wasmtime/runtime/
func.rs

1use crate::prelude::*;
2use crate::runtime::vm::{
3    ExportFunction, InterpreterRef, SendSyncPtr, StoreBox, VMArrayCallHostFuncContext, VMContext,
4    VMFuncRef, VMFunctionImport, VMOpaqueContext,
5};
6use crate::runtime::Uninhabited;
7use crate::store::{AutoAssertNoGc, StoreData, StoreOpaque, Stored};
8use crate::type_registry::RegisteredType;
9use crate::{
10    AsContext, AsContextMut, CallHook, Engine, Extern, FuncType, Instance, Module, ModuleExport,
11    Ref, StoreContext, StoreContextMut, Val, ValRaw, ValType,
12};
13use alloc::sync::Arc;
14use core::ffi::c_void;
15use core::mem::{self, MaybeUninit};
16use core::ptr::NonNull;
17#[cfg(feature = "async")]
18use core::{future::Future, pin::Pin};
19use wasmtime_environ::VMSharedTypeIndex;
20
21/// A reference to the abstract `nofunc` heap value.
22///
23/// The are no instances of `(ref nofunc)`: it is an uninhabited type.
24///
25/// There is precisely one instance of `(ref null nofunc)`, aka `nullfuncref`:
26/// the null reference.
27///
28/// This `NoFunc` Rust type's sole purpose is for use with [`Func::wrap`]- and
29/// [`Func::typed`]-style APIs for statically typing a function as taking or
30/// returning a `(ref null nofunc)` (aka `Option<NoFunc>`) which is always
31/// `None`.
32///
33/// # Example
34///
35/// ```
36/// # use wasmtime::*;
37/// # fn _foo() -> Result<()> {
38/// let mut config = Config::new();
39/// config.wasm_function_references(true);
40/// let engine = Engine::new(&config)?;
41///
42/// let module = Module::new(
43///     &engine,
44///     r#"
45///         (module
46///             (func (export "f") (param (ref null nofunc))
47///                 ;; If the reference is null, return.
48///                 local.get 0
49///                 ref.is_null nofunc
50///                 br_if 0
51///
52///                 ;; If the reference was not null (which is impossible)
53///                 ;; then raise a trap.
54///                 unreachable
55///             )
56///         )
57///     "#,
58/// )?;
59///
60/// let mut store = Store::new(&engine, ());
61/// let instance = Instance::new(&mut store, &module, &[])?;
62/// let f = instance.get_func(&mut store, "f").unwrap();
63///
64/// // We can cast a `(ref null nofunc)`-taking function into a typed function that
65/// // takes an `Option<NoFunc>` via the `Func::typed` method.
66/// let f = f.typed::<Option<NoFunc>, ()>(&store)?;
67///
68/// // We can call the typed function, passing the null `nofunc` reference.
69/// let result = f.call(&mut store, NoFunc::null());
70///
71/// // The function should not have trapped, because the reference we gave it was
72/// // null (as it had to be, since `NoFunc` is uninhabited).
73/// assert!(result.is_ok());
74/// # Ok(())
75/// # }
76/// ```
77#[derive(Copy, Clone, Debug, PartialEq, Eq)]
78pub struct NoFunc {
79    _inner: Uninhabited,
80}
81
82impl NoFunc {
83    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference.
84    #[inline]
85    pub fn null() -> Option<NoFunc> {
86        None
87    }
88
89    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
90    /// [`Ref`].
91    #[inline]
92    pub fn null_ref() -> Ref {
93        Ref::Func(None)
94    }
95
96    /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
97    /// [`Val`].
98    #[inline]
99    pub fn null_val() -> Val {
100        Val::FuncRef(None)
101    }
102}
103
104/// A WebAssembly function which can be called.
105///
106/// This type typically represents an exported function from a WebAssembly
107/// module instance. In this case a [`Func`] belongs to an [`Instance`] and is
108/// loaded from there. A [`Func`] may also represent a host function as well in
109/// some cases, too.
110///
111/// Functions can be called in a few different ways, either synchronous or async
112/// and either typed or untyped (more on this below). Note that host functions
113/// are normally inserted directly into a [`Linker`](crate::Linker) rather than
114/// using this directly, but both options are available.
115///
116/// # `Func` and `async`
117///
118/// Functions from the perspective of WebAssembly are always synchronous. You
119/// might have an `async` function in Rust, however, which you'd like to make
120/// available from WebAssembly. Wasmtime supports asynchronously calling
121/// WebAssembly through native stack switching. You can get some more
122/// information about [asynchronous configs](crate::Config::async_support), but
123/// from the perspective of `Func` it's important to know that whether or not
124/// your [`Store`](crate::Store) is asynchronous will dictate whether you call
125/// functions through [`Func::call`] or [`Func::call_async`] (or the typed
126/// wrappers such as [`TypedFunc::call`] vs [`TypedFunc::call_async`]).
127///
128/// # To `Func::call` or to `Func::typed().call()`
129///
130/// There's a 2x2 matrix of methods to call [`Func`]. Invocations can either be
131/// asynchronous or synchronous. They can also be statically typed or not.
132/// Whether or not an invocation is asynchronous is indicated via the method
133/// being `async` and [`call_async`](Func::call_async) being the entry point.
134/// Otherwise for statically typed or not your options are:
135///
136/// * Dynamically typed - if you don't statically know the signature of the
137///   function that you're calling you'll be using [`Func::call`] or
138///   [`Func::call_async`]. These functions take a variable-length slice of
139///   "boxed" arguments in their [`Val`] representation. Additionally the
140///   results are returned as an owned slice of [`Val`]. These methods are not
141///   optimized due to the dynamic type checks that must occur, in addition to
142///   some dynamic allocations for where to put all the arguments. While this
143///   allows you to call all possible wasm function signatures, if you're
144///   looking for a speedier alternative you can also use...
145///
146/// * Statically typed - if you statically know the type signature of the wasm
147///   function you're calling, then you'll want to use the [`Func::typed`]
148///   method to acquire an instance of [`TypedFunc`]. This structure is static proof
149///   that the underlying wasm function has the ascripted type, and type
150///   validation is only done once up-front. The [`TypedFunc::call`] and
151///   [`TypedFunc::call_async`] methods are much more efficient than [`Func::call`]
152///   and [`Func::call_async`] because the type signature is statically known.
153///   This eschews runtime checks as much as possible to get into wasm as fast
154///   as possible.
155///
156/// # Examples
157///
158/// One way to get a `Func` is from an [`Instance`] after you've instantiated
159/// it:
160///
161/// ```
162/// # use wasmtime::*;
163/// # fn main() -> anyhow::Result<()> {
164/// let engine = Engine::default();
165/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
166/// let mut store = Store::new(&engine, ());
167/// let instance = Instance::new(&mut store, &module, &[])?;
168/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
169///
170/// // Work with `foo` as a `Func` at this point, such as calling it
171/// // dynamically...
172/// match foo.call(&mut store, &[], &mut []) {
173///     Ok(()) => { /* ... */ }
174///     Err(trap) => {
175///         panic!("execution of `foo` resulted in a wasm trap: {}", trap);
176///     }
177/// }
178/// foo.call(&mut store, &[], &mut [])?;
179///
180/// // ... or we can make a static assertion about its signature and call it.
181/// // Our first call here can fail if the signatures don't match, and then the
182/// // second call can fail if the function traps (like the `match` above).
183/// let foo = foo.typed::<(), ()>(&store)?;
184/// foo.call(&mut store, ())?;
185/// # Ok(())
186/// # }
187/// ```
188///
189/// You can also use the [`wrap` function](Func::wrap) to create a
190/// `Func`
191///
192/// ```
193/// # use wasmtime::*;
194/// # fn main() -> anyhow::Result<()> {
195/// let mut store = Store::<()>::default();
196///
197/// // Create a custom `Func` which can execute arbitrary code inside of the
198/// // closure.
199/// let add = Func::wrap(&mut store, |a: i32, b: i32| -> i32 { a + b });
200///
201/// // Next we can hook that up to a wasm module which uses it.
202/// let module = Module::new(
203///     store.engine(),
204///     r#"
205///         (module
206///             (import "" "" (func $add (param i32 i32) (result i32)))
207///             (func (export "call_add_twice") (result i32)
208///                 i32.const 1
209///                 i32.const 2
210///                 call $add
211///                 i32.const 3
212///                 i32.const 4
213///                 call $add
214///                 i32.add))
215///     "#,
216/// )?;
217/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
218/// let call_add_twice = instance.get_typed_func::<(), i32>(&mut store, "call_add_twice")?;
219///
220/// assert_eq!(call_add_twice.call(&mut store, ())?, 10);
221/// # Ok(())
222/// # }
223/// ```
224///
225/// Or you could also create an entirely dynamic `Func`!
226///
227/// ```
228/// # use wasmtime::*;
229/// # fn main() -> anyhow::Result<()> {
230/// let mut store = Store::<()>::default();
231///
232/// // Here we need to define the type signature of our `Double` function and
233/// // then wrap it up in a `Func`
234/// let double_type = wasmtime::FuncType::new(
235///     store.engine(),
236///     [wasmtime::ValType::I32].iter().cloned(),
237///     [wasmtime::ValType::I32].iter().cloned(),
238/// );
239/// let double = Func::new(&mut store, double_type, |_, params, results| {
240///     let mut value = params[0].unwrap_i32();
241///     value *= 2;
242///     results[0] = value.into();
243///     Ok(())
244/// });
245///
246/// let module = Module::new(
247///     store.engine(),
248///     r#"
249///         (module
250///             (import "" "" (func $double (param i32) (result i32)))
251///             (func $start
252///                 i32.const 1
253///                 call $double
254///                 drop)
255///             (start $start))
256///     "#,
257/// )?;
258/// let instance = Instance::new(&mut store, &module, &[double.into()])?;
259/// // .. work with `instance` if necessary
260/// # Ok(())
261/// # }
262/// ```
263#[derive(Copy, Clone, Debug)]
264#[repr(transparent)] // here for the C API
265pub struct Func(Stored<FuncData>);
266
267pub(crate) struct FuncData {
268    kind: FuncKind,
269
270    // A pointer to the in-store `VMFuncRef` for this function, if
271    // any.
272    //
273    // When a function is passed to Wasm but doesn't have a Wasm-to-native
274    // trampoline, we have to patch it in. But that requires mutating the
275    // `VMFuncRef`, and this function could be shared across
276    // threads. So we instead copy and pin the `VMFuncRef` into
277    // `StoreOpaque::func_refs`, where we can safely patch the field without
278    // worrying about synchronization and we hold a pointer to it here so we can
279    // reuse it rather than re-copy if it is passed to Wasm again.
280    in_store_func_ref: Option<SendSyncPtr<VMFuncRef>>,
281
282    // This is somewhat expensive to load from the `Engine` and in most
283    // optimized use cases (e.g. `TypedFunc`) it's not actually needed or it's
284    // only needed rarely. To handle that this is an optionally-contained field
285    // which is lazily loaded into as part of `Func::call`.
286    //
287    // Also note that this is intentionally placed behind a pointer to keep it
288    // small as `FuncData` instances are often inserted into a `Store`.
289    ty: Option<Box<FuncType>>,
290}
291
292/// The ways that a function can be created and referenced from within a store.
293enum FuncKind {
294    /// A function already owned by the store via some other means. This is
295    /// used, for example, when creating a `Func` from an instance's exported
296    /// function. The instance's `InstanceHandle` is already owned by the store
297    /// and we just have some pointers into that which represent how to call the
298    /// function.
299    StoreOwned { export: ExportFunction },
300
301    /// A function is shared across possibly other stores, hence the `Arc`. This
302    /// variant happens when a `Linker`-defined function is instantiated within
303    /// a `Store` (e.g. via `Linker::get` or similar APIs). The `Arc` here
304    /// indicates that there's some number of other stores holding this function
305    /// too, so dropping this may not deallocate the underlying
306    /// `InstanceHandle`.
307    SharedHost(Arc<HostFunc>),
308
309    /// A uniquely-owned host function within a `Store`. This comes about with
310    /// `Func::new` or similar APIs. The `HostFunc` internally owns the
311    /// `InstanceHandle` and that will get dropped when this `HostFunc` itself
312    /// is dropped.
313    ///
314    /// Note that this is intentionally placed behind a `Box` to minimize the
315    /// size of this enum since the most common variant for high-performance
316    /// situations is `SharedHost` and `StoreOwned`, so this ideally isn't
317    /// larger than those two.
318    Host(Box<HostFunc>),
319
320    /// A reference to a `HostFunc`, but one that's "rooted" in the `Store`
321    /// itself.
322    ///
323    /// This variant is created when an `InstancePre<T>` is instantiated in to a
324    /// `Store<T>`. In that situation the `InstancePre<T>` already has a list of
325    /// host functions that are packaged up in an `Arc`, so the `Arc<[T]>` is
326    /// cloned once into the `Store` to avoid each individual function requiring
327    /// an `Arc::clone`.
328    ///
329    /// The lifetime management of this type is `unsafe` because
330    /// `RootedHostFunc` is a small wrapper around `NonNull<HostFunc>`. To be
331    /// safe this is required that the memory of the host function is pinned
332    /// elsewhere (e.g. the `Arc` in the `Store`).
