Skip to main content

wasmtime/runtime/
func.rs

1use crate::error::OutOfMemory;
2use crate::prelude::*;
3use crate::runtime::vm::{
4    self, InterpreterRef, SendSyncPtr, StoreBox, VMArrayCallHostFuncContext,
5    VMCommonStackInformation, VMContext, VMFuncRef, VMFunctionImport, VMOpaqueContext,
6    VMStoreContext,
7};
8use crate::store::{Asyncness, AutoAssertNoGc, InstanceId, StoreId, StoreOpaque};
9use crate::type_registry::RegisteredType;
10use crate::{
11    AsContext, AsContextMut, CallHook, Engine, Extern, FuncType, Instance, ModuleExport, Ref,
12    StoreContext, StoreContextMut, Val, ValRaw, ValType,
13};
14use alloc::sync::Arc;
15use core::convert::Infallible;
16use core::ffi::c_void;
17#[cfg(feature = "async")]
18use core::future::Future;
19use core::mem::{self, MaybeUninit};
20use core::ptr::NonNull;
21use wasmtime_environ::{PanicOnOom as _, VMSharedTypeIndex};
22
23/// A reference to the abstract `nofunc` heap value.
24///
25/// The are no instances of `(ref nofunc)`: it is an uninhabited type.
26///
27/// There is precisely one instance of `(ref null nofunc)`, aka `nullfuncref`:
28/// the null reference.
29///
30/// This `NoFunc` Rust type's sole purpose is for use with [`Func::wrap`]- and
31/// [`Func::typed`]-style APIs for statically typing a function as taking or
32/// returning a `(ref null nofunc)` (aka `Option<NoFunc>`) which is always
33/// `None`.
34///
35/// # Example
36///
37/// ```
38/// # use wasmtime::*;
39/// # fn _foo() -> Result<()> {
40/// let mut config = Config::new();
41/// config.wasm_function_references(true);
42/// let engine = Engine::new(&config)?;
43///
44/// let module = Module::new(
45///     &engine,
46///     r#"
47///         (module
48///             (func (export "f") (param (ref null nofunc))
49///                 ;; If the reference is null, return.
50///                 local.get 0
51///                 ref.is_null nofunc
52///                 br_if 0
53///
54///                 ;; If the reference was not null (which is impossible)
55///                 ;; then raise a trap.
56///                 unreachable
57///             )
58///         )
59///     "#,
60/// )?;
61///
62/// let mut store = Store::new(&engine, ());
63/// let instance = Instance::new(&mut store, &module, &[])?;
64/// let f = instance.get_func(&mut store, "f").unwrap();
65///
66/// // We can cast a `(ref null nofunc)`-taking function into a typed function that
67/// // takes an `Option<NoFunc>` via the `Func::typed` method.
68/// let f = f.typed::<Option<NoFunc>, ()>(&store)?;
69///
70/// // We can call the typed function, passing the null `nofunc` reference.
71/// let result = f.call(&mut store, NoFunc::null());
72///
73/// // The function should not have trapped, because the reference we gave it was
74/// // null (as it had to be, since `NoFunc` is uninhabited).
75/// assert!(result.is_ok());
76/// # Ok(())
77/// # }
78/// ```
79#[derive(Copy, Clone, Debug, PartialEq, Eq)]
80pub struct NoFunc {
81    _inner: Infallible,
82}
83
84impl NoFunc {
85    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference.
86    #[inline]
87    pub fn null() -> Option<NoFunc> {
88        None
89    }
90
91    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
92    /// [`Ref`].
93    #[inline]
94    pub fn null_ref() -> Ref {
95        Ref::Func(None)
96    }
97
98    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
99    /// [`Val`].
100    #[inline]
101    pub fn null_val() -> Val {
102        Val::FuncRef(None)
103    }
104}
105
106/// A WebAssembly function which can be called.
107///
108/// This type typically represents an exported function from a WebAssembly
109/// module instance. In this case a [`Func`] belongs to an [`Instance`] and is
110/// loaded from there. A [`Func`] may also represent a host function as well in
111/// some cases, too.
112///
113/// Functions can be called in a few different ways, either synchronous or async
114/// and either typed or untyped (more on this below). Note that host functions
115/// are normally inserted directly into a [`Linker`](crate::Linker) rather than
116/// using this directly, but both options are available.
117///
118/// # `Func` and `async`
119///
120/// Functions from the perspective of WebAssembly are always synchronous. You
121/// might have an `async` function in Rust, however, which you'd like to make
122/// available from WebAssembly. Wasmtime supports asynchronously calling
123/// WebAssembly through native stack switching. You can get some more
124/// information about [asynchronous configs](crate#async), but
125/// from the perspective of `Func` it's important to know that whether or not
126/// your [`Store`](crate::Store) is asynchronous will dictate whether you call
127/// functions through [`Func::call`] or [`Func::call_async`] (or the typed
128/// wrappers such as [`TypedFunc::call`] vs [`TypedFunc::call_async`]).
129///
130/// # To `Func::call` or to `Func::typed().call()`
131///
132/// There's a 2x2 matrix of methods to call [`Func`]. Invocations can either be
133/// asynchronous or synchronous. They can also be statically typed or not.
134/// Whether or not an invocation is asynchronous is indicated via the method
135/// being `async` and [`call_async`](Func::call_async) being the entry point.
136/// Otherwise for statically typed or not your options are:
137///
138/// * Dynamically typed - if you don't statically know the signature of the
139///   function that you're calling you'll be using [`Func::call`] or
140///   [`Func::call_async`]. These functions take a variable-length slice of
141///   "boxed" arguments in their [`Val`] representation. Additionally the
142///   results are returned as an owned slice of [`Val`]. These methods are not
143///   optimized due to the dynamic type checks that must occur, in addition to
144///   some dynamic allocations for where to put all the arguments. While this
145///   allows you to call all possible wasm function signatures, if you're
146///   looking for a speedier alternative you can also use...
147///
148/// * Statically typed - if you statically know the type signature of the wasm
149///   function you're calling, then you'll want to use the [`Func::typed`]
150///   method to acquire an instance of [`TypedFunc`]. This structure is static proof
151///   that the underlying wasm function has the ascripted type, and type
152///   validation is only done once up-front. The [`TypedFunc::call`] and
153///   [`TypedFunc::call_async`] methods are much more efficient than [`Func::call`]
154///   and [`Func::call_async`] because the type signature is statically known.
155///   This eschews runtime checks as much as possible to get into wasm as fast
156///   as possible.
157///
158/// # Examples
159///
160/// One way to get a `Func` is from an [`Instance`] after you've instantiated
161/// it:
162///
163/// ```
164/// # use wasmtime::*;
165/// # fn main() -> Result<()> {
166/// let engine = Engine::default();
167/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
168/// let mut store = Store::new(&engine, ());
169/// let instance = Instance::new(&mut store, &module, &[])?;
170/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
171///
172/// // Work with `foo` as a `Func` at this point, such as calling it
173/// // dynamically...
174/// match foo.call(&mut store, &[], &mut []) {
175///     Ok(()) => { /* ... */ }
176///     Err(trap) => {
177///         panic!("execution of `foo` resulted in a wasm trap: {}", trap);
178///     }
179/// }
180/// foo.call(&mut store, &[], &mut [])?;
181///
182/// // ... or we can make a static assertion about its signature and call it.
183/// // Our first call here can fail if the signatures don't match, and then the
184/// // second call can fail if the function traps (like the `match` above).
185/// let foo = foo.typed::<(), ()>(&store)?;
186/// foo.call(&mut store, ())?;
187/// # Ok(())
188/// # }
189/// ```
190///
191/// You can also use the [`wrap` function](Func::wrap) to create a
192/// `Func`
193///
194/// ```
195/// # use wasmtime::*;
196/// # fn main() -> Result<()> {
197/// let mut store = Store::<()>::default();
198///
199/// // Create a custom `Func` which can execute arbitrary code inside of the
200/// // closure.
201/// let add = Func::wrap(&mut store, |a: i32, b: i32| -> i32 { a + b });
202///
203/// // Next we can hook that up to a wasm module which uses it.
204/// let module = Module::new(
205///     store.engine(),
206///     r#"
207///         (module
208///             (import "" "" (func $add (param i32 i32) (result i32)))
209///             (func (export "call_add_twice") (result i32)
210///                 i32.const 1
211///                 i32.const 2
212///                 call $add
213///                 i32.const 3
214///                 i32.const 4
215///                 call $add
216///                 i32.add))
217///     "#,
218/// )?;
219/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
220/// let call_add_twice = instance.get_typed_func::<(), i32>(&mut store, "call_add_twice")?;
221///
222/// assert_eq!(call_add_twice.call(&mut store, ())?, 10);
223/// # Ok(())
224/// # }
225/// ```
226///
227/// Or you could also create an entirely dynamic `Func`!
228///
229/// ```
230/// # use wasmtime::*;
231/// # fn main() -> Result<()> {
232/// let mut store = Store::<()>::default();
233///
234/// // Here we need to define the type signature of our `Double` function and
235/// // then wrap it up in a `Func`
236/// let double_type = wasmtime::FuncType::new(
237///     store.engine(),
238///     [wasmtime::ValType::I32].iter().cloned(),
239///     [wasmtime::ValType::I32].iter().cloned(),
240/// );
241/// let double = Func::new(&mut store, double_type, |_, params, results| {
242///     let mut value = params[0].unwrap_i32();
243///     value *= 2;
244///     results[0] = value.into();
245///     Ok(())
246/// });
247///
248/// let module = Module::new(
249///     store.engine(),
250///     r#"
251///         (module
252///             (import "" "" (func $double (param i32) (result i32)))
253///             (func $start
254///                 i32.const 1
255///                 call $double
256///                 drop)
257///             (start $start))
258///     "#,
259/// )?;
260/// let instance = Instance::new(&mut store, &module, &[double.into()])?;
261/// // .. work with `instance` if necessary
262/// # Ok(())
263/// # }
264/// ```
265#[derive(Copy, Clone, Debug)]
266#[repr(C)] // here for the C API
267pub struct Func {
268    /// The store that the below pointer belongs to.
269    ///
270    /// It's only safe to look at the contents of the pointer below when the
271    /// `StoreOpaque` matching this id is in-scope.
272    store: StoreId,
273
274    /// The raw `VMFuncRef`, whose lifetime is bound to the store this func
275    /// belongs to.
276    ///
277    /// Note that this field has an `unsafe_*` prefix to discourage use of it.
278    /// This is only safe to read/use if `self.store` is validated to belong to
279    /// an ambiently provided `StoreOpaque` or similar. Use the
280    /// `self.func_ref()` method instead of this field to perform this check.
281    unsafe_func_ref: SendSyncPtr<VMFuncRef>,
282}
283
284// Double-check that the C representation in `extern.h` matches our in-Rust
285// representation here in terms of size/alignment/etc.
286const _: () = {
287    #[repr(C)]
288    struct C(u64, *mut u8);
289    assert!(core::mem::size_of::<C>() == core::mem::size_of::<Func>());
290    assert!(core::mem::align_of::<C>() == core::mem::align_of::<Func>());
291    assert!(core::mem::offset_of!(Func, store) == 0);
292};
293
294macro_rules! for_each_function_signature {
295    ($mac:ident) => {
296        $mac!(0);
297        $mac!(1 A1);
298        $mac!(2 A1 A2);
299        $mac!(3 A1 A2 A3);
300        $mac!(4 A1 A2 A3 A4);
301        $mac!(5 A1 A2 A3 A4 A5);
302        $mac!(6 A1 A2 A3 A4 A5 A6);
303        $mac!(7 A1 A2 A3 A4 A5 A6 A7);
304        $mac!(8 A1 A2 A3 A4 A5 A6 A7 A8);
305        $mac!(9 A1 A2 A3 A4 A5 A6 A7 A8 A9);
306        $mac!(10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10);
307        $mac!(11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11);
308        $mac!(12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12);
309        $mac!(13 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13);
310        $mac!(14 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14);
311        $mac!(15 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15);
312        $mac!(16 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16);
313        $mac!(17 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17);
314    };
315}
316
317mod typed;
318use crate::runtime::vm::VMStackChain;
319pub use typed::*;
320
321impl Func {
322    /// Creates a new `Func` with the given arguments, typically to create a
323    /// host-defined function to pass as an import to a module.
324    ///
325    /// * `store` - the store in which to create this [`Func`], which will own
326    ///   the return value.
327    ///
328    /// * `ty` - the signature of this function, used to indicate what the
329    ///   inputs and outputs are.
330    ///
331    /// * `func` - the native code invoked whenever this `Func` will be called.
332    ///   This closure is provided a [`Caller`] as its first argument to learn
333    ///   information about the caller, and then it's passed a list of
334    ///   parameters as a slice along with a mutable slice of where to write
335    ///   results.
336    ///
337    /// Note that the implementation of `func` must adhere to the `ty` signature
338    /// given, error or traps may occur if it does not respect the `ty`
339    /// signature. For example if the function type declares that it returns one
340    /// i32 but the `func` closures does not write anything into the results
341    /// slice then a trap may be generated.
342    ///
343    /// Additionally note that this is quite a dynamic function since signatures
344    /// are not statically known. For a more performant and ergonomic `Func`
345    /// it's recommended to use [`Func::wrap`] if you can because with
346    /// statically known signatures Wasmtime can optimize the implementation
347    /// much more.
348    ///
349    /// For more information about `Send + Sync + 'static` requirements on the
350    /// `func`, see [`Func::wrap`](#why-send--sync--static).
351    ///
352    /// # Errors
353    ///
354    /// The host-provided function here returns a
355    /// [`Result<()>`](crate::Result). If the function returns `Ok(())` then
356    /// that indicates that the host function completed successfully and wrote
357    /// the result into the `&mut [Val]` argument.
