wasmtime/runtime/func.rs
1use crate::error::OutOfMemory;
2use crate::prelude::*;
3use crate::runtime::vm::{
4 self, InterpreterRef, SendSyncPtr, StoreBox, VMArrayCallHostFuncContext,
5 VMCommonStackInformation, VMContext, VMFuncRef, VMFunctionImport, VMOpaqueContext,
6 VMStoreContext,
7};
8use crate::store::{Asyncness, AutoAssertNoGc, InstanceId, StoreId, StoreOpaque};
9use crate::type_registry::RegisteredType;
10use crate::{
11 AsContext, AsContextMut, CallHook, Engine, Extern, FuncType, Instance, ModuleExport, Ref,
12 StoreContext, StoreContextMut, Val, ValRaw, ValType,
13};
14use alloc::sync::Arc;
15use core::convert::Infallible;
16use core::ffi::c_void;
17#[cfg(feature = "async")]
18use core::future::Future;
19use core::mem::{self, MaybeUninit};
20use core::ptr::NonNull;
21use wasmtime_environ::{PanicOnOom as _, VMSharedTypeIndex};
22
23/// A reference to the abstract `nofunc` heap value.
24///
25/// The are no instances of `(ref nofunc)`: it is an uninhabited type.
26///
27/// There is precisely one instance of `(ref null nofunc)`, aka `nullfuncref`:
28/// the null reference.
29///
30/// This `NoFunc` Rust type's sole purpose is for use with [`Func::wrap`]- and
31/// [`Func::typed`]-style APIs for statically typing a function as taking or
32/// returning a `(ref null nofunc)` (aka `Option<NoFunc>`) which is always
33/// `None`.
34///
35/// # Example
36///
37/// ```
38/// # use wasmtime::*;
39/// # fn _foo() -> Result<()> {
40/// let mut config = Config::new();
41/// config.wasm_function_references(true);
42/// let engine = Engine::new(&config)?;
43///
44/// let module = Module::new(
45/// &engine,
46/// r#"
47/// (module
48/// (func (export "f") (param (ref null nofunc))
49/// ;; If the reference is null, return.
50/// local.get 0
51/// ref.is_null nofunc
52/// br_if 0
53///
54/// ;; If the reference was not null (which is impossible)
55/// ;; then raise a trap.
56/// unreachable
57/// )
58/// )
59/// "#,
60/// )?;
61///
62/// let mut store = Store::new(&engine, ());
63/// let instance = Instance::new(&mut store, &module, &[])?;
64/// let f = instance.get_func(&mut store, "f").unwrap();
65///
66/// // We can cast a `(ref null nofunc)`-taking function into a typed function that
67/// // takes an `Option<NoFunc>` via the `Func::typed` method.
68/// let f = f.typed::<Option<NoFunc>, ()>(&store)?;
69///
70/// // We can call the typed function, passing the null `nofunc` reference.
71/// let result = f.call(&mut store, NoFunc::null());
72///
73/// // The function should not have trapped, because the reference we gave it was
74/// // null (as it had to be, since `NoFunc` is uninhabited).
75/// assert!(result.is_ok());
76/// # Ok(())
77/// # }
78/// ```
79#[derive(Copy, Clone, Debug, PartialEq, Eq)]
80pub struct NoFunc {
81 _inner: Infallible,
82}
83
84impl NoFunc {
85 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference.
86 #[inline]
87 pub fn null() -> Option<NoFunc> {
88 None
89 }
90
91 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
92 /// [`Ref`].
93 #[inline]
94 pub fn null_ref() -> Ref {
95 Ref::Func(None)
96 }
97
98 /// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
99 /// [`Val`].
100 #[inline]
101 pub fn null_val() -> Val {
102 Val::FuncRef(None)
103 }
104}
105
106/// A WebAssembly function which can be called.
107///
108/// This type typically represents an exported function from a WebAssembly
109/// module instance. In this case a [`Func`] belongs to an [`Instance`] and is
110/// loaded from there. A [`Func`] may also represent a host function as well in
111/// some cases, too.
112///
113/// Functions can be called in a few different ways, either synchronous or async
114/// and either typed or untyped (more on this below). Note that host functions
115/// are normally inserted directly into a [`Linker`](crate::Linker) rather than
116/// using this directly, but both options are available.
117///
118/// # `Func` and `async`
119///
120/// Functions from the perspective of WebAssembly are always synchronous. You
121/// might have an `async` function in Rust, however, which you'd like to make
122/// available from WebAssembly. Wasmtime supports asynchronously calling
123/// WebAssembly through native stack switching. You can get some more
124/// information about [asynchronous configs](crate#async), but
125/// from the perspective of `Func` it's important to know that whether or not
126/// your [`Store`](crate::Store) is asynchronous will dictate whether you call
127/// functions through [`Func::call`] or [`Func::call_async`] (or the typed
128/// wrappers such as [`TypedFunc::call`] vs [`TypedFunc::call_async`]).
129///
130/// # To `Func::call` or to `Func::typed().call()`
131///
132/// There's a 2x2 matrix of methods to call [`Func`]. Invocations can either be
133/// asynchronous or synchronous. They can also be statically typed or not.
134/// Whether or not an invocation is asynchronous is indicated via the method
135/// being `async` and [`call_async`](Func::call_async) being the entry point.
136/// Otherwise for statically typed or not your options are:
137///
138/// * Dynamically typed - if you don't statically know the signature of the
139/// function that you're calling you'll be using [`Func::call`] or
140/// [`Func::call_async`]. These functions take a variable-length slice of
141/// "boxed" arguments in their [`Val`] representation. Additionally the
142/// results are returned as an owned slice of [`Val`]. These methods are not
143/// optimized due to the dynamic type checks that must occur, in addition to
144/// some dynamic allocations for where to put all the arguments. While this
145/// allows you to call all possible wasm function signatures, if you're
146/// looking for a speedier alternative you can also use...
147///
148/// * Statically typed - if you statically know the type signature of the wasm
149/// function you're calling, then you'll want to use the [`Func::typed`]
150/// method to acquire an instance of [`TypedFunc`]. This structure is static proof
151/// that the underlying wasm function has the ascripted type, and type
152/// validation is only done once up-front. The [`TypedFunc::call`] and
153/// [`TypedFunc::call_async`] methods are much more efficient than [`Func::call`]
154/// and [`Func::call_async`] because the type signature is statically known.
155/// This eschews runtime checks as much as possible to get into wasm as fast
156/// as possible.
157///
158/// # Examples
159///
160/// One way to get a `Func` is from an [`Instance`] after you've instantiated
161/// it:
162///
163/// ```
164/// # use wasmtime::*;
165/// # fn main() -> Result<()> {
166/// let engine = Engine::default();
167/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
168/// let mut store = Store::new(&engine, ());
169/// let instance = Instance::new(&mut store, &module, &[])?;
170/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
171///
172/// // Work with `foo` as a `Func` at this point, such as calling it
173/// // dynamically...
174/// match foo.call(&mut store, &[], &mut []) {
175/// Ok(()) => { /* ... */ }
176/// Err(trap) => {
177/// panic!("execution of `foo` resulted in a wasm trap: {}", trap);
178/// }
179/// }
180/// foo.call(&mut store, &[], &mut [])?;
181///
182/// // ... or we can make a static assertion about its signature and call it.
183/// // Our first call here can fail if the signatures don't match, and then the
184/// // second call can fail if the function traps (like the `match` above).
185/// let foo = foo.typed::<(), ()>(&store)?;
186/// foo.call(&mut store, ())?;
187/// # Ok(())
188/// # }
189/// ```
190///
191/// You can also use the [`wrap` function](Func::wrap) to create a
192/// `Func`
193///
194/// ```
195/// # use wasmtime::*;
196/// # fn main() -> Result<()> {
197/// let mut store = Store::<()>::default();
198///
199/// // Create a custom `Func` which can execute arbitrary code inside of the
200/// // closure.
201/// let add = Func::wrap(&mut store, |a: i32, b: i32| -> i32 { a + b });
202///
203/// // Next we can hook that up to a wasm module which uses it.
204/// let module = Module::new(
205/// store.engine(),
206/// r#"
207/// (module
208/// (import "" "" (func $add (param i32 i32) (result i32)))
209/// (func (export "call_add_twice") (result i32)
210/// i32.const 1
211/// i32.const 2
212/// call $add
213/// i32.const 3
214/// i32.const 4
215/// call $add
216/// i32.add))
217/// "#,
218/// )?;
219/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
220/// let call_add_twice = instance.get_typed_func::<(), i32>(&mut store, "call_add_twice")?;
221///
222/// assert_eq!(call_add_twice.call(&mut store, ())?, 10);
223/// # Ok(())
224/// # }
225/// ```
226///
227/// Or you could also create an entirely dynamic `Func`!