333    RootedHost(RootedHostFunc),
334}
335
336macro_rules! for_each_function_signature {
337    ($mac:ident) => {
338        $mac!(0);
339        $mac!(1 A1);
340        $mac!(2 A1 A2);
341        $mac!(3 A1 A2 A3);
342        $mac!(4 A1 A2 A3 A4);
343        $mac!(5 A1 A2 A3 A4 A5);
344        $mac!(6 A1 A2 A3 A4 A5 A6);
345        $mac!(7 A1 A2 A3 A4 A5 A6 A7);
346        $mac!(8 A1 A2 A3 A4 A5 A6 A7 A8);
347        $mac!(9 A1 A2 A3 A4 A5 A6 A7 A8 A9);
348        $mac!(10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10);
349        $mac!(11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11);
350        $mac!(12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12);
351        $mac!(13 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13);
352        $mac!(14 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14);
353        $mac!(15 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15);
354        $mac!(16 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16);
355        $mac!(17 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17);
356    };
357}
358
359mod typed;
360pub use typed::*;
361
362impl Func {
363    /// Creates a new `Func` with the given arguments, typically to create a
364    /// host-defined function to pass as an import to a module.
365    ///
366    /// * `store` - the store in which to create this [`Func`], which will own
367    ///   the return value.
368    ///
369    /// * `ty` - the signature of this function, used to indicate what the
370    ///   inputs and outputs are.
371    ///
372    /// * `func` - the native code invoked whenever this `Func` will be called.
373    ///   This closure is provided a [`Caller`] as its first argument to learn
374    ///   information about the caller, and then it's passed a list of
375    ///   parameters as a slice along with a mutable slice of where to write
376    ///   results.
377    ///
378    /// Note that the implementation of `func` must adhere to the `ty` signature
379    /// given, error or traps may occur if it does not respect the `ty`
380    /// signature. For example if the function type declares that it returns one
381    /// i32 but the `func` closures does not write anything into the results
382    /// slice then a trap may be generated.
383    ///
384    /// Additionally note that this is quite a dynamic function since signatures
385    /// are not statically known. For a more performant and ergonomic `Func`
386    /// it's recommended to use [`Func::wrap`] if you can because with
387    /// statically known signatures Wasmtime can optimize the implementation
388    /// much more.
389    ///
390    /// For more information about `Send + Sync + 'static` requirements on the
391    /// `func`, see [`Func::wrap`](#why-send--sync--static).
392    ///
393    /// # Errors
394    ///
395    /// The host-provided function here returns a
396    /// [`Result<()>`](anyhow::Result). If the function returns `Ok(())` then
397    /// that indicates that the host function completed successfully and wrote
398    /// the result into the `&mut [Val]` argument.
399    ///
400    /// If the function returns `Err(e)`, however, then this is equivalent to
401    /// the host function triggering a trap for wasm. WebAssembly execution is
402    /// immediately halted and the original caller of [`Func::call`], for
403    /// example, will receive the error returned here (possibly with
404    /// [`WasmBacktrace`](crate::WasmBacktrace) context information attached).
405    ///
406    /// For more information about errors in Wasmtime see the [`Trap`]
407    /// documentation.
408    ///
409    /// [`Trap`]: crate::Trap
410    ///
411    /// # Panics
412    ///
413    /// Panics if the given function type is not associated with this store's
414    /// engine.
415    pub fn new<T>(
416        store: impl AsContextMut<Data = T>,
417        ty: FuncType,
418        func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
419    ) -> Self {
420        assert!(ty.comes_from_same_engine(store.as_context().engine()));
421        let ty_clone = ty.clone();
422        unsafe {
423            Func::new_unchecked(store, ty, move |caller, values| {
424                Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
425            })
426        }
427    }
428
429    /// Creates a new [`Func`] with the given arguments, although has fewer
430    /// runtime checks than [`Func::new`].
431    ///
432    /// This function takes a callback of a different signature than
433    /// [`Func::new`], instead receiving a raw pointer with a list of [`ValRaw`]
434    /// structures. These values have no type information associated with them
435    /// so it's up to the caller to provide a function that will correctly
436    /// interpret the list of values as those coming from the `ty` specified.
437    ///
438    /// If you're calling this from Rust it's recommended to either instead use
439    /// [`Func::new`] or [`Func::wrap`]. The [`Func::wrap`] API, in particular,
440    /// is both safer and faster than this API.
441    ///
442    /// # Errors
443    ///
444    /// See [`Func::new`] for the behavior of returning an error from the host
445    /// function provided here.
446    ///
447    /// # Unsafety
448    ///
449    /// This function is not safe because it's not known at compile time that
450    /// the `func` provided correctly interprets the argument types provided to
451    /// it, or that the results it produces will be of the correct type.
452    ///
453    /// # Panics
454    ///
455    /// Panics if the given function type is not associated with this store's
456    /// engine.
457    pub unsafe fn new_unchecked<T>(
458        mut store: impl AsContextMut<Data = T>,
459        ty: FuncType,
460        func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
461    ) -> Self {
462        assert!(ty.comes_from_same_engine(store.as_context().engine()));
463        let store = store.as_context_mut().0;
464        let host = HostFunc::new_unchecked(store.engine(), ty, func);
465        host.into_func(store)
466    }
467
468    /// Creates a new host-defined WebAssembly function which, when called,
469    /// will run the asynchronous computation defined by `func` to completion
470    /// and then return the result to WebAssembly.
471    ///
472    /// This function is the asynchronous analogue of [`Func::new`] and much of
473    /// that documentation applies to this as well. The key difference is that
474    /// `func` returns a future instead of simply a `Result`. Note that the
475    /// returned future can close over any of the arguments, but it cannot close
476    /// over the state of the closure itself. It's recommended to store any
477    /// necessary async state in the `T` of the [`Store<T>`](crate::Store) which
478    /// can be accessed through [`Caller::data`] or [`Caller::data_mut`].
479    ///
480    /// For more information on `Send + Sync + 'static`, see
481    /// [`Func::wrap`](#why-send--sync--static).
482    ///
483    /// # Panics
484    ///
485    /// This function will panic if `store` is not associated with an [async
486    /// config](crate::Config::async_support).
487    ///
488    /// Panics if the given function type is not associated with this store's
489    /// engine.
490    ///
491    /// # Errors
492    ///
493    /// See [`Func::new`] for the behavior of returning an error from the host
494    /// function provided here.
495    ///
496    /// # Examples
497    ///
498    /// ```
499    /// # use wasmtime::*;
500    /// # fn main() -> anyhow::Result<()> {
501    /// // Simulate some application-specific state as well as asynchronous
502    /// // functions to query that state.
503    /// struct MyDatabase {
504    ///     // ...
505    /// }
506    ///
507    /// impl MyDatabase {
508    ///     async fn get_row_count(&self) -> u32 {
509    ///         // ...
510    /// #       100
511    ///     }
512    /// }
513    ///
514    /// let my_database = MyDatabase {
515    ///     // ...
516    /// };
517    ///
518    /// // Using `new_async` we can hook up into calling our async
519    /// // `get_row_count` function.
520    /// let engine = Engine::new(Config::new().async_support(true))?;
521    /// let mut store = Store::new(&engine, MyDatabase {
522    ///     // ...
523    /// });
524    /// let get_row_count_type = wasmtime::FuncType::new(
525    ///     &engine,
526    ///     None,
527    ///     Some(wasmtime::ValType::I32),
528    /// );
529    /// let get = Func::new_async(&mut store, get_row_count_type, |caller, _params, results| {
530    ///     Box::new(async move {
531    ///         let count = caller.data().get_row_count().await;
532    ///         results[0] = Val::I32(count as i32);
533    ///         Ok(())
534    ///     })
535    /// });
536    /// // ...
537    /// # Ok(())
538    /// # }
539    /// ```
540    #[cfg(all(feature = "async", feature = "cranelift"))]
541    pub fn new_async<T, F>(store: impl AsContextMut<Data = T>, ty: FuncType, func: F) -> Func
542    where
543        F: for<'a> Fn(
544                Caller<'a, T>,
545                &'a [Val],
546                &'a mut [Val],
547            ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
548            + Send
549            + Sync
550            + 'static,
551    {
552        assert!(
553            store.as_context().async_support(),
554            "cannot use `new_async` without enabling async support in the config"
555        );
556        assert!(ty.comes_from_same_engine(store.as_context().engine()));
557        Func::new(store, ty, move |mut caller, params, results| {
558            let async_cx = caller
559                .store
560                .as_context_mut()
561                .0
562                .async_cx()
563                .expect("Attempt to spawn new action on dying fiber");
564            let future = func(caller, params, results);
565            match unsafe { async_cx.block_on(Pin::from(future)) } {
566                Ok(Ok(())) => Ok(()),
567                Ok(Err(trap)) | Err(trap) => Err(trap),
568            }
569        })
570    }
571
572    pub(crate) unsafe fn from_vm_func_ref(
573        store: &mut StoreOpaque,
574        func_ref: NonNull<VMFuncRef>,
575    ) -> Func {
576        debug_assert!(func_ref.as_ref().type_index != VMSharedTypeIndex::default());
577        let export = ExportFunction { func_ref };
578        Func::from_wasmtime_function(export, store)
579    }
580
581    /// Creates a new `Func` from the given Rust closure.
582    ///
583    /// This function will create a new `Func` which, when called, will
584    /// execute the given Rust closure. Unlike [`Func::new`] the target
585    /// function being called is known statically so the type signature can
586    /// be inferred. Rust types will map to WebAssembly types as follows:
587    ///
588    /// | Rust Argument Type                | WebAssembly Type                          |
589    /// |-----------------------------------|-------------------------------------------|
590    /// | `i32`                             | `i32`                                     |
591    /// | `u32`                             | `i32`                                     |
592    /// | `i64`                             | `i64`                                     |
593    /// | `u64`                             | `i64`                                     |
594    /// | `f32`                             | `f32`                                     |
595    /// | `f64`                             | `f64`                                     |
596    /// | `V128` on x86-64 and aarch64 only | `v128`                                    |
597    /// | `Option<Func>`                    | `funcref` aka `(ref null func)`           |
598    /// | `Func`                            | `(ref func)`                              |
599    /// | `Option<Nofunc>`                  | `nullfuncref` aka `(ref null nofunc)`     |
600    /// | `NoFunc`                          | `(ref nofunc)`                            |
601    /// | `Option<Rooted<ExternRef>>`       | `externref` aka `(ref null extern)`       |
602    /// | `Rooted<ExternRef>`               | `(ref extern)`                            |
603    /// | `Option<NoExtern>`                | `nullexternref` aka `(ref null noextern)` |
604    /// | `NoExtern`                        | `(ref noextern)`                          |
605    /// | `Option<Rooted<AnyRef>>`          | `anyref` aka `(ref null any)`             |
606    /// | `Rooted<AnyRef>`                  | `(ref any)`                               |
607    /// | `Option<Rooted<EqRef>>`           | `eqref` aka `(ref null eq)`               |
608    /// | `Rooted<EqRef>`                   | `(ref eq)`                                |
609    /// | `Option<I31>`                     | `i31ref` aka `(ref null i31)`             |
610    /// | `I31`                             | `(ref i31)`                               |
611    /// | `Option<Rooted<StructRef>>`       | `(ref null struct)`                       |
612    /// | `Rooted<StructRef>`               | `(ref struct)`                            |
613    /// | `Option<Rooted<ArrayRef>>`        | `(ref null array)`                        |
614    /// | `Rooted<ArrayRef>`                | `(ref array)`                             |
615    /// | `Option<NoneRef>`                 | `nullref` aka `(ref null none)`           |
616    /// | `NoneRef`                         | `(ref none)`                              |
617    ///
618    /// Note that anywhere a `Rooted<T>` appears, a `ManuallyRooted<T>` may also
619    /// be used.
620    ///
621    /// Any of the Rust types can be returned from the closure as well, in
622    /// addition to some extra types
623    ///
624    /// | Rust Return Type  | WebAssembly Return Type | Meaning               |
625    /// |-------------------|-------------------------|-----------------------|
626    /// | `()`              | nothing                 | no return value       |
627    /// | `T`               | `T`                     | a single return value |
628    /// | `(T1, T2, ...)`   | `T1 T2 ...`             | multiple returns      |
629    ///
630    /// Note that all return types can also be wrapped in `Result<_>` to
631    /// indicate that the host function can generate a trap as well as possibly
632    /// returning a value.
633    ///
634    /// Finally you can also optionally take [`Caller`] as the first argument of
635    /// your closure. If inserted then you're able to inspect the caller's
636    /// state, for example the [`Memory`](crate::Memory) it has exported so you
637    /// can read what pointers point to.
638    ///
639    /// Note that when using this API, the intention is to create as thin of a
640    /// layer as possible for when WebAssembly calls the function provided. With
641    /// sufficient inlining and optimization the WebAssembly will call straight
642    /// into `func` provided, with no extra fluff entailed.
643    ///
644    /// # Why `Send + Sync + 'static`?
645    ///
646    /// All host functions defined in a [`Store`](crate::Store) (including
647    /// those from [`Func::new`] and other constructors) require that the
648    /// `func` provided is `Send + Sync + 'static`. Additionally host functions
649    /// always are `Fn` as opposed to `FnMut` or `FnOnce`. This can at-a-glance
650    /// feel restrictive since the closure cannot close over as many types as
651    /// before. The reason for this, though, is to ensure that
652    /// [`Store<T>`](crate::Store) can implement both the `Send` and `Sync`
653    /// traits.