358    ///
359    /// If the function returns `Err(e)`, however, then this is equivalent to
360    /// the host function triggering a trap for wasm. WebAssembly execution is
361    /// immediately halted and the original caller of [`Func::call`], for
362    /// example, will receive the error returned here (possibly with
363    /// [`WasmBacktrace`](crate::WasmBacktrace) context information attached).
364    ///
365    /// For more information about errors in Wasmtime see the [`Trap`]
366    /// documentation.
367    ///
368    /// [`Trap`]: crate::Trap
369    ///
370    /// # Panics
371    ///
372    /// Panics if the given function type is not associated with this store's
373    /// engine.
374    pub fn new<T: 'static>(
375        mut store: impl AsContextMut<Data = T>,
376        ty: FuncType,
377        func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
378    ) -> Self {
379        let store = store.as_context_mut().0;
380        let host = HostFunc::new(store.engine(), ty, func).panic_on_oom();
381
382        // SAFETY: the `T` used by `func` matches the `T` of the store we're
383        // inserting into via this function's type signature.
384        unsafe { host.into_func(store) }
385    }
386
387    /// Creates a new [`Func`] with the given arguments, although has fewer
388    /// runtime checks than [`Func::new`].
389    ///
390    /// This function takes a callback of a different signature than
391    /// [`Func::new`], instead receiving a raw pointer with a list of [`ValRaw`]
392    /// structures. These values have no type information associated with them
393    /// so it's up to the caller to provide a function that will correctly
394    /// interpret the list of values as those coming from the `ty` specified.
395    ///
396    /// If you're calling this from Rust it's recommended to either instead use
397    /// [`Func::new`] or [`Func::wrap`]. The [`Func::wrap`] API, in particular,
398    /// is both safer and faster than this API.
399    ///
400    /// # Errors
401    ///
402    /// See [`Func::new`] for the behavior of returning an error from the host
403    /// function provided here.
404    ///
405    /// # Unsafety
406    ///
407    /// This function is not safe because it's not known at compile time that
408    /// the `func` provided correctly interprets the argument types provided to
409    /// it, or that the results it produces will be of the correct type.
410    ///
411    /// # Panics
412    ///
413    /// Panics if the given function type is not associated with this store's
414    /// engine.
415    pub unsafe fn new_unchecked<T: 'static>(
416        mut store: impl AsContextMut<Data = T>,
417        ty: FuncType,
418        func: impl Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
419    ) -> Self {
420        let store = store.as_context_mut().0;
421
422        // SAFETY: the contract required by `new_unchecked` is the same as the
423        // contract required by this function itself.
424        let host = unsafe { HostFunc::new_unchecked(store.engine(), ty, func).panic_on_oom() };
425
426        // SAFETY: the `T` used by `func` matches the `T` of the store we're
427        // inserting into via this function's type signature.
428        unsafe { host.into_func(store) }
429    }
430
431    /// Creates a new host-defined WebAssembly function which, when called,
432    /// will run the asynchronous computation defined by `func` to completion
433    /// and then return the result to WebAssembly.
434    ///
435    /// This function is the asynchronous analogue of [`Func::new`] and much of
436    /// that documentation applies to this as well. The key difference is that
437    /// `func` returns a future instead of simply a `Result`. Note that the
438    /// returned future can close over any of the arguments, but it cannot close
439    /// over the state of the closure itself. It's recommended to store any
440    /// necessary async state in the `T` of the [`Store<T>`](crate::Store) which
441    /// can be accessed through [`Caller::data`] or [`Caller::data_mut`].
442    ///
443    /// For more information on `Send + Sync + 'static`, see
444    /// [`Func::wrap`](#why-send--sync--static).
445    ///
446    /// # Panics
447    ///
448    /// Panics if the given function type is not associated with this store's
449    /// engine.
450    ///
451    /// # Errors
452    ///
453    /// See [`Func::new`] for the behavior of returning an error from the host
454    /// function provided here.
455    ///
456    /// # Examples
457    ///
458    /// ```
459    /// # use wasmtime::*;
460    /// # fn main() -> Result<()> {
461    /// // Simulate some application-specific state as well as asynchronous
462    /// // functions to query that state.
463    /// struct MyDatabase {
464    ///     // ...
465    /// }
466    ///
467    /// impl MyDatabase {
468    ///     async fn get_row_count(&self) -> u32 {
469    ///         // ...
470    /// #       100
471    ///     }
472    /// }
473    ///
474    /// let my_database = MyDatabase {
475    ///     // ...
476    /// };
477    ///
478    /// // Using `new_async` we can hook up into calling our async
479    /// // `get_row_count` function.
480    /// let engine = Engine::default();
481    /// let mut store = Store::new(&engine, MyDatabase {
482    ///     // ...
483    /// });
484    /// let get_row_count_type = wasmtime::FuncType::new(
485    ///     &engine,
486    ///     None,
487    ///     Some(wasmtime::ValType::I32),
488    /// );
489    /// let get = Func::new_async(&mut store, get_row_count_type, |caller, _params, results| {
490    ///     Box::new(async move {
491    ///         let count = caller.data().get_row_count().await;
492    ///         results[0] = Val::I32(count as i32);
493    ///         Ok(())
494    ///     })
495    /// });
496    /// // ...
497    /// # Ok(())
498    /// # }
499    /// ```
500    #[cfg(feature = "async")]
501    pub fn new_async<T, F>(mut store: impl AsContextMut<Data = T>, ty: FuncType, func: F) -> Func
502    where
503        F: for<'a> Fn(
504                Caller<'a, T>,
505                &'a [Val],
506                &'a mut [Val],
507            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
508            + Send
509            + Sync
510            + 'static,
511        T: Send + 'static,
512    {
513        let store = store.as_context_mut().0;
514
515        let host = HostFunc::new_async(store.engine(), ty, func).panic_on_oom();
516
517        // SAFETY: the `T` used by `func` matches the `T` of the store we're
518        // inserting into via this function's type signature.
519        unsafe { host.into_func(store) }
520    }
521
522    /// Creates a new `Func` from a store and a funcref within that store.
523    ///
524    /// # Safety
525    ///
526    /// The safety of this function requires that `func_ref` is a valid function
527    /// pointer owned by `store`.
528    pub(crate) unsafe fn from_vm_func_ref(store: StoreId, func_ref: NonNull<VMFuncRef>) -> Func {
529        // SAFETY: given the contract of this function it's safe to read the
530        // `type_index` field.
531        unsafe {
532            debug_assert!(func_ref.as_ref().type_index != VMSharedTypeIndex::default());
533        }
534        Func {
535            store,
536            unsafe_func_ref: func_ref.into(),
537        }
538    }
539
540    /// Creates a new `Func` from the given Rust closure.
541    ///
542    /// This function will create a new `Func` which, when called, will
543    /// execute the given Rust closure. Unlike [`Func::new`] the target
544    /// function being called is known statically so the type signature can
545    /// be inferred. Rust types will map to WebAssembly types as follows:
546    ///
547    /// | Rust Argument Type                | WebAssembly Type                          |
548    /// |-----------------------------------|-------------------------------------------|
549    /// | `i32`                             | `i32`                                     |
550    /// | `u32`                             | `i32`                                     |
551    /// | `i64`                             | `i64`                                     |
552    /// | `u64`                             | `i64`                                     |
553    /// | `f32`                             | `f32`                                     |
554    /// | `f64`                             | `f64`                                     |
555    /// | `V128` on x86-64 and aarch64 only | `v128`                                    |
556    /// | `Option<Func>`                    | `funcref` aka `(ref null func)`           |
557    /// | `Func`                            | `(ref func)`                              |
558    /// | `Option<Nofunc>`                  | `nullfuncref` aka `(ref null nofunc)`     |
559    /// | `NoFunc`                          | `(ref nofunc)`                            |
560    /// | `Option<Rooted<ExternRef>>`       | `externref` aka `(ref null extern)`       |
561    /// | `Rooted<ExternRef>`               | `(ref extern)`                            |
562    /// | `Option<NoExtern>`                | `nullexternref` aka `(ref null noextern)` |
563    /// | `NoExtern`                        | `(ref noextern)`                          |
564    /// | `Option<Rooted<AnyRef>>`          | `anyref` aka `(ref null any)`             |
565    /// | `Rooted<AnyRef>`                  | `(ref any)`                               |
566    /// | `Option<Rooted<EqRef>>`           | `eqref` aka `(ref null eq)`               |
567    /// | `Rooted<EqRef>`                   | `(ref eq)`                                |
568    /// | `Option<I31>`                     | `i31ref` aka `(ref null i31)`             |
569    /// | `I31`                             | `(ref i31)`                               |
570    /// | `Option<Rooted<StructRef>>`       | `(ref null struct)`                       |
571    /// | `Rooted<StructRef>`               | `(ref struct)`                            |
572    /// | `Option<Rooted<ArrayRef>>`        | `(ref null array)`                        |
573    /// | `Rooted<ArrayRef>`                | `(ref array)`                             |
574    /// | `Option<NoneRef>`                 | `nullref` aka `(ref null none)`           |
575    /// | `NoneRef`                         | `(ref none)`                              |
576    ///
577    /// Note that anywhere a `Rooted<T>` appears, a `OwnedRooted<T>` may also
578    /// be used.
579    ///
580    /// Any of the Rust types can be returned from the closure as well, in
581    /// addition to some extra types
582    ///
583    /// | Rust Return Type  | WebAssembly Return Type | Meaning               |
584    /// |-------------------|-------------------------|-----------------------|
585    /// | `()`              | nothing                 | no return value       |
586    /// | `T`               | `T`                     | a single return value |
587    /// | `(T1, T2, ...)`   | `T1 T2 ...`             | multiple returns      |
588    ///
589    /// Note that all return types can also be wrapped in `Result<_>` to
590    /// indicate that the host function can generate a trap as well as possibly
591    /// returning a value.
592    ///
593    /// Finally you can also optionally take [`Caller`] as the first argument of
594    /// your closure. If inserted then you're able to inspect the caller's
595    /// state, for example the [`Memory`](crate::Memory) it has exported so you
596    /// can read what pointers point to.
597    ///
598    /// Note that when using this API, the intention is to create as thin of a
599    /// layer as possible for when WebAssembly calls the function provided. With
600    /// sufficient inlining and optimization the WebAssembly will call straight
601    /// into `func` provided, with no extra fluff entailed.
602    ///
603    /// # Why `Send + Sync + 'static`?
604    ///
605    /// All host functions defined in a [`Store`](crate::Store) (including
606    /// those from [`Func::new`] and other constructors) require that the
607    /// `func` provided is `Send + Sync + 'static`. Additionally host functions
608    /// always are `Fn` as opposed to `FnMut` or `FnOnce`. This can at-a-glance
609    /// feel restrictive since the closure cannot close over as many types as
610    /// before. The reason for this, though, is to ensure that
611    /// [`Store<T>`](crate::Store) can implement both the `Send` and `Sync`
612    /// traits.
613    ///
614    /// Fear not, however, because this isn't as restrictive as it seems! Host
615    /// functions are provided a [`Caller<'_, T>`](crate::Caller) argument which
616    /// allows access to the host-defined data within the
617    /// [`Store`](crate::Store). The `T` type is not required to be any of
618    /// `Send`, `Sync`, or `'static`! This means that you can store whatever
619    /// you'd like in `T` and have it accessible by all host functions.
620    /// Additionally mutable access to `T` is allowed through
621    /// [`Caller::data_mut`].
622    ///
623    /// Most host-defined [`Func`] values provide closures that end up not
624    /// actually closing over any values. These zero-sized types will use the
625    /// context from [`Caller`] for host-defined information.
626    ///
627    /// # Errors
628    ///
629    /// The closure provided here to `wrap` can optionally return a
630    /// [`Result<T>`](crate::Result). Returning `Ok(t)` represents the host
631    /// function successfully completing with the `t` result. Returning
632    /// `Err(e)`, however, is equivalent to raising a custom wasm trap.
633    /// Execution of WebAssembly does not resume and the stack is unwound to the
634    /// original caller of the function where the error is returned.
635    ///
636    /// For more information about errors in Wasmtime see the [`Trap`]
637    /// documentation.
638    ///
639    /// [`Trap`]: crate::Trap
640    ///
641    /// # Examples
642    ///
643    /// First up we can see how simple wasm imports can be implemented, such
644    /// as a function that adds its two arguments and returns the result.
645    ///
646    /// ```
647    /// # use wasmtime::*;
648    /// # fn main() -> Result<()> {
649    /// # let mut store = Store::<()>::default();
650    /// let add = Func::wrap(&mut store, |a: i32, b: i32| a + b);
651    /// let module = Module::new(
652    ///     store.engine(),
653    ///     r#"
654    ///         (module
655    ///             (import "" "" (func $add (param i32 i32) (result i32)))
656    ///             (func (export "foo") (param i32 i32) (result i32)
657    ///                 local.get 0
658    ///                 local.get 1
659    ///                 call $add))
660    ///     "#,
661    /// )?;
662    /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
663    /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
664    /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
665    /// # Ok(())
666    /// # }
667    /// ```
668    ///
669    /// We can also do the same thing, but generate a trap if the addition
670    /// overflows:
671    ///
672    /// ```
673    /// # use wasmtime::*;
674    /// # fn main() -> Result<()> {
675    /// # let mut store = Store::<()>::default();
676    /// let add = Func::wrap(&mut store, |a: i32, b: i32| {
677    ///     match a.checked_add(b) {
678    ///         Some(i) => Ok(i),
679    ///         None => bail!("overflow"),
680    ///     }
681    /// });
682    /// let module = Module::new(
683    ///     store.engine(),
684    ///     r#"
685    ///         (module
686    ///             (import "" "" (func $add (param i32 i32) (result i32)))
687    ///             (func (export "foo") (param i32 i32) (result i32)
688    ///                 local.get 0
689    ///                 local.get 1
690    ///                 call $add))
691    ///     "#,
692    /// )?;
693    /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
694    /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
695    /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
696    /// assert!(foo.call(&mut store, (i32::max_value(), 1)).is_err());
697    /// # Ok(())
698    /// # }
699    /// ```
700    ///
701    /// And don't forget all the wasm types are supported!