228///
229/// ```
230/// # use wasmtime::*;
231/// # fn main() -> Result<()> {
232/// let mut store = Store::<()>::default();
233///
234/// // Here we need to define the type signature of our `Double` function and
235/// // then wrap it up in a `Func`
236/// let double_type = wasmtime::FuncType::new(
237/// store.engine(),
238/// [wasmtime::ValType::I32].iter().cloned(),
239/// [wasmtime::ValType::I32].iter().cloned(),
240/// );
241/// let double = Func::new(&mut store, double_type, |_, params, results| {
242/// let mut value = params[0].unwrap_i32();
243/// value *= 2;
244/// results[0] = value.into();
245/// Ok(())
246/// });
247///
248/// let module = Module::new(
249/// store.engine(),
250/// r#"
251/// (module
252/// (import "" "" (func $double (param i32) (result i32)))
253/// (func $start
254/// i32.const 1
255/// call $double
256/// drop)
257/// (start $start))
258/// "#,
259/// )?;
260/// let instance = Instance::new(&mut store, &module, &[double.into()])?;
261/// // .. work with `instance` if necessary
262/// # Ok(())
263/// # }
264/// ```
265#[derive(Copy, Clone, Debug)]
266#[repr(C)] // here for the C API
267pub struct Func {
268 /// The store that the below pointer belongs to.
269 ///
270 /// It's only safe to look at the contents of the pointer below when the
271 /// `StoreOpaque` matching this id is in-scope.
272 store: StoreId,
273
274 /// The raw `VMFuncRef`, whose lifetime is bound to the store this func
275 /// belongs to.
276 ///
277 /// Note that this field has an `unsafe_*` prefix to discourage use of it.
278 /// This is only safe to read/use if `self.store` is validated to belong to
279 /// an ambiently provided `StoreOpaque` or similar. Use the
280 /// `self.func_ref()` method instead of this field to perform this check.
281 unsafe_func_ref: SendSyncPtr<VMFuncRef>,
282}
283
284// Double-check that the C representation in `extern.h` matches our in-Rust
285// representation here in terms of size/alignment/etc.
286const _: () = {
287 #[repr(C)]
288 struct C(u64, *mut u8);
289 assert!(core::mem::size_of::<C>() == core::mem::size_of::<Func>());
290 assert!(core::mem::align_of::<C>() == core::mem::align_of::<Func>());
291 assert!(core::mem::offset_of!(Func, store) == 0);
292};
293
294macro_rules! for_each_function_signature {
295 ($mac:ident) => {
296 $mac!(0);
297 $mac!(1 A1);
298 $mac!(2 A1 A2);
299 $mac!(3 A1 A2 A3);
300 $mac!(4 A1 A2 A3 A4);
301 $mac!(5 A1 A2 A3 A4 A5);
302 $mac!(6 A1 A2 A3 A4 A5 A6);
303 $mac!(7 A1 A2 A3 A4 A5 A6 A7);
304 $mac!(8 A1 A2 A3 A4 A5 A6 A7 A8);
305 $mac!(9 A1 A2 A3 A4 A5 A6 A7 A8 A9);
306 $mac!(10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10);
307 $mac!(11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11);
308 $mac!(12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12);
309 $mac!(13 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13);
310 $mac!(14 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14);
311 $mac!(15 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15);
312 $mac!(16 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16);
313 $mac!(17 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17);
314 };
315}
316
317mod typed;
318use crate::runtime::vm::VMStackChain;
319pub use typed::*;
320
321impl Func {
322 /// Creates a new `Func` with the given arguments, typically to create a
323 /// host-defined function to pass as an import to a module.
324 ///
325 /// * `store` - the store in which to create this [`Func`], which will own
326 /// the return value.
327 ///
328 /// * `ty` - the signature of this function, used to indicate what the
329 /// inputs and outputs are.
330 ///
331 /// * `func` - the native code invoked whenever this `Func` will be called.
332 /// This closure is provided a [`Caller`] as its first argument to learn
333 /// information about the caller, and then it's passed a list of
334 /// parameters as a slice along with a mutable slice of where to write
335 /// results.
336 ///
337 /// Note that the implementation of `func` must adhere to the `ty` signature
338 /// given, error or traps may occur if it does not respect the `ty`
339 /// signature. For example if the function type declares that it returns one
340 /// i32 but the `func` closures does not write anything into the results
341 /// slice then a trap may be generated.
342 ///
343 /// Additionally note that this is quite a dynamic function since signatures
344 /// are not statically known. For a more performant and ergonomic `Func`
345 /// it's recommended to use [`Func::wrap`] if you can because with
346 /// statically known signatures Wasmtime can optimize the implementation
347 /// much more.
348 ///
349 /// For more information about `Send + Sync + 'static` requirements on the
350 /// `func`, see [`Func::wrap`](#why-send--sync--static).
351 ///
352 /// # Errors
353 ///
354 /// The host-provided function here returns a
355 /// [`Result<()>`](crate::Result). If the function returns `Ok(())` then
356 /// that indicates that the host function completed successfully and wrote
357 /// the result into the `&mut [Val]` argument.
358 ///
359 /// If the function returns `Err(e)`, however, then this is equivalent to
360 /// the host function triggering a trap for wasm. WebAssembly execution is
361 /// immediately halted and the original caller of [`Func::call`], for
362 /// example, will receive the error returned here (possibly with
363 /// [`WasmBacktrace`](crate::WasmBacktrace) context information attached).
364 ///
365 /// For more information about errors in Wasmtime see the [`Trap`]
366 /// documentation.
367 ///
368 /// [`Trap`]: crate::Trap
369 ///
370 /// # Panics
371 ///
372 /// Panics if the given function type is not associated with this store's
373 /// engine.
374 pub fn new<T: 'static>(
375 mut store: impl AsContextMut<Data = T>,
376 ty: FuncType,
377 func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
378 ) -> Self {
379 let store = store.as_context_mut().0;
380 let host = HostFunc::new(store.engine(), ty, func).panic_on_oom();
381
382 // SAFETY: the `T` used by `func` matches the `T` of the store we're
383 // inserting into via this function's type signature.
384 unsafe { host.into_func(store) }
385 }
386
387 /// Creates a new [`Func`] with the given arguments, although has fewer
388 /// runtime checks than [`Func::new`].
389 ///
390 /// This function takes a callback of a different signature than
391 /// [`Func::new`], instead receiving a raw pointer with a list of [`ValRaw`]
392 /// structures. These values have no type information associated with them
393 /// so it's up to the caller to provide a function that will correctly
394 /// interpret the list of values as those coming from the `ty` specified.
395 ///
396 /// If you're calling this from Rust it's recommended to either instead use
397 /// [`Func::new`] or [`Func::wrap`]. The [`Func::wrap`] API, in particular,
398 /// is both safer and faster than this API.
399 ///
400 /// # Errors
401 ///
402 /// See [`Func::new`] for the behavior of returning an error from the host
403 /// function provided here.
404 ///
405 /// # Unsafety
406 ///
407 /// This function is not safe because it's not known at compile time that
408 /// the `func` provided correctly interprets the argument types provided to
409 /// it, or that the results it produces will be of the correct type.
410 ///
411 /// # Panics
412 ///
413 /// Panics if the given function type is not associated with this store's
414 /// engine.
415 pub unsafe fn new_unchecked<T: 'static>(
416 mut store: impl AsContextMut<Data = T>,
417 ty: FuncType,
418 func: impl Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
419 ) -> Self {
420 let store = store.as_context_mut().0;
421
422 // SAFETY: the contract required by `new_unchecked` is the same as the
423 // contract required by this function itself.
424 let host = unsafe { HostFunc::new_unchecked(store.engine(), ty, func).panic_on_oom() };
425
426 // SAFETY: the `T` used by `func` matches the `T` of the store we're
427 // inserting into via this function's type signature.
428 unsafe { host.into_func(store) }
429 }
430
431 /// Creates a new host-defined WebAssembly function which, when called,
432 /// will run the asynchronous computation defined by `func` to completion
433 /// and then return the result to WebAssembly.
434 ///
435 /// This function is the asynchronous analogue of [`Func::new`] and much of
436 /// that documentation applies to this as well. The key difference is that
437 /// `func` returns a future instead of simply a `Result`. Note that the
438 /// returned future can close over any of the arguments, but it cannot close
439 /// over the state of the closure itself. It's recommended to store any
440 /// necessary async state in the `T` of the [`Store<T>`](crate::Store) which
441 /// can be accessed through [`Caller::data`] or [`Caller::data_mut`].