654    ///
655    /// Fear not, however, because this isn't as restrictive as it seems! Host
656    /// functions are provided a [`Caller<'_, T>`](crate::Caller) argument which
657    /// allows access to the host-defined data within the
658    /// [`Store`](crate::Store). The `T` type is not required to be any of
659    /// `Send`, `Sync`, or `'static`! This means that you can store whatever
660    /// you'd like in `T` and have it accessible by all host functions.
661    /// Additionally mutable access to `T` is allowed through
662    /// [`Caller::data_mut`].
663    ///
664    /// Most host-defined [`Func`] values provide closures that end up not
665    /// actually closing over any values. These zero-sized types will use the
666    /// context from [`Caller`] for host-defined information.
667    ///
668    /// # Errors
669    ///
670    /// The closure provided here to `wrap` can optionally return a
671    /// [`Result<T>`](anyhow::Result). Returning `Ok(t)` represents the host
672    /// function successfully completing with the `t` result. Returning
673    /// `Err(e)`, however, is equivalent to raising a custom wasm trap.
674    /// Execution of WebAssembly does not resume and the stack is unwound to the
675    /// original caller of the function where the error is returned.
676    ///
677    /// For more information about errors in Wasmtime see the [`Trap`]
678    /// documentation.
679    ///
680    /// [`Trap`]: crate::Trap
681    ///
682    /// # Examples
683    ///
684    /// First up we can see how simple wasm imports can be implemented, such
685    /// as a function that adds its two arguments and returns the result.
686    ///
687    /// ```
688    /// # use wasmtime::*;
689    /// # fn main() -> anyhow::Result<()> {
690    /// # let mut store = Store::<()>::default();
691    /// let add = Func::wrap(&mut store, |a: i32, b: i32| a + b);
692    /// let module = Module::new(
693    ///     store.engine(),
694    ///     r#"
695    ///         (module
696    ///             (import "" "" (func $add (param i32 i32) (result i32)))
697    ///             (func (export "foo") (param i32 i32) (result i32)
698    ///                 local.get 0
699    ///                 local.get 1
700    ///                 call $add))
701    ///     "#,
702    /// )?;
703    /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
704    /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
705    /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
706    /// # Ok(())
707    /// # }
708    /// ```
709    ///
710    /// We can also do the same thing, but generate a trap if the addition
711    /// overflows:
712    ///
713    /// ```
714    /// # use wasmtime::*;
715    /// # fn main() -> anyhow::Result<()> {
716    /// # let mut store = Store::<()>::default();
717    /// let add = Func::wrap(&mut store, |a: i32, b: i32| {
718    ///     match a.checked_add(b) {
719    ///         Some(i) => Ok(i),
720    ///         None => anyhow::bail!("overflow"),
721    ///     }
722    /// });
723    /// let module = Module::new(
724    ///     store.engine(),
725    ///     r#"
726    ///         (module
727    ///             (import "" "" (func $add (param i32 i32) (result i32)))
728    ///             (func (export "foo") (param i32 i32) (result i32)
729    ///                 local.get 0
730    ///                 local.get 1
731    ///                 call $add))
732    ///     "#,
733    /// )?;
734    /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
735    /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
736    /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
737    /// assert!(foo.call(&mut store, (i32::max_value(), 1)).is_err());
738    /// # Ok(())
739    /// # }
740    /// ```
741    ///
742    /// And don't forget all the wasm types are supported!
743    ///
744    /// ```
745    /// # use wasmtime::*;
746    /// # fn main() -> anyhow::Result<()> {
747    /// # let mut store = Store::<()>::default();
748    /// let debug = Func::wrap(&mut store, |a: i32, b: u32, c: f32, d: i64, e: u64, f: f64| {
749    ///
750    ///     println!("a={}", a);
751    ///     println!("b={}", b);
752    ///     println!("c={}", c);
753    ///     println!("d={}", d);
754    ///     println!("e={}", e);
755    ///     println!("f={}", f);
756    /// });
757    /// let module = Module::new(
758    ///     store.engine(),
759    ///     r#"
760    ///         (module
761    ///             (import "" "" (func $debug (param i32 i32 f32 i64 i64 f64)))
762    ///             (func (export "foo")
763    ///                 i32.const -1
764    ///                 i32.const 1
765    ///                 f32.const 2
766    ///                 i64.const -3
767    ///                 i64.const 3
768    ///                 f64.const 4
769    ///                 call $debug))
770    ///     "#,
771    /// )?;
772    /// let instance = Instance::new(&mut store, &module, &[debug.into()])?;
773    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
774    /// foo.call(&mut store, ())?;
775    /// # Ok(())
776    /// # }
777    /// ```
778    ///
779    /// Finally if you want to get really fancy you can also implement
780    /// imports that read/write wasm module's memory
781    ///
782    /// ```
783    /// use std::str;
784    ///
785    /// # use wasmtime::*;
786    /// # fn main() -> anyhow::Result<()> {
787    /// # let mut store = Store::default();
788    /// let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
789    ///     let mem = match caller.get_export("memory") {
790    ///         Some(Extern::Memory(mem)) => mem,
791    ///         _ => anyhow::bail!("failed to find host memory"),
792    ///     };
793    ///     let data = mem.data(&caller)
794    ///         .get(ptr as u32 as usize..)
795    ///         .and_then(|arr| arr.get(..len as u32 as usize));
796    ///     let string = match data {
797    ///         Some(data) => match str::from_utf8(data) {
798    ///             Ok(s) => s,
799    ///             Err(_) => anyhow::bail!("invalid utf-8"),
800    ///         },
801    ///         None => anyhow::bail!("pointer/length out of bounds"),
802    ///     };
803    ///     assert_eq!(string, "Hello, world!");
804    ///     println!("{}", string);
805    ///     Ok(())
806    /// });
807    /// let module = Module::new(
808    ///     store.engine(),
809    ///     r#"
810    ///         (module
811    ///             (import "" "" (func $log_str (param i32 i32)))
812    ///             (func (export "foo")
813    ///                 i32.const 4   ;; ptr
814    ///                 i32.const 13  ;; len
815    ///                 call $log_str)
816    ///             (memory (export "memory") 1)
817    ///             (data (i32.const 4) "Hello, world!"))
818    ///     "#,
819    /// )?;
820    /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
821    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
822    /// foo.call(&mut store, ())?;
823    /// # Ok(())
824    /// # }
825    /// ```
826    pub fn wrap<T, Params, Results>(
827        mut store: impl AsContextMut<Data = T>,
828        func: impl IntoFunc<T, Params, Results>,
829    ) -> Func {
830        let store = store.as_context_mut().0;
831        // part of this unsafety is about matching the `T` to a `Store<T>`,
832        // which is done through the `AsContextMut` bound above.
833        unsafe {
834            let host = HostFunc::wrap(store.engine(), func);
835            host.into_func(store)
836        }
837    }
838
839    #[cfg(feature = "async")]
840    fn wrap_inner<F, T, Params, Results>(mut store: impl AsContextMut<Data = T>, func: F) -> Func
841    where
842        F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
843        Params: WasmTyList,
844        Results: WasmRet,
845    {
846        let store = store.as_context_mut().0;
847        // part of this unsafety is about matching the `T` to a `Store<T>`,
848        // which is done through the `AsContextMut` bound above.
849        unsafe {
850            let host = HostFunc::wrap_inner(store.engine(), func);
851            host.into_func(store)
852        }
853    }
854
855    /// Same as [`Func::wrap`], except the closure asynchronously produces the
856    /// result and the arguments are passed within a tuple. For more information
857    /// see the [`Func`] documentation.
858    ///
859    /// # Panics
860    ///
861    /// This function will panic if called with a non-asynchronous store.
862    #[cfg(feature = "async")]
863    pub fn wrap_async<T, F, P, R>(store: impl AsContextMut<Data = T>, func: F) -> Func
864    where
865        F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
866            + Send
867            + Sync
868            + 'static,
869        P: WasmTyList,
870        R: WasmRet,
871    {
872        assert!(
873            store.as_context().async_support(),
874            concat!("cannot use `wrap_async` without enabling async support on the config")
875        );
876        Func::wrap_inner(store, move |mut caller: Caller<'_, T>, args| {
877            let async_cx = caller
878                .store
879                .as_context_mut()
880                .0
881                .async_cx()
882                .expect("Attempt to start async function on dying fiber");
883            let future = func(caller, args);
884
885            match unsafe { async_cx.block_on(Pin::from(future)) } {
886                Ok(ret) => ret.into_fallible(),
887                Err(e) => R::fallible_from_error(e),
888            }
889        })
890    }
891
892    /// Returns the underlying wasm type that this `Func` has.
893    ///
894    /// # Panics
895    ///
896    /// Panics if `store` does not own this function.
897    pub fn ty(&self, store: impl AsContext) -> FuncType {
898        self.load_ty(&store.as_context().0)
899    }
900
901    /// Forcibly loads the type of this function from the `Engine`.
902    ///
903    /// Note that this is a somewhat expensive method since it requires taking a
904    /// lock as well as cloning a type.
905    pub(crate) fn load_ty(&self, store: &StoreOpaque) -> FuncType {
906        assert!(self.comes_from_same_store(store));
907        FuncType::from_shared_type_index(store.engine(), self.type_index(store.store_data()))
908    }
909
910    /// Does this function match the given type?
911    ///
912    /// That is, is this function's type a subtype of the given type?
913    ///
914    /// # Panics
915    ///
916    /// Panics if this function is not associated with the given store or if the
917    /// function type is not associated with the store's engine.
918    pub fn matches_ty(&self, store: impl AsContext, func_ty: &FuncType) -> bool {
919        self._matches_ty(store.as_context().0, func_ty)
920    }
921
922    pub(crate) fn _matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> bool {
923        let actual_ty = self.load_ty(store);
924        actual_ty.matches(func_ty)
925    }
926
927    pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> Result<()> {
928        if !self.comes_from_same_store(store) {
929            bail!("function used with wrong store");
930        }
931        if self._matches_ty(store, func_ty) {
932            Ok(())
933        } else {
934            let actual_ty = self.load_ty(store);
935            bail!("type mismatch: expected {func_ty}, found {actual_ty}")
936        }
937    }
938
939    /// Gets a reference to the `FuncType` for this function.
940    ///
941    /// Note that this returns both a reference to the type of this function as
942    /// well as a reference back to the store itself. This enables using the
943    /// `StoreOpaque` while the `FuncType` is also being used (from the
944    /// perspective of the borrow-checker) because otherwise the signature would
945    /// consider `StoreOpaque` borrowed mutable while `FuncType` is in use.
946    fn ty_ref<'a>(&self, store: &'a mut StoreOpaque) -> (&'a FuncType, &'a StoreOpaque) {
947        // If we haven't loaded our type into the store yet then do so lazily at
948        // this time.
949        if store.store_data()[self.0].ty.is_none() {
950            let ty = self.load_ty(store);
951            store.store_data_mut()[self.0].ty = Some(Box::new(ty));
952        }
953
954        (store.store_data()[self.0].ty.as_ref().unwrap(), store)
955    }
956
957    pub(crate) fn type_index(&self, data: &StoreData) -> VMSharedTypeIndex {
958        data[self.0].sig_index()
959    }
960
961    /// Invokes this function with the `params` given and writes returned values
962    /// to `results`.
963    ///
964    /// The `params` here must match the type signature of this `Func`, or an
965    /// error will occur. Additionally `results` must have the same
966    /// length as the number of results for this function. Calling this function
967    /// will synchronously execute the WebAssembly function referenced to get
968    /// the results.
969    ///
970    /// This function will return `Ok(())` if execution completed without a trap
971    /// or error of any kind. In this situation the results will be written to
972    /// the provided `results` array.
973    ///
974    /// # Errors
975    ///
976    /// Any error which occurs throughout the execution of the function will be
977    /// returned as `Err(e)`. The [`Error`](anyhow::Error) type can be inspected
978    /// for the precise error cause such as:
979    ///
980    /// * [`Trap`] - indicates that a wasm trap happened and execution was
981    ///   halted.
982    /// * [`WasmBacktrace`] - optionally included on errors for backtrace
983    ///   information of the trap/error.
984    /// * Other string-based errors to indicate issues such as type errors with
985    ///   `params`.
986    /// * Any host-originating error originally returned from a function defined
987    ///   via [`Func::new`], for example.
988    ///
989    /// Errors typically indicate that execution of WebAssembly was halted
990    /// mid-way and did not complete after the error condition happened.
991    ///
992    /// [`Trap`]: crate::Trap
993    ///
994    /// # Panics
995    ///
996    /// This function will panic if called on a function belonging to an async
997    /// store. Asynchronous stores must always use `call_async`. Also panics if
998    /// `store` does not own this function.
999    ///
1000    /// [`WasmBacktrace`]: crate::WasmBacktrace
1001    pub fn call(
1002        &self,
1003        mut store: impl AsContextMut,
1004        params: &[Val],
1005        results: &mut [Val],
1006    ) -> Result<()> {
1007        assert!(
1008            !store.as_context().async_support(),
1009            "must use `call_async` when async support is enabled on the config",
1010        );
1011        let mut store = store.as_context_mut();
1012        let need_gc = self.call_impl_check_args(&mut store, params, results)?;
1013        if need_gc {
1014            store.0.gc();
1015        }
1016        unsafe { self.call_impl_do_call(&mut store, params, results) }
1017    }
1018
1019    /// Invokes this function in an "unchecked" fashion, reading parameters and
1020    /// writing results to `params_and_returns`.