702    ///
703    /// ```
704    /// # use wasmtime::*;
705    /// # fn main() -> Result<()> {
706    /// # let mut store = Store::<()>::default();
707    /// let debug = Func::wrap(&mut store, |a: i32, b: u32, c: f32, d: i64, e: u64, f: f64| {
708    ///
709    ///     println!("a={}", a);
710    ///     println!("b={}", b);
711    ///     println!("c={}", c);
712    ///     println!("d={}", d);
713    ///     println!("e={}", e);
714    ///     println!("f={}", f);
715    /// });
716    /// let module = Module::new(
717    ///     store.engine(),
718    ///     r#"
719    ///         (module
720    ///             (import "" "" (func $debug (param i32 i32 f32 i64 i64 f64)))
721    ///             (func (export "foo")
722    ///                 i32.const -1
723    ///                 i32.const 1
724    ///                 f32.const 2
725    ///                 i64.const -3
726    ///                 i64.const 3
727    ///                 f64.const 4
728    ///                 call $debug))
729    ///     "#,
730    /// )?;
731    /// let instance = Instance::new(&mut store, &module, &[debug.into()])?;
732    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
733    /// foo.call(&mut store, ())?;
734    /// # Ok(())
735    /// # }
736    /// ```
737    ///
738    /// Finally if you want to get really fancy you can also implement
739    /// imports that read/write wasm module's memory
740    ///
741    /// ```
742    /// use std::str;
743    ///
744    /// # use wasmtime::*;
745    /// # fn main() -> Result<()> {
746    /// # let mut store = Store::default();
747    /// let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
748    ///     let mem = match caller.get_export("memory") {
749    ///         Some(Extern::Memory(mem)) => mem,
750    ///         _ => bail!("failed to find host memory"),
751    ///     };
752    ///     let data = mem.data(&caller)
753    ///         .get(ptr as u32 as usize..)
754    ///         .and_then(|arr| arr.get(..len as u32 as usize));
755    ///     let string = match data {
756    ///         Some(data) => match str::from_utf8(data) {
757    ///             Ok(s) => s,
758    ///             Err(_) => bail!("invalid utf-8"),
759    ///         },
760    ///         None => bail!("pointer/length out of bounds"),
761    ///     };
762    ///     assert_eq!(string, "Hello, world!");
763    ///     println!("{}", string);
764    ///     Ok(())
765    /// });
766    /// let module = Module::new(
767    ///     store.engine(),
768    ///     r#"
769    ///         (module
770    ///             (import "" "" (func $log_str (param i32 i32)))
771    ///             (func (export "foo")
772    ///                 i32.const 4   ;; ptr
773    ///                 i32.const 13  ;; len
774    ///                 call $log_str)
775    ///             (memory (export "memory") 1)
776    ///             (data (i32.const 4) "Hello, world!"))
777    ///     "#,
778    /// )?;
779    /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
780    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
781    /// foo.call(&mut store, ())?;
782    /// # Ok(())
783    /// # }
784    /// ```
785    pub fn wrap<T, Params, Results>(
786        mut store: impl AsContextMut<Data = T>,
787        func: impl IntoFunc<T, Params, Results>,
788    ) -> Func
789    where
790        T: 'static,
791    {
792        let store = store.as_context_mut().0;
793        let engine = store.engine();
794        let host = func.into_func(engine).panic_on_oom();
795
796        // SAFETY: The `T` the closure takes is the same as the `T` of the store
797        // we're inserting into via the type signature above.
798        unsafe { host.into_func(store) }
799    }
800
801    /// Same as [`Func::wrap`], except the closure asynchronously produces the
802    /// result and the arguments are passed within a tuple. For more information
803    /// see the [`Func`] documentation.
804    #[cfg(feature = "async")]
805    pub fn wrap_async<T, F, P, R>(mut store: impl AsContextMut<Data = T>, func: F) -> Func
806    where
807        F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
808            + Send
809            + Sync
810            + 'static,
811        P: WasmTyList,
812        R: WasmRet,
813        T: Send + 'static,
814    {
815        let store = store.as_context_mut().0;
816        let host = HostFunc::wrap_async(store.engine(), func).panic_on_oom();
817
818        // SAFETY: The `T` the closure takes is the same as the `T` of the store
819        // we're inserting into via the type signature above.
820        unsafe { host.into_func(store) }
821    }
822
823    /// Returns the underlying wasm type that this `Func` has.
824    ///
825    /// # Panics
826    ///
827    /// Panics if `store` does not own this function.
828    pub fn ty(&self, store: impl AsContext) -> FuncType {
829        self.load_ty(&store.as_context().0)
830    }
831
832    /// Forcibly loads the type of this function from the `Engine`.
833    ///
834    /// Note that this is a somewhat expensive method since it requires taking a
835    /// lock as well as cloning a type.
836    pub(crate) fn load_ty(&self, store: &StoreOpaque) -> FuncType {
837        FuncType::from_shared_type_index(store.engine(), self.type_index(store))
838    }
839
840    /// Does this function match the given type?
841    ///
842    /// That is, is this function's type a subtype of the given type?
843    ///
844    /// # Panics
845    ///
846    /// Panics if this function is not associated with the given store or if the
847    /// function type is not associated with the store's engine.
848    pub fn matches_ty(&self, store: impl AsContext, func_ty: &FuncType) -> bool {
849        self._matches_ty(store.as_context().0, func_ty)
850    }
851
852    pub(crate) fn _matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> bool {
853        let actual_ty = self.load_ty(store);
854        actual_ty.matches(func_ty)
855    }
856
857    pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> Result<()> {
858        if !self.comes_from_same_store(store) {
859            bail!("function used with wrong store");
860        }
861        if self._matches_ty(store, func_ty) {
862            Ok(())
863        } else {
864            let actual_ty = self.load_ty(store);
865            bail!("type mismatch: expected {func_ty}, found {actual_ty}")
866        }
867    }
868
869    pub(crate) fn type_index(&self, data: &StoreOpaque) -> VMSharedTypeIndex {
870        unsafe { self.vm_func_ref(data).as_ref().type_index }
871    }
872
873    /// Invokes this function with the `params` given and writes returned values
874    /// to `results`.
875    ///
876    /// The `params` here must match the type signature of this `Func`, or an
877    /// error will occur. Additionally `results` must have the same
878    /// length as the number of results for this function. Calling this function
879    /// will synchronously execute the WebAssembly function referenced to get
880    /// the results.
881    ///
882    /// This function will return `Ok(())` if execution completed without a trap
883    /// or error of any kind. In this situation the results will be written to
884    /// the provided `results` array.
885    ///
886    /// # Errors
887    ///
888    /// Any error which occurs throughout the execution of the function will be
889    /// returned as `Err(e)`. The [`Error`](crate::Error) type can be inspected
890    /// for the precise error cause such as:
891    ///
892    /// * [`Trap`] - indicates that a wasm trap happened and execution was
893    ///   halted.
894    /// * [`WasmBacktrace`] - optionally included on errors for backtrace
895    ///   information of the trap/error.
896    /// * Other string-based errors to indicate issues such as type errors with
897    ///   `params`.
898    /// * Any host-originating error originally returned from a function defined
899    ///   via [`Func::new`], for example.
900    /// * The `store` provided is configured to require `call_async` to be used
901    ///   instead, such as with epochs or fuel.
902    ///
903    /// Errors typically indicate that execution of WebAssembly was halted
904    /// mid-way and did not complete after the error condition happened.
905    ///
906    /// [`Trap`]: crate::Trap
907    ///
908    /// # Panics
909    ///
910    /// Panics if `store` does not own this function.
911    ///
912    /// [`WasmBacktrace`]: crate::WasmBacktrace
913    pub fn call(
914        &self,
915        mut store: impl AsContextMut,
916        params: &[Val],
917        results: &mut [Val],
918    ) -> Result<()> {
919        let mut store = store.as_context_mut();
920        store.0.validate_sync_call()?;
921
922        self.call_impl_check_args(&mut store, params, results)?;
923
924        unsafe { self.call_impl_do_call(&mut store, params, results) }
925    }
926
927    /// Invokes this function in an "unchecked" fashion, reading parameters and
928    /// writing results to `params_and_returns`.
929    ///
930    /// This function is the same as [`Func::call`] except that the arguments
931    /// and results both use a different representation. If possible it's
932    /// recommended to use [`Func::call`] if safety isn't necessary or to use
933    /// [`Func::typed`] in conjunction with [`TypedFunc::call`] since that's
934    /// both safer and faster than this method of invoking a function.
935    ///
936    /// Note that if this function takes `externref` arguments then it will
937    /// **not** automatically GC unlike the [`Func::call`] and
938    /// [`TypedFunc::call`] functions. This means that if this function is
939    /// invoked many times with new `ExternRef` values and no other GC happens
940    /// via any other means then no values will get collected.
941    ///
942    /// # Errors
943    ///
944    /// For more information about errors see the [`Func::call`] documentation.
945    ///
946    /// # Unsafety
947    ///
948    /// This function is unsafe because the `params_and_returns` argument is not
949    /// validated at all. It must uphold invariants such as:
950    ///
951    /// * It's a valid pointer to an array
952    /// * It has enough space to store all parameters
953    /// * It has enough space to store all results (not at the same time as
954    ///   parameters)
955    /// * Parameters are initially written to the array and have the correct
956    ///   types and such.
957    /// * Reference types like `externref` and `funcref` are valid at the
958    ///   time of this call and for the `store` specified.
959    ///
960    /// These invariants are all upheld for you with [`Func::call`] and
961    /// [`TypedFunc::call`].
962    pub unsafe fn call_unchecked(
963        &self,
964        mut store: impl AsContextMut,
965        params_and_returns: *mut [ValRaw],
966    ) -> Result<()> {
967        let mut store = store.as_context_mut();
968        let func_ref = self.vm_func_ref(store.0);
969        let params_and_returns = NonNull::new(params_and_returns).unwrap_or(NonNull::from(&mut []));
970
971        // SAFETY: the safety of this function call is the same as the contract
972        // of this function.
973        unsafe { Self::call_unchecked_raw(&mut store, func_ref, params_and_returns) }
974    }
975
976    pub(crate) unsafe fn call_unchecked_raw<T>(
977        store: &mut StoreContextMut<'_, T>,
978        func_ref: NonNull<VMFuncRef>,
979        params_and_returns: NonNull<[ValRaw]>,
980    ) -> Result<()> {
981        // SAFETY: the safety of this function call is the same as the contract
982        // of this function.
983        invoke_wasm_and_catch_traps(store, |caller, vm| unsafe {
984            VMFuncRef::array_call(func_ref, vm, caller, params_and_returns)
985        })
986    }
987
988    /// Converts the raw representation of a `funcref` into an `Option<Func>`
989    ///
990    /// This is intended to be used in conjunction with [`Func::new_unchecked`],
991    /// [`Func::call_unchecked`], and [`ValRaw`] with its `funcref` field. This
992    /// is the dual of [`Func::to_raw`].
993    ///
994    /// # Unsafety
995    ///
996    /// This function is not safe because `raw` is not validated at all. The
997    /// caller must guarantee that `raw` is owned by the `store` provided and is
998    /// valid within the `store`.
999    pub unsafe fn from_raw(mut store: impl AsContextMut, raw: *mut c_void) -> Option<Func> {
1000        // SAFETY: this function's own contract is that `raw` is owned by store
1001        // to make this safe.
1002        unsafe { Self::_from_raw(store.as_context_mut().0, raw) }
1003    }
1004
1005    /// Same as `from_raw`, but with the internal `StoreOpaque` type.
1006    pub(crate) unsafe fn _from_raw(store: &mut StoreOpaque, raw: *mut c_void) -> Option<Func> {
1007        // SAFETY: this function's own contract is that `raw` is owned by store
1008        // to make this safe.
1009        unsafe {
1010            Some(Func::from_vm_func_ref(
1011                store.id(),
1012                NonNull::new(raw.cast())?,
1013            ))
1014        }
1015    }
1016
1017    /// Extracts the raw value of this `Func`, which is owned by `store`.
1018    ///
1019    /// This function returns a value that's suitable for writing into the
1020    /// `funcref` field of the [`ValRaw`] structure.
1021    ///
1022    /// # Safety
1023    ///
1024    /// The returned value is only valid for as long as the store is alive.
1025    /// This value is safe to pass to [`Func::from_raw`] so long as the same
1026    /// `store` is provided.
1027    pub fn to_raw(&self, mut store: impl AsContextMut) -> *mut c_void {
1028        self.vm_func_ref(store.as_context_mut().0).as_ptr().cast()
1029    }
1030
1031    /// Invokes this function with the `params` given, returning the results
1032    /// asynchronously.
1033    ///
1034    /// This function is the same as [`Func::call`] except that it is
1035    /// asynchronous.
1036    ///
1037    /// It's important to note that the execution of WebAssembly will happen
1038    /// synchronously in the `poll` method of the future returned from this
1039    /// function. Wasmtime does not manage its own thread pool or similar to
1040    /// execute WebAssembly in. Future `poll` methods are generally expected to
1041    /// resolve quickly, so it's recommended that you run or poll this future
1042    /// in a "blocking context".
1043    ///
1044    /// For more information see the documentation on [asynchronous
1045    /// configs](crate#async).
1046    ///
1047    /// # Errors
1048    ///
1049    /// For more information on errors see the [`Func::call`] documentation.
