`             | multiple returns      |
587    ///
588    /// Note that all return types can also be wrapped in `Result<_>` to
589    /// indicate that the host function can generate a trap as well as possibly
590    /// returning a value.
591    ///
592    /// Finally you can also optionally take [`Caller`] as the first argument of
593    /// your closure. If inserted then you're able to inspect the caller's
594    /// state, for example the [`Memory`](crate::Memory) it has exported so you
595    /// can read what pointers point to.
596    ///
597    /// Note that when using this API, the intention is to create as thin of a
598    /// layer as possible for when WebAssembly calls the function provided. With
599    /// sufficient inlining and optimization the WebAssembly will call straight
600    /// into `func` provided, with no extra fluff entailed.
601    ///
602    /// # Why `Send + Sync + 'static`?
603    ///
604    /// All host functions defined in a [`Store`](crate::Store) (including
605    /// those from [`Func::new`] and other constructors) require that the
606    /// `func` provided is `Send + Sync + 'static`. Additionally host functions
607    /// always are `Fn` as opposed to `FnMut` or `FnOnce`. This can at-a-glance
608    /// feel restrictive since the closure cannot close over as many types as
609    /// before. The reason for this, though, is to ensure that
610    /// [`Store<T>`](crate::Store) can implement both the `Send` and `Sync`
611    /// traits.
612    ///
613    /// Fear not, however, because this isn't as restrictive as it seems! Host
614    /// functions are provided a [`Caller<'_, T>`](crate::Caller) argument which
615    /// allows access to the host-defined data within the
616    /// [`Store`](crate::Store). The `T` type is not required to be any of
617    /// `Send`, `Sync`, or `'static`! This means that you can store whatever
618    /// you'd like in `T` and have it accessible by all host functions.
619    /// Additionally mutable access to `T` is allowed through
620    /// [`Caller::data_mut`].
621    ///
622    /// Most host-defined [`Func`] values provide closures that end up not
623    /// actually closing over any values. These zero-sized types will use the
624    /// context from [`Caller`] for host-defined information.
625    ///
626    /// # Errors
627    ///
628    /// The closure provided here to `wrap` can optionally return a
629    /// [`Result<T>`](crate::Result). Returning `Ok(t)` represents the host
630    /// function successfully completing with the `t` result. Returning
631    /// `Err(e)`, however, is equivalent to raising a custom wasm trap.
632    /// Execution of WebAssembly does not resume and the stack is unwound to the
633    /// original caller of the function where the error is returned.
634    ///
635    /// For more information about errors in Wasmtime see the [`Trap`]
636    /// documentation.
637    ///
638    /// [`Trap`]: crate::Trap
639    ///
640    /// # Examples
641    ///
642    /// First up we can see how simple wasm imports can be implemented, such
643    /// as a function that adds its two arguments and returns the result.
644    ///
645    /// ```
646    /// # use wasmtime::*;
647    /// # fn main() -> Result<()> {
648    /// # let mut store = Store::<()>::default();
649    /// let add = Func::wrap(&mut store, |a: i32, b: i32| a + b);
650    /// let module = Module::new(
651    ///     store.engine(),
652    ///     r#"
653    ///         (module
654    ///             (import "" "" (func $add (param i32 i32) (result i32)))
655    ///             (func (export "foo") (param i32 i32) (result i32)
656    ///                 local.get 0
657    ///                 local.get 1
658    ///                 call $add))
659    ///     "#,
660    /// )?;
661    /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
662    /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
663    /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
664    /// # Ok(())
665    /// # }
666    /// ```
667    ///
668    /// We can also do the same thing, but generate a trap if the addition
669    /// overflows:
670    ///
671    /// ```
672    /// # use wasmtime::*;
673    /// # fn main() -> Result<()> {
674    /// # let mut store = Store::<()>::default();
675    /// let add = Func::wrap(&mut store, |a: i32, b: i32| {
676    ///     match a.checked_add(b) {
677    ///         Some(i) => Ok(i),
678    ///         None => bail!("overflow"),
679    ///     }
680    /// });
681    /// let module = Module::new(
682    ///     store.engine(),
683    ///     r#"
684    ///         (module
685    ///             (import "" "" (func $add (param i32 i32) (result i32)))
686    ///             (func (export "foo") (param i32 i32) (result i32)
687    ///                 local.get 0
688    ///                 local.get 1
689    ///                 call $add))
690    ///     "#,
691    /// )?;
692    /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
693    /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
694    /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
695    /// assert!(foo.call(&mut store, (i32::max_value(), 1)).is_err());
696    /// # Ok(())
697    /// # }
698    /// ```
699    ///
700    /// And don't forget all the wasm types are supported!
701    ///
702    /// ```
703    /// # use wasmtime::*;
704    /// # fn main() -> Result<()> {
705    /// # let mut store = Store::<()>::default();
706    /// let debug = Func::wrap(&mut store, |a: i32, b: u32, c: f32, d: i64, e: u64, f: f64| {
707    ///
708    ///     println!("a={}", a);
709    ///     println!("b={}", b);
710    ///     println!("c={}", c);
711    ///     println!("d={}", d);
712    ///     println!("e={}", e);
713    ///     println!("f={}", f);
714    /// });
715    /// let module = Module::new(
716    ///     store.engine(),
717    ///     r#"
718    ///         (module
719    ///             (import "" "" (func $debug (param i32 i32 f32 i64 i64 f64)))
720    ///             (func (export "foo")
721    ///                 i32.const -1
722    ///                 i32.const 1
723    ///                 f32.const 2
724    ///                 i64.const -3
725    ///                 i64.const 3
726    ///                 f64.const 4
727    ///                 call $debug))
728    ///     "#,
729    /// )?;
730    /// let instance = Instance::new(&mut store, &module, &[debug.into()])?;
731    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
732    /// foo.call(&mut store, ())?;
733    /// # Ok(())
734    /// # }
735    /// ```
736    ///
737    /// Finally if you want to get really fancy you can also implement
738    /// imports that read/write wasm module's memory
739    ///
740    /// ```
741    /// use std::str;
742    ///
743    /// # use wasmtime::*;
744    /// # fn main() -> Result<()> {
745    /// # let mut store = Store::default();
746    /// let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
747    ///     let mem = match caller.get_export("memory") {
748    ///         Some(Extern::Memory(mem)) => mem,
749    ///         _ => bail!("failed to find host memory"),
750    ///     };
751    ///     let data = mem.data(&caller)
752    ///         .get(ptr as u32 as usize..)
753    ///         .and_then(|arr| arr.get(..len as u32 as usize));
754    ///     let string = match data {
755    ///         Some(data) => match str::from_utf8(data) {
756    ///             Ok(s) => s,
757    ///             Err(_) => bail!("invalid utf-8"),
758    ///         },
759    ///         None => bail!("pointer/length out of bounds"),
760    ///     };
761    ///     assert_eq!(string, "Hello, world!");
762    ///     println!("{}", string);
763    ///     Ok(())
764    /// });
765    /// let module = Module::new(
766    ///     store.engine(),
767    ///     r#"
768    ///         (module
769    ///             (import "" "" (func $log_str (param i32 i32)))
770    ///             (func (export "foo")
771    ///                 i32.const 4   ;; ptr
772    ///                 i32.const 13  ;; len
773    ///                 call $log_str)
774    ///             (memory (export "memory") 1)
775    ///             (data (i32.const 4) "Hello, world!"))
776    ///     "#,
777    /// )?;
778    /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
779    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
780    /// foo.call(&mut store, ())?;
781    /// # Ok(())
782    /// # }
783    /// ```
784    pub fn wrap<T, Params, Results>(
785        mut store: impl AsContextMut<Data = T>,
786        func: impl IntoFunc<T, Params, Results>,
787    ) -> Func
788    where
789        T: 'static,
790    {
791        let store = store.as_context_mut().0;
792        let engine = store.engine();
793        let host = func.into_func(engine);
794
795        // SAFETY: The `T` the closure takes is the same as the `T` of the store
796        // we're inserting into via the type signature above.
797        unsafe { host.into_func(store) }
798    }
799
800    /// Same as [`Func::wrap`], except the closure asynchronously produces the
801    /// result and the arguments are passed within a tuple. For more information
802    /// see the [`Func`] documentation.
803    #[cfg(feature = "async")]
804    pub fn wrap_async<T, F, P, R>(mut store: impl AsContextMut<Data = T>, func: F) -> Func
805    where
806        F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
807            + Send
808            + Sync
809            + 'static,
810        P: WasmTyList,
811        R: WasmRet,
812        T: Send + 'static,
813    {
814        let store = store.as_context_mut().0;
815        let host = HostFunc::wrap_async(store.engine(), func);
816
817        // SAFETY: The `T` the closure takes is the same as the `T` of the store
818        // we're inserting into via the type signature above.
819        unsafe { host.into_func(store) }
820    }
821
822    /// Returns the underlying wasm type that this `Func` has.
823    ///
824    /// # Panics
825    ///
826    /// Panics if `store` does not own this function.
827    pub fn ty(&self, store: impl AsContext) -> FuncType {
828        self.load_ty(&store.as_context().0)
829    }
830
831    /// Forcibly loads the type of this function from the `Engine`.
832    ///
833    /// Note that this is a somewhat expensive method since it requires taking a
834    /// lock as well as cloning a type.
835    pub(crate) fn load_ty(&self, store: &StoreOpaque) -> FuncType {
836        FuncType::from_shared_type_index(store.engine(), self.type_index(store))
837    }
838
839    /// Does this function match the given type?
840    ///
841    /// That is, is this function's type a subtype of the given type?
842    ///
843    /// # Panics
844    ///
845    /// Panics if this function is not associated with the given store or if the
846    /// function type is not associated with the store's engine.
847    pub fn matches_ty(&self, store: impl AsContext, func_ty: &FuncType) -> bool {
848        self._matches_ty(store.as_context().0, func_ty)
849    }
850
851    pub(crate) fn _matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> bool {
852        let actual_ty = self.load_ty(store);
853        actual_ty.matches(func_ty)
854    }
855
856    pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> Result<()> {
857        if !self.comes_from_same_store(store) {
858            bail!("function used with wrong store");
859        }
860        if self._matches_ty(store, func_ty) {
861            Ok(())
862        } else {
863            let actual_ty = self.load_ty(store);
864            bail!("type mismatch: expected {func_ty}, found {actual_ty}")
865        }
866    }
867
868    pub(crate) fn type_index(&self, data: &StoreOpaque) -> VMSharedTypeIndex {
869        unsafe { self.vm_func_ref(data).as_ref().type_index }
870    }
871
872    /// Invokes this function with the `params` given and writes returned values
873    /// to `results`.
874    ///
875    /// The `params` here must match the type signature of this `Func`, or an
876    /// error will occur. Additionally `results` must have the same
877    /// length as the number of results for this function. Calling this function
878    /// will synchronously execute the WebAssembly function referenced to get
879    /// the results.