1021    ///
1022    /// This function is the same as [`Func::call`] except that the arguments
1023    /// and results both use a different representation. If possible it's
1024    /// recommended to use [`Func::call`] if safety isn't necessary or to use
1025    /// [`Func::typed`] in conjunction with [`TypedFunc::call`] since that's
1026    /// both safer and faster than this method of invoking a function.
1027    ///
1028    /// Note that if this function takes `externref` arguments then it will
1029    /// **not** automatically GC unlike the [`Func::call`] and
1030    /// [`TypedFunc::call`] functions. This means that if this function is
1031    /// invoked many times with new `ExternRef` values and no other GC happens
1032    /// via any other means then no values will get collected.
1033    ///
1034    /// # Errors
1035    ///
1036    /// For more information about errors see the [`Func::call`] documentation.
1037    ///
1038    /// # Unsafety
1039    ///
1040    /// This function is unsafe because the `params_and_returns` argument is not
1041    /// validated at all. It must uphold invariants such as:
1042    ///
1043    /// * It's a valid pointer to an array
1044    /// * It has enough space to store all parameters
1045    /// * It has enough space to store all results (not at the same time as
1046    ///   parameters)
1047    /// * Parameters are initially written to the array and have the correct
1048    ///   types and such.
1049    /// * Reference types like `externref` and `funcref` are valid at the
1050    ///   time of this call and for the `store` specified.
1051    ///
1052    /// These invariants are all upheld for you with [`Func::call`] and
1053    /// [`TypedFunc::call`].
1054    pub unsafe fn call_unchecked(
1055        &self,
1056        mut store: impl AsContextMut,
1057        params_and_returns: *mut [ValRaw],
1058    ) -> Result<()> {
1059        let mut store = store.as_context_mut();
1060        let data = &store.0.store_data()[self.0];
1061        let func_ref = data.export().func_ref;
1062        let params_and_returns = NonNull::new(params_and_returns).unwrap_or(NonNull::from(&mut []));
1063        Self::call_unchecked_raw(&mut store, func_ref, params_and_returns)
1064    }
1065
1066    pub(crate) unsafe fn call_unchecked_raw<T>(
1067        store: &mut StoreContextMut<'_, T>,
1068        func_ref: NonNull<VMFuncRef>,
1069        params_and_returns: NonNull<[ValRaw]>,
1070    ) -> Result<()> {
1071        invoke_wasm_and_catch_traps(store, |caller, vm| {
1072            func_ref.as_ref().array_call(
1073                vm,
1074                VMOpaqueContext::from_vmcontext(caller),
1075                params_and_returns,
1076            )
1077        })
1078    }
1079
1080    /// Converts the raw representation of a `funcref` into an `Option<Func>`
1081    ///
1082    /// This is intended to be used in conjunction with [`Func::new_unchecked`],
1083    /// [`Func::call_unchecked`], and [`ValRaw`] with its `funcref` field.
1084    ///
1085    /// # Unsafety
1086    ///
1087    /// This function is not safe because `raw` is not validated at all. The
1088    /// caller must guarantee that `raw` is owned by the `store` provided and is
1089    /// valid within the `store`.
1090    pub unsafe fn from_raw(mut store: impl AsContextMut, raw: *mut c_void) -> Option<Func> {
1091        Self::_from_raw(store.as_context_mut().0, raw)
1092    }
1093
1094    pub(crate) unsafe fn _from_raw(store: &mut StoreOpaque, raw: *mut c_void) -> Option<Func> {
1095        Some(Func::from_vm_func_ref(store, NonNull::new(raw.cast())?))
1096    }
1097
1098    /// Extracts the raw value of this `Func`, which is owned by `store`.
1099    ///
1100    /// This function returns a value that's suitable for writing into the
1101    /// `funcref` field of the [`ValRaw`] structure.
1102    ///
1103    /// # Unsafety
1104    ///
1105    /// The returned value is only valid for as long as the store is alive and
1106    /// this function is properly rooted within it. Additionally this function
1107    /// should not be liberally used since it's a very low-level knob.
1108    pub unsafe fn to_raw(&self, mut store: impl AsContextMut) -> *mut c_void {
1109        self.vm_func_ref(store.as_context_mut().0).as_ptr().cast()
1110    }
1111
1112    /// Invokes this function with the `params` given, returning the results
1113    /// asynchronously.
1114    ///
1115    /// This function is the same as [`Func::call`] except that it is
1116    /// asynchronous. This is only compatible with stores associated with an
1117    /// [asynchronous config](crate::Config::async_support).
1118    ///
1119    /// It's important to note that the execution of WebAssembly will happen
1120    /// synchronously in the `poll` method of the future returned from this
1121    /// function. Wasmtime does not manage its own thread pool or similar to
1122    /// execute WebAssembly in. Future `poll` methods are generally expected to
1123    /// resolve quickly, so it's recommended that you run or poll this future
1124    /// in a "blocking context".
1125    ///
1126    /// For more information see the documentation on [asynchronous
1127    /// configs](crate::Config::async_support).
1128    ///
1129    /// # Errors
1130    ///
1131    /// For more information on errors see the [`Func::call`] documentation.
1132    ///
1133    /// # Panics
1134    ///
1135    /// Panics if this is called on a function in a synchronous store. This
1136    /// only works with functions defined within an asynchronous store. Also
1137    /// panics if `store` does not own this function.
1138    #[cfg(feature = "async")]
1139    pub async fn call_async<T>(
1140        &self,
1141        mut store: impl AsContextMut<Data = T>,
1142        params: &[Val],
1143        results: &mut [Val],
1144    ) -> Result<()>
1145    where
1146        T: Send,
1147    {
1148        let mut store = store.as_context_mut();
1149        assert!(
1150            store.0.async_support(),
1151            "cannot use `call_async` without enabling async support in the config",
1152        );
1153        let need_gc = self.call_impl_check_args(&mut store, params, results)?;
1154        if need_gc {
1155            store.0.gc_async().await;
1156        }
1157        let result = store
1158            .on_fiber(|store| unsafe { self.call_impl_do_call(store, params, results) })
1159            .await??;
1160        Ok(result)
1161    }
1162
1163    /// Perform dynamic checks that the arguments given to us match
1164    /// the signature of this function and are appropriate to pass to this
1165    /// function.
1166    ///
1167    /// This involves checking to make sure we have the right number and types
1168    /// of arguments as well as making sure everything is from the same `Store`.
1169    ///
1170    /// This must be called just before `call_impl_do_call`.
1171    ///
1172    /// Returns whether we need to GC before calling `call_impl_do_call`.
1173    fn call_impl_check_args<T>(
1174        &self,
1175        store: &mut StoreContextMut<'_, T>,
1176        params: &[Val],
1177        results: &mut [Val],
1178    ) -> Result<bool> {
1179        let (ty, opaque) = self.ty_ref(store.0);
1180        if ty.params().len() != params.len() {
1181            bail!(
1182                "expected {} arguments, got {}",
1183                ty.params().len(),
1184                params.len()
1185            );
1186        }
1187        if ty.results().len() != results.len() {
1188            bail!(
1189                "expected {} results, got {}",
1190                ty.results().len(),
1191                results.len()
1192            );
1193        }
1194        for (ty, arg) in ty.params().zip(params) {
1195            arg.ensure_matches_ty(opaque, &ty)
1196                .context("argument type mismatch")?;
1197            if !arg.comes_from_same_store(opaque) {
1198                bail!("cross-`Store` values are not currently supported");
1199            }
1200        }
1201
1202        #[cfg(feature = "gc")]
1203        {
1204            // Check whether we need to GC before calling into Wasm.
1205            //
1206            // For example, with the DRC collector, whenever we pass GC refs
1207            // from host code to Wasm code, they go into the
1208            // `VMGcRefActivationsTable`. But the table might be at capacity
1209            // already. If it is at capacity (unlikely) then we need to do a GC
1210            // to free up space.
1211            let num_gc_refs = ty.as_wasm_func_type().non_i31_gc_ref_params_count();
1212            if let Some(num_gc_refs) = core::num::NonZeroUsize::new(num_gc_refs) {
1213                return Ok(opaque
1214                    .gc_store()?
1215                    .gc_heap
1216                    .need_gc_before_entering_wasm(num_gc_refs));
1217            }
1218        }
1219
1220        Ok(false)
1221    }
1222
1223    /// Do the actual call into Wasm.
1224    ///
1225    /// # Safety
1226    ///
1227    /// You must have type checked the arguments by calling
1228    /// `call_impl_check_args` immediately before calling this function. It is
1229    /// only safe to call this function if that one did not return an error.
1230    unsafe fn call_impl_do_call<T>(
1231        &self,
1232        store: &mut StoreContextMut<'_, T>,
1233        params: &[Val],
1234        results: &mut [Val],
1235    ) -> Result<()> {
1236        // Store the argument values into `values_vec`.
1237        let (ty, _) = self.ty_ref(store.0);
1238        let values_vec_size = params.len().max(ty.results().len());
1239        let mut values_vec = store.0.take_wasm_val_raw_storage();
1240        debug_assert!(values_vec.is_empty());
1241        values_vec.resize_with(values_vec_size, || ValRaw::v128(0));
1242        for (arg, slot) in params.iter().cloned().zip(&mut values_vec) {
1243            unsafe {
1244                *slot = arg.to_raw(&mut *store)?;
1245            }
1246        }
1247
1248        unsafe {
1249            self.call_unchecked(
1250                &mut *store,
1251                core::ptr::slice_from_raw_parts_mut(values_vec.as_mut_ptr(), values_vec_size),
1252            )?;
1253        }
1254
1255        for ((i, slot), val) in results.iter_mut().enumerate().zip(&values_vec) {
1256            let ty = self.ty_ref(store.0).0.results().nth(i).unwrap();
1257            *slot = unsafe { Val::from_raw(&mut *store, *val, ty) };
1258        }
1259        values_vec.truncate(0);
1260        store.0.save_wasm_val_raw_storage(values_vec);
1261        Ok(())
1262    }
1263
1264    #[inline]
1265    pub(crate) fn vm_func_ref(&self, store: &mut StoreOpaque) -> NonNull<VMFuncRef> {
1266        let func_data = &mut store.store_data_mut()[self.0];
1267        let func_ref = func_data.export().func_ref;
1268        if unsafe { func_ref.as_ref().wasm_call.is_some() } {
1269            return func_ref;
1270        }
1271
1272        if let Some(in_store) = func_data.in_store_func_ref {
1273            in_store.as_non_null()
1274        } else {
1275            unsafe {
1276                // Move this uncommon/slow path out of line.
1277                self.copy_func_ref_into_store_and_fill(store, func_ref)
1278            }
1279        }
1280    }
1281
1282    unsafe fn copy_func_ref_into_store_and_fill(
1283        &self,
1284        store: &mut StoreOpaque,
1285        func_ref: NonNull<VMFuncRef>,
1286    ) -> NonNull<VMFuncRef> {
1287        let func_ref = store.func_refs().push(func_ref.as_ref().clone());
1288        store.store_data_mut()[self.0].in_store_func_ref = Some(SendSyncPtr::new(func_ref));
1289        store.fill_func_refs();
1290        func_ref
1291    }
1292
1293    pub(crate) unsafe fn from_wasmtime_function(
1294        export: ExportFunction,
1295        store: &mut StoreOpaque,
1296    ) -> Self {
1297        Func::from_func_kind(FuncKind::StoreOwned { export }, store)
1298    }
1299
1300    fn from_func_kind(kind: FuncKind, store: &mut StoreOpaque) -> Self {
1301        Func(store.store_data_mut().insert(FuncData {
1302            kind,
1303            in_store_func_ref: None,
1304            ty: None,
1305        }))
1306    }
1307
1308    pub(crate) fn vmimport(&self, store: &mut StoreOpaque, module: &Module) -> VMFunctionImport {
1309        unsafe {
1310            let f = {
1311                let func_data = &mut store.store_data_mut()[self.0];
1312                // If we already patched this `funcref.wasm_call` and saved a
1313                // copy in the store, use the patched version. Otherwise, use
1314                // the potentially un-patched version.
1315                if let Some(func_ref) = func_data.in_store_func_ref {
1316                    func_ref.as_non_null()
1317                } else {
1318                    func_data.export().func_ref
1319                }
1320            };
1321            VMFunctionImport {
1322                wasm_call: if let Some(wasm_call) = f.as_ref().wasm_call {
1323                    wasm_call.into()
1324                } else {
1325                    // Assert that this is a array-call function, since those
1326                    // are the only ones that could be missing a `wasm_call`
1327                    // trampoline.