1050    ///
1051    /// # Panics
1052    ///
1053    /// Panics if this is called on a function in a synchronous store. This
1054    /// only works with functions defined within an asynchronous store. Also
1055    /// panics if `store` does not own this function.
1056    #[cfg(feature = "async")]
1057    pub async fn call_async(
1058        &self,
1059        mut store: impl AsContextMut<Data: Send>,
1060        params: &[Val],
1061        results: &mut [Val],
1062    ) -> Result<()> {
1063        let mut store = store.as_context_mut();
1064
1065        self.call_impl_check_args(&mut store, params, results)?;
1066
1067        let result = store
1068            .on_fiber(|store| unsafe { self.call_impl_do_call(store, params, results) })
1069            .await??;
1070        Ok(result)
1071    }
1072
1073    /// Perform dynamic checks that the arguments given to us match
1074    /// the signature of this function and are appropriate to pass to this
1075    /// function.
1076    ///
1077    /// This involves checking to make sure we have the right number and types
1078    /// of arguments as well as making sure everything is from the same `Store`.
1079    ///
1080    /// This must be called just before `call_impl_do_call`.
1081    fn call_impl_check_args<T>(
1082        &self,
1083        store: &mut StoreContextMut<'_, T>,
1084        params: &[Val],
1085        results: &mut [Val],
1086    ) -> Result<()> {
1087        let ty = self.load_ty(store.0);
1088        if ty.params().len() != params.len() {
1089            bail!(
1090                "expected {} arguments, got {}",
1091                ty.params().len(),
1092                params.len()
1093            );
1094        }
1095        if ty.results().len() != results.len() {
1096            bail!(
1097                "expected {} results, got {}",
1098                ty.results().len(),
1099                results.len()
1100            );
1101        }
1102
1103        for (ty, arg) in ty.params().zip(params) {
1104            arg.ensure_matches_ty(store.0, &ty)
1105                .context("argument type mismatch")?;
1106            if !arg.comes_from_same_store(store.0) {
1107                bail!("cross-`Store` values are not currently supported");
1108            }
1109        }
1110
1111        Ok(())
1112    }
1113
1114    /// Do the actual call into Wasm.
1115    ///
1116    /// # Safety
1117    ///
1118    /// You must have type checked the arguments by calling
1119    /// `call_impl_check_args` immediately before calling this function. It is
1120    /// only safe to call this function if that one did not return an error.
1121    unsafe fn call_impl_do_call<T>(
1122        &self,
1123        store: &mut StoreContextMut<'_, T>,
1124        params: &[Val],
1125        results: &mut [Val],
1126    ) -> Result<()> {
1127        // Store the argument values into `values_vec`.
1128        let ty = self.load_ty(store.0);
1129        let values_vec_size = params.len().max(ty.results().len());
1130        let mut values_vec = store.0.take_wasm_val_raw_storage();
1131        debug_assert!(values_vec.is_empty());
1132        values_vec.resize_with(values_vec_size, || ValRaw::v128(0));
1133        for (arg, slot) in params.iter().cloned().zip(&mut values_vec) {
1134            *slot = arg.to_raw(&mut *store)?;
1135        }
1136
1137        unsafe {
1138            self.call_unchecked(
1139                &mut *store,
1140                core::ptr::slice_from_raw_parts_mut(values_vec.as_mut_ptr(), values_vec_size),
1141            )?;
1142        }
1143
1144        for ((i, slot), val) in results.iter_mut().enumerate().zip(&values_vec) {
1145            let ty = ty.results().nth(i).unwrap();
1146            *slot = unsafe { Val::from_raw(&mut *store, *val, ty) };
1147        }
1148        values_vec.truncate(0);
1149        store.0.save_wasm_val_raw_storage(values_vec);
1150        Ok(())
1151    }
1152
1153    #[inline]
1154    pub(crate) fn vm_func_ref(&self, store: &StoreOpaque) -> NonNull<VMFuncRef> {
1155        self.store.assert_belongs_to(store.id());
1156        self.unsafe_func_ref.as_non_null()
1157    }
1158
1159    pub(crate) fn vmimport(&self, store: &StoreOpaque) -> VMFunctionImport {
1160        unsafe {
1161            let f = self.vm_func_ref(store);
1162            VMFunctionImport {
1163                // Note that this is a load-bearing `unwrap` here, but is
1164                // never expected to trip at runtime. The general problem is
1165                // that host functions do not have a `wasm_call` function so
1166                // the `VMFuncRef` type has an optional pointer there. This is
1167                // only able to be filled out when a function is "paired" with
1168                // a module where trampolines are present to fill out
1169                // `wasm_call` pointers.
1170                //
1171                // This pairing of modules doesn't happen explicitly but is
1172                // instead managed lazily throughout Wasmtime. Specifically the
1173                // way this works is one of:
1174                //
1175                // * When a host function is created the store's list of
1176                //   modules are searched for a wasm trampoline. If not found
1177                //   the `wasm_call` field is left blank.
1178                //
1179                // * When a module instantiation happens, which uses this
1180                //   function, the module will be used to fill any outstanding
1181                //   holes that it has trampolines for.
1182                //
1183                // This means that by the time we get to this point any
1184                // relevant holes should be filled out. Thus if this panic
1185                // actually triggers then it's indicative of a missing `fill`
1186                // call somewhere else.
1187                wasm_call: f.as_ref().wasm_call.unwrap(),
1188                array_call: f.as_ref().array_call,
1189                vmctx: f.as_ref().vmctx,
1190            }
1191        }
1192    }
1193
1194    pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
1195        self.store == store.id()
1196    }
1197
1198    /// Attempts to extract a typed object from this `Func` through which the
1199    /// function can be called.
1200    ///
1201    /// This function serves as an alternative to [`Func::call`] and
1202    /// [`Func::call_async`]. This method performs a static type check (using
1203    /// the `Params` and `Results` type parameters on the underlying wasm
1204    /// function. If the type check passes then a `TypedFunc` object is returned,
1205    /// otherwise an error is returned describing the typecheck failure.
1206    ///
1207    /// The purpose of this relative to [`Func::call`] is that it's much more
1208    /// efficient when used to invoke WebAssembly functions. With the types
1209    /// statically known far less setup/teardown is required when invoking
1210    /// WebAssembly. If speed is desired then this function is recommended to be
1211    /// used instead of [`Func::call`] (which is more general, hence its
1212    /// slowdown).
1213    ///
1214    /// The `Params` type parameter is used to describe the parameters of the
1215    /// WebAssembly function. This can either be a single type (like `i32`), or
1216    /// a tuple of types representing the list of parameters (like `(i32, f32,
1217    /// f64)`). Additionally you can use `()` to represent that the function has
1218    /// no parameters.
1219    ///
1220    /// The `Results` type parameter is used to describe the results of the
1221    /// function. This behaves the same way as `Params`, but just for the
1222    /// results of the function.
1223    ///
1224    /// # Translating Between WebAssembly and Rust Types
1225    ///
1226    /// Translation between Rust types and WebAssembly types looks like:
1227    ///
1228    /// | WebAssembly                               | Rust                                  |
1229    /// |-------------------------------------------|---------------------------------------|
1230    /// | `i32`                                     | `i32` or `u32`                        |
1231    /// | `i64`                                     | `i64` or `u64`                        |
1232    /// | `f32`                                     | `f32`                                 |
1233    /// | `f64`                                     | `f64`                                 |
1234    /// | `externref` aka `(ref null extern)`       | `Option<Rooted<ExternRef>>`           |
1235    /// | `(ref extern)`                            | `Rooted<ExternRef>`                   |
1236    /// | `nullexternref` aka `(ref null noextern)` | `Option<NoExtern>`                    |
1237    /// | `(ref noextern)`                          | `NoExtern`                            |
1238    /// | `anyref` aka `(ref null any)`             | `Option<Rooted<AnyRef>>`              |
1239    /// | `(ref any)`                               | `Rooted<AnyRef>`                      |
1240    /// | `eqref` aka `(ref null eq)`               | `Option<Rooted<EqRef>>`               |
1241    /// | `(ref eq)`                                | `Rooted<EqRef>`                       |
1242    /// | `i31ref` aka `(ref null i31)`             | `Option<I31>`                         |
1243    /// | `(ref i31)`                               | `I31`                                 |
1244    /// | `structref` aka `(ref null struct)`       | `Option<Rooted<StructRef>>`           |
1245    /// | `(ref struct)`                            | `Rooted<StructRef>`                   |
1246    /// | `arrayref` aka `(ref null array)`         | `Option<Rooted<ArrayRef>>`            |
1247    /// | `(ref array)`                             | `Rooted<ArrayRef>`                    |
1248    /// | `nullref` aka `(ref null none)`           | `Option<NoneRef>`                     |
1249    /// | `(ref none)`                              | `NoneRef`                             |
1250    /// | `funcref` aka `(ref null func)`           | `Option<Func>`                        |
1251    /// | `(ref func)`                              | `Func`                                |
1252    /// | `(ref null <func type index>)`            | `Option<Func>`                        |
1253    /// | `(ref <func type index>)`                 | `Func`                                |
1254    /// | `nullfuncref` aka `(ref null nofunc)`     | `Option<NoFunc>`                      |
1255    /// | `(ref nofunc)`                            | `NoFunc`                              |
1256    /// | `v128`                                    | `V128` on `x86-64` and `aarch64` only |
1257    ///
1258    /// (Note that this mapping is the same as that of [`Func::wrap`], and that
1259    /// anywhere a `Rooted<T>` appears, a `OwnedRooted<T>` may also appear).
1260    ///
1261    /// Note that once the [`TypedFunc`] return value is acquired you'll use either
1262    /// [`TypedFunc::call`] or [`TypedFunc::call_async`] as necessary to actually invoke
1263    /// the function. This method does not invoke any WebAssembly code, it
1264    /// simply performs a typecheck before returning the [`TypedFunc`] value.
1265    ///
1266    /// This method also has a convenience wrapper as
1267    /// [`Instance::get_typed_func`](crate::Instance::get_typed_func) to
1268    /// directly get a typed function value from an
1269    /// [`Instance`](crate::Instance).
1270    ///
1271    /// ## Subtyping
1272    ///
1273    /// For result types, you can always use a supertype of the WebAssembly
1274    /// function's actual declared result type. For example, if the WebAssembly
1275    /// function was declared with type `(func (result nullfuncref))` you could
1276    /// successfully call `f.typed::<(), Option<Func>>()` because `Option<Func>`
1277    /// corresponds to `funcref`, which is a supertype of `nullfuncref`.
1278    ///
1279    /// For parameter types, you can always use a subtype of the WebAssembly
1280    /// function's actual declared parameter type. For example, if the
1281    /// WebAssembly function was declared with type `(func (param (ref null
1282    /// func)))` you could successfully call `f.typed::<Func, ()>()` because
1283    /// `Func` corresponds to `(ref func)`, which is a subtype of `(ref null
1284    /// func)`.
1285    ///
1286    /// Additionally, for functions which take a reference to a concrete type as
1287    /// a parameter, you can also use the concrete type's supertype. Consider a
1288    /// WebAssembly function that takes a reference to a function with a
1289    /// concrete type: `(ref null <func type index>)`. In this scenario, there
1290    /// is no static `wasmtime::Foo` Rust type that corresponds to that
1291    /// particular Wasm-defined concrete reference type because Wasm modules are
1292    /// loaded dynamically at runtime. You *could* do `f.typed::<Option<NoFunc>,
1293    /// ()>()`, and while that is correctly typed and valid, it is often overly
1294    /// restrictive. The only value you could call the resulting typed function
1295    /// with is the null function reference, but we'd like to call it with
1296    /// non-null function references that happen to be of the correct
1297    /// type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
1298    /// case, even though `Option<Func>` represents `(ref null func)` which is
1299    /// the supertype, not subtype, of `(ref null <func type index>)`. This does
1300    /// imply some minimal dynamic type checks in this case, but it is supported
1301    /// for better ergonomics, to enable passing non-null references into the
1302    /// function.
1303    ///
1304    /// # Errors
1305    ///
1306    /// This function will return an error if `Params` or `Results` does not
1307    /// match the native type of this WebAssembly function.
1308    ///
1309    /// # Panics
1310    ///
1311    /// This method will panic if `store` does not own this function.
1312    ///
1313    /// # Examples
1314    ///
1315    /// An end-to-end example of calling a function which takes no parameters
1316    /// and has no results:
1317    ///
1318    /// ```
1319    /// # use wasmtime::*;
1320    /// # fn main() -> Result<()> {
1321    /// let engine = Engine::default();
1322    /// let mut store = Store::new(&engine, ());
1323    /// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
1324    /// let instance = Instance::new(&mut store, &module, &[])?;
1325    /// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
1326    ///
1327    /// // Note that this call can fail due to the typecheck not passing, but
1328    /// // in our case we statically know the module so we know this should
1329    /// // pass.
1330    /// let typed = foo.typed::<(), ()>(&store)?;
1331    ///
1332    /// // Note that this can fail if the wasm traps at runtime.