442 ///
443 /// For more information on `Send + Sync + 'static`, see
444 /// [`Func::wrap`](#why-send--sync--static).
445 ///
446 /// # Panics
447 ///
448 /// Panics if the given function type is not associated with this store's
449 /// engine.
450 ///
451 /// # Errors
452 ///
453 /// See [`Func::new`] for the behavior of returning an error from the host
454 /// function provided here.
455 ///
456 /// # Examples
457 ///
458 /// ```
459 /// # use wasmtime::*;
460 /// # fn main() -> Result<()> {
461 /// // Simulate some application-specific state as well as asynchronous
462 /// // functions to query that state.
463 /// struct MyDatabase {
464 /// // ...
465 /// }
466 ///
467 /// impl MyDatabase {
468 /// async fn get_row_count(&self) -> u32 {
469 /// // ...
470 /// # 100
471 /// }
472 /// }
473 ///
474 /// let my_database = MyDatabase {
475 /// // ...
476 /// };
477 ///
478 /// // Using `new_async` we can hook up into calling our async
479 /// // `get_row_count` function.
480 /// let engine = Engine::default();
481 /// let mut store = Store::new(&engine, MyDatabase {
482 /// // ...
483 /// });
484 /// let get_row_count_type = wasmtime::FuncType::new(
485 /// &engine,
486 /// None,
487 /// Some(wasmtime::ValType::I32),
488 /// );
489 /// let get = Func::new_async(&mut store, get_row_count_type, |caller, _params, results| {
490 /// Box::new(async move {
491 /// let count = caller.data().get_row_count().await;
492 /// results[0] = Val::I32(count as i32);
493 /// Ok(())
494 /// })
495 /// });
496 /// // ...
497 /// # Ok(())
498 /// # }
499 /// ```
500 #[cfg(feature = "async")]
501 pub fn new_async<T, F>(mut store: impl AsContextMut<Data = T>, ty: FuncType, func: F) -> Func
502 where
503 F: for<'a> Fn(
504 Caller<'a, T>,
505 &'a [Val],
506 &'a mut [Val],
507 ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
508 + Send
509 + Sync
510 + 'static,
511 T: Send + 'static,
512 {
513 let store = store.as_context_mut().0;
514
515 let host = HostFunc::new_async(store.engine(), ty, func).panic_on_oom();
516
517 // SAFETY: the `T` used by `func` matches the `T` of the store we're
518 // inserting into via this function's type signature.
519 unsafe { host.into_func(store) }
520 }
521
522 /// Creates a new `Func` from a store and a funcref within that store.
523 ///
524 /// # Safety
525 ///
526 /// The safety of this function requires that `func_ref` is a valid function
527 /// pointer owned by `store`.
528 pub(crate) unsafe fn from_vm_func_ref(store: StoreId, func_ref: NonNull<VMFuncRef>) -> Func {
529 // SAFETY: given the contract of this function it's safe to read the
530 // `type_index` field.
531 unsafe {
532 debug_assert!(func_ref.as_ref().type_index != VMSharedTypeIndex::default());
533 }
534 Func {
535 store,
536 unsafe_func_ref: func_ref.into(),
537 }
538 }
539
540 /// Creates a new `Func` from the given Rust closure.
541 ///
542 /// This function will create a new `Func` which, when called, will
543 /// execute the given Rust closure. Unlike [`Func::new`] the target
544 /// function being called is known statically so the type signature can
545 /// be inferred. Rust types will map to WebAssembly types as follows:
546 ///
547 /// | Rust Argument Type | WebAssembly Type |
548 /// |-----------------------------------|-------------------------------------------|
549 /// | `i32` | `i32` |
550 /// | `u32` | `i32` |
551 /// | `i64` | `i64` |
552 /// | `u64` | `i64` |
553 /// | `f32` | `f32` |
554 /// | `f64` | `f64` |
555 /// | `V128` on x86-64 and aarch64 only | `v128` |
556 /// | `Option<Func>` | `funcref` aka `(ref null func)` |
557 /// | `Func` | `(ref func)` |
558 /// | `Option<Nofunc>` | `nullfuncref` aka `(ref null nofunc)` |
559 /// | `NoFunc` | `(ref nofunc)` |
560 /// | `Option<Rooted<ExternRef>>` | `externref` aka `(ref null extern)` |
561 /// | `Rooted<ExternRef>` | `(ref extern)` |
562 /// | `Option<NoExtern>` | `nullexternref` aka `(ref null noextern)` |
563 /// | `NoExtern` | `(ref noextern)` |
564 /// | `Option<Rooted<AnyRef>>` | `anyref` aka `(ref null any)` |
565 /// | `Rooted<AnyRef>` | `(ref any)` |
566 /// | `Option<Rooted<EqRef>>` | `eqref` aka `(ref null eq)` |
567 /// | `Rooted<EqRef>` | `(ref eq)` |
568 /// | `Option<I31>` | `i31ref` aka `(ref null i31)` |
569 /// | `I31` | `(ref i31)` |
570 /// | `Option<Rooted<StructRef>>` | `(ref null struct)` |
571 /// | `Rooted<StructRef>` | `(ref struct)` |
572 /// | `Option<Rooted<ArrayRef>>` | `(ref null array)` |
573 /// | `Rooted<ArrayRef>` | `(ref array)` |
574 /// | `Option<NoneRef>` | `nullref` aka `(ref null none)` |
575 /// | `NoneRef` | `(ref none)` |
576 ///
577 /// Note that anywhere a `Rooted<T>` appears, a `OwnedRooted<T>` may also
578 /// be used.
579 ///
580 /// Any of the Rust types can be returned from the closure as well, in
581 /// addition to some extra types
582 ///
583 /// | Rust Return Type | WebAssembly Return Type | Meaning |
584 /// |-------------------|-------------------------|-----------------------|
585 /// | `()` | nothing | no return value |
586 /// | `T` | `T` | a single return value |
587 /// | `(T1, T2, ...)` | `T1 T2 ...` | multiple returns |
588 ///
589 /// Note that all return types can also be wrapped in `Result<_>` to
590 /// indicate that the host function can generate a trap as well as possibly
591 /// returning a value.
592 ///
593 /// Finally you can also optionally take [`Caller`] as the first argument of
594 /// your closure. If inserted then you're able to inspect the caller's
595 /// state, for example the [`Memory`](crate::Memory) it has exported so you
596 /// can read what pointers point to.
597 ///
598 /// Note that when using this API, the intention is to create as thin of a
599 /// layer as possible for when WebAssembly calls the function provided. With
600 /// sufficient inlining and optimization the WebAssembly will call straight
601 /// into `func` provided, with no extra fluff entailed.
602 ///
603 /// # Why `Send + Sync + 'static`?
604 ///
605 /// All host functions defined in a [`Store`](crate::Store) (including
606 /// those from [`Func::new`] and other constructors) require that the
607 /// `func` provided is `Send + Sync + 'static`. Additionally host functions
608 /// always are `Fn` as opposed to `FnMut` or `FnOnce`. This can at-a-glance
609 /// feel restrictive since the closure cannot close over as many types as
610 /// before. The reason for this, though, is to ensure that
611 /// [`Store<T>`](crate::Store) can implement both the `Send` and `Sync`
612 /// traits.
613 ///
614 /// Fear not, however, because this isn't as restrictive as it seems! Host
615 /// functions are provided a [`Caller<'_, T>`](crate::Caller) argument which
616 /// allows access to the host-defined data within the
617 /// [`Store`](crate::Store). The `T` type is not required to be any of
618 /// `Send`, `Sync`, or `'static`! This means that you can store whatever
619 /// you'd like in `T` and have it accessible by all host functions.
620 /// Additionally mutable access to `T` is allowed through
621 /// [`Caller::data_mut`].
622 ///
623 /// Most host-defined [`Func`] values provide closures that end up not
624 /// actually closing over any values. These zero-sized types will use the
625 /// context from [`Caller`] for host-defined information.
626 ///
627 /// # Errors
628 ///
629 /// The closure provided here to `wrap` can optionally return a
630 /// [`Result<T>`](crate::Result). Returning `Ok(t)` represents the host
631 /// function successfully completing with the `t` result. Returning
632 /// `Err(e)`, however, is equivalent to raising a custom wasm trap.
633 /// Execution of WebAssembly does not resume and the stack is unwound to the
634 /// original caller of the function where the error is returned.