1328                    let _ = VMArrayCallHostFuncContext::from_opaque(f.as_ref().vmctx.as_non_null());
1329
1330                    let sig = self.type_index(store.store_data());
1331                    module.wasm_to_array_trampoline(sig).expect(
1332                        "if the wasm is importing a function of a given type, it must have the \
1333                         type's trampoline",
1334                    ).into()
1335                },
1336                array_call: f.as_ref().array_call,
1337                vmctx: f.as_ref().vmctx,
1338            }
1339        }
1340    }
1341
1342    pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
1343        store.store_data().contains(self.0)
1344    }
1345
1346    fn invoke_host_func_for_wasm<T>(
1347        mut caller: Caller<'_, T>,
1348        ty: &FuncType,
1349        values_vec: &mut [ValRaw],
1350        func: &dyn Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()>,
1351    ) -> Result<()> {
1352        // Translate the raw JIT arguments in `values_vec` into a `Val` which
1353        // we'll be passing as a slice. The storage for our slice-of-`Val` we'll
1354        // be taking from the `Store`. We preserve our slice back into the
1355        // `Store` after the hostcall, ideally amortizing the cost of allocating
1356        // the storage across wasm->host calls.
1357        //
1358        // Note that we have a dynamic guarantee that `values_vec` is the
1359        // appropriate length to both read all arguments from as well as store
1360        // all results into.
1361        let mut val_vec = caller.store.0.take_hostcall_val_storage();
1362        debug_assert!(val_vec.is_empty());
1363        let nparams = ty.params().len();
1364        val_vec.reserve(nparams + ty.results().len());
1365        for (i, ty) in ty.params().enumerate() {
1366            val_vec.push(unsafe { Val::from_raw(&mut caller.store, values_vec[i], ty) })
1367        }
1368
1369        val_vec.extend((0..ty.results().len()).map(|_| Val::null_func_ref()));
1370        let (params, results) = val_vec.split_at_mut(nparams);
1371        func(caller.sub_caller(), params, results)?;
1372
1373        // Unlike our arguments we need to dynamically check that the return
1374        // values produced are correct. There could be a bug in `func` that
1375        // produces the wrong number, wrong types, or wrong stores of
1376        // values, and we need to catch that here.
1377        for (i, (ret, ty)) in results.iter().zip(ty.results()).enumerate() {
1378            ret.ensure_matches_ty(caller.store.0, &ty)
1379                .context("function attempted to return an incompatible value")?;
1380            unsafe {
1381                values_vec[i] = ret.to_raw(&mut caller.store)?;
1382            }
1383        }
1384
1385        // Restore our `val_vec` back into the store so it's usable for the next
1386        // hostcall to reuse our own storage.
1387        val_vec.truncate(0);
1388        caller.store.0.save_hostcall_val_storage(val_vec);
1389        Ok(())
1390    }
1391
1392    /// Attempts to extract a typed object from this `Func` through which the
1393    /// function can be called.
1394    ///
1395    /// This function serves as an alternative to [`Func::call`] and
1396    /// [`Func::call_async`]. This method performs a static type check (using
1397    /// the `Params` and `Results` type parameters on the underlying wasm
1398    /// function. If the type check passes then a `TypedFunc` object is returned,
1399    /// otherwise an error is returned describing the typecheck failure.
1400    ///
1401    /// The purpose of this relative to [`Func::call`] is that it's much more
1402    /// efficient when used to invoke WebAssembly functions. With the types
1403    /// statically known far less setup/teardown is required when invoking
1404    /// WebAssembly. If speed is desired then this function is recommended to be
1405    /// used instead of [`Func::call`] (which is more general, hence its
1406    /// slowdown).
1407    ///
1408    /// The `Params` type parameter is used to describe the parameters of the
1409    /// WebAssembly function. This can either be a single type (like `i32`), or
1410    /// a tuple of types representing the list of parameters (like `(i32, f32,
1411    /// f64)`). Additionally you can use `()` to represent that the function has
1412    /// no parameters.
1413    ///
1414    /// The `Results` type parameter is used to describe the results of the
1415    /// function. This behaves the same way as `Params`, but just for the
1416    /// results of the function.
1417    ///
1418    /// # Translating Between WebAssembly and Rust Types
1419    ///
1420    /// Translation between Rust types and WebAssembly types looks like:
1421    ///
1422    /// | WebAssembly                               | Rust                                  |
1423    /// |-------------------------------------------|---------------------------------------|
1424    /// | `i32`                                     | `i32` or `u32`                        |
1425    /// | `i64`                                     | `i64` or `u64`                        |
1426    /// | `f32`                                     | `f32`                                 |
1427    /// | `f64`                                     | `f64`                                 |
1428    /// | `externref` aka `(ref null extern)`       | `Option<Rooted<ExternRef>>`           |
1429    /// | `(ref extern)`                            | `Rooted<ExternRef>`                   |
1430    /// | `nullexternref` aka `(ref null noextern)` | `Option<NoExtern>`                    |
1431    /// | `(ref noextern)`                          | `NoExtern`                            |
1432    /// | `anyref` aka `(ref null any)`             | `Option<Rooted<AnyRef>>`              |
1433    /// | `(ref any)`                               | `Rooted<AnyRef>`                      |
1434    /// | `eqref` aka `(ref null eq)`               | `Option<Rooted<EqRef>>`               |
1435    /// | `(ref eq)`                                | `Rooted<EqRef>`                       |
1436    /// | `i31ref` aka `(ref null i31)`             | `Option<I31>`                         |
1437    /// | `(ref i31)`                               | `I31`                                 |
1438    /// | `structref` aka `(ref null struct)`       | `Option<Rooted<StructRef>>`           |
1439    /// | `(ref struct)`                            | `Rooted<StructRef>`                   |
1440    /// | `arrayref` aka `(ref null array)`         | `Option<Rooted<ArrayRef>>`            |
1441    /// | `(ref array)`                             | `Rooted<ArrayRef>`                    |
1442    /// | `nullref` aka `(ref null none)`           | `Option<NoneRef>`                     |
1443    /// | `(ref none)`                              | `NoneRef`                             |
1444    /// | `funcref` aka `(ref null func)`           | `Option<Func>`                        |
1445    /// | `(ref func)`                              | `Func`                                |
1446    /// | `(ref null <func type index>)`            | `Option<Func>`                        |
1447    /// | `(ref <func type index>)`                 | `Func`                                |
1448    /// | `nullfuncref` aka `(ref null nofunc)`     | `Option<NoFunc>`                      |
1449    /// | `(ref nofunc)`                            | `NoFunc`                              |
1450    /// | `v128`                                    | `V128` on `x86-64` and `aarch64` only |
1451    ///
1452    /// (Note that this mapping is the same as that of [`Func::wrap`], and that
1453    /// anywhere a `Rooted<T>` appears, a `ManuallyRooted<T>` may also appear).
1454    ///
1455    /// Note that once the [`TypedFunc`] return value is acquired you'll use either
1456    /// [`TypedFunc::call`] or [`TypedFunc::call_async`] as necessary to actually invoke
1457    /// the function. This method does not invoke any WebAssembly code, it
1458    /// simply performs a typecheck before returning the [`TypedFunc`] value.
1459    ///
1460    /// This method also has a convenience wrapper as
1461    /// [`Instance::get_typed_func`](crate::Instance::get_typed_func) to
1462    /// directly get a typed function value from an
1463    /// [`Instance`](crate::Instance).
1464    ///
1465    /// ## Subtyping
1466    ///
1467    /// For result types, you can always use a supertype of the WebAssembly
1468    /// function's actual declared result type. For example, if the WebAssembly
1469    /// function was declared with type `(func (result nullfuncref))` you could
1470    /// successfully call `f.typed::<(), Option<Func>>()` because `Option<Func>`
1471    /// corresponds to `funcref`, which is a supertype of `nullfuncref`.
1472    ///
1473    /// For parameter types, you can always use a subtype of the WebAssembly
1474    /// function's actual declared parameter type. For example, if the
1475    /// WebAssembly function was declared with type `(func (param (ref null
1476    /// func)))` you could successfully call `f.typed::<Func, ()>()` because
1477    /// `Func` corresponds to `(ref func)`, which is a subtype of `(ref null
1478    /// func)`.
1479    ///
1480    /// Additionally, for functions which take a reference to a concrete type as
1481    /// a parameter, you can also use the concrete type's supertype. Consider a
1482    /// WebAssembly function that takes a reference to a function with a
1483    /// concrete type: `(ref null <func type index>)`. In this scenario, there
1484    /// is no static `wasmtime::Foo` Rust type that corresponds to that
1485    /// particular Wasm-defined concrete reference type because Wasm modules are
1486    /// loaded dynamically at runtime. You *could* do `f.typed::<Option<NoFunc>,
1487    /// ()>()`, and while that is correctly typed and valid, it is often overly
1488    /// restrictive. The only value you could call the resulting typed function
1489    /// with is the null function reference, but we'd like to call it with
1490    /// non-null function references that happen to be of the correct
1491    /// type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
1492    /// case, even though `Option<Func>` represents `(ref null func)` which is
1493    /// the supertype, not subtype, of `(ref null <func type index>)`. This does
1494    /// imply some minimal dynamic type checks in this case, but it is supported
1495    /// for better ergonomics, to enable passing non-null references into the
1496    /// function.
1497    ///
1498    /// # Errors
1499    ///
1500    /// This function will return an error if `Params` or `Results` does not
1501    /// match the native type of this WebAssembly function.
1502    ///
1503    /// # Panics
1504    ///
1505    /// This method will panic if `store` does not own this function.
1506    ///
1507    /// # Examples
1508    ///
1509    /// An end-to-end example of calling a function which takes no parameters
1510    /// and has no results:
1511    ///
1512    /// ```
1513    /// # use wasmtime::*;
1514    /// # fn main() -> anyhow::Result<()> {
1515    /// let engine = Engine::default();
1516    /// let mut store = Store::new(&engine, ());
1517    /// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
1518    /// let instance = Instance::new(&mut store, &module, &[])?;
1519    /// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
1520    ///
1521    /// // Note that this call can fail due to the typecheck not passing, but
1522    /// // in our case we statically know the module so we know this should
1523    /// // pass.
1524    /// let typed = foo.typed::<(), ()>(&store)?;
1525    ///
1526    /// // Note that this can fail if the wasm traps at runtime.
1527    /// typed.call(&mut store, ())?;
1528    /// # Ok(())
1529    /// # }
1530    /// ```
1531    ///
1532    /// You can also pass in multiple parameters and get a result back
1533    ///
1534    /// ```
1535    /// # use wasmtime::*;
1536    /// # fn foo(add: &Func, mut store: Store<()>) -> anyhow::Result<()> {
1537    /// let typed = add.typed::<(i32, i64), f32>(&store)?;
1538    /// assert_eq!(typed.call(&mut store, (1, 2))?, 3.0);
1539    /// # Ok(())
1540    /// # }
1541    /// ```
1542    ///
1543    /// and similarly if a function has multiple results you can bind that too
1544    ///
1545    /// ```
1546    /// # use wasmtime::*;
1547    /// # fn foo(add_with_overflow: &Func, mut store: Store<()>) -> anyhow::Result<()> {
1548    /// let typed = add_with_overflow.typed::<(u32, u32), (u32, i32)>(&store)?;
1549    /// let (result, overflow) = typed.call(&mut store, (u32::max_value(), 2))?;
1550    /// assert_eq!(result, 1);
1551    /// assert_eq!(overflow, 1);
1552    /// # Ok(())
1553    /// # }
1554    /// ```
1555    pub fn typed<Params, Results>(
1556        &self,
1557        store: impl AsContext,
1558    ) -> Result<TypedFunc<Params, Results>>
1559    where
1560        Params: WasmParams,
1561        Results: WasmResults,
1562    {
1563        // Type-check that the params/results are all valid
1564        let store = store.as_context().0;
1565        let ty = self.load_ty(store);
1566        Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
1567            .context("type mismatch with parameters")?;
1568        Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
1569            .context("type mismatch with results")?;
1570
1571        // and then we can construct the typed version of this function
1572        // (unsafely), which should be safe since we just did the type check above.
1573        unsafe { Ok(TypedFunc::_new_unchecked(store, *self)) }
1574    }
1575
1576    /// Get a stable hash key for this function.
1577    ///
1578    /// Even if the same underlying function is added to the `StoreData`
1579    /// multiple times and becomes multiple `wasmtime::Func`s, this hash key
1580    /// will be consistent across all of these functions.
1581    #[allow(dead_code)] // Not used yet, but added for consistency.
1582    pub(crate) fn hash_key(&self, store: &mut StoreOpaque) -> impl core::hash::Hash + Eq + use<> {
1583        self.vm_func_ref(store).as_ptr() as usize
1584    }
1585}
1586
1587/// Prepares for entrance into WebAssembly.
1588///
1589/// This function will set up context such that `closure` is allowed to call a
1590/// raw trampoline or a raw WebAssembly function. This *must* be called to do
1591/// things like catch traps and set up GC properly.
1592///
1593/// The `closure` provided receives a default "caller" `VMContext` parameter it
1594/// can pass to the called wasm function, if desired.
1595pub(crate) fn invoke_wasm_and_catch_traps<T>(
1596    store: &mut StoreContextMut<'_, T>,
1597    closure: impl FnMut(NonNull<VMContext>, Option<InterpreterRef<'_>>) -> bool,
1598) -> Result<()> {
1599    unsafe {
1600        let exit = enter_wasm(store);
1601
1602        if let Err(trap) = store.0.call_hook(CallHook::CallingWasm) {
1603            exit_wasm(store, exit);
1604            return Err(trap);
1605        }
1606        let result = crate::runtime::vm::catch_traps(store, closure);
1607        exit_wasm(store, exit);
1608        store.0.call_hook(CallHook::ReturningFromWasm)?;
1609        result.map_err(|t| crate::trap::from_runtime_box(store.0, t))
1610    }
1611}
1612
1613/// This function is called to register state within `Store` whenever
1614/// WebAssembly is entered within the `Store`.