1333    /// typed.call(&mut store, ())?;
1334    /// # Ok(())
1335    /// # }
1336    /// ```
1337    ///
1338    /// You can also pass in multiple parameters and get a result back
1339    ///
1340    /// ```
1341    /// # use wasmtime::*;
1342    /// # fn foo(add: &Func, mut store: Store<()>) -> Result<()> {
1343    /// let typed = add.typed::<(i32, i64), f32>(&store)?;
1344    /// assert_eq!(typed.call(&mut store, (1, 2))?, 3.0);
1345    /// # Ok(())
1346    /// # }
1347    /// ```
1348    ///
1349    /// and similarly if a function has multiple results you can bind that too
1350    ///
1351    /// ```
1352    /// # use wasmtime::*;
1353    /// # fn foo(add_with_overflow: &Func, mut store: Store<()>) -> Result<()> {
1354    /// let typed = add_with_overflow.typed::<(u32, u32), (u32, i32)>(&store)?;
1355    /// let (result, overflow) = typed.call(&mut store, (u32::max_value(), 2))?;
1356    /// assert_eq!(result, 1);
1357    /// assert_eq!(overflow, 1);
1358    /// # Ok(())
1359    /// # }
1360    /// ```
1361    pub fn typed<Params, Results>(
1362        &self,
1363        store: impl AsContext,
1364    ) -> Result<TypedFunc<Params, Results>>
1365    where
1366        Params: WasmParams,
1367        Results: WasmResults,
1368    {
1369        // Type-check that the params/results are all valid
1370        let store = store.as_context().0;
1371        let ty = self.load_ty(store);
1372        Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
1373            .context("type mismatch with parameters")?;
1374        Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
1375            .context("type mismatch with results")?;
1376
1377        // and then we can construct the typed version of this function
1378        // (unsafely), which should be safe since we just did the type check above.
1379        unsafe { Ok(TypedFunc::_new_unchecked(store, *self)) }
1380    }
1381
1382    /// Get a stable hash key for this function.
1383    ///
1384    /// Even if the same underlying function is added to the `StoreData`
1385    /// multiple times and becomes multiple `wasmtime::Func`s, this hash key
1386    /// will be consistent across all of these functions.
1387    #[cfg_attr(
1388        not(test),
1389        expect(dead_code, reason = "Not used yet, but added for consistency")
1390    )]
1391    pub(crate) fn hash_key(&self, store: &mut StoreOpaque) -> impl core::hash::Hash + Eq + use<> {
1392        self.vm_func_ref(store).as_ptr().addr()
1393    }
1394}
1395
1396/// Prepares for entrance into WebAssembly.
1397///
1398/// This function will set up context such that `closure` is allowed to call a
1399/// raw trampoline or a raw WebAssembly function. This *must* be called to do
1400/// things like catch traps and set up GC properly.
1401///
1402/// The `closure` provided receives a default "caller" `VMContext` parameter it
1403/// can pass to the called wasm function, if desired.
1404pub(crate) fn invoke_wasm_and_catch_traps<T>(
1405    store: &mut StoreContextMut<'_, T>,
1406    closure: impl FnMut(NonNull<VMContext>, Option<InterpreterRef<'_>>) -> bool,
1407) -> Result<()> {
1408    // The `enter_wasm` call below will reset the store context's
1409    // `stack_chain` to a new `InitialStack`, pointing to the
1410    // stack-allocated `initial_stack_csi`.
1411    let mut initial_stack_csi = VMCommonStackInformation::running_default();
1412    // Stores some state of the runtime just before entering Wasm. Will be
1413    // restored upon exiting Wasm. Note that the `CallThreadState` that is
1414    // created by the `catch_traps` call below will store a pointer to this
1415    // stack-allocated `previous_runtime_state`.
1416    let mut previous_runtime_state = EntryStoreContext::enter_wasm(store, &mut initial_stack_csi);
1417
1418    if let Err(trap) = store.0.call_hook(CallHook::CallingWasm) {
1419        // `previous_runtime_state` implicitly dropped here
1420        return Err(trap);
1421    }
1422    let result = crate::runtime::vm::catch_traps(store, &mut previous_runtime_state, closure);
1423    #[cfg(feature = "component-model")]
1424    if result.is_err() {
1425        store.0.set_trapped();
1426    }
1427    core::mem::drop(previous_runtime_state);
1428    store.0.call_hook(CallHook::ReturningFromWasm)?;
1429    result
1430}
1431
1432/// This type helps managing the state of the runtime when entering and exiting
1433/// Wasm. To this end, it contains a subset of the data in `VMStoreContext`.
1434/// Upon entering Wasm, it updates various runtime fields and their
1435/// original values saved in this struct. Upon exiting Wasm, the previous values
1436/// are restored.
1437pub(crate) struct EntryStoreContext {
1438    /// If set, contains value of `stack_limit` field to restore in
1439    /// `VMStoreContext` when exiting Wasm.
1440    pub stack_limit: Option<usize>,
1441    pub last_wasm_exit_pc: usize,
1442    pub last_wasm_exit_trampoline_fp: usize,
1443    pub last_wasm_entry_fp: usize,
1444    pub last_wasm_entry_sp: usize,
1445    pub last_wasm_entry_trap_handler: usize,
1446    pub stack_chain: VMStackChain,
1447
1448    /// We need a pointer to the runtime limits, so we can update them from
1449    /// `drop`/`exit_wasm`.
1450    vm_store_context: *const VMStoreContext,
1451}
1452
1453impl EntryStoreContext {
1454    /// This function is called to update and save state when
1455    /// WebAssembly is entered within the `Store`.
1456    ///
1457    /// This updates various fields such as:
1458    ///
1459    /// * The stack limit. This is what ensures that we limit the stack space
1460    ///   allocated by WebAssembly code and it's relative to the initial stack
1461    ///   pointer that called into wasm.
1462    ///
1463    /// It also saves the different last_wasm_* values in the `VMStoreContext`.
1464    pub fn enter_wasm<T>(
1465        store: &mut StoreContextMut<'_, T>,
1466        initial_stack_information: *mut VMCommonStackInformation,
1467    ) -> Self {
1468        let stack_limit;
1469
1470        // If this is a recursive call, e.g. our stack limit is already set, then
1471        // we may be able to skip this function.
1472        //
1473        // For synchronous stores there's nothing else to do because all wasm calls
1474        // happen synchronously and on the same stack. This means that the previous
1475        // stack limit will suffice for the next recursive call.
1476        //
1477        // For asynchronous stores then each call happens on a separate native
1478        // stack. This means that the previous stack limit is no longer relevant
1479        // because we're on a separate stack.
1480        if unsafe { *store.0.vm_store_context().stack_limit.get() } != usize::MAX
1481            && !store.0.can_block()
1482        {
1483            stack_limit = None;
1484        }
1485        // Ignore this stack pointer business on miri since we can't execute wasm
1486        // anyway and the concept of a stack pointer on miri is a bit nebulous
1487        // regardless.
1488        else if cfg!(miri) {
1489            stack_limit = None;
1490        } else {
1491            // When Cranelift has support for the host then we might be running native
1492            // compiled code meaning we need to read the actual stack pointer. If
1493            // Cranelift can't be used though then we're guaranteed to be running pulley
1494            // in which case this stack pointer isn't actually used as Pulley has custom
1495            // mechanisms for stack overflow.
1496            #[cfg(has_host_compiler_backend)]
1497            let stack_pointer = crate::runtime::vm::get_stack_pointer();
1498            #[cfg(not(has_host_compiler_backend))]
1499            let stack_pointer = {
1500                use wasmtime_environ::TripleExt;
1501                debug_assert!(store.engine().target().is_pulley());
1502                usize::MAX
1503            };
1504
1505            // Determine the stack pointer where, after which, any wasm code will
1506            // immediately trap. This is checked on the entry to all wasm functions.
1507            //
1508            // Note that this isn't 100% precise. We are requested to give wasm
1509            // `max_wasm_stack` bytes, but what we're actually doing is giving wasm
1510            // probably a little less than `max_wasm_stack` because we're
1511            // calculating the limit relative to this function's approximate stack
1512            // pointer. Wasm will be executed on a frame beneath this one (or next
1513            // to it). In any case it's expected to be at most a few hundred bytes
1514            // of slop one way or another. When wasm is typically given a MB or so
1515            // (a million bytes) the slop shouldn't matter too much.
1516            //
1517            // After we've got the stack limit then we store it into the `stack_limit`
1518            // variable.
1519            let wasm_stack_limit = stack_pointer
1520                .checked_sub(store.engine().config().max_wasm_stack)
1521                .unwrap();
1522            let prev_stack = unsafe {
1523                mem::replace(
1524                    &mut *store.0.vm_store_context().stack_limit.get(),
1525                    wasm_stack_limit,
1526                )
1527            };
1528            stack_limit = Some(prev_stack);
1529        }
1530
1531        unsafe {
1532            let vm_store_context = store.0.vm_store_context();
1533            let new_stack_chain = VMStackChain::InitialStack(initial_stack_information);
1534            *vm_store_context.stack_chain.get() = new_stack_chain;
1535
1536            Self {
1537                stack_limit,
1538                last_wasm_exit_pc: *(*vm_store_context).last_wasm_exit_pc.get(),
1539                last_wasm_exit_trampoline_fp: *(*vm_store_context)
1540                    .last_wasm_exit_trampoline_fp
1541                    .get(),
1542                last_wasm_entry_fp: *(*vm_store_context).last_wasm_entry_fp.get(),
1543                last_wasm_entry_sp: *(*vm_store_context).last_wasm_entry_sp.get(),
1544                last_wasm_entry_trap_handler: *(*vm_store_context)
1545                    .last_wasm_entry_trap_handler
1546                    .get(),
1547                stack_chain: (*(*vm_store_context).stack_chain.get()).clone(),
1548                vm_store_context,
1549            }
1550        }
1551    }
1552
1553    /// This function restores the values stored in this struct. We invoke this
1554    /// function through this type's `Drop` implementation. This ensures that we
1555    /// even restore the values if we unwind the stack (e.g., because we are
1556    /// panicking out of a Wasm execution).
1557    #[inline]
1558    fn exit_wasm(&mut self) {
1559        unsafe {
1560            if let Some(limit) = self.stack_limit {
1561                *(&*self.vm_store_context).stack_limit.get() = limit;
1562            }
1563
1564            *(*self.vm_store_context).last_wasm_exit_trampoline_fp.get() =
1565                self.last_wasm_exit_trampoline_fp;
1566            *(*self.vm_store_context).last_wasm_exit_pc.get() = self.last_wasm_exit_pc;
1567            *(*self.vm_store_context).last_wasm_entry_fp.get() = self.last_wasm_entry_fp;
1568            *(*self.vm_store_context).last_wasm_entry_sp.get() = self.last_wasm_entry_sp;
1569            *(*self.vm_store_context).last_wasm_entry_trap_handler.get() =
1570                self.last_wasm_entry_trap_handler;
1571            *(*self.vm_store_context).stack_chain.get() = self.stack_chain.clone();
1572        }
1573    }
1574}
1575
1576impl Drop for EntryStoreContext {
1577    #[inline]
1578    fn drop(&mut self) {
1579        self.exit_wasm();
1580    }
1581}
1582
1583/// A trait implemented for types which can be returned from closures passed to
1584/// [`Func::wrap`] and friends.
1585///
1586/// This trait should not be implemented by user types. This trait may change at
1587/// any time internally. The types which implement this trait, however, are
1588/// stable over time.
1589///
1590/// For more information see [`Func::wrap`]
1591pub unsafe trait WasmRet {
1592    // Same as `WasmTy::compatible_with_store`.
1593    #[doc(hidden)]
1594    fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
1595
1596    /// Stores this return value into the `ptr` specified using the rooted
1597    /// `store`.
1598    ///
1599    /// Traps are communicated through the `Result<_>` return value.
1600    ///
1601    /// # Unsafety
1602    ///
1603    /// This method is unsafe as `ptr` must have the correct length to store
1604    /// this result. This property is only checked in debug mode, not in release
1605    /// mode.
1606    #[doc(hidden)]
1607    unsafe fn store(
1608        self,
1609        store: &mut AutoAssertNoGc<'_>,
1610        ptr: &mut [MaybeUninit<ValRaw>],
1611    ) -> Result<()>;
1612
1613    #[doc(hidden)]
1614    fn func_type(
1615        engine: &Engine,
1616        params: impl Iterator<Item = ValType>,
1617    ) -> Result<FuncType, OutOfMemory>;
1618    #[doc(hidden)]
1619    fn may_gc() -> bool;
1620
1621    // Utilities used to convert an instance of this type to a `Result`
1622    // explicitly, used when wrapping async functions which always bottom-out
1623    // in a function that returns a trap because futures can be cancelled.
1624    #[doc(hidden)]
1625    type Fallible: WasmRet;
1626    #[doc(hidden)]
1627    fn into_fallible(self) -> Self::Fallible;
1628    #[doc(hidden)]
1629    fn fallible_from_error(error: Error) -> Self::Fallible;
1630}
1631
1632unsafe impl<T> WasmRet for T
1633where
1634    T: WasmTy,
1635{
1636    type Fallible = Result<T>;
1637
1638    fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1639        <Self as WasmTy>::compatible_with_store(self, store)
1640    }
1641
1642    unsafe fn store(
1643        self,
1644        store: &mut AutoAssertNoGc<'_>,
1645        ptr: &mut [MaybeUninit<ValRaw>],
1646    ) -> Result<()> {
1647        debug_assert!(ptr.len() > 0);
1648        // SAFETY: the contract of this function/trait combo is such that `ptr`
1649        // is valid to store this type's value, thus this lookup should be safe.
1650        unsafe { <Self as WasmTy>::store(self, store, ptr.get_unchecked_mut(0)) }
1651    }
1652
1653    fn may_gc() -> bool {
1654        T::may_gc()
1655    }
1656
1657    fn func_type(
1658        engine: &Engine,
1659        params: impl Iterator<Item = ValType>,
1660    ) -> Result<FuncType, OutOfMemory> {
1661        FuncType::try_new(engine, params, Some(<Self as WasmTy>::valtype()))
1662    }
1663
1664    fn into_fallible(self) -> Result<T> {
1665        Ok(self)
1666    }
1667
1668    fn fallible_from_error(error: Error) -> Result<T> {
1669        Err(error)
1670    }
1671}
1672
1673unsafe impl<T> WasmRet for Result<T>
1674where
1675    T: WasmRet,
1676{
1677    type Fallible = Self;
1678
1679    fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1680        match self {
1681            Ok(x) => <T as WasmRet>::compatible_with_store(x, store),
1682            Err(_) => true,
1683        }
1684    }
1685
1686    unsafe fn store(
1687        self,
1688        store: &mut AutoAssertNoGc<'_>,
1689        ptr: &mut [MaybeUninit<ValRaw>],
1690    ) -> Result<()> {
1691        // SAFETY: the safety of calling this function is the same as calling
1692        // the inner `store`.