880    ///
881    /// This function will return `Ok(())` if execution completed without a trap
882    /// or error of any kind. In this situation the results will be written to
883    /// the provided `results` array.
884    ///
885    /// # Errors
886    ///
887    /// Any error which occurs throughout the execution of the function will be
888    /// returned as `Err(e)`. The [`Error`](crate::Error) type can be inspected
889    /// for the precise error cause such as:
890    ///
891    /// * [`Trap`] - indicates that a wasm trap happened and execution was
892    ///   halted.
893    /// * [`WasmBacktrace`] - optionally included on errors for backtrace
894    ///   information of the trap/error.
895    /// * Other string-based errors to indicate issues such as type errors with
896    ///   `params`.
897    /// * Any host-originating error originally returned from a function defined
898    ///   via [`Func::new`], for example.
899    /// * The `store` provided is configured to require `call_async` to be used
900    ///   instead, such as with epochs or fuel.
901    ///
902    /// Errors typically indicate that execution of WebAssembly was halted
903    /// mid-way and did not complete after the error condition happened.
904    ///
905    /// [`Trap`]: crate::Trap
906    ///
907    /// # Panics
908    ///
909    /// Panics if `store` does not own this function.
910    ///
911    /// [`WasmBacktrace`]: crate::WasmBacktrace
912    pub fn call(
913        &self,
914        mut store: impl AsContextMut,
915        params: &[Val],
916        results: &mut [Val],
917    ) -> Result<()> {
918        let mut store = store.as_context_mut();
919        store.0.validate_sync_call()?;
920
921        self.call_impl_check_args(&mut store, params, results)?;
922
923        unsafe { self.call_impl_do_call(&mut store, params, results) }
924    }
925
926    /// Invokes this function in an "unchecked" fashion, reading parameters and
927    /// writing results to `params_and_returns`.
928    ///
929    /// This function is the same as [`Func::call`] except that the arguments
930    /// and results both use a different representation. If possible it's
931    /// recommended to use [`Func::call`] if safety isn't necessary or to use
932    /// [`Func::typed`] in conjunction with [`TypedFunc::call`] since that's
933    /// both safer and faster than this method of invoking a function.
934    ///
935    /// Note that if this function takes `externref` arguments then it will
936    /// **not** automatically GC unlike the [`Func::call`] and
937    /// [`TypedFunc::call`] functions. This means that if this function is
938    /// invoked many times with new `ExternRef` values and no other GC happens
939    /// via any other means then no values will get collected.
940    ///
941    /// # Errors
942    ///
943    /// For more information about errors see the [`Func::call`] documentation.
944    ///
945    /// # Unsafety
946    ///
947    /// This function is unsafe because the `params_and_returns` argument is not
948    /// validated at all. It must uphold invariants such as:
949    ///
950    /// * It's a valid pointer to an array
951    /// * It has enough space to store all parameters
952    /// * It has enough space to store all results (not at the same time as
953    ///   parameters)
954    /// * Parameters are initially written to the array and have the correct
955    ///   types and such.
956    /// * Reference types like `externref` and `funcref` are valid at the
957    ///   time of this call and for the `store` specified.
958    ///
959    /// These invariants are all upheld for you with [`Func::call`] and
960    /// [`TypedFunc::call`].
961    pub unsafe fn call_unchecked(
962        &self,
963        mut store: impl AsContextMut,
964        params_and_returns: *mut [ValRaw],
965    ) -> Result<()> {
966        let mut store = store.as_context_mut();
967        let func_ref = self.vm_func_ref(store.0);
968        let params_and_returns = NonNull::new(params_and_returns).unwrap_or(NonNull::from(&mut []));
969
970        // SAFETY: the safety of this function call is the same as the contract
971        // of this function.
972        unsafe { Self::call_unchecked_raw(&mut store, func_ref, params_and_returns) }
973    }
974
975    pub(crate) unsafe fn call_unchecked_raw<T>(
976        store: &mut StoreContextMut<'_, T>,
977        func_ref: NonNull<VMFuncRef>,
978        params_and_returns: NonNull<[ValRaw]>,
979    ) -> Result<()> {
980        // SAFETY: the safety of this function call is the same as the contract
981        // of this function.
982        invoke_wasm_and_catch_traps(store, |caller, vm| unsafe {
983            VMFuncRef::array_call(func_ref, vm, caller, params_and_returns)
984        })
985    }
986
987    /// Converts the raw representation of a `funcref` into an `Option<Func>`
988    ///
989    /// This is intended to be used in conjunction with [`Func::new_unchecked`],
990    /// [`Func::call_unchecked`], and [`ValRaw`] with its `funcref` field. This
991    /// is the dual of [`Func::to_raw`].
992    ///
993    /// # Unsafety
994    ///
995    /// This function is not safe because `raw` is not validated at all. The
996    /// caller must guarantee that `raw` is owned by the `store` provided and is
997    /// valid within the `store`.
998    pub unsafe fn from_raw(mut store: impl AsContextMut, raw: *mut c_void) -> Option<Func> {
999        // SAFETY: this function's own contract is that `raw` is owned by store
1000        // to make this safe.
1001        unsafe { Self::_from_raw(store.as_context_mut().0, raw) }
1002    }
1003
1004    /// Same as `from_raw`, but with the internal `StoreOpaque` type.
1005    pub(crate) unsafe fn _from_raw(store: &mut StoreOpaque, raw: *mut c_void) -> Option<Func> {
1006        // SAFETY: this function's own contract is that `raw` is owned by store
1007        // to make this safe.
1008        unsafe {
1009            Some(Func::from_vm_func_ref(
1010                store.id(),
1011                NonNull::new(raw.cast())?,
1012            ))
1013        }
1014    }
1015
1016    /// Extracts the raw value of this `Func`, which is owned by `store`.
1017    ///
1018    /// This function returns a value that's suitable for writing into the
1019    /// `funcref` field of the [`ValRaw`] structure.
1020    ///
1021    /// # Safety
1022    ///
1023    /// The returned value is only valid for as long as the store is alive.
1024    /// This value is safe to pass to [`Func::from_raw`] so long as the same
1025    /// `store` is provided.
1026    pub fn to_raw(&self, mut store: impl AsContextMut) -> *mut c_void {
1027        self.vm_func_ref(store.as_context_mut().0).as_ptr().cast()
1028    }
1029
1030    /// Invokes this function with the `params` given, returning the results
1031    /// asynchronously.
1032    ///
1033    /// This function is the same as [`Func::call`] except that it is
1034    /// asynchronous.
1035    ///
1036    /// It's important to note that the execution of WebAssembly will happen
1037    /// synchronously in the `poll` method of the future returned from this
1038    /// function. Wasmtime does not manage its own thread pool or similar to
1039    /// execute WebAssembly in. Future `poll` methods are generally expected to
1040    /// resolve quickly, so it's recommended that you run or poll this future
1041    /// in a "blocking context".
1042    ///
1043    /// For more information see the documentation on [asynchronous
1044    /// configs](crate#async).
1045    ///
1046    /// # Errors
1047    ///
1048    /// For more information on errors see the [`Func::call`] documentation.
1049    ///
1050    /// # Panics
1051    ///
1052    /// Panics if this is called on a function in a synchronous store. This
1053    /// only works with functions defined within an asynchronous store. Also
1054    /// panics if `store` does not own this function.
1055    #[cfg(feature = "async")]
1056    pub async fn call_async(
1057        &self,
1058        mut store: impl AsContextMut<Data: Send>,
1059        params: &[Val],
1060        results: &mut [Val],
1061    ) -> Result<()> {
1062        let mut store = store.as_context_mut();
1063
1064        self.call_impl_check_args(&mut store, params, results)?;
1065
1066        let result = store
1067            .on_fiber(|store| unsafe { self.call_impl_do_call(store, params, results) })
1068            .await??;
1069        Ok(result)
1070    }
1071
1072    /// Perform dynamic checks that the arguments given to us match
1073    /// the signature of this function and are appropriate to pass to this
1074    /// function.
1075    ///
1076    /// This involves checking to make sure we have the right number and types
1077    /// of arguments as well as making sure everything is from the same `Store`.
1078    ///
1079    /// This must be called just before `call_impl_do_call`.
1080    fn call_impl_check_args<T>(
1081        &self,
1082        store: &mut StoreContextMut<'_, T>,
1083        params: &[Val],
1084        results: &mut [Val],
1085    ) -> Result<()> {
1086        let ty = self.load_ty(store.0);
1087        if ty.params().len() != params.len() {
1088            bail!(
1089                "expected {} arguments, got {}",
1090                ty.params().len(),
1091                params.len()
1092            );
1093        }
1094        if ty.results().len() != results.len() {
1095            bail!(
1096                "expected {} results, got {}",
1097                ty.results().len(),
1098                results.len()
1099            );
1100        }
1101
1102        for (ty, arg) in ty.params().zip(params) {
1103            arg.ensure_matches_ty(store.0, &ty)
1104                .context("argument type mismatch")?;
1105            if !arg.comes_from_same_store(store.0) {
1106                bail!("cross-`Store` values are not currently supported");
1107            }
1108        }
1109
1110        Ok(())
1111    }
1112
1113    /// Do the actual call into Wasm.
1114    ///
1115    /// # Safety
1116    ///
1117    /// You must have type checked the arguments by calling
1118    /// `call_impl_check_args` immediately before calling this function. It is
1119    /// only safe to call this function if that one did not return an error.
1120    unsafe fn call_impl_do_call<T>(
1121        &self,
1122        store: &mut StoreContextMut<'_, T>,
1123        params: &[Val],
1124        results: &mut [Val],
1125    ) -> Result<()> {
1126        // Store the argument values into `values_vec`.
1127        let ty = self.load_ty(store.0);
1128        let values_vec_size = params.len().max(ty.results().len());
1129        let mut values_vec = store.0.take_wasm_val_raw_storage();
1130        debug_assert!(values_vec.is_empty());
1131        values_vec.resize_with(values_vec_size, || ValRaw::v128(0));
1132        for (arg, slot) in params.iter().cloned().zip(&mut values_vec) {
1133            *slot = arg.to_raw(&mut *store)?;
1134        }
1135
1136        unsafe {
1137            self.call_unchecked(
1138                &mut *store,
1139                core::ptr::slice_from_raw_parts_mut(values_vec.as_mut_ptr(), values_vec_size),
1140            )?;
1141        }
1142
1143        for ((i, slot), val) in results.iter_mut().enumerate().zip(&values_vec) {
1144            let ty = ty.results().nth(i).unwrap();
1145            *slot = unsafe { Val::from_raw(&mut *store, *val, ty) };
1146        }
1147        values_vec.truncate(0);
1148        store.0.save_wasm_val_raw_storage(values_vec);
1149        Ok(())
1150    }
1151
1152    #[inline]
1153    pub(crate) fn vm_func_ref(&self, store: &StoreOpaque) -> NonNull<VMFuncRef> {
1154        self.store.assert_belongs_to(store.id());
1155        self.unsafe_func_ref.as_non_null()
1156    }
1157
1158    pub(crate) fn vmimport(&self, store: &StoreOpaque) -> VMFunctionImport {
1159        unsafe {
1160            let f = self.vm_func_ref(store);
1161            VMFunctionImport {
1162                // Note that this is a load-bearing `unwrap` here, but is
1163                // never expected to trip at runtime. The general problem is
1164                // that host functions do not have a `wasm_call` function so
1165                // the `VMFuncRef` type has an optional pointer there. This is
1166                // only able to be filled out when a function is "paired" with
1167                // a module where trampolines are present to fill out
1168                // `wasm_call` pointers.