1615///
1616/// This function sets up various limits such as:
1617///
1618/// * The stack limit. This is what ensures that we limit the stack space
1619///   allocated by WebAssembly code and it's relative to the initial stack
1620///   pointer that called into wasm.
1621///
1622/// This function may fail if the stack limit can't be set because an
1623/// interrupt already happened.
1624fn enter_wasm<T>(store: &mut StoreContextMut<'_, T>) -> Option<usize> {
1625    // If this is a recursive call, e.g. our stack limit is already set, then
1626    // we may be able to skip this function.
1627    //
1628    // For synchronous stores there's nothing else to do because all wasm calls
1629    // happen synchronously and on the same stack. This means that the previous
1630    // stack limit will suffice for the next recursive call.
1631    //
1632    // For asynchronous stores then each call happens on a separate native
1633    // stack. This means that the previous stack limit is no longer relevant
1634    // because we're on a separate stack.
1635    if unsafe { *store.0.runtime_limits().stack_limit.get() } != usize::MAX
1636        && !store.0.async_support()
1637    {
1638        return None;
1639    }
1640
1641    // Ignore this stack pointer business on miri since we can't execute wasm
1642    // anyway and the concept of a stack pointer on miri is a bit nebulous
1643    // regardless.
1644    if cfg!(miri) {
1645        return None;
1646    }
1647
1648    // When Cranelift has support for the host then we might be running native
1649    // compiled code meaning we need to read the actual stack pointer. If
1650    // Cranelift can't be used though then we're guaranteed to be running pulley
1651    // in which case this stack pointer isn't actually used as Pulley has custom
1652    // mechanisms for stack overflow.
1653    #[cfg(has_host_compiler_backend)]
1654    let stack_pointer = crate::runtime::vm::get_stack_pointer();
1655    #[cfg(not(has_host_compiler_backend))]
1656    let stack_pointer = {
1657        use wasmtime_environ::TripleExt;
1658        debug_assert!(store.engine().target().is_pulley());
1659        usize::MAX
1660    };
1661
1662    // Determine the stack pointer where, after which, any wasm code will
1663    // immediately trap. This is checked on the entry to all wasm functions.
1664    //
1665    // Note that this isn't 100% precise. We are requested to give wasm
1666    // `max_wasm_stack` bytes, but what we're actually doing is giving wasm
1667    // probably a little less than `max_wasm_stack` because we're
1668    // calculating the limit relative to this function's approximate stack
1669    // pointer. Wasm will be executed on a frame beneath this one (or next
1670    // to it). In any case it's expected to be at most a few hundred bytes
1671    // of slop one way or another. When wasm is typically given a MB or so
1672    // (a million bytes) the slop shouldn't matter too much.
1673    //
1674    // After we've got the stack limit then we store it into the `stack_limit`
1675    // variable.
1676    let wasm_stack_limit = stack_pointer - store.engine().config().max_wasm_stack;
1677    let prev_stack = unsafe {
1678        mem::replace(
1679            &mut *store.0.runtime_limits().stack_limit.get(),
1680            wasm_stack_limit,
1681        )
1682    };
1683
1684    Some(prev_stack)
1685}
1686
1687fn exit_wasm<T>(store: &mut StoreContextMut<'_, T>, prev_stack: Option<usize>) {
1688    // If we don't have a previous stack pointer to restore, then there's no
1689    // cleanup we need to perform here.
1690    let prev_stack = match prev_stack {
1691        Some(stack) => stack,
1692        None => return,
1693    };
1694
1695    unsafe {
1696        *store.0.runtime_limits().stack_limit.get() = prev_stack;
1697    }
1698}
1699
1700/// A trait implemented for types which can be returned from closures passed to
1701/// [`Func::wrap`] and friends.
1702///
1703/// This trait should not be implemented by user types. This trait may change at
1704/// any time internally. The types which implement this trait, however, are
1705/// stable over time.
1706///
1707/// For more information see [`Func::wrap`]
1708pub unsafe trait WasmRet {
1709    // Same as `WasmTy::compatible_with_store`.
1710    #[doc(hidden)]
1711    fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
1712
1713    /// Stores this return value into the `ptr` specified using the rooted
1714    /// `store`.
1715    ///
1716    /// Traps are communicated through the `Result<_>` return value.
1717    ///
1718    /// # Unsafety
1719    ///
1720    /// This method is unsafe as `ptr` must have the correct length to store
1721    /// this result. This property is only checked in debug mode, not in release
1722    /// mode.
1723    #[doc(hidden)]
1724    unsafe fn store(
1725        self,
1726        store: &mut AutoAssertNoGc<'_>,
1727        ptr: &mut [MaybeUninit<ValRaw>],
1728    ) -> Result<()>;
1729
1730    #[doc(hidden)]
1731    fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType;
1732    #[doc(hidden)]
1733    fn may_gc() -> bool;
1734
1735    // Utilities used to convert an instance of this type to a `Result`
1736    // explicitly, used when wrapping async functions which always bottom-out
1737    // in a function that returns a trap because futures can be cancelled.
1738    #[doc(hidden)]
1739    type Fallible: WasmRet;
1740    #[doc(hidden)]
1741    fn into_fallible(self) -> Self::Fallible;
1742    #[doc(hidden)]
1743    fn fallible_from_error(error: Error) -> Self::Fallible;
1744}
1745
1746unsafe impl<T> WasmRet for T
1747where
1748    T: WasmTy,
1749{
1750    type Fallible = Result<T>;
1751
1752    fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1753        <Self as WasmTy>::compatible_with_store(self, store)
1754    }
1755
1756    unsafe fn store(
1757        self,
1758        store: &mut AutoAssertNoGc<'_>,
1759        ptr: &mut [MaybeUninit<ValRaw>],
1760    ) -> Result<()> {
1761        debug_assert!(ptr.len() > 0);
1762        <Self as WasmTy>::store(self, store, ptr.get_unchecked_mut(0))
1763    }
1764
1765    fn may_gc() -> bool {
1766        T::may_gc()
1767    }
1768
1769    fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1770        FuncType::new(engine, params, Some(<Self as WasmTy>::valtype()))
1771    }
1772
1773    fn into_fallible(self) -> Result<T> {
1774        Ok(self)
1775    }
1776
1777    fn fallible_from_error(error: Error) -> Result<T> {
1778        Err(error)
1779    }
1780}
1781
1782unsafe impl<T> WasmRet for Result<T>
1783where
1784    T: WasmRet,
1785{
1786    type Fallible = Self;
1787
1788    fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1789        match self {
1790            Ok(x) => <T as WasmRet>::compatible_with_store(x, store),
1791            Err(_) => true,
1792        }
1793    }
1794
1795    unsafe fn store(
1796        self,
1797        store: &mut AutoAssertNoGc<'_>,
1798        ptr: &mut [MaybeUninit<ValRaw>],
1799    ) -> Result<()> {
1800        self.and_then(|val| val.store(store, ptr))
1801    }
1802
1803    fn may_gc() -> bool {
1804        T::may_gc()
1805    }
1806
1807    fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1808        T::func_type(engine, params)
1809    }
1810
1811    fn into_fallible(self) -> Result<T> {
1812        self
1813    }
1814
1815    fn fallible_from_error(error: Error) -> Result<T> {
1816        Err(error)
1817    }
1818}
1819
1820macro_rules! impl_wasm_host_results {
1821    ($n:tt $($t:ident)*) => (
1822        #[allow(non_snake_case)]
1823        unsafe impl<$($t),*> WasmRet for ($($t,)*)
1824        where
1825            $($t: WasmTy,)*
1826        {
1827            type Fallible = Result<Self>;
1828
1829            #[inline]
1830            fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
1831                let ($($t,)*) = self;
1832                $( $t.compatible_with_store(_store) && )* true
1833            }
1834
1835            #[inline]
1836            unsafe fn store(
1837                self,
1838                _store: &mut AutoAssertNoGc<'_>,
1839                _ptr: &mut [MaybeUninit<ValRaw>],
1840            ) -> Result<()> {
1841                let ($($t,)*) = self;
1842                let mut _cur = 0;
1843                $(
1844                    debug_assert!(_cur < _ptr.len());
1845                    let val = _ptr.get_unchecked_mut(_cur);
1846                    _cur += 1;
1847                    WasmTy::store($t, _store, val)?;
1848                )*
1849                Ok(())
1850            }
1851
1852            #[doc(hidden)]
1853            fn may_gc() -> bool {
1854                $( $t::may_gc() || )* false
1855            }
1856
1857            fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
1858                FuncType::new(
1859                    engine,
1860                    params,
1861                    IntoIterator::into_iter([$($t::valtype(),)*]),
1862                )
1863            }
1864
1865            #[inline]
1866            fn into_fallible(self) -> Result<Self> {
1867                Ok(self)
1868            }
1869
1870            #[inline]
1871            fn fallible_from_error(error: Error) -> Result<Self> {
1872                Err(error)
1873            }
1874        }
1875    )
1876}
1877
1878for_each_function_signature!(impl_wasm_host_results);
1879
1880/// Internal trait implemented for all arguments that can be passed to
1881/// [`Func::wrap`] and [`Linker::func_wrap`](crate::Linker::func_wrap).
1882///
1883/// This trait should not be implemented by external users, it's only intended
1884/// as an implementation detail of this crate.
1885pub trait IntoFunc<T, Params, Results>: Send + Sync + 'static {
1886    /// Convert this function into a `VM{Array,Native}CallHostFuncContext` and
1887    /// internal `VMFuncRef`.
1888    #[doc(hidden)]
1889    fn into_func(self, engine: &Engine) -> HostContext;
1890}
1891
1892macro_rules! impl_into_func {
1893    ($num:tt $arg:ident) => {
1894        // Implement for functions without a leading `&Caller` parameter,
1895        // delegating to the implementation below which does have the leading
1896        // `Caller` parameter.
1897        #[allow(non_snake_case)]
1898        impl<T, F, $arg, R> IntoFunc<T, $arg, R> for F
1899        where
1900            F: Fn($arg) -> R + Send + Sync + 'static,
1901            $arg: WasmTy,
1902            R: WasmRet,
1903        {
1904            fn into_func(self, engine: &Engine) -> HostContext {
1905                let f = move |_: Caller<'_, T>, $arg: $arg| {
1906                    self($arg)
1907                };
1908
1909                f.into_func(engine)
1910            }
1911        }
1912
1913        #[allow(non_snake_case)]
1914        impl<T, F, $arg, R> IntoFunc<T, (Caller<'_, T>, $arg), R> for F
1915        where
1916            F: Fn(Caller<'_, T>, $arg) -> R + Send + Sync + 'static,
1917            $arg: WasmTy,
1918            R: WasmRet,
1919        {
1920            fn into_func(self, engine: &Engine) -> HostContext {
1921                HostContext::from_closure(engine, move |caller: Caller<'_, T>, ($arg,)| {
1922                    self(caller, $arg)
1923                })
1924            }
1925        }
1926    };
1927    ($num:tt $($args:ident)*) => {
1928        // Implement for functions without a leading `&Caller` parameter,
1929        // delegating to the implementation below which does have the leading
1930        // `Caller` parameter.
1931        #[allow(non_snake_case)]
1932        impl<T, F, $($args,)* R> IntoFunc<T, ($($args,)*), R> for F
1933        where
1934            F: Fn($($args),*) -> R + Send + Sync + 'static,
1935            $($args: WasmTy,)*
1936            R: WasmRet,
1937        {
1938            fn into_func(self, engine: &Engine) -> HostContext {
1939                let f = move |_: Caller<'_, T>, $($args:$args),*| {
1940                    self($($args),*)
1941                };
1942
1943                f.into_func(engine)
1944            }
1945        }
1946
1947        #[allow(non_snake_case)]
1948        impl<T, F, $($args,)* R> IntoFunc<T, (Caller<'_, T>, $($args,)*), R> for F
1949        where
1950            F: Fn(Caller<'_, T>, $($args),*) -> R + Send + Sync + 'static,
1951            $($args: WasmTy,)*
1952            R: WasmRet,
1953        {
1954            fn into_func(self, engine: &Engine) -> HostContext {
1955                HostContext::from_closure(engine, move |caller: Caller<'_, T>, ( $( $args ),* )| {
1956                    self(caller, $( $args ),* )
1957                })
1958            }
1959        }
1960    }
1961}
1962
1963for_each_function_signature!(impl_into_func);
1964
1965/// Trait implemented for various tuples made up of types which implement
1966/// [`WasmTy`] that can be passed to [`Func::wrap_inner`] and
1967/// [`HostContext::from_closure`].
1968pub unsafe trait WasmTyList {
1969    /// Get the value type that each Type in the list represents.
1970    fn valtypes() -> impl Iterator<Item = ValType>;
1971
1972    // Load a version of `Self` from the `values` provided.
1973    //
1974    // # Safety
1975    //
1976    // This function is unsafe as it's up to the caller to ensure that `values` are
1977    // valid for this given type.