635 ///
636 /// For more information about errors in Wasmtime see the [`Trap`]
637 /// documentation.
638 ///
639 /// [`Trap`]: crate::Trap
640 ///
641 /// # Examples
642 ///
643 /// First up we can see how simple wasm imports can be implemented, such
644 /// as a function that adds its two arguments and returns the result.
645 ///
646 /// ```
647 /// # use wasmtime::*;
648 /// # fn main() -> Result<()> {
649 /// # let mut store = Store::<()>::default();
650 /// let add = Func::wrap(&mut store, |a: i32, b: i32| a + b);
651 /// let module = Module::new(
652 /// store.engine(),
653 /// r#"
654 /// (module
655 /// (import "" "" (func $add (param i32 i32) (result i32)))
656 /// (func (export "foo") (param i32 i32) (result i32)
657 /// local.get 0
658 /// local.get 1
659 /// call $add))
660 /// "#,
661 /// )?;
662 /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
663 /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
664 /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
665 /// # Ok(())
666 /// # }
667 /// ```
668 ///
669 /// We can also do the same thing, but generate a trap if the addition
670 /// overflows:
671 ///
672 /// ```
673 /// # use wasmtime::*;
674 /// # fn main() -> Result<()> {
675 /// # let mut store = Store::<()>::default();
676 /// let add = Func::wrap(&mut store, |a: i32, b: i32| {
677 /// match a.checked_add(b) {
678 /// Some(i) => Ok(i),
679 /// None => bail!("overflow"),
680 /// }
681 /// });
682 /// let module = Module::new(
683 /// store.engine(),
684 /// r#"
685 /// (module
686 /// (import "" "" (func $add (param i32 i32) (result i32)))
687 /// (func (export "foo") (param i32 i32) (result i32)
688 /// local.get 0
689 /// local.get 1
690 /// call $add))
691 /// "#,
692 /// )?;
693 /// let instance = Instance::new(&mut store, &module, &[add.into()])?;
694 /// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
695 /// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
696 /// assert!(foo.call(&mut store, (i32::max_value(), 1)).is_err());
697 /// # Ok(())
698 /// # }
699 /// ```
700 ///
701 /// And don't forget all the wasm types are supported!
702 ///
703 /// ```
704 /// # use wasmtime::*;
705 /// # fn main() -> Result<()> {
706 /// # let mut store = Store::<()>::default();
707 /// let debug = Func::wrap(&mut store, |a: i32, b: u32, c: f32, d: i64, e: u64, f: f64| {
708 ///
709 /// println!("a={}", a);
710 /// println!("b={}", b);
711 /// println!("c={}", c);
712 /// println!("d={}", d);
713 /// println!("e={}", e);
714 /// println!("f={}", f);
715 /// });
716 /// let module = Module::new(
717 /// store.engine(),
718 /// r#"
719 /// (module
720 /// (import "" "" (func $debug (param i32 i32 f32 i64 i64 f64)))
721 /// (func (export "foo")
722 /// i32.const -1
723 /// i32.const 1
724 /// f32.const 2
725 /// i64.const -3
726 /// i64.const 3
727 /// f64.const 4
728 /// call $debug))
729 /// "#,
730 /// )?;
731 /// let instance = Instance::new(&mut store, &module, &[debug.into()])?;
732 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
733 /// foo.call(&mut store, ())?;
734 /// # Ok(())
735 /// # }
736 /// ```
737 ///
738 /// Finally if you want to get really fancy you can also implement
739 /// imports that read/write wasm module's memory
740 ///
741 /// ```
742 /// use std::str;
743 ///
744 /// # use wasmtime::*;
745 /// # fn main() -> Result<()> {
746 /// # let mut store = Store::default();
747 /// let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
748 /// let mem = match caller.get_export("memory") {
749 /// Some(Extern::Memory(mem)) => mem,
750 /// _ => bail!("failed to find host memory"),
751 /// };
752 /// let data = mem.data(&caller)
753 /// .get(ptr as u32 as usize..)
754 /// .and_then(|arr| arr.get(..len as u32 as usize));
755 /// let string = match data {
756 /// Some(data) => match str::from_utf8(data) {
757 /// Ok(s) => s,
758 /// Err(_) => bail!("invalid utf-8"),
759 /// },
760 /// None => bail!("pointer/length out of bounds"),
761 /// };
762 /// assert_eq!(string, "Hello, world!");
763 /// println!("{}", string);
764 /// Ok(())
765 /// });
766 /// let module = Module::new(
767 /// store.engine(),
768 /// r#"
769 /// (module
770 /// (import "" "" (func $log_str (param i32 i32)))
771 /// (func (export "foo")
772 /// i32.const 4 ;; ptr
773 /// i32.const 13 ;; len
774 /// call $log_str)
775 /// (memory (export "memory") 1)
776 /// (data (i32.const 4) "Hello, world!"))
777 /// "#,
778 /// )?;
779 /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
780 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
781 /// foo.call(&mut store, ())?;
782 /// # Ok(())
783 /// # }
784 /// ```
785 pub fn wrap<T, Params, Results>(
786 mut store: impl AsContextMut<Data = T>,
787 func: impl IntoFunc<T, Params, Results>,
788 ) -> Func
789 where
790 T: 'static,
791 {
792 let store = store.as_context_mut().0;
793 let engine = store.engine();
794 let host = func.into_func(engine).panic_on_oom();
795
796 // SAFETY: The `T` the closure takes is the same as the `T` of the store
797 // we're inserting into via the type signature above.
798 unsafe { host.into_func(store) }
799 }
800
801 /// Same as [`Func::wrap`], except the closure asynchronously produces the
802 /// result and the arguments are passed within a tuple. For more information
803 /// see the [`Func`] documentation.
804 #[cfg(feature = "async")]
805 pub fn wrap_async<T, F, P, R>(mut store: impl AsContextMut<Data = T>, func: F) -> Func
806 where
807 F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
808 + Send
809 + Sync
810 + 'static,
811 P: WasmTyList,
812 R: WasmRet,
813 T: Send + 'static,
814 {
815 let store = store.as_context_mut().0;
816 let host = HostFunc::wrap_async(store.engine(), func).panic_on_oom();
817
818 // SAFETY: The `T` the closure takes is the same as the `T` of the store
819 // we're inserting into via the type signature above.
820 unsafe { host.into_func(store) }
821 }
822
823 /// Returns the underlying wasm type that this `Func` has.
824 ///
825 /// # Panics
826 ///
827 /// Panics if `store` does not own this function.
828 pub fn ty(&self, store: impl AsContext) -> FuncType {
829 self.load_ty(&store.as_context().0)
830 }
831
832 /// Forcibly loads the type of this function from the `Engine`.
833 ///
834 /// Note that this is a somewhat expensive method since it requires taking a
835 /// lock as well as cloning a type.
836 pub(crate) fn load_ty(&self, store: &StoreOpaque) -> FuncType {
837 FuncType::from_shared_type_index(store.engine(), self.type_index(store))
838 }
839
840 /// Does this function match the given type?
841 ///
842 /// That is, is this function's type a subtype of the given type?
843 ///
844 /// # Panics
845 ///
846 /// Panics if this function is not associated with the given store or if the
847 /// function type is not associated with the store's engine.
848 pub fn matches_ty(&self, store: impl AsContext, func_ty: &FuncType) -> bool {
849 self._matches_ty(store.as_context().0, func_ty)
850 }
851
852 pub(crate) fn _matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> bool {
853 let actual_ty = self.load_ty(store);
854 actual_ty.matches(func_ty)
855 }
856
857 pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> Result<()> {
858 if !self.comes_from_same_store(store) {
859 bail!("function used with wrong store");
860 }
861 if self._matches_ty(store, func_ty) {
862 Ok(())
863 } else {
864 let actual_ty = self.load_ty(store);
865 bail!("type mismatch: expected {func_ty}, found {actual_ty}")
866 }
867 }
868
869 pub(crate) fn type_index(&self, data: &StoreOpaque) -> VMSharedTypeIndex {
870 unsafe { self.vm_func_ref(data).as_ref().type_index }
871 }
872
873 /// Invokes this function with the `params` given and writes returned values
874 /// to `results`.
875 ///
876 /// The `params` here must match the type signature of this `Func`, or an
877 /// error will occur. Additionally `results` must have the same
878 /// length as the number of results for this function. Calling this function
879 /// will synchronously execute the WebAssembly function referenced to get
880 /// the results.
881 ///
882 /// This function will return `Ok(())` if execution completed without a trap
883 /// or error of any kind. In this situation the results will be written to
884 /// the provided `results` array.