1693        unsafe { self.and_then(|val| val.store(store, ptr)) }
1694    }
1695
1696    fn may_gc() -> bool {
1697        T::may_gc()
1698    }
1699
1700    fn func_type(
1701        engine: &Engine,
1702        params: impl Iterator<Item = ValType>,
1703    ) -> Result<FuncType, OutOfMemory> {
1704        T::func_type(engine, params)
1705    }
1706
1707    fn into_fallible(self) -> Result<T> {
1708        self
1709    }
1710
1711    fn fallible_from_error(error: Error) -> Result<T> {
1712        Err(error)
1713    }
1714}
1715
1716macro_rules! impl_wasm_host_results {
1717    ($n:tt $($t:ident)*) => (
1718        #[allow(non_snake_case, reason = "macro-generated code")]
1719        unsafe impl<$($t),*> WasmRet for ($($t,)*)
1720        where
1721            $($t: WasmTy,)*
1722        {
1723            type Fallible = Result<Self>;
1724
1725            #[inline]
1726            fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
1727                let ($($t,)*) = self;
1728                $( $t.compatible_with_store(_store) && )* true
1729            }
1730
1731            #[inline]
1732            unsafe fn store(
1733                self,
1734                _store: &mut AutoAssertNoGc<'_>,
1735                _ptr: &mut [MaybeUninit<ValRaw>],
1736            ) -> Result<()> {
1737                let ($($t,)*) = self;
1738                let mut _cur = 0;
1739                $(
1740                    debug_assert!(_cur < _ptr.len());
1741                    // SAFETY: `store`'s unsafe contract is that `_ptr` is
1742                    // appropriately sized and additionally safe to call `store`
1743                    // for sub-types.
1744                    unsafe {
1745                        let val = _ptr.get_unchecked_mut(_cur);
1746                        _cur += 1;
1747                        WasmTy::store($t, _store, val)?;
1748                    }
1749                )*
1750                Ok(())
1751            }
1752
1753            #[doc(hidden)]
1754            fn may_gc() -> bool {
1755                $( $t::may_gc() || )* false
1756            }
1757
1758            fn func_type(
1759                engine: &Engine,
1760                params: impl Iterator<Item = ValType>,
1761            ) -> Result<FuncType, OutOfMemory> {
1762                FuncType::try_new(
1763                    engine,
1764                    params,
1765                    IntoIterator::into_iter([$($t::valtype(),)*]),
1766                )
1767            }
1768
1769            #[inline]
1770            fn into_fallible(self) -> Result<Self> {
1771                Ok(self)
1772            }
1773
1774            #[inline]
1775            fn fallible_from_error(error: Error) -> Result<Self> {
1776                Err(error)
1777            }
1778        }
1779    )
1780}
1781
1782for_each_function_signature!(impl_wasm_host_results);
1783
1784/// Internal trait implemented for all arguments that can be passed to
1785/// [`Func::wrap`] and [`Linker::func_wrap`](crate::Linker::func_wrap).
1786///
1787/// This trait should not be implemented by external users, it's only intended
1788/// as an implementation detail of this crate.
1789pub trait IntoFunc<T, Params, Results>: Send + Sync + 'static {
1790    /// Convert this function into a `VM{Array,Native}CallHostFuncContext` and
1791    /// internal `VMFuncRef`.
1792    #[doc(hidden)]
1793    fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory>;
1794}
1795
1796macro_rules! impl_into_func {
1797    ($num:tt $arg:ident) => {
1798        // Implement for functions without a leading `Caller` parameter,
1799        // delegating to the implementation below which does have the leading
1800        // `Caller` parameter.
1801        #[expect(non_snake_case, reason = "macro-generated code")]
1802        impl<T, F, $arg, R> IntoFunc<T, $arg, R> for F
1803        where
1804            F: Fn($arg) -> R + Send + Sync + 'static,
1805            $arg: WasmTy,
1806            R: WasmRet,
1807            T: 'static,
1808        {
1809            fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1810                let f = move |_: Caller<'_, T>, $arg: $arg| {
1811                    self($arg)
1812                };
1813
1814                f.into_func(engine)
1815            }
1816        }
1817
1818        #[expect(non_snake_case, reason = "macro-generated code")]
1819        impl<T, F, $arg, R> IntoFunc<T, (Caller<'_, T>, $arg), R> for F
1820        where
1821            F: Fn(Caller<'_, T>, $arg) -> R + Send + Sync + 'static,
1822            $arg: WasmTy,
1823            R: WasmRet,
1824            T: 'static,
1825        {
1826            fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1827                HostFunc::wrap(engine, move |caller: Caller<'_, T>, ($arg,)| {
1828                    self(caller, $arg)
1829                })
1830            }
1831        }
1832    };
1833    ($num:tt $($args:ident)*) => {
1834        // Implement for functions without a leading `Caller` parameter,
1835        // delegating to the implementation below which does have the leading
1836        // `Caller` parameter.
1837        #[allow(non_snake_case, reason = "macro-generated code")]
1838        impl<T, F, $($args,)* R> IntoFunc<T, ($($args,)*), R> for F
1839        where
1840            F: Fn($($args),*) -> R + Send + Sync + 'static,
1841            $($args: WasmTy,)*
1842            R: WasmRet,
1843            T: 'static,
1844        {
1845            fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1846                let f = move |_: Caller<'_, T>, $($args:$args),*| {
1847                    self($($args),*)
1848                };
1849
1850                f.into_func(engine)
1851            }
1852        }
1853
1854        #[allow(non_snake_case, reason = "macro-generated code")]
1855        impl<T, F, $($args,)* R> IntoFunc<T, (Caller<'_, T>, $($args,)*), R> for F
1856        where
1857            F: Fn(Caller<'_, T>, $($args),*) -> R + Send + Sync + 'static,
1858            $($args: WasmTy,)*
1859            R: WasmRet,
1860            T: 'static,
1861        {
1862            fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1863                HostFunc::wrap(engine, move |caller: Caller<'_, T>, ( $( $args ),* )| {
1864                    self(caller, $( $args ),* )
1865                })
1866            }
1867        }
1868    }
1869}
1870
1871for_each_function_signature!(impl_into_func);
1872
1873/// Trait implemented for various tuples made up of types which implement
1874/// [`WasmTy`] that can be passed to [`Func::wrap_async`].
1875pub unsafe trait WasmTyList {
1876    /// Get the value type that each Type in the list represents.
1877    fn valtypes() -> impl Iterator<Item = ValType>;
1878
1879    // Load a version of `Self` from the `values` provided.
1880    //
1881    // # Safety
1882    //
1883    // This function is unsafe as it's up to the caller to ensure that `values` are
1884    // valid for this given type.
1885    #[doc(hidden)]
1886    unsafe fn load(store: &mut AutoAssertNoGc<'_>, values: &mut [MaybeUninit<ValRaw>]) -> Self;
1887
1888    #[doc(hidden)]
1889    fn may_gc() -> bool;
1890}
1891
1892macro_rules! impl_wasm_ty_list {
1893    ($num:tt $($args:ident)*) => (
1894        #[allow(non_snake_case, reason = "macro-generated code")]
1895        unsafe impl<$($args),*> WasmTyList for ($($args,)*)
1896        where
1897            $($args: WasmTy,)*
1898        {
1899            fn valtypes() -> impl Iterator<Item = ValType> {
1900                IntoIterator::into_iter([$($args::valtype(),)*])
1901            }
1902
1903            unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _values: &mut [MaybeUninit<ValRaw>]) -> Self {
1904                let mut _cur = 0;
1905                ($({
1906                    debug_assert!(_cur < _values.len());
1907                    // SAFETY: this function's own contract means that `_values`
1908                    // is appropriately sized/typed for the internal loads.
1909                    unsafe {
1910                        let ptr = _values.get_unchecked(_cur).assume_init_ref();
1911                        _cur += 1;
1912                        $args::load(_store, ptr)
1913                    }
1914                },)*)
1915            }
1916
1917            fn may_gc() -> bool {
1918                $( $args::may_gc() || )* false
1919            }
1920        }
1921    );
1922}
1923
1924for_each_function_signature!(impl_wasm_ty_list);
1925
1926/// A structure representing the caller's context when creating a function
1927/// via [`Func::wrap`].
1928///
1929/// This structure can be taken as the first parameter of a closure passed to
1930/// [`Func::wrap`] or other constructors, and serves two purposes:
1931///
1932/// * First consumers can use [`Caller<'_, T>`](crate::Caller) to get access to
1933///   [`StoreContextMut<'_, T>`](crate::StoreContextMut) and/or get access to
1934///   `T` itself. This means that the [`Caller`] type can serve as a proxy to
1935///   the original [`Store`](crate::Store) itself and is used to satisfy
1936///   [`AsContext`] and [`AsContextMut`] bounds.
1937///
1938/// * Second a [`Caller`] can be used as the name implies, learning about the
1939///   caller's context, namely it's exported memory and exported functions. This
1940///   allows functions which take pointers as arguments to easily read the
1941///   memory the pointers point into, or if a function is expected to call
1942///   malloc in the wasm module to reserve space for the output you can do that.
1943///
1944/// Host functions which want access to [`Store`](crate::Store)-level state are
1945/// recommended to use this type.
1946pub struct Caller<'a, T: 'static> {
1947    pub(crate) store: StoreContextMut<'a, T>,
1948    caller: Instance,
1949}
1950
1951impl<T> Caller<'_, T> {
1952    fn sub_caller(&mut self) -> Caller<'_, T> {
1953        Caller {
1954            store: self.store.as_context_mut(),
1955            caller: self.caller,
1956        }
1957    }
1958
1959    /// Looks up an export from the caller's module by the `name` given.
1960    ///
1961    /// This is a low-level function that's typically used to implement passing
1962    /// of pointers or indices between core Wasm instances, where the callee
1963    /// needs to consult the caller's exports to perform memory management and
1964    /// resolve the references.
1965    ///
1966    /// For comparison, in components, the component model handles translating
1967    /// arguments from one component instance to another and managing memory, so
1968    /// that callees don't need to be aware of their callers, which promotes
1969    /// virtualizability of APIs.
1970    ///
1971    /// # Return
1972    ///
1973    /// If an export with the `name` provided was found, then it is returned as an
1974    /// `Extern`. There are a number of situations, however, where the export may not
1975    /// be available:
1976    ///
1977    /// * The caller instance may not have an export named `name`
1978    /// * There may not be a caller available, for example if `Func` was called
1979    ///   directly from host code.
1980    ///
1981    /// It's recommended to take care when calling this API and gracefully
1982    /// handling a `None` return value.
1983    pub fn get_export(&mut self, name: &str) -> Option<Extern> {
1984        // All instances created have a `host_state` with a pointer pointing
1985        // back to themselves. If this caller doesn't have that `host_state`
1986        // then it probably means it was a host-created object like `Func::new`
1987        // which doesn't have any exports we want to return anyway.
1988        self.caller.get_export(&mut self.store, name)
1989    }
1990
1991    /// Looks up an exported [`Extern`] value by a [`ModuleExport`] value.
1992    ///
1993    /// This is similar to [`Self::get_export`] but uses a [`ModuleExport`]
1994    /// value to avoid string lookups where possible. [`ModuleExport`]s can be
1995    /// obtained by calling [`Module::get_export_index`] on the [`Module`] that
1996    /// an instance was instantiated with.
1997    ///
1998    /// This method will search the module for an export with a matching entity index and return
1999    /// the value, if found.
2000    ///
2001    /// Returns `None` if there was no export with a matching entity index.
2002    ///
2003    /// [`Module::get_export_index`]: crate::Module::get_export_index
2004    /// [`Module`]: crate::Module
2005    ///
2006    /// # Panics
2007    ///
2008    /// Panics if `store` does not own this instance.
2009    ///
2010    /// # Usage
2011    /// ```
2012    /// use std::str;
2013    ///
2014    /// # use wasmtime::*;
2015    /// # fn main() -> Result<()> {
2016    /// # let mut store = Store::default();
2017    ///
2018    /// let module = Module::new(
2019    ///     store.engine(),
2020    ///     r#"
2021    ///         (module
2022    ///             (import "" "" (func $log_str (param i32 i32)))
2023    ///             (func (export "foo")
2024    ///                 i32.const 4   ;; ptr
2025    ///                 i32.const 13  ;; len
2026    ///                 call $log_str)
2027    ///             (memory (export "memory") 1)
2028    ///             (data (i32.const 4) "Hello, world!"))
2029    ///     "#,
2030    /// )?;
2031    ///
2032    /// let Some(module_export) = module.get_export_index("memory") else {
2033    ///    bail!("failed to find `memory` export in module");
2034    /// };
2035    ///
2036    /// let log_str = Func::wrap(&mut store, move |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
2037    ///     let mem = match caller.get_module_export(&module_export) {
2038    ///         Some(Extern::Memory(mem)) => mem,
2039    ///         _ => bail!("failed to find host memory"),
2040    ///     };
2041    ///     let data = mem.data(&caller)
2042    ///         .get(ptr as u32 as usize..)
2043    ///         .and_then(|arr| arr.get(..len as u32 as usize));
2044    ///     let string = match data {
2045    ///         Some(data) => match str::from_utf8(data) {
2046    ///             Ok(s) => s,
2047    ///             Err(_) => bail!("invalid utf-8"),
2048    ///         },
2049    ///         None => bail!("pointer/length out of bounds"),
2050    ///     };
2051    ///     assert_eq!(string, "Hello, world!");
2052    ///     println!("{}", string);
2053    ///     Ok(())
2054    /// });
2055    /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
2056    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
2057    /// foo.call(&mut store, ())?;
2058    /// # Ok(())
2059    /// # }
2060    /// ```
2061    pub fn get_module_export(&mut self, export: &ModuleExport) -> Option<Extern> {
2062        self.caller.get_module_export(&mut self.store, export)
2063    }
2064
2065    /// Access the underlying data owned by this `Store`.