1978    #[doc(hidden)]
1979    unsafe fn load(store: &mut AutoAssertNoGc<'_>, values: &mut [MaybeUninit<ValRaw>]) -> Self;
1980
1981    #[doc(hidden)]
1982    fn may_gc() -> bool;
1983}
1984
1985macro_rules! impl_wasm_ty_list {
1986    ($num:tt $($args:ident)*) => (paste::paste!{
1987        #[allow(non_snake_case)]
1988        unsafe impl<$($args),*> WasmTyList for ($($args,)*)
1989        where
1990            $($args: WasmTy,)*
1991        {
1992            fn valtypes() -> impl Iterator<Item = ValType> {
1993                IntoIterator::into_iter([$($args::valtype(),)*])
1994            }
1995
1996            unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _values: &mut [MaybeUninit<ValRaw>]) -> Self {
1997                let mut _cur = 0;
1998                ($({
1999                    debug_assert!(_cur < _values.len());
2000                    let ptr = _values.get_unchecked(_cur).assume_init_ref();
2001                    _cur += 1;
2002                    $args::load(_store, ptr)
2003                },)*)
2004            }
2005
2006            fn may_gc() -> bool {
2007                $( $args::may_gc() || )* false
2008            }
2009        }
2010    });
2011}
2012
2013for_each_function_signature!(impl_wasm_ty_list);
2014
2015/// A structure representing the caller's context when creating a function
2016/// via [`Func::wrap`].
2017///
2018/// This structure can be taken as the first parameter of a closure passed to
2019/// [`Func::wrap`] or other constructors, and serves two purposes:
2020///
2021/// * First consumers can use [`Caller<'_, T>`](crate::Caller) to get access to
2022///   [`StoreContextMut<'_, T>`](crate::StoreContextMut) and/or get access to
2023///   `T` itself. This means that the [`Caller`] type can serve as a proxy to
2024///   the original [`Store`](crate::Store) itself and is used to satisfy
2025///   [`AsContext`] and [`AsContextMut`] bounds.
2026///
2027/// * Second a [`Caller`] can be used as the name implies, learning about the
2028///   caller's context, namely it's exported memory and exported functions. This
2029///   allows functions which take pointers as arguments to easily read the
2030///   memory the pointers point into, or if a function is expected to call
2031///   malloc in the wasm module to reserve space for the output you can do that.
2032///
2033/// Host functions which want access to [`Store`](crate::Store)-level state are
2034/// recommended to use this type.
2035pub struct Caller<'a, T> {
2036    pub(crate) store: StoreContextMut<'a, T>,
2037    caller: &'a crate::runtime::vm::Instance,
2038}
2039
2040impl<T> Caller<'_, T> {
2041    unsafe fn with<F, R>(caller: NonNull<VMContext>, f: F) -> R
2042    where
2043        // The closure must be valid for any `Caller` it is given; it doesn't
2044        // get to choose the `Caller`'s lifetime.
2045        F: for<'a> FnOnce(Caller<'a, T>) -> R,
2046        // And the return value must not borrow from the caller/store.
2047        R: 'static,
2048    {
2049        crate::runtime::vm::InstanceAndStore::from_vmctx(caller, |pair| {
2050            let (instance, mut store) = pair.unpack_context_mut::<T>();
2051
2052            let (gc_lifo_scope, ret) = {
2053                let gc_lifo_scope = store.0.gc_roots().enter_lifo_scope();
2054
2055                let ret = f(Caller {
2056                    store: store.as_context_mut(),
2057                    caller: &instance,
2058                });
2059
2060                (gc_lifo_scope, ret)
2061            };
2062
2063            // Safe to recreate a mutable borrow of the store because `ret`
2064            // cannot be borrowing from the store.
2065            store.0.exit_gc_lifo_scope(gc_lifo_scope);
2066
2067            ret
2068        })
2069    }
2070
2071    fn sub_caller(&mut self) -> Caller<'_, T> {
2072        Caller {
2073            store: self.store.as_context_mut(),
2074            caller: self.caller,
2075        }
2076    }
2077
2078    /// Looks up an export from the caller's module by the `name` given.
2079    ///
2080    /// This is a low-level function that's typically used to implement passing
2081    /// of pointers or indices between core Wasm instances, where the callee
2082    /// needs to consult the caller's exports to perform memory management and
2083    /// resolve the references.
2084    ///
2085    /// For comparison, in components, the component model handles translating
2086    /// arguments from one component instance to another and managing memory, so
2087    /// that callees don't need to be aware of their callers, which promotes
2088    /// virtualizability of APIs.
2089    ///
2090    /// # Return
2091    ///
2092    /// If an export with the `name` provided was found, then it is returned as an
2093    /// `Extern`. There are a number of situations, however, where the export may not
2094    /// be available:
2095    ///
2096    /// * The caller instance may not have an export named `name`
2097    /// * There may not be a caller available, for example if `Func` was called
2098    ///   directly from host code.
2099    ///
2100    /// It's recommended to take care when calling this API and gracefully
2101    /// handling a `None` return value.
2102    pub fn get_export(&mut self, name: &str) -> Option<Extern> {
2103        // All instances created have a `host_state` with a pointer pointing
2104        // back to themselves. If this caller doesn't have that `host_state`
2105        // then it probably means it was a host-created object like `Func::new`
2106        // which doesn't have any exports we want to return anyway.
2107        self.caller
2108            .host_state()
2109            .downcast_ref::<Instance>()?
2110            .get_export(&mut self.store, name)
2111    }
2112
2113    /// Looks up an exported [`Extern`] value by a [`ModuleExport`] value.
2114    ///
2115    /// This is similar to [`Self::get_export`] but uses a [`ModuleExport`] value to avoid
2116    /// string lookups where possible. [`ModuleExport`]s can be obtained by calling
2117    /// [`Module::get_export_index`] on the [`Module`] that an instance was instantiated with.
2118    ///
2119    /// This method will search the module for an export with a matching entity index and return
2120    /// the value, if found.
2121    ///
2122    /// Returns `None` if there was no export with a matching entity index.
2123    /// # Panics
2124    ///
2125    /// Panics if `store` does not own this instance.
2126    ///
2127    /// # Usage
2128    /// ```
2129    /// use std::str;
2130    ///
2131    /// # use wasmtime::*;
2132    /// # fn main() -> anyhow::Result<()> {
2133    /// # let mut store = Store::default();
2134    ///
2135    /// let module = Module::new(
2136    ///     store.engine(),
2137    ///     r#"
2138    ///         (module
2139    ///             (import "" "" (func $log_str (param i32 i32)))
2140    ///             (func (export "foo")
2141    ///                 i32.const 4   ;; ptr
2142    ///                 i32.const 13  ;; len
2143    ///                 call $log_str)
2144    ///             (memory (export "memory") 1)
2145    ///             (data (i32.const 4) "Hello, world!"))
2146    ///     "#,
2147    /// )?;
2148    ///
2149    /// let Some(module_export) = module.get_export_index("memory") else {
2150    ///    anyhow::bail!("failed to find `memory` export in module");
2151    /// };
2152    ///
2153    /// let log_str = Func::wrap(&mut store, move |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
2154    ///     let mem = match caller.get_module_export(&module_export) {
2155    ///         Some(Extern::Memory(mem)) => mem,
2156    ///         _ => anyhow::bail!("failed to find host memory"),
2157    ///     };
2158    ///     let data = mem.data(&caller)
2159    ///         .get(ptr as u32 as usize..)
2160    ///         .and_then(|arr| arr.get(..len as u32 as usize));
2161    ///     let string = match data {
2162    ///         Some(data) => match str::from_utf8(data) {
2163    ///             Ok(s) => s,
2164    ///             Err(_) => anyhow::bail!("invalid utf-8"),
2165    ///         },
2166    ///         None => anyhow::bail!("pointer/length out of bounds"),
2167    ///     };
2168    ///     assert_eq!(string, "Hello, world!");
2169    ///     println!("{}", string);
2170    ///     Ok(())
2171    /// });
2172    /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
2173    /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
2174    /// foo.call(&mut store, ())?;
2175    /// # Ok(())
2176    /// # }
2177    /// ```
2178    pub fn get_module_export(&mut self, export: &ModuleExport) -> Option<Extern> {
2179        self.caller
2180            .host_state()
2181            .downcast_ref::<Instance>()?
2182            .get_module_export(&mut self.store, export)
2183    }
2184
2185    /// Access the underlying data owned by this `Store`.
2186    ///
2187    /// Same as [`Store::data`](crate::Store::data)
2188    pub fn data(&self) -> &T {
2189        self.store.data()
2190    }
2191
2192    /// Access the underlying data owned by this `Store`.
2193    ///
2194    /// Same as [`Store::data_mut`](crate::Store::data_mut)
2195    pub fn data_mut(&mut self) -> &mut T {
2196        self.store.data_mut()
2197    }
2198
2199    /// Returns the underlying [`Engine`] this store is connected to.
2200    pub fn engine(&self) -> &Engine {
2201        self.store.engine()
2202    }
2203
2204    /// Perform garbage collection.
2205    ///
2206    /// Same as [`Store::gc`](crate::Store::gc).
2207    #[cfg(feature = "gc")]
2208    pub fn gc(&mut self) {
2209        self.store.gc()
2210    }
2211
2212    /// Perform garbage collection asynchronously.
2213    ///
2214    /// Same as [`Store::gc_async`](crate::Store::gc_async).
2215    #[cfg(all(feature = "async", feature = "gc"))]
2216    pub async fn gc_async(&mut self)
2217    where
2218        T: Send,
2219    {
2220        self.store.gc_async().await;
2221    }
2222
2223    /// Returns the remaining fuel in the store.
2224    ///
2225    /// For more information see [`Store::get_fuel`](crate::Store::get_fuel)
2226    pub fn get_fuel(&self) -> Result<u64> {
2227        self.store.get_fuel()
2228    }
2229
2230    /// Set the amount of fuel in this store to be consumed when executing wasm code.
2231    ///
2232    /// For more information see [`Store::set_fuel`](crate::Store::set_fuel)
2233    pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
2234        self.store.set_fuel(fuel)
2235    }
2236
2237    /// Configures this `Store` to yield while executing futures every N units of fuel.
2238    ///
2239    /// For more information see
2240    /// [`Store::fuel_async_yield_interval`](crate::Store::fuel_async_yield_interval)
2241    pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
2242        self.store.fuel_async_yield_interval(interval)
2243    }
2244}
2245
2246impl<T> AsContext for Caller<'_, T> {
2247    type Data = T;
2248    fn as_context(&self) -> StoreContext<'_, T> {
2249        self.store.as_context()
2250    }
2251}
2252
2253impl<T> AsContextMut for Caller<'_, T> {
2254    fn as_context_mut(&mut self) -> StoreContextMut<'_, T> {
2255        self.store.as_context_mut()
2256    }
2257}
2258
2259// State stored inside a `VMArrayCallHostFuncContext`.
2260struct HostFuncState<F> {
2261    // The actual host function.
2262    func: F,
2263
2264    // NB: We have to keep our `VMSharedTypeIndex` registered in the engine for
2265    // as long as this function exists.
2266    #[allow(dead_code)]
2267    ty: RegisteredType,
2268}
2269
2270#[doc(hidden)]
2271pub enum HostContext {
2272    Array(StoreBox<VMArrayCallHostFuncContext>),
2273}
2274
2275impl From<StoreBox<VMArrayCallHostFuncContext>> for HostContext {
2276    fn from(ctx: StoreBox<VMArrayCallHostFuncContext>) -> Self {
2277        HostContext::Array(ctx)
2278    }
2279}
2280
2281impl HostContext {
2282    fn from_closure<F, T, P, R>(engine: &Engine, func: F) -> Self
2283    where
2284        F: Fn(Caller<'_, T>, P) -> R + Send + Sync + 'static,
2285        P: WasmTyList,
2286        R: WasmRet,
2287    {
2288        let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()));
2289        let type_index = ty.type_index();
2290
2291        let array_call = Self::array_call_trampoline::<T, F, P, R>;
2292
2293        let ctx = unsafe {
2294            VMArrayCallHostFuncContext::new(
2295                array_call,
2296                type_index,
2297                Box::new(HostFuncState {
2298                    func,
2299                    ty: ty.into_registered_type(),
2300                }),
2301            )
2302        };
2303
2304        ctx.into()
2305    }
2306
2307    unsafe extern "C" fn array_call_trampoline<T, F, P, R>(
2308        callee_vmctx: NonNull<VMOpaqueContext>,
2309        caller_vmctx: NonNull<VMOpaqueContext>,
2310        args: NonNull<ValRaw>,
2311        args_len: usize,
2312    ) -> bool
2313    where
2314        F: Fn(Caller<'_, T>, P) -> R + 'static,
2315        P: WasmTyList,
2316        R: WasmRet,
2317    {
2318        // Note that this function is intentionally scoped into a
2319        // separate closure. Handling traps and panics will involve
2320        // longjmp-ing from this function which means we won't run
2321        // destructors. As a result anything requiring a destructor
2322        // should be part of this closure, and the long-jmp-ing
2323        // happens after the closure in handling the result.
2324        let run = move |mut caller: Caller<'_, T>| {
2325            let mut args =
2326                NonNull::slice_from_raw_parts(args.cast::<MaybeUninit<ValRaw>>(), args_len);
2327            let vmctx = VMArrayCallHostFuncContext::from_opaque(callee_vmctx);
2328            let state = vmctx.as_ref().host_state();
2329
2330            // Double-check ourselves in debug mode, but we control
2331            // the `Any` here so an unsafe downcast should also
2332            // work.