885 ///
886 /// # Errors
887 ///
888 /// Any error which occurs throughout the execution of the function will be
889 /// returned as `Err(e)`. The [`Error`](crate::Error) type can be inspected
890 /// for the precise error cause such as:
891 ///
892 /// * [`Trap`] - indicates that a wasm trap happened and execution was
893 /// halted.
894 /// * [`WasmBacktrace`] - optionally included on errors for backtrace
895 /// information of the trap/error.
896 /// * Other string-based errors to indicate issues such as type errors with
897 /// `params`.
898 /// * Any host-originating error originally returned from a function defined
899 /// via [`Func::new`], for example.
900 /// * The `store` provided is configured to require `call_async` to be used
901 /// instead, such as with epochs or fuel.
902 ///
903 /// Errors typically indicate that execution of WebAssembly was halted
904 /// mid-way and did not complete after the error condition happened.
905 ///
906 /// [`Trap`]: crate::Trap
907 ///
908 /// # Panics
909 ///
910 /// Panics if `store` does not own this function.
911 ///
912 /// [`WasmBacktrace`]: crate::WasmBacktrace
913 pub fn call(
914 &self,
915 mut store: impl AsContextMut,
916 params: &[Val],
917 results: &mut [Val],
918 ) -> Result<()> {
919 let mut store = store.as_context_mut();
920 store.0.validate_sync_call()?;
921
922 self.call_impl_check_args(&mut store, params, results)?;
923
924 unsafe { self.call_impl_do_call(&mut store, params, results) }
925 }
926
927 /// Invokes this function in an "unchecked" fashion, reading parameters and
928 /// writing results to `params_and_returns`.
929 ///
930 /// This function is the same as [`Func::call`] except that the arguments
931 /// and results both use a different representation. If possible it's
932 /// recommended to use [`Func::call`] if safety isn't necessary or to use
933 /// [`Func::typed`] in conjunction with [`TypedFunc::call`] since that's
934 /// both safer and faster than this method of invoking a function.
935 ///
936 /// Note that if this function takes `externref` arguments then it will
937 /// **not** automatically GC unlike the [`Func::call`] and
938 /// [`TypedFunc::call`] functions. This means that if this function is
939 /// invoked many times with new `ExternRef` values and no other GC happens
940 /// via any other means then no values will get collected.
941 ///
942 /// # Errors
943 ///
944 /// For more information about errors see the [`Func::call`] documentation.
945 ///
946 /// # Unsafety
947 ///
948 /// This function is unsafe because the `params_and_returns` argument is not
949 /// validated at all. It must uphold invariants such as:
950 ///
951 /// * It's a valid pointer to an array
952 /// * It has enough space to store all parameters
953 /// * It has enough space to store all results (not at the same time as
954 /// parameters)
955 /// * Parameters are initially written to the array and have the correct
956 /// types and such.
957 /// * Reference types like `externref` and `funcref` are valid at the
958 /// time of this call and for the `store` specified.
959 ///
960 /// These invariants are all upheld for you with [`Func::call`] and
961 /// [`TypedFunc::call`].
962 pub unsafe fn call_unchecked(
963 &self,
964 mut store: impl AsContextMut,
965 params_and_returns: *mut [ValRaw],
966 ) -> Result<()> {
967 let mut store = store.as_context_mut();
968 let func_ref = self.vm_func_ref(store.0);
969 let params_and_returns = NonNull::new(params_and_returns).unwrap_or(NonNull::from(&mut []));
970
971 // SAFETY: the safety of this function call is the same as the contract
972 // of this function.
973 unsafe { Self::call_unchecked_raw(&mut store, func_ref, params_and_returns) }
974 }
975
976 pub(crate) unsafe fn call_unchecked_raw<T>(
977 store: &mut StoreContextMut<'_, T>,
978 func_ref: NonNull<VMFuncRef>,
979 params_and_returns: NonNull<[ValRaw]>,
980 ) -> Result<()> {
981 // SAFETY: the safety of this function call is the same as the contract
982 // of this function.
983 invoke_wasm_and_catch_traps(store, |caller, vm| unsafe {
984 VMFuncRef::array_call(func_ref, vm, caller, params_and_returns)
985 })
986 }
987
988 /// Converts the raw representation of a `funcref` into an `Option<Func>`
989 ///
990 /// This is intended to be used in conjunction with [`Func::new_unchecked`],
991 /// [`Func::call_unchecked`], and [`ValRaw`] with its `funcref` field. This
992 /// is the dual of [`Func::to_raw`].
993 ///
994 /// # Unsafety
995 ///
996 /// This function is not safe because `raw` is not validated at all. The
997 /// caller must guarantee that `raw` is owned by the `store` provided and is
998 /// valid within the `store`.
999 pub unsafe fn from_raw(mut store: impl AsContextMut, raw: *mut c_void) -> Option<Func> {
1000 // SAFETY: this function's own contract is that `raw` is owned by store
1001 // to make this safe.
1002 unsafe { Self::_from_raw(store.as_context_mut().0, raw) }
1003 }
1004
1005 /// Same as `from_raw`, but with the internal `StoreOpaque` type.
1006 pub(crate) unsafe fn _from_raw(store: &mut StoreOpaque, raw: *mut c_void) -> Option<Func> {
1007 // SAFETY: this function's own contract is that `raw` is owned by store
1008 // to make this safe.
1009 unsafe {
1010 Some(Func::from_vm_func_ref(
1011 store.id(),
1012 NonNull::new(raw.cast())?,
1013 ))
1014 }
1015 }
1016
1017 /// Extracts the raw value of this `Func`, which is owned by `store`.
1018 ///
1019 /// This function returns a value that's suitable for writing into the
1020 /// `funcref` field of the [`ValRaw`] structure.
1021 ///
1022 /// # Safety
1023 ///
1024 /// The returned value is only valid for as long as the store is alive.
1025 /// This value is safe to pass to [`Func::from_raw`] so long as the same
1026 /// `store` is provided.
1027 pub fn to_raw(&self, mut store: impl AsContextMut) -> *mut c_void {
1028 self.vm_func_ref(store.as_context_mut().0).as_ptr().cast()
1029 }
1030
1031 /// Invokes this function with the `params` given, returning the results
1032 /// asynchronously.
1033 ///
1034 /// This function is the same as [`Func::call`] except that it is
1035 /// asynchronous.
1036 ///
1037 /// It's important to note that the execution of WebAssembly will happen
1038 /// synchronously in the `poll` method of the future returned from this
1039 /// function. Wasmtime does not manage its own thread pool or similar to
1040 /// execute WebAssembly in. Future `poll` methods are generally expected to
1041 /// resolve quickly, so it's recommended that you run or poll this future
1042 /// in a "blocking context".
1043 ///
1044 /// For more information see the documentation on [asynchronous
1045 /// configs](crate#async).
1046 ///
1047 /// # Errors
1048 ///
1049 /// For more information on errors see the [`Func::call`] documentation.
1050 ///
1051 /// # Panics
1052 ///
1053 /// Panics if this is called on a function in a synchronous store. This
1054 /// only works with functions defined within an asynchronous store. Also
1055 /// panics if `store` does not own this function.
1056 #[cfg(feature = "async")]
1057 pub async fn call_async(
1058 &self,
1059 mut store: impl AsContextMut<Data: Send>,
1060 params: &[Val],
1061 results: &mut [Val],
1062 ) -> Result<()> {
1063 let mut store = store.as_context_mut();
1064
1065 self.call_impl_check_args(&mut store, params, results)?;
1066
1067 let result = store
1068 .on_fiber(|store| unsafe { self.call_impl_do_call(store, params, results) })
1069 .await??;
1070 Ok(result)
1071 }
1072
1073 /// Perform dynamic checks that the arguments given to us match
1074 /// the signature of this function and are appropriate to pass to this
1075 /// function.
1076 ///
1077 /// This involves checking to make sure we have the right number and types
1078 /// of arguments as well as making sure everything is from the same `Store`.
1079 ///
1080 /// This must be called just before `call_impl_do_call`.