1169                //
1170                // This pairing of modules doesn't happen explicitly but is
1171                // instead managed lazily throughout Wasmtime. Specifically the
1172                // way this works is one of:
1173                //
1174                // * When a host function is created the store's list of
1175                //   modules are searched for a wasm trampoline. If not found
1176                //   the `wasm_call` field is left blank.
1177                //
1178                // * When a module instantiation happens, which uses this
1179                //   function, the module will be used to fill any outstanding
1180                //   holes that it has trampolines for.
1181                //
1182                // This means that by the time we get to this point any
1183                // relevant holes should be filled out. Thus if this panic
1184                // actually triggers then it's indicative of a missing `fill`
1185                // call somewhere else.
1186                wasm_call: f.as_ref().wasm_call.unwrap(),
1187                array_call: f.as_ref().array_call,
1188                vmctx: f.as_ref().vmctx,
1189            }
1190        }
1191    }
1192
1193    pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
1194        self.store == store.id()
1195    }
1196
1197    /// Attempts to extract a typed object from this `Func` through which the
1198    /// function can be called.
1199    ///
1200    /// This function serves as an alternative to [`Func::call`] and
1201    /// [`Func::call_async`]. This method performs a static type check (using
1202    /// the `Params` and `Results` type parameters on the underlying wasm
1203    /// function. If the type check passes then a `TypedFunc` object is returned,
1204    /// otherwise an error is returned describing the typecheck failure.
1205    ///
1206    /// The purpose of this relative to [`Func::call`] is that it's much more
1207    /// efficient when used to invoke WebAssembly functions. With the types
1208    /// statically known far less setup/teardown is required when invoking
1209    /// WebAssembly. If speed is desired then this function is recommended to be
1210    /// used instead of [`Func::call`] (which is more general, hence its
1211    /// slowdown).
1212    ///
1213    /// The `Params` type parameter is used to describe the parameters of the
1214    /// WebAssembly function. This can either be a single type (like `i32`), or
1215    /// a tuple of types representing the list of parameters (like `(i32, f32,
1216    /// f64)`). Additionally you can use `()` to represent that the function has
1217    /// no parameters.
1218    ///
1219    /// The `Results` type parameter is used to describe the results of the
1220    /// function. This behaves the same way as `Params`, but just for the
1221    /// results of the function.
1222    ///
1223    /// # Translating Between WebAssembly and Rust Types
1224    ///
1225    /// Translation between Rust types and WebAssembly types looks like:
1226    ///
1227    /// | WebAssembly                               | Rust                                  |
1228    /// |-------------------------------------------|---------------------------------------|
1229    /// | `i32`                                     | `i32` or `u32`                        |
1230    /// | `i64`                                     | `i64` or `u64`                        |
1231    /// | `f32`                                     | `f32`                                 |
1232    /// | `f64`                                     | `f64`                                 |
1233    /// | `externref` aka `(ref null extern)`       | `Option<Rooted<ExternRef>>`           |
1234    /// | `(ref extern)`                            | `Rooted<ExternRef>`                   |
1235    /// | `nullexternref` aka `(ref null noextern)` | `Option<NoExtern>`                    |
1236    /// | `(ref noextern)`                          | `NoExtern`                            |
1237    /// | `anyref` aka `(ref null any)`             | `Option<Rooted<AnyRef>>`              |
1238    /// | `(ref any)`                               | `Rooted<AnyRef>`                      |
1239    /// | `eqref` aka `(ref null eq)`               | `Option<Rooted<EqRef>>`               |
1240    /// | `(ref eq)`                                | `Rooted<EqRef>`                       |
1241    /// | `i31ref` aka `(ref null i31)`             | `Option<I31>`                         |
1242    /// | `(ref i31)`                               | `I31`                                 |
1243    /// | `structref` aka `(ref null struct)`       | `Option<Rooted<StructRef>>`           |
1244    /// | `(ref struct)`                            | `Rooted<StructRef>`                   |
1245    /// | `arrayref` aka `(ref null array)`         | `Option<Rooted<ArrayRef>>`            |
1246    /// | `(ref array)`                             | `Rooted<ArrayRef>`                    |
1247    /// | `nullref` aka `(ref null none)`           | `Option<NoneRef>`                     |
1248    /// | `(ref none)`                              | `NoneRef`                             |
1249    /// | `funcref` aka `(ref null func)`           | `Option<Func>`                        |
1250    /// | `(ref func)`                              | `Func`                                |
1251    /// | `(ref null <func type index>)`            | `Option<Func>`                        |
1252    /// | `(ref <func type index>)`                 | `Func`                                |
1253    /// | `nullfuncref` aka `(ref null nofunc)`     | `Option<NoFunc>`                      |
1254    /// | `(ref nofunc)`                            | `NoFunc`                              |
1255    /// | `v128`                                    | `V128` on `x86-64` and `aarch64` only |
1256    ///
1257    /// (Note that this mapping is the same as that of [`Func::wrap`], and that
1258    /// anywhere a `Rooted<T>` appears, a `OwnedRooted<T>` may also appear).
1259    ///
1260    /// Note that once the [`TypedFunc`] return value is acquired you'll use either
1261    /// [`TypedFunc::call`] or [`TypedFunc::call_async`] as necessary to actually invoke
1262    /// the function. This method does not invoke any WebAssembly code, it
1263    /// simply performs a typecheck before returning the [`TypedFunc`] value.
1264    ///
1265    /// This method also has a convenience wrapper as
1266    /// [`Instance::get_typed_func`](crate::Instance::get_typed_func) to
1267    /// directly get a typed function value from an
1268    /// [`Instance`](crate::Instance).
1269    ///
1270    /// ## Subtyping
1271    ///
1272    /// For result types, you can always use a supertype of the WebAssembly
1273    /// function's actual declared result type. For example, if the WebAssembly
1274    /// function was declared with type `(func (result nullfuncref))` you could
1275    /// successfully call `f.typed::<(), Option<Func>>()` because `Option<Func>`
1276    /// corresponds to `funcref`, which is a supertype of `nullfuncref`.
1277    ///
1278    /// For parameter types, you can always use a subtype of the WebAssembly
1279    /// function's actual declared parameter type. For example, if the
1280    /// WebAssembly function was declared with type `(func (param (ref null
1281    /// func)))` you could successfully call `f.typed::<Func, ()>()` because
1282    /// `Func` corresponds to `(ref func)`, which is a subtype of `(ref null
1283    /// func)`.
1284    ///
1285    /// Additionally, for functions which take a reference to a concrete type as
1286    /// a parameter, you can also use the concrete type's supertype. Consider a
1287    /// WebAssembly function that takes a reference to a function with a
1288    /// concrete type: `(ref null <func type index>)`. In this scenario, there
1289    /// is no static `wasmtime::Foo` Rust type that corresponds to that
1290    /// particular Wasm-defined concrete reference type because Wasm modules are
1291    /// loaded dynamically at runtime. You *could* do `f.typed::<Option<NoFunc>,
1292    /// ()>()`, and while that is correctly typed and valid, it is often overly
1293    /// restrictive. The only value you could call the resulting typed function
1294    /// with is the null function reference, but we'd like to call it with
1295    /// non-null function references that happen to be of the correct
1296    /// type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
1297    /// case, even though `Option<Func>` represents `(ref null func)` which is
1298    /// the supertype, not subtype, of `(ref null <func type index>)`. This does
1299    /// imply some minimal dynamic type checks in this case, but it is supported
1300    /// for better ergonomics, to enable passing non-null references into the
1301    /// function.
1302    ///
1303    /// # Errors
1304    ///
1305    /// This function will return an error if `Params` or `Results` does not
1306    /// match the native type of this WebAssembly function.
1307    ///
1308    /// # Panics
1309    ///
1310    /// This method will panic if `store` does not own this function.
1311    ///
1312    /// # Examples
1313    ///
1314    /// An end-to-end example of calling a function which takes no parameters
1315    /// and has no results:
1316    ///
1317    /// ```
1318    /// # use wasmtime::*;
1319    /// # fn main() -> Result<()> {
1320    /// let engine = Engine::default();
1321    /// let mut store = Store::new(&engine, ());
1322    /// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
1323    /// let instance = Instance::new(&mut store, &module, &[])?;
1324    /// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
1325    ///
1326    /// // Note that this call can fail due to the typecheck not passing, but
1327    /// // in our case we statically know the module so we know this should
1328    /// // pass.
1329    /// let typed = foo.typed::<(), ()>(&store)?;
1330    ///
1331    /// // Note that this can fail if the wasm traps at runtime.
1332    /// typed.call(&mut store, ())?;
1333    /// # Ok(())
1334    /// # }
1335    /// ```
1336    ///
1337    /// You can also pass in multiple parameters and get a result back
1338    ///
1339    /// ```
1340    /// # use wasmtime::*;
1341    /// # fn foo(add: &Func, mut store: Store<()>) -> Result<()> {
1342    /// let typed = add.typed::<(i32, i64), f32>(&store)?;
1343    /// assert_eq!(typed.call(&mut store, (1, 2))?, 3.0);
1344    /// # Ok(())
1345    /// # }
1346    /// ```
1347    ///
1348    /// and similarly if a function has multiple results you can bind that too
1349    ///
1350    /// ```
1351    /// # use wasmtime::*;
1352    /// # fn foo(add_with_overflow: &Func, mut store: Store<()>) -> Result<()> {
1353    /// let typed = add_with_overflow.typed::<(u32, u32), (u32, i32)>(&store)?;
1354    /// let (result, overflow) = typed.call(&mut store, (u32::max_value(), 2))?;
1355    /// assert_eq!(result, 1);
1356    /// assert_eq!(overflow, 1);
1357    /// # Ok(())
1358    /// # }
1359    /// ```
1360    pub fn typed<Params, Results>(
1361        &self,
1362        store: impl AsContext,
1363    ) -> Result<TypedFunc<Params, Results>>
1364    where
1365        Params: WasmParams,
1366        Results: WasmResults,
1367    {
1368        // Type-check that the params/results are all valid
1369        let store = store.as_context().0;
1370        let ty = self.load_ty(store);
1371        Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
1372            .context("type mismatch with parameters")?;
1373        Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
1374            .context("type mismatch with results")?;
1375
1376        // and then we can construct the typed version of this function
1377        // (unsafely), which should be safe since we just did the type check above.