2066    ///
2067    /// Same as [`Store::data`](crate::Store::data)
2068    pub fn data(&self) -> &T {
2069        self.store.data()
2070    }
2071
2072    /// Access the underlying data owned by this `Store`.
2073    ///
2074    /// Same as [`Store::data_mut`](crate::Store::data_mut)
2075    pub fn data_mut(&mut self) -> &mut T {
2076        self.store.data_mut()
2077    }
2078
2079    /// Returns the underlying [`Engine`] this store is connected to.
2080    pub fn engine(&self) -> &Engine {
2081        self.store.engine()
2082    }
2083
2084    /// Perform garbage collection.
2085    ///
2086    /// Same as [`Store::gc`](crate::Store::gc).
2087    #[cfg(feature = "gc")]
2088    pub fn gc(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>) -> Result<()> {
2089        self.store.gc(why)
2090    }
2091
2092    /// Perform garbage collection asynchronously.
2093    ///
2094    /// Same as [`Store::gc_async`](crate::Store::gc_async).
2095    #[cfg(all(feature = "async", feature = "gc"))]
2096    pub async fn gc_async(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>)
2097    where
2098        T: Send + 'static,
2099    {
2100        self.store.gc_async(why).await;
2101    }
2102
2103    /// Returns the remaining fuel in the store.
2104    ///
2105    /// For more information see [`Store::get_fuel`](crate::Store::get_fuel)
2106    pub fn get_fuel(&self) -> Result<u64> {
2107        self.store.get_fuel()
2108    }
2109
2110    /// Set the amount of fuel in this store to be consumed when executing wasm code.
2111    ///
2112    /// For more information see [`Store::set_fuel`](crate::Store::set_fuel)
2113    pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
2114        self.store.set_fuel(fuel)
2115    }
2116
2117    /// Configures this `Store` to yield while executing futures every N units of fuel.
2118    ///
2119    /// For more information see
2120    /// [`Store::fuel_async_yield_interval`](crate::Store::fuel_async_yield_interval)
2121    #[cfg(feature = "async")]
2122    pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
2123        self.store.fuel_async_yield_interval(interval)
2124    }
2125
2126    /// Provide an object that views Wasm stack state, including Wasm
2127    /// VM-level values (locals and operand stack), when debugging is
2128    /// enabled.
2129    ///
2130    /// See [`Store::debug_frames`] for more details.
2131    ///
2132    /// [`Store::debug_frames`]: crate::Store::debug_frames
2133    #[cfg(feature = "debug")]
2134    pub fn debug_frames(&mut self) -> Option<crate::DebugFrameCursor<'_, T>> {
2135        self.store.as_context_mut().debug_frames()
2136    }
2137}
2138
2139impl<T: 'static> AsContext for Caller<'_, T> {
2140    type Data = T;
2141    fn as_context(&self) -> StoreContext<'_, T> {
2142        self.store.as_context()
2143    }
2144}
2145
2146impl<T: 'static> AsContextMut for Caller<'_, T> {
2147    fn as_context_mut(&mut self) -> StoreContextMut<'_, T> {
2148        self.store.as_context_mut()
2149    }
2150}
2151
2152impl<'a, T: 'static> From<Caller<'a, T>> for StoreContextMut<'a, T> {
2153    fn from(caller: Caller<'a, T>) -> Self {
2154        caller.store
2155    }
2156}
2157
2158/// Representation of a host-defined function.
2159///
2160/// This is used for `Func::new` but also for `Linker`-defined functions. For
2161/// `Func::new` this is stored within a `Store`, and for `Linker`-defined
2162/// functions they wrap this up in `Arc` to enable shared ownership of this
2163/// across many stores.
2164///
2165/// Technically this structure needs a `<T>` type parameter to connect to the
2166/// `Store<T>` itself, but that's an unsafe contract of using this for now
2167/// rather than part of the struct type (to avoid `Func<T>` in the API).
2168#[doc(hidden)]
2169pub struct HostFunc {
2170    ctx: StoreBox<VMArrayCallHostFuncContext>,
2171
2172    /// Whether or not this function was defined with an `async` host function,
2173    /// meaning that it is only invokable when wasm is itself on a fiber to
2174    /// support suspension on `Poll::Pending`.
2175    ///
2176    /// This is used to propagate to an `InstancePre` and then eventually into a
2177    /// `Store` as to whether the store requires async entrypoints.
2178    asyncness: Asyncness,
2179
2180    // Stored to unregister this function's signature with the engine when this
2181    // is dropped.
2182    engine: Engine,
2183}
2184
2185// State stored inside a `VMArrayCallHostFuncContext`.
2186struct HostFuncState<F> {
2187    // The actual host function.
2188    func: F,
2189
2190    // NB: We have to keep our `VMSharedTypeIndex` registered in the engine for
2191    // as long as this function exists.
2192    _ty: RegisteredType,
2193}
2194
2195impl core::fmt::Debug for HostFunc {
2196    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
2197        f.debug_struct("HostFunc").finish_non_exhaustive()
2198    }
2199}
2200
2201impl HostFunc {
2202    /// Requires that the signature in `ctx` is already registered
2203    /// within `Engine`, which is done by [`Self::vmctx_sync`] and
2204    /// [`Self::vmctx_async`].
2205    ///
2206    /// This is an internal private constructor for this type intended to only
2207    /// be used by other constructors of this type below.
2208    fn new_raw(
2209        engine: &Engine,
2210        ctx: StoreBox<VMArrayCallHostFuncContext>,
2211        asyncness: Asyncness,
2212    ) -> Self {
2213        HostFunc {
2214            ctx,
2215            engine: engine.clone(),
2216            asyncness,
2217        }
2218    }
2219
2220    /// Constructor of a host function's `VMContext` for synchronous functions.
2221    ///
2222    /// This creates a `VMArrayCallHostFuncContext` which under the hood will
2223    /// be viewed as `VMContext` in the eventually created `VMFuncRef`.
2224    fn vmctx_sync<F, T>(
2225        engine: &Engine,
2226        ty: FuncType,
2227        func: F,
2228    ) -> Result<StoreBox<VMArrayCallHostFuncContext>, OutOfMemory>
2229    where
2230        F: Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
2231        T: 'static,
2232    {
2233        assert!(ty.comes_from_same_engine(engine));
2234
2235        unsafe {
2236            VMArrayCallHostFuncContext::new(
2237                Self::array_call_trampoline::<T, F>,
2238                ty.type_index(),
2239                try_new::<Box<_>>(HostFuncState {
2240                    func,
2241                    _ty: ty.into_registered_type(),
2242                })?,
2243            )
2244        }
2245    }
2246
2247    /// Constructor of a host function's `VMContext` for asynchronous functions.
2248    ///
2249    /// This creates a `VMArrayCallHostFuncContext` which under the hood will
2250    /// be viewed as `VMContext` in the eventually created `VMFuncRef`.
2251    ///
2252    /// Note that `ctx: U` is forwarded directly to `func`. This is subtly
2253    /// different than closing over data in `F` because the future returned by
2254    /// `F` can't refer to any data it closes over. The purpose of `U` is to
2255    /// enable the returned future to be able to close over data generally
2256    /// captured in the closures generated here.
2257    #[cfg(feature = "async")]
2258    fn vmctx_async<F, T, U>(
2259        engine: &Engine,
2260        ty: FuncType,
2261        ctx: U,
2262        func: F,
2263    ) -> Result<StoreBox<VMArrayCallHostFuncContext>, OutOfMemory>
2264    where
2265        F: for<'a> Fn(
2266                Caller<'a, T>,
2267                &'a mut [MaybeUninit<ValRaw>],
2268                &'a U,
2269            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
2270            + Send
2271            + Sync
2272            + 'static,
2273        T: 'static,
2274        U: Send + Sync + 'static,
2275    {
2276        // Eventually we want to remove `with_blocking` + `block_on` from
2277        // Wasmtime. For now this is the attempt to keep it as low-level as
2278        // possible.
2279        //
2280        // Generally it's a lie to run async things on top of sync things and
2281        // it's caused many headaches. For now it's the best that can be done.
2282        Self::vmctx_sync(engine, ty, move |Caller { store, caller }, args| {
2283            store.with_blocking(|store, cx| {
2284                cx.block_on(core::pin::Pin::from(func(
2285                    Caller { store, caller },
2286                    args,
2287                    &ctx,
2288                )))
2289            })?
2290        })
2291    }
2292
2293    /// Entrypoint of WebAssembly back into the host.
2294    ///
2295    /// This is the standard wasmtime "array call signature" which then
2296    /// delegates internally to the host. This assumes that `callee_vmctx` is a
2297    /// `VMArrayCallHostFuncContext` which was built above with
2298    /// `HostFuncState<F>` internally. This internal function is then used to
2299    /// dispatch based on the arguments.
2300    ///
2301    /// Details handled by this wrapper are:
2302    ///
2303    /// * Host panics are handled (`enter_host_from_wasm`)
2304    /// * `F` is loaded from `callee_vmctx`
2305    /// * `Caller` is constructed to pass to `F`
2306    /// * A GC LIFO scope is maintained around the execution of `F`.
2307    /// * Call hooks for entering/leaving the host are maintained.
2308    unsafe extern "C" fn array_call_trampoline<T, F>(
2309        callee_vmctx: NonNull<VMOpaqueContext>,
2310        caller_vmctx: NonNull<VMContext>,
2311        args: NonNull<ValRaw>,
2312        args_len: usize,
2313    ) -> bool
2314    where
2315        F: Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + 'static,
2316        T: 'static,
2317    {
2318        let run = |store: &mut dyn crate::vm::VMStore, instance: InstanceId| {
2319            // SAFETY: correct usage of this trampoline requires correct
2320            // ascription of `T`, so it's the caller's responsibility to line
2321            // this up.
2322            let mut store = unsafe { store.unchecked_context_mut() };
2323
2324            // Handle the entry call hook, with a corresponding exit call hook
2325            // below.
2326            store.0.call_hook(CallHook::CallingHost)?;
2327
2328            // SAFETY: this function itself requires that the `vmctx` is
2329            // valid to use here.
2330            let state = unsafe {
2331                let vmctx = VMArrayCallHostFuncContext::from_opaque(callee_vmctx);
2332                vmctx.as_ref().host_state()
2333            };
2334
2335            // Double-check ourselves in debug mode, but we control the
2336            // `Any` here so an unsafe downcast should also work.
2337            //
2338            // SAFETY: this function is only usable with `F`.
2339            let state = unsafe {
2340                debug_assert!(state.is::<HostFuncState<F>>());
2341                &*(state as *const _ as *const HostFuncState<F>)
2342            };
2343
2344            let (gc_lifo_scope, ret) = {
2345                let gc_lifo_scope = store.0.gc_roots().enter_lifo_scope();
2346
2347                let mut args = NonNull::slice_from_raw_parts(args.cast(), args_len);
2348                // SAFETY: it's a contract of this function itself that the values
2349                // provided are valid to view as a slice.
2350                let args = unsafe { args.as_mut() };
2351
2352                let ret = (state.func)(
2353                    Caller {
2354                        caller: Instance::from_wasmtime(instance, store.0),
2355                        store: store.as_context_mut(),
2356                    },
2357                    args,
2358                );
2359
2360                (gc_lifo_scope, ret)
2361            };
2362
2363            store.0.exit_gc_lifo_scope(gc_lifo_scope);
2364
2365            // Note that if this returns a trap then `ret` is discarded
2366            // entirely.
2367            store.0.call_hook(CallHook::ReturningFromHost)?;
2368
2369            ret
2370        };
2371
2372        // SAFETY: this is an entrypoint of wasm which requires correct type
2373        // ascription of `T` itself, meaning that this should be safe to call
2374        // both `enter_host_from_wasm` as well as `unchecked_context_mut`.
2375        unsafe { vm::Instance::enter_host_from_wasm(caller_vmctx, run) }
2376    }
2377    /// Analog of [`Func::new_unchecked`]
2378    ///
2379    /// # Panics
2380    ///
2381    /// Panics if the given function type is not associated with the given
2382    /// engine.
2383    ///
2384    /// # Safety
2385    ///
2386    /// The `func` provided must operate according to the `ty` provided to
2387    /// ensure it's reading the correctly-typed parameters and writing the
2388    /// correctly-typed results.
2389    pub unsafe fn new_unchecked<T>(
2390        engine: &Engine,
2391        ty: FuncType,
2392        func: impl Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
2393    ) -> Result<Self, OutOfMemory>
2394    where
2395        T: 'static,
2396    {
2397        Ok(HostFunc::new_raw(
2398            engine,
2399            Self::vmctx_sync(engine, ty, func)?,
2400            Asyncness::No,
2401        ))
2402    }
2403
2404    /// Analog of [`Func::new`]
2405    ///
2406    /// # Panics
2407    ///
2408    /// Panics if the given function type is not associated with the given
2409    /// engine.
2410    pub fn new<T>(
2411        engine: &Engine,
2412        ty: FuncType,
2413        func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
2414    ) -> Result<Self, OutOfMemory>
2415    where
2416        T: 'static,
2417    {
2418        // NB: this is "duplicated" below in `new_async`, so try to keep the
2419        // two in sync.
2420        Ok(HostFunc::new_raw(
2421            engine,
2422            Self::vmctx_sync(engine, ty.clone(), move |mut caller, values| {
2423                // SAFETY: Wasmtime in general provides the guarantee that
2424                // `values` matches `ty`, so this should be safe.