1081 fn call_impl_check_args<T>(
1082 &self,
1083 store: &mut StoreContextMut<'_, T>,
1084 params: &[Val],
1085 results: &mut [Val],
1086 ) -> Result<()> {
1087 let ty = self.load_ty(store.0);
1088 if ty.params().len() != params.len() {
1089 bail!(
1090 "expected {} arguments, got {}",
1091 ty.params().len(),
1092 params.len()
1093 );
1094 }
1095 if ty.results().len() != results.len() {
1096 bail!(
1097 "expected {} results, got {}",
1098 ty.results().len(),
1099 results.len()
1100 );
1101 }
1102
1103 for (ty, arg) in ty.params().zip(params) {
1104 arg.ensure_matches_ty(store.0, &ty)
1105 .context("argument type mismatch")?;
1106 if !arg.comes_from_same_store(store.0) {
1107 bail!("cross-`Store` values are not currently supported");
1108 }
1109 }
1110
1111 Ok(())
1112 }
1113
1114 /// Do the actual call into Wasm.
1115 ///
1116 /// # Safety
1117 ///
1118 /// You must have type checked the arguments by calling
1119 /// `call_impl_check_args` immediately before calling this function. It is
1120 /// only safe to call this function if that one did not return an error.
1121 unsafe fn call_impl_do_call<T>(
1122 &self,
1123 store: &mut StoreContextMut<'_, T>,
1124 params: &[Val],
1125 results: &mut [Val],
1126 ) -> Result<()> {
1127 // Store the argument values into `values_vec`.
1128 let ty = self.load_ty(store.0);
1129 let values_vec_size = params.len().max(ty.results().len());
1130 let mut values_vec = store.0.take_wasm_val_raw_storage();
1131 debug_assert!(values_vec.is_empty());
1132 values_vec.resize_with(values_vec_size, || ValRaw::v128(0));
1133 for (arg, slot) in params.iter().cloned().zip(&mut values_vec) {
1134 *slot = arg.to_raw(&mut *store)?;
1135 }
1136
1137 unsafe {
1138 self.call_unchecked(
1139 &mut *store,
1140 core::ptr::slice_from_raw_parts_mut(values_vec.as_mut_ptr(), values_vec_size),
1141 )?;
1142 }
1143
1144 for ((i, slot), val) in results.iter_mut().enumerate().zip(&values_vec) {
1145 let ty = ty.results().nth(i).unwrap();
1146 *slot = unsafe { Val::from_raw(&mut *store, *val, ty) };
1147 }
1148 values_vec.truncate(0);
1149 store.0.save_wasm_val_raw_storage(values_vec);
1150 Ok(())
1151 }
1152
1153 #[inline]
1154 pub(crate) fn vm_func_ref(&self, store: &StoreOpaque) -> NonNull<VMFuncRef> {
1155 self.store.assert_belongs_to(store.id());
1156 self.unsafe_func_ref.as_non_null()
1157 }
1158
1159 pub(crate) fn vmimport(&self, store: &StoreOpaque) -> VMFunctionImport {
1160 unsafe {
1161 let f = self.vm_func_ref(store);
1162 VMFunctionImport {
1163 // Note that this is a load-bearing `unwrap` here, but is
1164 // never expected to trip at runtime. The general problem is
1165 // that host functions do not have a `wasm_call` function so
1166 // the `VMFuncRef` type has an optional pointer there. This is
1167 // only able to be filled out when a function is "paired" with
1168 // a module where trampolines are present to fill out
1169 // `wasm_call` pointers.
1170 //
1171 // This pairing of modules doesn't happen explicitly but is
1172 // instead managed lazily throughout Wasmtime. Specifically the
1173 // way this works is one of:
1174 //
1175 // * When a host function is created the store's list of
1176 // modules are searched for a wasm trampoline. If not found
1177 // the `wasm_call` field is left blank.
1178 //
1179 // * When a module instantiation happens, which uses this
1180 // function, the module will be used to fill any outstanding
1181 // holes that it has trampolines for.
1182 //
1183 // This means that by the time we get to this point any
1184 // relevant holes should be filled out. Thus if this panic
1185 // actually triggers then it's indicative of a missing `fill`
1186 // call somewhere else.
1187 wasm_call: f.as_ref().wasm_call.unwrap(),
1188 array_call: f.as_ref().array_call,
1189 vmctx: f.as_ref().vmctx,
1190 }
1191 }
1192 }
1193
1194 pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
1195 self.store == store.id()
1196 }
1197
1198 /// Attempts to extract a typed object from this `Func` through which the
1199 /// function can be called.
1200 ///
1201 /// This function serves as an alternative to [`Func::call`] and
1202 /// [`Func::call_async`]. This method performs a static type check (using
1203 /// the `Params` and `Results` type parameters on the underlying wasm
1204 /// function. If the type check passes then a `TypedFunc` object is returned,
1205 /// otherwise an error is returned describing the typecheck failure.
1206 ///
1207 /// The purpose of this relative to [`Func::call`] is that it's much more
1208 /// efficient when used to invoke WebAssembly functions. With the types
1209 /// statically known far less setup/teardown is required when invoking
1210 /// WebAssembly. If speed is desired then this function is recommended to be
1211 /// used instead of [`Func::call`] (which is more general, hence its
1212 /// slowdown).
1213 ///
1214 /// The `Params` type parameter is used to describe the parameters of the
1215 /// WebAssembly function. This can either be a single type (like `i32`), or
1216 /// a tuple of types representing the list of parameters (like `(i32, f32,
1217 /// f64)`). Additionally you can use `()` to represent that the function has
1218 /// no parameters.
1219 ///
1220 /// The `Results` type parameter is used to describe the results of the
1221 /// function. This behaves the same way as `Params`, but just for the
1222 /// results of the function.
1223 ///
1224 /// # Translating Between WebAssembly and Rust Types
1225 ///
1226 /// Translation between Rust types and WebAssembly types looks like:
1227 ///
1228 /// | WebAssembly | Rust |
1229 /// |-------------------------------------------|---------------------------------------|
1230 /// | `i32` | `i32` or `u32` |
1231 /// | `i64` | `i64` or `u64` |
1232 /// | `f32` | `f32` |
1233 /// | `f64` | `f64` |
1234 /// | `externref` aka `(ref null extern)` | `Option<Rooted<ExternRef>>` |
1235 /// | `(ref extern)` | `Rooted<ExternRef>` |
1236 /// | `nullexternref` aka `(ref null noextern)` | `Option<NoExtern>` |
1237 /// | `(ref noextern)` | `NoExtern` |
1238 /// | `anyref` aka `(ref null any)` | `Option<Rooted<AnyRef>>` |
1239 /// | `(ref any)` | `Rooted<AnyRef>` |
1240 /// | `eqref` aka `(ref null eq)` | `Option<Rooted<EqRef>>` |
1241 /// | `(ref eq)` | `Rooted<EqRef>` |
1242 /// | `i31ref` aka `(ref null i31)` | `Option<I31>` |
1243 /// | `(ref i31)` | `I31` |
1244 /// | `structref` aka `(ref null struct)` | `Option<Rooted<StructRef>>` |
1245 /// | `(ref struct)` | `Rooted<StructRef>` |
1246 /// | `arrayref` aka `(ref null array)` | `Option<Rooted<ArrayRef>>` |
1247 /// | `(ref array)` | `Rooted<ArrayRef>` |
1248 /// | `nullref` aka `(ref null none)` | `Option<NoneRef>` |
1249 /// | `(ref none)` | `NoneRef` |
1250 /// | `funcref` aka `(ref null func)` | `Option<Func>` |
1251 /// | `(ref func)` | `Func` |
1252 /// | `(ref null <func type index>)` | `Option<Func>` |
1253 /// | `(ref <func type index>)` | `Func` |
1254 /// | `nullfuncref` aka `(ref null nofunc)` | `Option<NoFunc>` |
1255 /// | `(ref nofunc)` | `NoFunc` |
1256 /// | `v128` | `V128` on `x86-64` and `aarch64` only |
1257 ///
1258 /// (Note that this mapping is the same as that of [`Func::wrap`], and that
1259 /// anywhere a `Rooted<T>` appears, a `OwnedRooted<T>` may also appear).
1260 ///
1261 /// Note that once the [`TypedFunc`] return value is acquired you'll use either
1262 /// [`TypedFunc::call`] or [`TypedFunc::call_async`] as necessary to actually invoke
1263 /// the function. This method does not invoke any WebAssembly code, it
1264 /// simply performs a typecheck before returning the [`TypedFunc`] value.
1265 ///
1266 /// This method also has a convenience wrapper as
1267 /// [`Instance::get_typed_func`](crate::Instance::get_typed_func) to
1268 /// directly get a typed function value from an
1269 /// [`Instance`](crate::Instance).
1270 ///
1271 /// ## Subtyping
1272 ///
1273 /// For result types, you can always use a supertype of the WebAssembly
1274 /// function's actual declared result type. For example, if the WebAssembly
1275 /// function was declared with type `(func (result nullfuncref))` you could
1276 /// successfully call `f.typed::<(), Option<Func>>()` because `Option<Func>`
1277 /// corresponds to `funcref`, which is a supertype of `nullfuncref`.