1378        unsafe { Ok(TypedFunc::_new_unchecked(store, *self)) }
1379    }
1380
1381    /// Get a stable hash key for this function.
1382    ///
1383    /// Even if the same underlying function is added to the `StoreData`
1384    /// multiple times and becomes multiple `wasmtime::Func`s, this hash key
1385    /// will be consistent across all of these functions.
1386    #[cfg_attr(
1387        not(test),
1388        expect(dead_code, reason = "Not used yet, but added for consistency")
1389    )]
1390    pub(crate) fn hash_key(&self, store: &mut StoreOpaque) -> impl core::hash::Hash + Eq + use<> {
1391        self.vm_func_ref(store).as_ptr().addr()
1392    }
1393}
1394
1395/// Prepares for entrance into WebAssembly.
1396///
1397/// This function will set up context such that `closure` is allowed to call a
1398/// raw trampoline or a raw WebAssembly function. This *must* be called to do
1399/// things like catch traps and set up GC properly.
1400///
1401/// The `closure` provided receives a default "caller" `VMContext` parameter it
1402/// can pass to the called wasm function, if desired.
1403pub(crate) fn invoke_wasm_and_catch_traps<T>(
1404    store: &mut StoreContextMut<'_, T>,
1405    closure: impl FnMut(NonNull<VMContext>, Option<InterpreterRef<'_>>) -> bool,
1406) -> Result<()> {
1407    // The `enter_wasm` call below will reset the store context's
1408    // `stack_chain` to a new `InitialStack`, pointing to the
1409    // stack-allocated `initial_stack_csi`.
1410    let mut initial_stack_csi = VMCommonStackInformation::running_default();
1411    // Stores some state of the runtime just before entering Wasm. Will be
1412    // restored upon exiting Wasm. Note that the `CallThreadState` that is
1413    // created by the `catch_traps` call below will store a pointer to this
1414    // stack-allocated `previous_runtime_state`.
1415    let mut previous_runtime_state = EntryStoreContext::enter_wasm(store, &mut initial_stack_csi);
1416
1417    if let Err(trap) = store.0.call_hook(CallHook::CallingWasm) {
1418        // `previous_runtime_state` implicitly dropped here
1419        return Err(trap);
1420    }
1421    let result = crate::runtime::vm::catch_traps(store, &mut previous_runtime_state, closure);
1422    #[cfg(feature = "component-model")]
1423    if result.is_err() {
1424        store.0.set_trapped();
1425    }
1426    core::mem::drop(previous_runtime_state);
1427    store.0.call_hook(CallHook::ReturningFromWasm)?;
1428    result
1429}
1430
1431/// This type helps managing the state of the runtime when entering and exiting
1432/// Wasm. To this end, it contains a subset of the data in `VMStoreContext`.
1433/// Upon entering Wasm, it updates various runtime fields and their
1434/// original values saved in this struct. Upon exiting Wasm, the previous values
1435/// are restored.
1436pub(crate) struct EntryStoreContext {
1437    /// If set, contains value of `stack_limit` field to restore in
1438    /// `VMStoreContext` when exiting Wasm.
1439    pub stack_limit: Option<usize>,
1440    pub last_wasm_exit_pc: usize,
1441    pub last_wasm_exit_trampoline_fp: usize,
1442    pub last_wasm_entry_fp: usize,
1443    pub last_wasm_entry_sp: usize,
1444    pub last_wasm_entry_trap_handler: usize,
1445    pub stack_chain: VMStackChain,
1446
1447    /// We need a pointer to the runtime limits, so we can update them from
1448    /// `drop`/`exit_wasm`.
1449    vm_store_context: *const VMStoreContext,
1450}
1451
1452impl EntryStoreContext {
1453    /// This function is called to update and save state when
1454    /// WebAssembly is entered within the `Store`.
1455    ///
1456    /// This updates various fields such as:
1457    ///
1458    /// * The stack limit. This is what ensures that we limit the stack space
1459    ///   allocated by WebAssembly code and it's relative to the initial stack
1460    ///   pointer that called into wasm.
1461    ///
1462    /// It also saves the different last_wasm_* values in the `VMStoreContext`.
1463    pub fn enter_wasm<T>(
1464        store: &mut StoreContextMut<'_, T>,
1465        initial_stack_information: *mut VMCommonStackInformation,
1466    ) -> Self {
1467        let stack_limit;
1468
1469        // If this is a recursive call, e.g. our stack limit is already set, then
1470        // we may be able to skip this function.
1471        //
1472        // For synchronous stores there's nothing else to do because all wasm calls
1473        // happen synchronously and on the same stack. This means that the previous
1474        // stack limit will suffice for the next recursive call.
1475        //
1476        // For asynchronous stores then each call happens on a separate native
1477        // stack. This means that the previous stack limit is no longer relevant
1478        // because we're on a separate stack.
1479        if unsafe { *store.0.vm_store_context().stack_limit.get() } != usize::MAX
1480            && !store.0.can_block()
1481        {
1482            stack_limit = None;
1483        }
1484        // Ignore this stack pointer business on miri since we can't execute wasm
1485        // anyway and the concept of a stack pointer on miri is a bit nebulous
1486        // regardless.
1487        else if cfg!(miri) {
1488            stack_limit = None;
1489        } else {
1490            // When Cranelift has support for the host then we might be running native
1491            // compiled code meaning we need to read the actual stack pointer. If
1492            // Cranelift can't be used though then we're guaranteed to be running pulley
1493            // in which case this stack pointer isn't actually used as Pulley has custom
1494            // mechanisms for stack overflow.
1495            #[cfg(has_host_compiler_backend)]
1496            let stack_pointer = crate::runtime::vm::get_stack_pointer();
1497            #[cfg(not(has_host_compiler_backend))]
1498            let stack_pointer = {
1499                use wasmtime_environ::TripleExt;
1500                debug_assert!(store.engine().target().is_pulley());
1501                usize::MAX
1502            };
1503
1504            // Determine the stack pointer where, after which, any wasm code will
1505            // immediately trap. This is checked on the entry to all wasm functions.
1506            //
1507            // Note that this isn't 100% precise. We are requested to give wasm
1508            // `max_wasm_stack` bytes, but what we're actually doing is giving wasm
1509            // probably a little less than `max_wasm_stack` because we're
1510            // calculating the limit relative to this function's approximate stack
1511            // pointer. Wasm will be executed on a frame beneath this one (or next
1512            // to it). In any case it's expected to be at most a few hundred bytes
1513            // of slop one way or another. When wasm is typically given a MB or so
1514            // (a million bytes) the slop shouldn't matter too much.
1515            //
1516            // After we've got the stack limit then we store it into the `stack_limit`
1517            // variable.
1518            let wasm_stack_limit = stack_pointer
1519                .checked_sub(store.engine().config().max_wasm_stack)
1520                .unwrap();
1521            let prev_stack = unsafe {
1522                mem::replace(
1523                    &mut *store.0.vm_store_context().stack_limit.get(),
1524                    wasm_stack_limit,
1525                )
1526            };
1527            stack_limit = Some(prev_stack);
1528        }
1529
1530        unsafe {
1531            let vm_store_context = store.0.vm_store_context();
1532            let new_stack_chain = VMStackChain::InitialStack(initial_stack_information);
1533            *vm_store_context.stack_chain.get() = new_stack_chain;
1534
1535            Self {
1536                stack_limit,
1537                last_wasm_exit_pc: *(*vm_store_context).last_wasm_exit_pc.get(),
1538                last_wasm_exit_trampoline_fp: *(*vm_store_context)
1539                    .last_wasm_exit_trampoline_fp
1540                    .get(),
1541                last_wasm_entry_fp: *(*vm_store_context).last_wasm_entry_fp.get(),
1542                last_wasm_entry_sp: *(*vm_store_context).last_wasm_entry_sp.get(),
1543                last_wasm_entry_trap_handler: *(*vm_store_context)
1544                    .last_wasm_entry_trap_handler
1545                    .get(),
1546                stack_chain: (*(*vm_store_context).stack_chain.get()).clone(),
1547                vm_store_context,
1548            }
1549        }
1550    }
1551
1552    /// This function restores the values stored in this struct. We invoke this
1553    /// function through this type's `Drop` implementation. This ensures that we
1554    /// even restore the values if we unwind the stack (e.g., because we are
1555    /// panicking out of a Wasm execution).
1556    #[inline]
1557    fn exit_wasm(&mut self) {
1558        unsafe {
1559            if let Some(limit) = self.stack_limit {
1560                *(&*self.vm_store_context).stack_limit.get() = limit;
1561            }
1562
1563            *(*self.vm_store_context).last_wasm_exit_trampoline_fp.get() =
1564                self.last_wasm_exit_trampoline_fp;
1565            *(*self.vm_store_context).last_wasm_exit_pc.get() = self.last_wasm_exit_pc;
1566            *(*self.vm_store_context).last_wasm_entry_fp.get() = self.last_wasm_entry_fp;
1567            *(*self.vm_store_context).last_wasm_entry_sp.get() = self.last_wasm_entry_sp;
1568            *(*self.vm_store_context).last_wasm_entry_trap_handler.get() =
1569                self.last_wasm_entry_trap_handler;
1570            *(*self.vm_store_context).stack_chain.get() = self.stack_chain.clone();
1571        }
1572    }
1573}
1574
1575impl Drop for EntryStoreContext {
1576    #[inline]
1577    fn drop(&mut self) {
1578        self.exit_wasm();
1579    }
1580}
1581
1582/// A trait implemented for types which can be returned from closures passed to
1583/// [`Func::wrap`] and friends.
1584///
1585/// This trait should not be implemented by user types. This trait may change at
1586/// any time internally. The types which implement this trait, however, are
1587/// stable over time.
1588///
1589/// For more information see [`Func::wrap`]
1590pub unsafe trait WasmRet {
1591    // Same as `WasmTy::compatible_with_store`.
1592    #[doc(hidden)]
1593    fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
1594
1595    /// Stores this return value into the `ptr` specified using the rooted
1596    /// `store`.
1597    ///
1598    /// Traps are communicated through the `Result<_>` return value.
1599    ///
1600    /// # Unsafety
1601    ///
1602    /// This method is unsafe as `ptr` must have the correct length to store
1603    /// this result. This property is only checked in debug mode, not in release
1604    /// mode.