2333            debug_assert!(state.is::<HostFuncState<F>>());
2334            let state = &*(state as *const _ as *const HostFuncState<F>);
2335            let func = &state.func;
2336
2337            let ret = 'ret: {
2338                if let Err(trap) = caller.store.0.call_hook(CallHook::CallingHost) {
2339                    break 'ret R::fallible_from_error(trap);
2340                }
2341
2342                let mut store = if P::may_gc() {
2343                    AutoAssertNoGc::new(caller.store.0)
2344                } else {
2345                    unsafe { AutoAssertNoGc::disabled(caller.store.0) }
2346                };
2347                let params = P::load(&mut store, args.as_mut());
2348                let _ = &mut store;
2349                drop(store);
2350
2351                let r = func(caller.sub_caller(), params);
2352                if let Err(trap) = caller.store.0.call_hook(CallHook::ReturningFromHost) {
2353                    break 'ret R::fallible_from_error(trap);
2354                }
2355                r.into_fallible()
2356            };
2357
2358            if !ret.compatible_with_store(caller.store.0) {
2359                bail!("host function attempted to return cross-`Store` value to Wasm")
2360            } else {
2361                let mut store = if R::may_gc() {
2362                    AutoAssertNoGc::new(caller.store.0)
2363                } else {
2364                    unsafe { AutoAssertNoGc::disabled(caller.store.0) }
2365                };
2366                let ret = ret.store(&mut store, args.as_mut())?;
2367                Ok(ret)
2368            }
2369        };
2370
2371        // With nothing else on the stack move `run` into this
2372        // closure and then run it as part of `Caller::with`.
2373        crate::runtime::vm::catch_unwind_and_record_trap(move || {
2374            let caller_vmctx = VMContext::from_opaque(caller_vmctx);
2375            Caller::with(caller_vmctx, run)
2376        })
2377    }
2378}
2379
2380/// Representation of a host-defined function.
2381///
2382/// This is used for `Func::new` but also for `Linker`-defined functions. For
2383/// `Func::new` this is stored within a `Store`, and for `Linker`-defined
2384/// functions they wrap this up in `Arc` to enable shared ownership of this
2385/// across many stores.
2386///
2387/// Technically this structure needs a `<T>` type parameter to connect to the
2388/// `Store<T>` itself, but that's an unsafe contract of using this for now
2389/// rather than part of the struct type (to avoid `Func<T>` in the API).
2390pub(crate) struct HostFunc {
2391    ctx: HostContext,
2392
2393    // Stored to unregister this function's signature with the engine when this
2394    // is dropped.
2395    engine: Engine,
2396}
2397
2398impl core::fmt::Debug for HostFunc {
2399    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
2400        f.debug_struct("HostFunc").finish_non_exhaustive()
2401    }
2402}
2403
2404impl HostFunc {
2405    /// Analog of [`Func::new`]
2406    ///
2407    /// # Panics
2408    ///
2409    /// Panics if the given function type is not associated with the given
2410    /// engine.
2411    pub fn new<T>(
2412        engine: &Engine,
2413        ty: FuncType,
2414        func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
2415    ) -> Self {
2416        assert!(ty.comes_from_same_engine(engine));
2417        let ty_clone = ty.clone();
2418        unsafe {
2419            HostFunc::new_unchecked(engine, ty, move |caller, values| {
2420                Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
2421            })
2422        }
2423    }
2424
2425    /// Analog of [`Func::new_unchecked`]
2426    ///
2427    /// # Panics
2428    ///
2429    /// Panics if the given function type is not associated with the given
2430    /// engine.
2431    pub unsafe fn new_unchecked<T>(
2432        engine: &Engine,
2433        ty: FuncType,
2434        func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
2435    ) -> Self {
2436        assert!(ty.comes_from_same_engine(engine));
2437        let func = move |caller_vmctx, values: &mut [ValRaw]| {
2438            Caller::<T>::with(caller_vmctx, |mut caller| {
2439                caller.store.0.call_hook(CallHook::CallingHost)?;
2440                let result = func(caller.sub_caller(), values)?;
2441                caller.store.0.call_hook(CallHook::ReturningFromHost)?;
2442                Ok(result)
2443            })
2444        };
2445        let ctx = crate::trampoline::create_array_call_function(&ty, func)
2446            .expect("failed to create function");
2447        HostFunc::_new(engine, ctx.into())
2448    }
2449
2450    /// Analog of [`Func::wrap_inner`]
2451    #[cfg(any(feature = "component-model", feature = "async"))]
2452    pub fn wrap_inner<F, T, Params, Results>(engine: &Engine, func: F) -> Self
2453    where
2454        F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
2455        Params: WasmTyList,
2456        Results: WasmRet,
2457    {
2458        let ctx = HostContext::from_closure(engine, func);
2459        HostFunc::_new(engine, ctx)
2460    }
2461
2462    /// Analog of [`Func::wrap`]
2463    pub fn wrap<T, Params, Results>(
2464        engine: &Engine,
2465        func: impl IntoFunc<T, Params, Results>,
2466    ) -> Self {
2467        let ctx = func.into_func(engine);
2468        HostFunc::_new(engine, ctx)
2469    }
2470
2471    /// Requires that this function's signature is already registered within
2472    /// `Engine`. This happens automatically during the above two constructors.
2473    fn _new(engine: &Engine, ctx: HostContext) -> Self {
2474        HostFunc {
2475            ctx,
2476            engine: engine.clone(),
2477        }
2478    }
2479
2480    /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2481    /// it.
2482    ///
2483    /// # Unsafety
2484    ///
2485    /// Can only be inserted into stores with a matching `T` relative to when
2486    /// this `HostFunc` was first created.
2487    pub unsafe fn to_func(self: &Arc<Self>, store: &mut StoreOpaque) -> Func {
2488        self.validate_store(store);
2489        let me = self.clone();
2490        Func::from_func_kind(FuncKind::SharedHost(me), store)
2491    }
2492
2493    /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2494    /// it.
2495    ///
2496    /// This function is similar to, but not equivalent, to `HostFunc::to_func`.
2497    /// Notably this function requires that the `Arc<Self>` pointer is otherwise
2498    /// rooted within the `StoreOpaque` via another means. When in doubt use
2499    /// `to_func` above as it's safer.
2500    ///
2501    /// # Unsafety
2502    ///
2503    /// Can only be inserted into stores with a matching `T` relative to when
2504    /// this `HostFunc` was first created.
2505    ///
2506    /// Additionally the `&Arc<Self>` is not cloned in this function. Instead a
2507    /// raw pointer to `Self` is stored within the `Store` for this function.
2508    /// The caller must arrange for the `Arc<Self>` to be "rooted" in the store
2509    /// provided via another means, probably by pushing to
2510    /// `StoreOpaque::rooted_host_funcs`.
2511    ///
2512    /// Similarly, the caller must arrange for `rooted_func_ref` to be rooted in
2513    /// the same store.
2514    pub unsafe fn to_func_store_rooted(
2515        self: &Arc<Self>,
2516        store: &mut StoreOpaque,
2517        rooted_func_ref: Option<NonNull<VMFuncRef>>,
2518    ) -> Func {
2519        self.validate_store(store);
2520
2521        if rooted_func_ref.is_some() {
2522            debug_assert!(self.func_ref().wasm_call.is_none());
2523            debug_assert!(matches!(self.ctx, HostContext::Array(_)));
2524        }
2525
2526        Func::from_func_kind(
2527            FuncKind::RootedHost(RootedHostFunc::new(self, rooted_func_ref)),
2528            store,
2529        )
2530    }
2531
2532    /// Same as [`HostFunc::to_func`], different ownership.
2533    unsafe fn into_func(self, store: &mut StoreOpaque) -> Func {
2534        self.validate_store(store);
2535        Func::from_func_kind(FuncKind::Host(Box::new(self)), store)
2536    }
2537
2538    fn validate_store(&self, store: &mut StoreOpaque) {
2539        // This assert is required to ensure that we can indeed safely insert
2540        // `self` into the `store` provided, otherwise the type information we
2541        // have listed won't be correct. This is possible to hit with the public
2542        // API of Wasmtime, and should be documented in relevant functions.
2543        assert!(
2544            Engine::same(&self.engine, store.engine()),
2545            "cannot use a store with a different engine than a linker was created with",
2546        );
2547    }
2548
2549    pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2550        self.func_ref().type_index
2551    }
2552
2553    pub(crate) fn func_ref(&self) -> &VMFuncRef {
2554        match &self.ctx {
2555            HostContext::Array(ctx) => unsafe { ctx.get().as_ref().func_ref() },
2556        }
2557    }
2558
2559    pub(crate) fn host_ctx(&self) -> &HostContext {
2560        &self.ctx
2561    }
2562
2563    fn export_func(&self) -> ExportFunction {
2564        ExportFunction {
2565            func_ref: NonNull::from(self.func_ref()),
2566        }
2567    }
2568}
2569
2570impl FuncData {
2571    #[inline]
2572    fn export(&self) -> ExportFunction {
2573        self.kind.export()
2574    }
2575
2576    pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2577        unsafe { self.export().func_ref.as_ref().type_index }
2578    }
2579}
2580
2581impl FuncKind {
2582    #[inline]
2583    fn export(&self) -> ExportFunction {
2584        match self {
2585            FuncKind::StoreOwned { export, .. } => *export,
2586            FuncKind::SharedHost(host) => host.export_func(),
2587            FuncKind::RootedHost(rooted) => ExportFunction {
2588                func_ref: NonNull::from(rooted.func_ref()),
2589            },
2590            FuncKind::Host(host) => host.export_func(),
2591        }
2592    }
2593}
2594
2595use self::rooted::*;
2596
2597/// An inner module is used here to force unsafe construction of
2598/// `RootedHostFunc` instead of accidentally safely allowing access to its
2599/// constructor.
2600mod rooted {
2601    use super::HostFunc;
2602    use crate::runtime::vm::{SendSyncPtr, VMFuncRef};
2603    use alloc::sync::Arc;
2604    use core::ptr::NonNull;
2605
2606    /// A variant of a pointer-to-a-host-function used in `FuncKind::RootedHost`
2607    /// above.
2608    ///
2609    /// For more documentation see `FuncKind::RootedHost`, `InstancePre`, and
2610    /// `HostFunc::to_func_store_rooted`.
2611    pub(crate) struct RootedHostFunc {
2612        func: SendSyncPtr<HostFunc>,
2613        func_ref: Option<SendSyncPtr<VMFuncRef>>,
2614    }
2615
2616    impl RootedHostFunc {
2617        /// Note that this is `unsafe` because this wrapper type allows safe
2618        /// access to the pointer given at any time, including outside the
2619        /// window of validity of `func`, so callers must not use the return
2620        /// value past the lifetime of the provided `func`.
2621        ///
2622        /// Similarly, callers must ensure that the given `func_ref` is valid
2623        /// for the lifetime of the return value.
2624        pub(crate) unsafe fn new(
2625            func: &Arc<HostFunc>,
2626            func_ref: Option<NonNull<VMFuncRef>>,
2627        ) -> RootedHostFunc {
2628            RootedHostFunc {
2629                func: NonNull::from(&**func).into(),
2630                func_ref: func_ref.map(|p| p.into()),
2631            }
2632        }
2633
2634        pub(crate) fn func(&self) -> &HostFunc {
2635            // Safety invariants are upheld by the `RootedHostFunc::new` caller.
2636            unsafe { self.func.as_ref() }
2637        }
2638
2639        pub(crate) fn func_ref(&self) -> &VMFuncRef {
2640            if let Some(f) = self.func_ref {
2641                // Safety invariants are upheld by the `RootedHostFunc::new` caller.
2642                unsafe { f.as_ref() }
2643            } else {
2644                self.func().func_ref()
2645            }
2646        }
2647    }
2648}
2649
2650#[cfg(test)]
2651mod tests {
2652    use super::*;
2653    use crate::Store;
2654
2655    #[test]
2656    fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
2657        let mut store = Store::<()>::default();
2658        let module = Module::new(
2659            store.engine(),
2660            r#"
2661                (module
2662                    (func (export "f")
2663                        nop
2664                    )
2665                )
2666            "#,
2667        )?;
2668        let instance = Instance::new(&mut store, &module, &[])?;
2669
2670        // Each time we `get_func`, we call `Func::from_wasmtime` which adds a
2671        // new entry to `StoreData`, so `f1` and `f2` will have different
2672        // indices into `StoreData`.
2673        let f1 = instance.get_func(&mut store, "f").unwrap();
2674        let f2 = instance.get_func(&mut store, "f").unwrap();
2675
2676        // But their hash keys are the same.
2677        assert!(
2678            f1.hash_key(&mut store.as_context_mut().0)
2679                == f2.hash_key(&mut store.as_context_mut().0)
2680        );
2681
2682        // But the hash keys are different from different funcs.
2683        let instance2 = Instance::new(&mut store, &module, &[])?;
2684        let f3 = instance2.get_func(&mut store, "f").unwrap();
2685        assert!(
2686            f1.hash_key(&mut store.as_context_mut().0)
2687                != f3.hash_key(&mut store.as_context_mut().0)
2688        );
2689
2690        Ok(())
2691    }
2692}