1278 ///
1279 /// For parameter types, you can always use a subtype of the WebAssembly
1280 /// function's actual declared parameter type. For example, if the
1281 /// WebAssembly function was declared with type `(func (param (ref null
1282 /// func)))` you could successfully call `f.typed::<Func, ()>()` because
1283 /// `Func` corresponds to `(ref func)`, which is a subtype of `(ref null
1284 /// func)`.
1285 ///
1286 /// Additionally, for functions which take a reference to a concrete type as
1287 /// a parameter, you can also use the concrete type's supertype. Consider a
1288 /// WebAssembly function that takes a reference to a function with a
1289 /// concrete type: `(ref null <func type index>)`. In this scenario, there
1290 /// is no static `wasmtime::Foo` Rust type that corresponds to that
1291 /// particular Wasm-defined concrete reference type because Wasm modules are
1292 /// loaded dynamically at runtime. You *could* do `f.typed::<Option<NoFunc>,
1293 /// ()>()`, and while that is correctly typed and valid, it is often overly
1294 /// restrictive. The only value you could call the resulting typed function
1295 /// with is the null function reference, but we'd like to call it with
1296 /// non-null function references that happen to be of the correct
1297 /// type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
1298 /// case, even though `Option<Func>` represents `(ref null func)` which is
1299 /// the supertype, not subtype, of `(ref null <func type index>)`. This does
1300 /// imply some minimal dynamic type checks in this case, but it is supported
1301 /// for better ergonomics, to enable passing non-null references into the
1302 /// function.
1303 ///
1304 /// # Errors
1305 ///
1306 /// This function will return an error if `Params` or `Results` does not
1307 /// match the native type of this WebAssembly function.
1308 ///
1309 /// # Panics
1310 ///
1311 /// This method will panic if `store` does not own this function.
1312 ///
1313 /// # Examples
1314 ///
1315 /// An end-to-end example of calling a function which takes no parameters
1316 /// and has no results:
1317 ///
1318 /// ```
1319 /// # use wasmtime::*;
1320 /// # fn main() -> Result<()> {
1321 /// let engine = Engine::default();
1322 /// let mut store = Store::new(&engine, ());
1323 /// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
1324 /// let instance = Instance::new(&mut store, &module, &[])?;
1325 /// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
1326 ///
1327 /// // Note that this call can fail due to the typecheck not passing, but
1328 /// // in our case we statically know the module so we know this should
1329 /// // pass.
1330 /// let typed = foo.typed::<(), ()>(&store)?;
1331 ///
1332 /// // Note that this can fail if the wasm traps at runtime.
1333 /// typed.call(&mut store, ())?;
1334 /// # Ok(())
1335 /// # }
1336 /// ```
1337 ///
1338 /// You can also pass in multiple parameters and get a result back
1339 ///
1340 /// ```
1341 /// # use wasmtime::*;
1342 /// # fn foo(add: &Func, mut store: Store<()>) -> Result<()> {
1343 /// let typed = add.typed::<(i32, i64), f32>(&store)?;
1344 /// assert_eq!(typed.call(&mut store, (1, 2))?, 3.0);
1345 /// # Ok(())
1346 /// # }
1347 /// ```
1348 ///
1349 /// and similarly if a function has multiple results you can bind that too
1350 ///
1351 /// ```
1352 /// # use wasmtime::*;
1353 /// # fn foo(add_with_overflow: &Func, mut store: Store<()>) -> Result<()> {
1354 /// let typed = add_with_overflow.typed::<(u32, u32), (u32, i32)>(&store)?;
1355 /// let (result, overflow) = typed.call(&mut store, (u32::max_value(), 2))?;
1356 /// assert_eq!(result, 1);
1357 /// assert_eq!(overflow, 1);
1358 /// # Ok(())
1359 /// # }
1360 /// ```
1361 pub fn typed<Params, Results>(
1362 &self,
1363 store: impl AsContext,
1364 ) -> Result<TypedFunc<Params, Results>>
1365 where
1366 Params: WasmParams,
1367 Results: WasmResults,
1368 {
1369 // Type-check that the params/results are all valid
1370 let store = store.as_context().0;
1371 let ty = self.load_ty(store);
1372 Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
1373 .context("type mismatch with parameters")?;
1374 Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
1375 .context("type mismatch with results")?;
1376
1377 // and then we can construct the typed version of this function
1378 // (unsafely), which should be safe since we just did the type check above.
1379 unsafe { Ok(TypedFunc::_new_unchecked(store, *self)) }
1380 }
1381
1382 /// Get a stable hash key for this function.
1383 ///
1384 /// Even if the same underlying function is added to the `StoreData`
1385 /// multiple times and becomes multiple `wasmtime::Func`s, this hash key
1386 /// will be consistent across all of these functions.
1387 #[cfg_attr(
1388 not(test),
1389 expect(dead_code, reason = "Not used yet, but added for consistency")
1390 )]
1391 pub(crate) fn hash_key(&self, store: &mut StoreOpaque) -> impl core::hash::Hash + Eq + use<> {
1392 self.vm_func_ref(store).as_ptr().addr()
1393 }
1394}
1395
1396/// Prepares for entrance into WebAssembly.
1397///
1398/// This function will set up context such that `closure` is allowed to call a
1399/// raw trampoline or a raw WebAssembly function. This *must* be called to do
1400/// things like catch traps and set up GC properly.
1401///
1402/// The `closure` provided receives a default "caller" `VMContext` parameter it
1403/// can pass to the called wasm function, if desired.
1404pub(crate) fn invoke_wasm_and_catch_traps<T>(
1405 store: &mut StoreContextMut<'_, T>,
1406 closure: impl FnMut(NonNull<VMContext>, Option<InterpreterRef<'_>>) -> bool,
1407) -> Result<()> {
1408 // The `enter_wasm` call below will reset the store context's
1409 // `stack_chain` to a new `InitialStack`, pointing to the
1410 // stack-allocated `initial_stack_csi`.
1411 let mut initial_stack_csi = VMCommonStackInformation::running_default();
1412 // Stores some state of the runtime just before entering Wasm. Will be
1413 // restored upon exiting Wasm. Note that the `CallThreadState` that is
1414 // created by the `catch_traps` call below will store a pointer to this
1415 // stack-allocated `previous_runtime_state`.
1416 let mut previous_runtime_state = EntryStoreContext::enter_wasm(store, &mut initial_stack_csi);
1417
1418 if let Err(trap) = store.0.call_hook(CallHook::CallingWasm) {
1419 // `previous_runtime_state` implicitly dropped here
1420 return Err(trap);
1421 }
1422 let result = crate::runtime::vm::catch_traps(store, &mut previous_runtime_state, closure);
1423 #[cfg(feature = "component-model")]
1424 if result.is_err() {
1425 store.0.set_trapped();
1426 }
1427 core::mem::drop(previous_runtime_state);
1428 store.0.call_hook(CallHook::ReturningFromWasm)?;
1429 result
1430}
1431
1432/// This type helps managing the state of the runtime when entering and exiting
1433/// Wasm. To this end, it contains a subset of the data in `VMStoreContext`.
1434/// Upon entering Wasm, it updates various runtime fields and their
1435/// original values saved in this struct. Upon exiting Wasm, the previous values
1436/// are restored.
1437pub(crate) struct EntryStoreContext {
1438 /// If set, contains value of `stack_limit` field to restore in
1439 /// `VMStoreContext` when exiting Wasm.
1440 pub stack_limit: Option<usize>,
1441 pub last_wasm_exit_pc: usize,
1442 pub last_wasm_exit_trampoline_fp: usize,
1443 pub last_wasm_entry_fp: usize,
1444 pub last_wasm_entry_sp: usize,
1445 pub last_wasm_entry_trap_handler: usize,
1446 pub stack_chain: VMStackChain,
1447
1448 /// We need a pointer to the runtime limits, so we can update them from
1449 /// `drop`/`exit_wasm`.
1450 vm_store_context: *const VMStoreContext,
1451}
1452
1453impl EntryStoreContext {
1454 /// This function is called to update and save state when
1455 /// WebAssembly is entered within the `Store`.
1456 ///
1457 /// This updates various fields such as:
1458 ///
1459 /// * The stack limit. This is what ensures that we limit the stack space
1460 /// allocated by WebAssembly code and it's relative to the initial stack
1461 /// pointer that called into wasm.