1605    #[doc(hidden)]
1606    unsafe fn store(
1607        self,
1608        store: &mut AutoAssertNoGc<'_>,
1609        ptr: &mut [MaybeUninit<ValRaw>],
1610    ) -> Result<()>;
1611
1612    #[doc(hidden)]
1613    fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType;
1614    #[doc(hidden)]
1615    fn may_gc() -> bool;
1616
1617    // Utilities used to convert an instance of this type to a `Result`
1618    // explicitly, used when wrapping async functions which always bottom-out
1619    // in a function that returns a trap because futures can be cancelled.
1620    #[doc(hidden)]
1621    type Fallible: WasmRet;
1622    #[doc(hidden)]
1623    fn into_fallible(self) -> Self::Fallible;
1624    #[doc(hidden)]
1625    fn fallible_from_error(error: Error) -> Self::Fallible;
1626}
1627
1628unsafe impl<T> WasmRet for T
1629where
1630    T: WasmTy,
1631{
1632    type Fallible = Result<T>;
1633
1634    fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1635        <Self as WasmTy>::compatible_with_store(self, store)
1636    }
1637
1638    unsafe fn store(
1639        self,
1640        store: &mut AutoAssertNoGc<'_>,
1641        ptr: &mut [MaybeUninit<ValRaw>],
1642    ) -> Result<()> {
1643        debug_assert!(ptr.len() > 0);
1644        // SAFETY: the contract of this function/trait combo is such that `ptr`
1645        // is valid to store this type's value, thus this lookup should be safe.
1646        unsafe { <Self as WasmTy>::store(self, store, ptr.get_unchecked_mut(0)) }
1647    }
1648
1649    fn may_gc() -> bool {
1650        T::may_gc()
1651    }
1652
1653    fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1654        FuncType::new(engine, params, Some(<Self as WasmTy>::valtype()))
1655    }
1656
1657    fn into_fallible(self) -> Result<T> {
1658        Ok(self)
1659    }
1660
1661    fn fallible_from_error(error: Error) -> Result<T> {
1662        Err(error)
1663    }
1664}
1665
1666unsafe impl<T> WasmRet for Result<T>
1667where
1668    T: WasmRet,
1669{
1670    type Fallible = Self;
1671
1672    fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1673        match self {
1674            Ok(x) => <T as WasmRet>::compatible_with_store(x, store),
1675            Err(_) => true,
1676        }
1677    }
1678
1679    unsafe fn store(
1680        self,
1681        store: &mut AutoAssertNoGc<'_>,
1682        ptr: &mut [MaybeUninit<ValRaw>],
1683    ) -> Result<()> {
1684        // SAFETY: the safety of calling this function is the same as calling
1685        // the inner `store`.
1686        unsafe { self.and_then(|val| val.store(store, ptr)) }
1687    }
1688
1689    fn may_gc() -> bool {
1690        T::may_gc()
1691    }
1692
1693    fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1694        T::func_type(engine, params)
1695    }
1696
1697    fn into_fallible(self) -> Result<T> {
1698        self
1699    }
1700
1701    fn fallible_from_error(error: Error) -> Result<T> {
1702        Err(error)
1703    }
1704}
1705
1706macro_rules! impl_wasm_host_results {
1707    ($n:tt $($t:ident)*) => (
1708        #[allow(non_snake_case, reason = "macro-generated code")]
1709        unsafe impl<$($t),*> WasmRet for ($($t,)*)
1710        where
1711            $($t: WasmTy,)*
1712        {
1713            type Fallible = Result<Self>;
1714
1715            #[inline]
1716            fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
1717                let ($($t,)*) = self;
1718                $( $t.compatible_with_store(_store) && )* true
1719            }
1720
1721            #[inline]
1722            unsafe fn store(
1723                self,
1724                _store: &mut AutoAssertNoGc<'_>,
1725                _ptr: &mut [MaybeUninit<ValRaw>],
1726            ) -> Result<()> {
1727                let ($($t,)*) = self;
1728                let mut _cur = 0;
1729                $(
1730                    debug_assert!(_cur < _ptr.len());
1731                    // SAFETY: `store`'s unsafe contract is that `_ptr` is
1732                    // appropriately sized and additionally safe to call `store`
1733                    // for sub-types.
1734                    unsafe {
1735                        let val = _ptr.get_unchecked_mut(_cur);
1736                        _cur += 1;
1737                        WasmTy::store($t, _store, val)?;
1738                    }
1739                )*
1740                Ok(())
1741            }
1742
1743            #[doc(hidden)]
1744            fn may_gc() -> bool {
1745                $( $t::may_gc() || )* false
1746            }
1747
1748            fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1749                FuncType::new(
1750                    engine,
1751                    params,
1752                    IntoIterator::into_iter([$($t::valtype(),)*]),
1753                )
1754            }
1755
1756            #[inline]
1757            fn into_fallible(self) -> Result<Self> {
1758                Ok(self)
1759            }
1760
1761            #[inline]
1762            fn fallible_from_error(error: Error) -> Result<Self> {
1763                Err(error)
1764            }
1765        }
1766    )
1767}
1768
1769for_each_function_signature!(impl_wasm_host_results);
1770
1771/// Internal trait implemented for all arguments that can be passed to
1772/// [`Func::wrap`] and [`Linker::func_wrap`](crate::Linker::func_wrap).
1773///
1774/// This trait should not be implemented by external users, it's only intended
1775/// as an implementation detail of this crate.
1776pub trait IntoFunc<T, Params, Results>: Send + Sync + 'static {
1777    /// Convert this function into a `VM{Array,Native}CallHostFuncContext` and
1778    /// internal `VMFuncRef`.
1779    #[doc(hidden)]
1780    fn into_func(self, engine: &Engine) -> HostFunc;
1781}
1782
1783macro_rules! impl_into_func {
1784    ($num:tt $arg:ident) => {
1785        // Implement for functions without a leading `Caller` parameter,
1786        // delegating to the implementation below which does have the leading
1787        // `Caller` parameter.
1788        #[expect(non_snake_case, reason = "macro-generated code")]
1789        impl<T, F, $arg, R> IntoFunc<T, $arg, R> for F
1790        where
1791            F: Fn($arg) -> R + Send + Sync + 'static,
1792            $arg: WasmTy,
1793            R: WasmRet,
1794            T: 'static,
1795        {
1796            fn into_func(self, engine: &Engine) -> HostFunc {
1797                let f = move |_: Caller<'_, T>, $arg: $arg| {
1798                    self($arg)
1799                };
1800
1801                f.into_func(engine)
1802            }
1803        }
1804
1805        #[expect(non_snake_case, reason = "macro-generated code")]
1806        impl<T, F, $arg, R> IntoFunc<T, (Caller<'_, T>, $arg), R> for F
1807        where
1808            F: Fn(Caller<'_, T>, $arg) -> R + Send + Sync + 'static,
1809            $arg: WasmTy,
1810            R: WasmRet,
1811            T: 'static,
1812        {
1813            fn into_func(self, engine: &Engine) -> HostFunc {
1814                HostFunc::wrap(engine, move |caller: Caller<'_, T>, ($arg,)| {
1815                    self(caller, $arg)
1816                })
1817            }
1818        }
1819    };
1820    ($num:tt $($args:ident)*) => {
1821        // Implement for functions without a leading `Caller` parameter,
1822        // delegating to the implementation below which does have the leading
1823        // `Caller` parameter.
1824        #[allow(non_snake_case, reason = "macro-generated code")]
1825        impl<T, F, $($args,)* R> IntoFunc<T, ($($args,)*), R> for F
1826        where
1827            F: Fn($($args),*) -> R + Send + Sync + 'static,
1828            $($args: WasmTy,)*
1829            R: WasmRet,
1830            T: 'static,
1831        {
1832            fn into_func(self, engine: &Engine) -> HostFunc {
1833                let f = move |_: Caller<'_, T>, $($args:$args),*| {
1834                    self($($args),*)
1835                };
1836
1837                f.into_func(engine)
1838            }
1839        }
1840
1841        #[allow(non_snake_case, reason = "macro-generated code")]
1842        impl<T, F, $($args,)* R> IntoFunc<T, (Caller<'_, T>, $($args,)*), R> for F
1843        where
1844            F: Fn(Caller<'_, T>, $($args),*) -> R + Send + Sync + 'static,
1845            $($args: WasmTy,)*
1846            R: WasmRet,
1847            T: 'static,
1848        {
1849            fn into_func(self, engine: &Engine) -> HostFunc {
1850                HostFunc::wrap(engine, move |caller: Caller<'_, T>, ( $( $args ),* )| {
1851                    self(caller, $( $args ),* )
1852                })
1853            }
1854        }
1855    }
1856}
1857
1858for_each_function_signature!(impl_into_func);
1859
1860/// Trait implemented for various tuples made up of types which implement
1861/// [`WasmTy`] that can be passed to [`Func::wrap_async`].
1862pub unsafe trait WasmTyList {
1863    /// Get the value type that each Type in the list represents.
1864    fn valtypes() -> impl Iterator<Item = ValType>;
1865
1866    // Load a version of `Self` from the `values` provided.
1867    //
1868    // # Safety
1869    //
1870    // This function is unsafe as it's up to the caller to ensure that `values` are
1871    // valid for this given type.
1872    #[doc(hidden)]
1873    unsafe fn load(store: &mut AutoAssertNoGc<'_>, values: &mut [MaybeUninit<ValRaw>]) -> Self;
1874
1875    #[doc(hidden)]
1876    fn may_gc() -> bool;
1877}
1878
1879macro_rules! impl_wasm_ty_list {
1880    ($num:tt $($args:ident)*) => (
1881        #[allow(non_snake_case, reason = "macro-generated code")]
1882        unsafe impl<$($args),*> WasmTyList for ($($args,)*)
1883        where
1884            $($args: WasmTy,)*
1885        {
1886            fn valtypes() -> impl Iterator<Item = ValType> {
1887                IntoIterator::into_iter([$($args::valtype(),)*])
1888            }
1889
1890            unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _values: &mut [MaybeUninit<ValRaw>]) -> Self {
1891                let mut _cur = 0;
1892                ($({
1893                    debug_assert!(_cur < _values.len());
1894                    // SAFETY: this function's own contract means that `_values`
1895                    // is appropriately sized/typed for the internal loads.
1896                    unsafe {
1897                        let ptr = _values.get_unchecked(_cur).assume_init_ref();
1898                        _cur += 1;
1899                        $args::load(_store, ptr)
1900                    }
1901                },)*)
1902            }
1903
1904            fn may_gc() -> bool {
1905                $( $args::may_gc() || )* false
1906            }
1907        }
1908    );
1909}
1910
1911for_each_function_signature!(impl_wasm_ty_list);
1912
1913/// A structure representing the caller's context when creating a function
1914/// via [`Func::wrap`].