2425                let mut vec = unsafe { Self::load_untyped_params(caller.store.0, &ty, values) };
2426                let (params, results) = vec.split_at_mut(ty.params().len());
2427                func(caller.sub_caller(), params, results)?;
2428                Self::store_untyped_results(caller.store, &ty, vec, values)
2429            })?,
2430            Asyncness::No,
2431        ))
2432    }
2433
2434    /// Analog of [`Func::new_async`]
2435    ///
2436    /// # Panics
2437    ///
2438    /// Panics if the given function type is not associated with the given
2439    /// engine.
2440    #[cfg(feature = "async")]
2441    pub fn new_async<T, F>(engine: &Engine, ty: FuncType, func: F) -> Result<Self, OutOfMemory>
2442    where
2443        F: for<'a> Fn(
2444                Caller<'a, T>,
2445                &'a [Val],
2446                &'a mut [Val],
2447            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
2448            + Send
2449            + Sync
2450            + 'static,
2451        T: Send + 'static,
2452    {
2453        // NB: this is "duplicated" above in `new`, so try to keep the two in
2454        // sync.
2455        Ok(HostFunc::new_raw(
2456            engine,
2457            Self::vmctx_async(
2458                engine,
2459                ty.clone(),
2460                (ty, func),
2461                move |mut caller, values, (ty, func)| {
2462                    Box::new(async move {
2463                        // SAFETY: Wasmtime in general provides the guarantee that
2464                        // `values` matches `ty`, so this should be safe.
2465                        let mut vec =
2466                            unsafe { Self::load_untyped_params(caller.store.0, &ty, values) };
2467                        let (params, results) = vec.split_at_mut(ty.params().len());
2468                        core::pin::Pin::from(func(caller.sub_caller(), params, results)).await?;
2469                        Self::store_untyped_results(caller.store, &ty, vec, values)
2470                    })
2471                },
2472            )?,
2473            Asyncness::Yes,
2474        ))
2475    }
2476
2477    /// Loads the the parameters of `ty` from `params` into a vector.
2478    ///
2479    /// This additionally pushes space onto the vector for all results to split
2480    /// the vector into params/results halves.
2481    ///
2482    /// # Safety
2483    ///
2484    /// Requires that `params` matches the parameters loaded by `P`.
2485    unsafe fn load_untyped_params(
2486        store: &mut StoreOpaque,
2487        ty: &FuncType,
2488        params: &mut [MaybeUninit<ValRaw>],
2489    ) -> Vec<Val> {
2490        let mut val_vec = store.take_hostcall_val_storage();
2491        debug_assert!(val_vec.is_empty());
2492        let nparams = ty.params().len();
2493        val_vec.reserve(nparams + ty.results().len());
2494        let mut store = AutoAssertNoGc::new(store);
2495        for (i, ty) in ty.params().enumerate() {
2496            val_vec.push(unsafe { Val::_from_raw(&mut store, params[i].assume_init(), &ty) })
2497        }
2498
2499        val_vec.extend((0..ty.results().len()).map(|_| Val::null_func_ref()));
2500        val_vec
2501    }
2502
2503    /// Stores the results, at the end of `args_then_results` according to `ty`,
2504    /// into `storage`.
2505    fn store_untyped_results<T>(
2506        mut store: StoreContextMut<'_, T>,
2507        ty: &FuncType,
2508        mut args_then_results: Vec<Val>,
2509        storage: &mut [MaybeUninit<ValRaw>],
2510    ) -> Result<()> {
2511        // Unlike our arguments we need to dynamically check that the return
2512        // values produced are correct. There could be a bug in `func` that
2513        // produces the wrong number, wrong types, or wrong stores of
2514        // values, and we need to catch that here.
2515        let results = &args_then_results[ty.params().len()..];
2516        for (i, (ret, ty)) in results.iter().zip(ty.results()).enumerate() {
2517            ret.ensure_matches_ty(store.0, &ty)
2518                .context("function attempted to return an incompatible value")?;
2519            storage[i].write(ret.to_raw(store.as_context_mut())?);
2520        }
2521
2522        // Restore our `val_vec` back into the store so it's usable for the next
2523        // hostcall to reuse our own storage.
2524        args_then_results.truncate(0);
2525        store.0.save_hostcall_val_storage(args_then_results);
2526        Ok(())
2527    }
2528
2529    /// Analog of [`Func::wrap`]
2530    pub fn wrap<T, F, P, R>(engine: &Engine, func: F) -> Result<Self, OutOfMemory>
2531    where
2532        F: Fn(Caller<'_, T>, P) -> R + Send + Sync + 'static,
2533        P: WasmTyList,
2534        R: WasmRet,
2535        T: 'static,
2536    {
2537        // NB: this entire function is "duplicated" below in `wrap_async`, so
2538        // try to keep the two in sync.
2539        let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()))?;
2540
2541        let ctx = Self::vmctx_sync(engine, ty, move |mut caller, args| {
2542            // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2543            // wasmtime's ambient correctness.
2544            let params = unsafe { Self::load_typed_params(caller.store.0, args) };
2545            let ret = func(caller.sub_caller(), params).into_fallible();
2546            // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2547            // wasmtime's ambient correctness.
2548            unsafe { Self::store_typed_results(caller.store.0, ret, args) }
2549        })?;
2550        Ok(HostFunc::new_raw(engine, ctx, Asyncness::No))
2551    }
2552
2553    /// Analog of [`Func::wrap_async`]
2554    #[cfg(feature = "async")]
2555    pub fn wrap_async<T, F, P, R>(engine: &Engine, func: F) -> Result<Self, OutOfMemory>
2556    where
2557        F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
2558            + Send
2559            + Sync
2560            + 'static,
2561        P: WasmTyList,
2562        R: WasmRet,
2563        T: Send + 'static,
2564    {
2565        // NB: this entire function is "duplicated" above in `wrap`, so try to
2566        // keep the two in sync.
2567        let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()))?;
2568
2569        let ctx = Self::vmctx_async(engine, ty, func, move |mut caller, args, func| {
2570            Box::new(async move {
2571                // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2572                // wasmtime's ambient correctness.
2573                let params = unsafe { Self::load_typed_params(caller.store.0, args) };
2574                let ret = core::pin::Pin::from(func(caller.sub_caller(), params)).await;
2575                // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2576                // wasmtime's ambient correctness.
2577                unsafe { Self::store_typed_results(caller.store.0, ret.into_fallible(), args) }
2578            })
2579        })?;
2580        Ok(HostFunc::new_raw(engine, ctx, Asyncness::Yes))
2581    }
2582
2583    /// Loads the typed parameters from `params`
2584    ///
2585    /// # Safety
2586    ///
2587    /// Requires that `params` matches the parameters loaded by `P`.
2588    unsafe fn load_typed_params<P>(store: &mut StoreOpaque, params: &mut [MaybeUninit<ValRaw>]) -> P
2589    where
2590        P: WasmTyList,
2591    {
2592        let mut store = if P::may_gc() {
2593            AutoAssertNoGc::new(store)
2594        } else {
2595            unsafe { AutoAssertNoGc::disabled(store) }
2596        };
2597        // SAFETY: this function's own safety contract is the same as `P::load`.
2598        unsafe { P::load(&mut store, params) }
2599    }
2600
2601    /// Stores the results of `R` into the array provided.
2602    ///
2603    /// # Safety
2604    ///
2605    /// Requires that `ret` matches the result `storage` space. See `WasmRet`
2606    /// for more safety info.
2607    unsafe fn store_typed_results<R>(
2608        store: &mut StoreOpaque,
2609        ret: R,
2610        storage: &mut [MaybeUninit<ValRaw>],
2611    ) -> Result<()>
2612    where
2613        R: WasmRet,
2614    {
2615        ensure!(
2616            ret.compatible_with_store(store),
2617            "host function attempted to return cross-`Store` value to Wasm",
2618        );
2619
2620        let mut store = if R::may_gc() {
2621            AutoAssertNoGc::new(store)
2622        } else {
2623            unsafe { AutoAssertNoGc::disabled(store) }
2624        };
2625        // SAFETY: this safety contract is the same as this own function's
2626        // safety contract.
2627        unsafe {
2628            ret.store(&mut store, storage)?;
2629        }
2630        Ok(())
2631    }
2632
2633    /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2634    /// it.
2635    ///
2636    /// # Unsafety
2637    ///
2638    /// Can only be inserted into stores with a matching `T` relative to when
2639    /// this `HostFunc` was first created.
2640    pub unsafe fn to_func(self: &Arc<Self>, store: &mut StoreOpaque) -> Func {
2641        self.validate_store(store);
2642        let (funcrefs, modules) = store.func_refs_and_modules();
2643        let funcref = funcrefs.push_arc_host(self.clone(), modules);
2644        // SAFETY: this funcref was just pushed within the store, so it's safe
2645        // to say this store owns it.
2646        unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2647    }
2648
2649    /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2650    /// it.
2651    ///
2652    /// This function is similar to, but not equivalent, to `HostFunc::to_func`.
2653    /// Notably this function requires that the `Arc<Self>` pointer is otherwise
2654    /// rooted within the `StoreOpaque` via another means. When in doubt use
2655    /// `to_func` above as it's safer.
2656    ///
2657    /// # Unsafety
2658    ///
2659    /// Can only be inserted into stores with a matching `T` relative to when
2660    /// this `HostFunc` was first created.
2661    ///
2662    /// Additionally the `&Arc<Self>` is not cloned in this function. Instead a
2663    /// raw pointer to `Self` is stored within the `Store` for this function.
2664    /// The caller must arrange for the `Arc<Self>` to be "rooted" in the store
2665    /// provided via another means, probably by pushing to
2666    /// `StoreOpaque::rooted_host_funcs`.
2667    ///
2668    /// Similarly, the caller must arrange for `rooted_func_ref` to be rooted in
2669    /// the same store and additionally be a valid pointer.
2670    pub unsafe fn to_func_store_rooted(
2671        self: &Arc<Self>,
2672        store: &mut StoreOpaque,
2673        rooted_func_ref: Option<NonNull<VMFuncRef>>,
2674    ) -> Func {
2675        self.validate_store(store);
2676
2677        match rooted_func_ref {
2678            Some(funcref) => {
2679                // SAFETY: it's a contract of this function itself that
2680                // `funcref` is safe to read.
2681                unsafe {
2682                    debug_assert!(funcref.as_ref().wasm_call.is_some());
2683                }
2684                // SAFETY: it's a contract of this function that `funcref` is
2685                // owned by `store`.
2686                unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2687            }
2688            None => {
2689                debug_assert!(self.func_ref().wasm_call.is_some());
2690
2691                // SAFETY: it's an unsafe contract of this function that we are
2692                // rooted within the store to say that the store owns a copy of
2693                // this funcref.
2694                unsafe { Func::from_vm_func_ref(store.id(), self.func_ref().into()) }
2695            }
2696        }
2697    }
2698
2699    /// Same as [`HostFunc::to_func`], different ownership.
2700    unsafe fn into_func(self, store: &mut StoreOpaque) -> Func {
2701        self.validate_store(store);
2702
2703        // This function could be called by a guest at any time, and it requires
2704        // fibers, so the store now required async entrypoints.
2705        store.set_async_required(self.asyncness);
2706
2707        let (funcrefs, modules) = store.func_refs_and_modules();
2708        let funcref = funcrefs.push_box_host(Box::new(self), modules);
2709        // SAFETY: this funcref was just pushed within `store`, so it's safe to
2710        // say it's owned by the store's id.
2711        unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2712    }
2713
2714    fn validate_store(&self, store: &mut StoreOpaque) {
2715        // This assert is required to ensure that we can indeed safely insert
2716        // `self` into the `store` provided, otherwise the type information we
2717        // have listed won't be correct. This is possible to hit with the public
2718        // API of Wasmtime, and should be documented in relevant functions.
2719        assert!(
2720            Engine::same(&self.engine, store.engine()),
2721            "cannot use a store with a different engine than a linker was created with",
2722        );
2723    }
2724
2725    pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2726        self.func_ref().type_index
2727    }
2728
2729    pub(crate) fn func_ref(&self) -> &VMFuncRef {
2730        unsafe { self.ctx.get().as_ref().func_ref() }
2731    }
2732
2733    pub(crate) fn asyncness(&self) -> Asyncness {
2734        self.asyncness
2735    }
2736}
2737
2738#[cfg(test)]
2739mod tests {
2740    use super::*;
2741    use crate::{Module, Store};
2742
2743    #[test]
2744    #[cfg_attr(miri, ignore)]
2745    fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
2746        let mut store = Store::<()>::default();
2747        let module = Module::new(
2748            store.engine(),
2749            r#"
2750                (module
2751                    (func (export "f")
2752                        nop
2753                    )
2754                )
2755            "#,
2756        )?;
2757        let instance = Instance::new(&mut store, &module, &[])?;
2758
2759        // Each time we `get_func`, we call `Func::from_wasmtime` which adds a
2760        // new entry to `StoreData`, so `f1` and `f2` will have different
2761        // indices into `StoreData`.
2762        let f1 = instance.get_func(&mut store, "f").unwrap();
2763        let f2 = instance.get_func(&mut store, "f").unwrap();
2764
2765        // But their hash keys are the same.
2766        assert!(
2767            f1.hash_key(&mut store.as_context_mut().0)
2768                == f2.hash_key(&mut store.as_context_mut().0)
2769        );
2770
2771        // But the hash keys are different from different funcs.
2772        let instance2 = Instance::new(&mut store, &module, &[])?;
2773        let f3 = instance2.get_func(&mut store, "f").unwrap();
2774        assert!(
2775            f1.hash_key(&mut store.as_context_mut().0)
2776                != f3.hash_key(&mut store.as_context_mut().0)
2777        );
2778
2779        Ok(())
2780    }
2781}