1915///
1916/// This structure can be taken as the first parameter of a closure passed to
1917/// [`Func::wrap`] or other constructors, and serves two purposes:
1918///
1919/// * First consumers can use [`Caller<'_, T>`](crate::Caller) to get access to
1920///   [`StoreContextMut<'_, T>`](crate::StoreContextMut) and/or get access to
1921///   `T` itself. This means that the [`Caller`] type can serve as a proxy to
1922///   the original [`Store`](crate::Store) itself and is used to satisfy
1923///   [`AsContext`] and [`AsContextMut`] bounds.
1924///
1925/// * Second a [`Caller`] can be used as the name implies, learning about the
1926///   caller's context, namely it's exported memory and exported functions. This
1927///   allows functions which take pointers as arguments to easily read the
1928///   memory the pointers point into, or if a function is expected to call
1929///   malloc in the wasm module to reserve space for the output you can do that.
1930///
1931/// Host functions which want access to [`Store`](crate::Store)-level state are
1932/// recommended to use this type.
1933pub struct Caller<'a, T: 'static> {
1934    pub(crate) store: StoreContextMut<'a, T>,
1935    caller: Instance,
1936}
1937
1938impl<T> Caller<'_, T> {
1939    fn sub_caller(&mut self) -> Caller<'_, T> {
1940        Caller {
1941            store: self.store.as_context_mut(),
1942            caller: self.caller,
1943        }
1944    }
1945
1946    /// Looks up an export from the caller's module by the `name` given.
1947    ///
1948    /// This is a low-level function that's typically used to implement passing
1949    /// of pointers or indices between core Wasm instances, where the callee
1950    /// needs to consult the caller's exports to perform memory management and
1951    /// resolve the references.
1952    ///
1953    /// For comparison, in components, the component model handles translating
1954    /// arguments from one component instance to another and managing memory, so
1955    /// that callees don't need to be aware of their callers, which promotes
1956    /// virtualizability of APIs.
1957    ///
1958    /// # Return
1959    ///
1960    /// If an export with the `name` provided was found, then it is returned as an
1961    /// `Extern`. There are a number of situations, however, where the export may not
1962    /// be available:
1963    ///
1964    /// * The caller instance may not have an export named `name`
1965    /// * There may not be a caller available, for example if `Func` was called
1966    ///   directly from host code.
1967    ///
1968    /// It's recommended to take care when calling this API and gracefully
1969    /// handling a `None` return value.
1970    pub fn get_export(&mut self, name: &str) -> Option<Extern> {
1971        // All instances created have a `host_state` with a pointer pointing
1972        // back to themselves. If this caller doesn't have that `host_state`
1973        // then it probably means it was a host-created object like `Func::new`
1974        // which doesn't have any exports we want to return anyway.
1975        self.caller.get_export(&mut self.store, name)
1976    }
1977
1978    /// Looks up an exported [`Extern`] value by a [`ModuleExport`] value.
1979    ///
1980    /// This is similar to [`Self::get_export`] but uses a [`ModuleExport`]
1981    /// value to avoid string lookups where possible. [`ModuleExport`]s can be
1982    /// obtained by calling [`Module::get_export_index`] on the [`Module`] that
1983    /// an instance was instantiated with.
1984    ///
1985    /// This method will search the module for an export with a matching entity index and return
1986    /// the value, if found.
1987    ///
1988    /// Returns `None` if there was no export with a matching entity index.
1989    ///
1990    /// [`Module::get_export_index`]: crate::Module::get_export_index
1991    /// [`Module`]: crate::Module
1992    ///
1993    /// # Panics
1994    ///
1995    /// Panics if `store` does not own this instance.
1996    ///
1997    /// # Usage
1998    /// ```
1999    /// use std::str;
2000    ///
2001    /// # use wasmtime::*;
2002    /// # fn main() -> Result<()> {
2003    /// # let mut store = Store::default();
2004    ///
2005    /// let module = Module::new(
2006    ///     store.engine(),
2007    ///     r#"
2008    ///         (module
2009    ///             (import "" "" (func $log_str (param i32 i32)))
2010    ///             (func (export "foo")
2011    ///                 i32.const 4   ;; ptr
2012    ///                 i32.const 13  ;; len
2013    ///                 call $log_str)
2014    ///             (memory (export "memory") 1)
2015    ///             (data (i32.const 4) "Hello, world!"))
2016    ///     "#,
2017    /// )?;
2018    ///
2019    /// let Some(module_export) = module.get_export_index("memory") else {
2020    ///    bail!("failed to find `memory` export in module");
2021    /// };
2022    ///
2023    /// let log_str = Func::wrap(&mut store, move |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
2024    ///     let mem = match caller.get_module_export(&module_export) {
2025    ///         Some(Extern::Memory(mem)) => mem,
2026    ///         _ => bail!("failed to find host memory"),
2027    ///     };
2028    ///     let data = mem.data(&caller)
2029    ///         .get(ptr as u32 as usize..)
2030    ///         .and_then(|arr| arr.get(..len as u32 as usize));
2031    ///     let string = match data {
2032    ///         Some(data) => match str::from_utf8(data) {
2033    ///             Ok(s) => s,
2034    ///             Err(_) => bail!("invalid utf-8"),
2035    ///         },
2036    ///         None => bail!("pointer/length out of bounds"),
2037    ///     };
2038    ///     assert_eq!(string, "Hello, world!");
2039    ///     println!("{}", string);
2040    ///     Ok(())
2041    /// });
2042    /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
2043    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
2044    /// foo.call(&mut store, ())?;
2045    /// # Ok(())
2046    /// # }
2047    /// ```
2048    pub fn get_module_export(&mut self, export: &ModuleExport) -> Option<Extern> {
2049        self.caller.get_module_export(&mut self.store, export)
2050    }
2051
2052    /// Access the underlying data owned by this `Store`.
2053    ///
2054    /// Same as [`Store::data`](crate::Store::data)
2055    pub fn data(&self) -> &T {
2056        self.store.data()
2057    }
2058
2059    /// Access the underlying data owned by this `Store`.
2060    ///
2061    /// Same as [`Store::data_mut`](crate::Store::data_mut)
2062    pub fn data_mut(&mut self) -> &mut T {
2063        self.store.data_mut()
2064    }
2065
2066    /// Returns the underlying [`Engine`] this store is connected to.
2067    pub fn engine(&self) -> &Engine {
2068        self.store.engine()
2069    }
2070
2071    /// Perform garbage collection.
2072    ///
2073    /// Same as [`Store::gc`](crate::Store::gc).
2074    #[cfg(feature = "gc")]
2075    pub fn gc(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>) -> Result<()> {
2076        self.store.gc(why)
2077    }
2078
2079    /// Perform garbage collection asynchronously.
2080    ///
2081    /// Same as [`Store::gc_async`](crate::Store::gc_async).
2082    #[cfg(all(feature = "async", feature = "gc"))]
2083    pub async fn gc_async(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>)
2084    where
2085        T: Send + 'static,
2086    {
2087        self.store.gc_async(why).await;
2088    }
2089
2090    /// Returns the remaining fuel in the store.
2091    ///
2092    /// For more information see [`Store::get_fuel`](crate::Store::get_fuel)
2093    pub fn get_fuel(&self) -> Result<u64> {
2094        self.store.get_fuel()
2095    }
2096
2097    /// Set the amount of fuel in this store to be consumed when executing wasm code.
2098    ///
2099    /// For more information see [`Store::set_fuel`](crate::Store::set_fuel)
2100    pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
2101        self.store.set_fuel(fuel)
2102    }
2103
2104    /// Configures this `Store` to yield while executing futures every N units of fuel.
2105    ///
2106    /// For more information see
2107    /// [`Store::fuel_async_yield_interval`](crate::Store::fuel_async_yield_interval)
2108    #[cfg(feature = "async")]
2109    pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
2110        self.store.fuel_async_yield_interval(interval)
2111    }
2112
2113    /// Provide an object that views Wasm stack state, including Wasm
2114    /// VM-level values (locals and operand stack), when debugging is
2115    /// enabled.
2116    ///
2117    /// See [`Store::debug_frames`] for more details.
2118    ///
2119    /// [`Store::debug_frames`]: crate::Store::debug_frames
2120    #[cfg(feature = "debug")]
2121    pub fn debug_frames(&mut self) -> Option<crate::DebugFrameCursor<'_, T>> {
2122        self.store.as_context_mut().debug_frames()
2123    }
2124}
2125
2126impl<T: 'static> AsContext for Caller<'_, T> {
2127    type Data = T;
2128    fn as_context(&self) -> StoreContext<'_, T> {
2129        self.store.as_context()
2130    }
2131}
2132
2133impl<T: 'static> AsContextMut for Caller<'_, T> {
2134    fn as_context_mut(&mut self) -> StoreContextMut<'_, T> {
2135        self.store.as_context_mut()
2136    }
2137}
2138
2139impl<'a, T: 'static> From<Caller<'a, T>> for StoreContextMut<'a, T> {
2140    fn from(caller: Caller<'a, T>) -> Self {
2141        caller.store
2142    }
2143}
2144
2145/// Representation of a host-defined function.
2146///
2147/// This is used for `Func::new` but also for `Linker`-defined functions. For
2148/// `Func::new` this is stored within a `Store`, and for `Linker`-defined
2149/// functions they wrap this up in `Arc` to enable shared ownership of this
2150/// across many stores.
2151///
2152/// Technically this structure needs a `<T>` type parameter to connect to the
2153/// `Store<T>` itself, but that's an unsafe contract of using this for now
2154/// rather than part of the struct type (to avoid `Func<T>` in the API).
2155#[doc(hidden)]
2156pub struct HostFunc {
2157    ctx: StoreBox<VMArrayCallHostFuncContext>,
2158
2159    /// Whether or not this function was defined with an `async` host function,
2160    /// meaning that it is only invokable when wasm is itself on a fiber to
2161    /// support suspension on `Poll::Pending`.
2162    ///
2163    /// This is used to propagate to an `InstancePre` and then eventually into a
2164    /// `Store` as to whether the store requires async entrypoints.
2165    asyncness: Asyncness,
2166
2167    // Stored to unregister this function's signature with the engine when this
2168    // is dropped.
2169    engine: Engine,
2170}
2171
2172// State stored inside a `VMArrayCallHostFuncContext`.
2173struct HostFuncState<F> {
2174    // The actual host function.
2175    func: F,
2176
2177    // NB: We have to keep our `VMSharedTypeIndex` registered in the engine for
2178    // as long as this function exists.
2179    _ty: RegisteredType,
2180}
2181
2182impl core::fmt::Debug for HostFunc {
2183    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
2184        f.debug_struct("HostFunc").finish_non_exhaustive()
2185    }
2186}
2187
2188impl HostFunc {
2189    /// Requires that the signature in `ctx` is already registered
2190    /// within `Engine`, which is done by [`Self::vmctx_sync`] and
2191    /// [`Self::vmctx_async`].
2192    ///
2193    /// This is an internal private constructor for this type intended to only
2194    /// be used by other constructors of this type below.
2195    fn new_raw(
2196        engine: &Engine,
2197        ctx: StoreBox<VMArrayCallHostFuncContext>,
2198        asyncness: Asyncness,
2199    ) -> Self {
2200        HostFunc {
2201            ctx,
2202            engine: engine.clone(),
2203            asyncness,
2204        }
2205    }
2206
2207    /// Constructor of a host function's `VMContext` for synchronous functions.
2208    ///
2209    /// This creates a `VMArrayCallHostFuncContext` which under the hood will
2210    /// be viewed as `VMContext` in the eventually created `VMFuncRef`.
2211    fn vmctx_sync<F, T>(
2212        engine: &Engine,
2213        ty: FuncType,
2214        func: F,
2215    ) -> StoreBox<VMArrayCallHostFuncContext>
2216    where
2217        F: Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
2218        T: 'static,
2219    {
2220        assert!(ty.comes_from_same_engine(engine));
2221
2222        unsafe {
2223            VMArrayCallHostFuncContext::new(
2224                Self::array_call_trampoline::<T, F>,
2225                ty.type_index(),
2226                Box::new(HostFuncState {
2227                    func,
2228                    _ty: ty.into_registered_type(),
2229                }),
2230            )
2231        }
2232    }
2233
2234    /// Constructor of a host function's `VMContext` for asynchronous functions.
2235    ///
2236    /// This creates a `VMArrayCallHostFuncContext` which under the hood will
2237    /// be viewed as `VMContext` in the eventually created `VMFuncRef`.
2238    ///
2239    /// Note that `ctx: U` is forwarded directly to `func`. This is subtly
2240    /// different than closing over data in `F` because the future returned by
2241    /// `F` can't refer to any data it closes over. The purpose of `U` is to
2242    /// enable the returned future to be able to close over data generally
2243    /// captured in the closures generated here.
2244    #[cfg(feature = "async")]
2245    fn vmctx_async<F, T, U>(
2246        engine: &Engine,
2247        ty: FuncType,
2248        ctx: U,
2249        func: F,
2250    ) -> StoreBox<VMArrayCallHostFuncContext>
2251    where
2252        F: for<'a> Fn(
2253                Caller<'a, T>,
2254                &'a mut [MaybeUninit<ValRaw>],
2255                &'a U,
2256            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
2257            + Send
2258            + Sync
2259            + 'static,
2260        T: 'static,
2261        U: Send + Sync + 'static,
2262    {
2263        // Eventually we want to remove `with_blocking` + `block_on` from
2264        // Wasmtime. For now this is the attempt to keep it as low-level as
2265        // possible.
2266        //
2267        // Generally it's a lie to run async things on top of sync things and
2268        // it's caused many headaches. For now it's the best that can be done.
2269        Self::vmctx_sync(engine, ty, move |Caller { store, caller }, args| {
2270            store.with_blocking(|store, cx| {
2271                cx.block_on(core::pin::Pin::from(func(
2272                    Caller { store, caller },
2273                    args,
2274                    &ctx,
2275                )))
2276            })?
2277        })
2278    }
2279
2280    /// Entrypoint of WebAssembly back into the host.
2281    ///
2282    /// This is the standard wasmtime "array call signature" which then
2283    /// delegates internally to the host. This assumes that `callee_vmctx` is a
2284    /// `VMArrayCallHostFuncContext` which was built above with
2285    /// `HostFuncState<F>` internally. This internal function is then used to
2286    /// dispatch based on the arguments.
2287    ///
2288    /// Details handled by this wrapper are:
2289    ///
2290    /// * Host panics are handled (`enter_host_from_wasm`)
2291    /// * `F` is loaded from `callee_vmctx`
2292    /// * `Caller` is constructed to pass to `F`
2293    /// * A GC LIFO scope is maintained around the execution of `F`.
2294    /// * Call hooks for entering/leaving the host are maintained.
2295    unsafe extern "C" fn array_call_trampoline<T, F>(
2296        callee_vmctx: NonNull<VMOpaqueContext>,
2297        caller_vmctx: NonNull<VMContext>,
2298        args: NonNull<ValRaw>,
2299        args_len: usize,
2300    ) -> bool
2301    where
2302        F: Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + 'static,
2303        T: 'static,
2304    {
2305        let run = |store: &mut dyn crate::vm::VMStore, instance: InstanceId| {
2306            // SAFETY: correct usage of this trampoline requires correct
2307            // ascription of `T`, so it's the caller's responsibility to line
2308            // this up.
2309            let mut store = unsafe { store.unchecked_context_mut() };
2310
2311            // Handle the entry call hook, with a corresponding exit call hook
2312            // below.
2313            store.0.call_hook(CallHook::CallingHost)?;
2314
2315            // SAFETY: this function itself requires that the `vmctx` is
2316            // valid to use here.
2317            let state = unsafe {
2318                let vmctx = VMArrayCallHostFuncContext::from_opaque(callee_vmctx);
2319                vmctx.as_ref().host_state()
2320            };
2321
2322            // Double-check ourselves in debug mode, but we control the
2323            // `Any` here so an unsafe downcast should also work.
2324            //
2325            // SAFETY: this function is only usable with `F`.
2326            let state = unsafe {
2327                debug_assert!(state.is::<HostFuncState<F>>());
2328                &*(state as *const _ as *const HostFuncState<F>)
2329            };
2330
2331            let (gc_lifo_scope, ret) = {
2332                let gc_lifo_scope = store.0.gc_roots().enter_lifo_scope();
2333
2334                let mut args = NonNull::slice_from_raw_parts(args.cast(), args_len);
2335                // SAFETY: it's a contract of this function itself that the values
2336                // provided are valid to view as a slice.
2337                let args = unsafe { args.as_mut() };
2338
2339                let ret = (state.func)(
2340                    Caller {
2341                        caller: Instance::from_wasmtime(instance, store.0),
2342                        store: store.as_context_mut(),
2343                    },
2344                    args,
2345                );
2346
2347                (gc_lifo_scope, ret)
2348            };
2349
2350            store.0.exit_gc_lifo_scope(gc_lifo_scope);
2351
2352            // Note that if this returns a trap then `ret` is discarded
2353            // entirely.
2354            store.0.call_hook(CallHook::ReturningFromHost)?;
2355
2356            ret
2357        };
2358
2359        // SAFETY: this is an entrypoint of wasm which requires correct type
2360        // ascription of `T` itself, meaning that this should be safe to call
2361        // both `enter_host_from_wasm` as well as `unchecked_context_mut`.
2362        unsafe { vm::Instance::enter_host_from_wasm(caller_vmctx, run) }
2363    }
2364    /// Analog of [`Func::new_unchecked`]
2365    ///
2366    /// # Panics
2367    ///
2368    /// Panics if the given function type is not associated with the given
2369    /// engine.
2370    ///
2371    /// # Safety
2372    ///
2373    /// The `func` provided must operate according to the `ty` provided to
2374    /// ensure it's reading the correctly-typed parameters and writing the
2375    /// correctly-typed results.
2376    pub unsafe fn new_unchecked<T>(
2377        engine: &Engine,
2378        ty: FuncType,
2379        func: impl Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
2380    ) -> Self
2381    where
2382        T: 'static,
2383    {
2384        HostFunc::new_raw(engine, Self::vmctx_sync(engine, ty, func), Asyncness::No)
2385    }
2386
2387    /// Analog of [`Func::new`]
2388    ///
2389    /// # Panics
2390    ///
2391    /// Panics if the given function type is not associated with the given
2392    /// engine.
2393    pub fn new<T>(
2394        engine: &Engine,
2395        ty: FuncType,
2396        func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
2397    ) -> Self
2398    where
2399        T: 'static,
2400    {
2401        // NB: this is "duplicated" below in `new_async`, so try to keep the
2402        // two in sync.
2403        HostFunc::new_raw(
2404            engine,
2405            Self::vmctx_sync(engine, ty.clone(), move |mut caller, values| {
2406                // SAFETY: Wasmtime in general provides the guarantee that
2407                // `values` matches `ty`, so this should be safe.
2408                let mut vec = unsafe { Self::load_untyped_params(caller.store.0, &ty, values) };
2409                let (params, results) = vec.split_at_mut(ty.params().len());
2410                func(caller.sub_caller(), params, results)?;
2411                Self::store_untyped_results(caller.store, &ty, vec, values)
2412            }),
2413            Asyncness::No,
2414        )
2415    }
2416
2417    /// Analog of [`Func::new_async`]
2418    ///
2419    /// # Panics
2420    ///
2421    /// Panics if the given function type is not associated with the given
2422    /// engine.
2423    #[cfg(feature = "async")]
2424    pub fn new_async<T, F>(engine: &Engine, ty: FuncType, func: F) -> Self
2425    where
2426        F: for<'a> Fn(
2427                Caller<'a, T>,
2428                &'a [Val],
2429                &'a mut [Val],
2430            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
2431            + Send
2432            + Sync
2433            + 'static,
2434        T: Send + 'static,
2435    {
2436        // NB: this is "duplicated" above in `new`, so try to keep the two in
2437        // sync.
2438        HostFunc::new_raw(
2439            engine,
2440            Self::vmctx_async(
2441                engine,
2442                ty.clone(),
2443                (ty, func),
2444                move |mut caller, values, (ty, func)| {
2445                    Box::new(async move {
2446                        // SAFETY: Wasmtime in general provides the guarantee that
2447                        // `values` matches `ty`, so this should be safe.
2448                        let mut vec =
2449                            unsafe { Self::load_untyped_params(caller.store.0, &ty, values) };
2450                        let (params, results) = vec.split_at_mut(ty.params().len());
2451                        core::pin::Pin::from(func(caller.sub_caller(), params, results)).await?;
2452                        Self::store_untyped_results(caller.store, &ty, vec, values)
2453                    })
2454                },
2455            ),
2456            Asyncness::Yes,
2457        )
2458    }
2459
2460    /// Loads the the parameters of `ty` from `params` into a vector.
2461    ///
2462    /// This additionally pushes space onto the vector for all results to split
2463    /// the vector into params/results halves.
2464    ///
2465    /// # Safety
2466    ///
2467    /// Requires that `params` matches the parameters loaded by `P`.
2468    unsafe fn load_untyped_params(
2469        store: &mut StoreOpaque,
2470        ty: &FuncType,
2471        params: &mut [MaybeUninit<ValRaw>],
2472    ) -> Vec<Val> {
2473        let mut val_vec = store.take_hostcall_val_storage();
2474        debug_assert!(val_vec.is_empty());
2475        let nparams = ty.params().len();
2476        val_vec.reserve(nparams + ty.results().len());
2477        let mut store = AutoAssertNoGc::new(store);
2478        for (i, ty) in ty.params().enumerate() {
2479            val_vec.push(unsafe { Val::_from_raw(&mut store, params[i].assume_init(), &ty) })
2480        }
2481
2482        val_vec.extend((0..ty.results().len()).map(|_| Val::null_func_ref()));
2483        val_vec
2484    }
2485
2486    /// Stores the results, at the end of `args_then_results` according to `ty`,
2487    /// into `storage`.
2488    fn store_untyped_results<T>(
2489        mut store: StoreContextMut<'_, T>,
2490        ty: &FuncType,
2491        mut args_then_results: Vec<Val>,
2492        storage: &mut [MaybeUninit<ValRaw>],
2493    ) -> Result<()> {
2494        // Unlike our arguments we need to dynamically check that the return
2495        // values produced are correct. There could be a bug in `func` that
2496        // produces the wrong number, wrong types, or wrong stores of
2497        // values, and we need to catch that here.
2498        let results = &args_then_results[ty.params().len()..];
2499        for (i, (ret, ty)) in results.iter().zip(ty.results()).enumerate() {
2500            ret.ensure_matches_ty(store.0, &ty)
2501                .context("function attempted to return an incompatible value")?;
2502            storage[i].write(ret.to_raw(store.as_context_mut())?);
2503        }
2504
2505        // Restore our `val_vec` back into the store so it's usable for the next
2506        // hostcall to reuse our own storage.
2507        args_then_results.truncate(0);
2508        store.0.save_hostcall_val_storage(args_then_results);
2509        Ok(())
2510    }
2511
2512    /// Analog of [`Func::wrap`]
2513    pub fn wrap<T, F, P, R>(engine: &Engine, func: F) -> Self
2514    where
2515        F: Fn(Caller<'_, T>, P) -> R + Send + Sync + 'static,
2516        P: WasmTyList,
2517        R: WasmRet,
2518        T: 'static,
2519    {
2520        // NB: this entire function is "duplicated" below in `wrap_async`, so
2521        // try to keep the two in sync.
2522        let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()));
2523
2524        let ctx = Self::vmctx_sync(engine, ty, move |mut caller, args| {
2525            // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2526            // wasmtime's ambient correctness.
2527            let params = unsafe { Self::load_typed_params(caller.store.0, args) };
2528            let ret = func(caller.sub_caller(), params).into_fallible();
2529            // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2530            // wasmtime's ambient correctness.
2531            unsafe { Self::store_typed_results(caller.store.0, ret, args) }
2532        });
2533        HostFunc::new_raw(engine, ctx, Asyncness::No)
2534    }
2535
2536    /// Analog of [`Func::wrap_async`]
2537    #[cfg(feature = "async")]
2538    pub fn wrap_async<T, F, P, R>(engine: &Engine, func: F) -> Self
2539    where
2540        F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
2541            + Send
2542            + Sync
2543            + 'static,
2544        P: WasmTyList,
2545        R: WasmRet,
2546        T: Send + 'static,
2547    {
2548        // NB: this entire function is "duplicated" above in `wrap`, so try to
2549        // keep the two in sync.
2550        let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()));
2551
2552        let ctx = Self::vmctx_async(engine, ty, func, move |mut caller, args, func| {
2553            Box::new(async move {
2554                // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2555                // wasmtime's ambient correctness.
2556                let params = unsafe { Self::load_typed_params(caller.store.0, args) };
2557                let ret = core::pin::Pin::from(func(caller.sub_caller(), params)).await;
2558                // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2559                // wasmtime's ambient correctness.
2560                unsafe { Self::store_typed_results(caller.store.0, ret.into_fallible(), args) }
2561            })
2562        });
2563        HostFunc::new_raw(engine, ctx, Asyncness::Yes)
2564    }
2565
2566    /// Loads the typed parameters from `params`
2567    ///
2568    /// # Safety
2569    ///
2570    /// Requires that `params` matches the parameters loaded by `P`.
2571    unsafe fn load_typed_params<P>(store: &mut StoreOpaque, params: &mut [MaybeUninit<ValRaw>]) -> P
2572    where
2573        P: WasmTyList,
2574    {
2575        let mut store = if P::may_gc() {
2576            AutoAssertNoGc::new(store)
2577        } else {
2578            unsafe { AutoAssertNoGc::disabled(store) }
2579        };
2580        // SAFETY: this function's own safety contract is the same as `P::load`.
2581        unsafe { P::load(&mut store, params) }
2582    }
2583
2584    /// Stores the results of `R` into the array provided.
2585    ///
2586    /// # Safety
2587    ///
2588    /// Requires that `ret` matches the result `storage` space. See `WasmRet`
2589    /// for more safety info.
2590    unsafe fn store_typed_results<R>(
2591        store: &mut StoreOpaque,
2592        ret: R,
2593        storage: &mut [MaybeUninit<ValRaw>],
2594    ) -> Result<()>
2595    where
2596        R: WasmRet,
2597    {
2598        ensure!(
2599            ret.compatible_with_store(store),
2600            "host function attempted to return cross-`Store` value to Wasm",
2601        );
2602
2603        let mut store = if R::may_gc() {
2604            AutoAssertNoGc::new(store)
2605        } else {
2606            unsafe { AutoAssertNoGc::disabled(store) }
2607        };
2608        // SAFETY: this safety contract is the same as this own function's
2609        // safety contract.
2610        unsafe {
2611            ret.store(&mut store, storage)?;
2612        }
2613        Ok(())
2614    }
2615
2616    /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2617    /// it.
2618    ///
2619    /// # Unsafety
2620    ///
2621    /// Can only be inserted into stores with a matching `T` relative to when
2622    /// this `HostFunc` was first created.
2623    pub unsafe fn to_func(self: &Arc<Self>, store: &mut StoreOpaque) -> Func {
2624        self.validate_store(store);
2625        let (funcrefs, modules) = store.func_refs_and_modules();
2626        let funcref = funcrefs.push_arc_host(self.clone(), modules);
2627        // SAFETY: this funcref was just pushed within the store, so it's safe
2628        // to say this store owns it.
2629        unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2630    }
2631
2632    /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2633    /// it.
2634    ///
2635    /// This function is similar to, but not equivalent, to `HostFunc::to_func`.
2636    /// Notably this function requires that the `Arc<Self>` pointer is otherwise
2637    /// rooted within the `StoreOpaque` via another means. When in doubt use
2638    /// `to_func` above as it's safer.
2639    ///
2640    /// # Unsafety
2641    ///
2642    /// Can only be inserted into stores with a matching `T` relative to when
2643    /// this `HostFunc` was first created.
2644    ///
2645    /// Additionally the `&Arc<Self>` is not cloned in this function. Instead a
2646    /// raw pointer to `Self` is stored within the `Store` for this function.
2647    /// The caller must arrange for the `Arc<Self>` to be "rooted" in the store
2648    /// provided via another means, probably by pushing to
2649    /// `StoreOpaque::rooted_host_funcs`.
2650    ///
2651    /// Similarly, the caller must arrange for `rooted_func_ref` to be rooted in
2652    /// the same store and additionally be a valid pointer.
2653    pub unsafe fn to_func_store_rooted(
2654        self: &Arc<Self>,
2655        store: &mut StoreOpaque,
2656        rooted_func_ref: Option<NonNull<VMFuncRef>>,
2657    ) -> Func {
2658        self.validate_store(store);
2659
2660        match rooted_func_ref {
2661            Some(funcref) => {
2662                // SAFETY: it's a contract of this function itself that
2663                // `funcref` is safe to read.
2664                unsafe {
2665                    debug_assert!(funcref.as_ref().wasm_call.is_some());
2666                }
2667                // SAFETY: it's a contract of this function that `funcref` is
2668                // owned by `store`.
2669                unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2670            }
2671            None => {
2672                debug_assert!(self.func_ref().wasm_call.is_some());
2673
2674                // SAFETY: it's an unsafe contract of this function that we are
2675                // rooted within the store to say that the store owns a copy of
2676                // this funcref.
2677                unsafe { Func::from_vm_func_ref(store.id(), self.func_ref().into()) }
2678            }
2679        }
2680    }
2681
2682    /// Same as [`HostFunc::to_func`], different ownership.
2683    unsafe fn into_func(self, store: &mut StoreOpaque) -> Func {
2684        self.validate_store(store);
2685
2686        // This function could be called by a guest at any time, and it requires
2687        // fibers, so the store now required async entrypoints.
2688        store.set_async_required(self.asyncness);
2689
2690        let (funcrefs, modules) = store.func_refs_and_modules();
2691        let funcref = funcrefs.push_box_host(Box::new(self), modules);
2692        // SAFETY: this funcref was just pushed within `store`, so it's safe to
2693        // say it's owned by the store's id.
2694        unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2695    }
2696
2697    fn validate_store(&self, store: &mut StoreOpaque) {
2698        // This assert is required to ensure that we can indeed safely insert
2699        // `self` into the `store` provided, otherwise the type information we
2700        // have listed won't be correct. This is possible to hit with the public
2701        // API of Wasmtime, and should be documented in relevant functions.
2702        assert!(
2703            Engine::same(&self.engine, store.engine()),
2704            "cannot use a store with a different engine than a linker was created with",
2705        );
2706    }
2707
2708    pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2709        self.func_ref().type_index
2710    }
2711
2712    pub(crate) fn func_ref(&self) -> &VMFuncRef {
2713        unsafe { self.ctx.get().as_ref().func_ref() }
2714    }
2715
2716    pub(crate) fn asyncness(&self) -> Asyncness {
2717        self.asyncness
2718    }
2719}
2720
2721#[cfg(test)]
2722mod tests {
2723    use super::*;
2724    use crate::{Module, Store};
2725
2726    #[test]
2727    #[cfg_attr(miri, ignore)]
2728    fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
2729        let mut store = Store::<()>::default();
2730        let module = Module::new(
2731            store.engine(),
2732            r#"
2733                (module
2734                    (func (export "f")
2735                        nop
2736                    )
2737                )
2738            "#,
2739        )?;
2740        let instance = Instance::new(&mut store, &module, &[])?;
2741
2742        // Each time we `get_func`, we call `Func::from_wasmtime` which adds a
2743        // new entry to `StoreData`, so `f1` and `f2` will have different
2744        // indices into `StoreData`.
2745        let f1 = instance.get_func(&mut store, "f").unwrap();
2746        let f2 = instance.get_func(&mut store, "f").unwrap();
2747
2748        // But their hash keys are the same.
2749        assert!(
2750            f1.hash_key(&mut store.as_context_mut().0)
2751                == f2.hash_key(&mut store.as_context_mut().0)
2752        );
2753
2754        // But the hash keys are different from different funcs.
2755        let instance2 = Instance::new(&mut store, &module, &[])?;
2756        let f3 = instance2.get_func(&mut store, "f").unwrap();
2757        assert!(
2758            f1.hash_key(&mut store.as_context_mut().0)
2759                != f3.hash_key(&mut store.as_context_mut().0)
2760        );
2761
2762        Ok(())
2763    }
2764}