1462 ///
1463 /// It also saves the different last_wasm_* values in the `VMStoreContext`.
1464 pub fn enter_wasm<T>(
1465 store: &mut StoreContextMut<'_, T>,
1466 initial_stack_information: *mut VMCommonStackInformation,
1467 ) -> Self {
1468 let stack_limit;
1469
1470 // If this is a recursive call, e.g. our stack limit is already set, then
1471 // we may be able to skip this function.
1472 //
1473 // For synchronous stores there's nothing else to do because all wasm calls
1474 // happen synchronously and on the same stack. This means that the previous
1475 // stack limit will suffice for the next recursive call.
1476 //
1477 // For asynchronous stores then each call happens on a separate native
1478 // stack. This means that the previous stack limit is no longer relevant
1479 // because we're on a separate stack.
1480 if unsafe { *store.0.vm_store_context().stack_limit.get() } != usize::MAX
1481 && !store.0.can_block()
1482 {
1483 stack_limit = None;
1484 }
1485 // Ignore this stack pointer business on miri since we can't execute wasm
1486 // anyway and the concept of a stack pointer on miri is a bit nebulous
1487 // regardless.
1488 else if cfg!(miri) {
1489 stack_limit = None;
1490 } else {
1491 // When Cranelift has support for the host then we might be running native
1492 // compiled code meaning we need to read the actual stack pointer. If
1493 // Cranelift can't be used though then we're guaranteed to be running pulley
1494 // in which case this stack pointer isn't actually used as Pulley has custom
1495 // mechanisms for stack overflow.
1496 #[cfg(has_host_compiler_backend)]
1497 let stack_pointer = crate::runtime::vm::get_stack_pointer();
1498 #[cfg(not(has_host_compiler_backend))]
1499 let stack_pointer = {
1500 use wasmtime_environ::TripleExt;
1501 debug_assert!(store.engine().target().is_pulley());
1502 usize::MAX
1503 };
1504
1505 // Determine the stack pointer where, after which, any wasm code will
1506 // immediately trap. This is checked on the entry to all wasm functions.
1507 //
1508 // Note that this isn't 100% precise. We are requested to give wasm
1509 // `max_wasm_stack` bytes, but what we're actually doing is giving wasm
1510 // probably a little less than `max_wasm_stack` because we're
1511 // calculating the limit relative to this function's approximate stack
1512 // pointer. Wasm will be executed on a frame beneath this one (or next
1513 // to it). In any case it's expected to be at most a few hundred bytes
1514 // of slop one way or another. When wasm is typically given a MB or so
1515 // (a million bytes) the slop shouldn't matter too much.
1516 //
1517 // After we've got the stack limit then we store it into the `stack_limit`
1518 // variable.
1519 let wasm_stack_limit = stack_pointer
1520 .checked_sub(store.engine().config().max_wasm_stack)
1521 .unwrap();
1522 let prev_stack = unsafe {
1523 mem::replace(
1524 &mut *store.0.vm_store_context().stack_limit.get(),
1525 wasm_stack_limit,
1526 )
1527 };
1528 stack_limit = Some(prev_stack);
1529 }
1530
1531 unsafe {
1532 let vm_store_context = store.0.vm_store_context();
1533 let new_stack_chain = VMStackChain::InitialStack(initial_stack_information);
1534 *vm_store_context.stack_chain.get() = new_stack_chain;
1535
1536 Self {
1537 stack_limit,
1538 last_wasm_exit_pc: *(*vm_store_context).last_wasm_exit_pc.get(),
1539 last_wasm_exit_trampoline_fp: *(*vm_store_context)
1540 .last_wasm_exit_trampoline_fp
1541 .get(),
1542 last_wasm_entry_fp: *(*vm_store_context).last_wasm_entry_fp.get(),
1543 last_wasm_entry_sp: *(*vm_store_context).last_wasm_entry_sp.get(),
1544 last_wasm_entry_trap_handler: *(*vm_store_context)
1545 .last_wasm_entry_trap_handler
1546 .get(),
1547 stack_chain: (*(*vm_store_context).stack_chain.get()).clone(),
1548 vm_store_context,
1549 }
1550 }
1551 }
1552
1553 /// This function restores the values stored in this struct. We invoke this
1554 /// function through this type's `Drop` implementation. This ensures that we
1555 /// even restore the values if we unwind the stack (e.g., because we are
1556 /// panicking out of a Wasm execution).
1557 #[inline]
1558 fn exit_wasm(&mut self) {
1559 unsafe {
1560 if let Some(limit) = self.stack_limit {
1561 *(&*self.vm_store_context).stack_limit.get() = limit;
1562 }
1563
1564 *(*self.vm_store_context).last_wasm_exit_trampoline_fp.get() =
1565 self.last_wasm_exit_trampoline_fp;
1566 *(*self.vm_store_context).last_wasm_exit_pc.get() = self.last_wasm_exit_pc;
1567 *(*self.vm_store_context).last_wasm_entry_fp.get() = self.last_wasm_entry_fp;
1568 *(*self.vm_store_context).last_wasm_entry_sp.get() = self.last_wasm_entry_sp;
1569 *(*self.vm_store_context).last_wasm_entry_trap_handler.get() =
1570 self.last_wasm_entry_trap_handler;
1571 *(*self.vm_store_context).stack_chain.get() = self.stack_chain.clone();
1572 }
1573 }
1574}
1575
1576impl Drop for EntryStoreContext {
1577 #[inline]
1578 fn drop(&mut self) {
1579 self.exit_wasm();
1580 }
1581}
1582
1583/// A trait implemented for types which can be returned from closures passed to
1584/// [`Func::wrap`] and friends.
1585///
1586/// This trait should not be implemented by user types. This trait may change at
1587/// any time internally. The types which implement this trait, however, are
1588/// stable over time.
1589///
1590/// For more information see [`Func::wrap`]
1591pub unsafe trait WasmRet {
1592 // Same as `WasmTy::compatible_with_store`.
1593 #[doc(hidden)]
1594 fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
1595
1596 /// Stores this return value into the `ptr` specified using the rooted
1597 /// `store`.
1598 ///
1599 /// Traps are communicated through the `Result<_>` return value.
1600 ///
1601 /// # Unsafety
1602 ///
1603 /// This method is unsafe as `ptr` must have the correct length to store
1604 /// this result. This property is only checked in debug mode, not in release
1605 /// mode.
1606 #[doc(hidden)]
1607 unsafe fn store(
1608 self,
1609 store: &mut AutoAssertNoGc<'_>,
1610 ptr: &mut [MaybeUninit<ValRaw>],
1611 ) -> Result<()>;
1612
1613 #[doc(hidden)]
1614 fn func_type(
1615 engine: &Engine,
1616 params: impl Iterator<Item = ValType>,
1617 ) -> Result<FuncType, OutOfMemory>;
1618 #[doc(hidden)]
1619 fn may_gc() -> bool;
1620
1621 // Utilities used to convert an instance of this type to a `Result`
1622 // explicitly, used when wrapping async functions which always bottom-out
1623 // in a function that returns a trap because futures can be cancelled.
1624 #[doc(hidden)]
1625 type Fallible: WasmRet;
1626 #[doc(hidden)]
1627 fn into_fallible(self) -> Self::Fallible;
1628 #[doc(hidden)]
1629 fn fallible_from_error(error: Error) -> Self::Fallible;
1630}
1631
1632unsafe impl<T> WasmRet for T
1633where
1634 T: WasmTy,
1635{
1636 type Fallible = Result<T>;
1637
1638 fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1639 <Self as WasmTy>::compatible_with_store(self, store)
1640 }
1641
1642 unsafe fn store(
1643 self,
1644 store: &mut AutoAssertNoGc<'_>,
1645 ptr: &mut [MaybeUninit<ValRaw>],
1646 ) -> Result<()> {
1647 debug_assert!(ptr.len() > 0);
1648 // SAFETY: the contract of this function/trait combo is such that `ptr`
1649 // is valid to store this type's value, thus this lookup should be safe.
1650 unsafe { <Self as WasmTy>::store(self, store, ptr.get_unchecked_mut(0)) }
1651 }
1652
1653 fn may_gc() -> bool {
1654 T::may_gc()
1655 }
1656
1657 fn func_type(
1658 engine: &Engine,
1659 params: impl Iterator<Item = ValType>,
1660 ) -> Result<FuncType, OutOfMemory> {
1661 FuncType::try_new(engine, params, Some(<Self as WasmTy>::valtype()))
1662 }
1663
1664 fn into_fallible(self) -> Result<T> {
1665 Ok(self)
1666 }
1667
1668 fn fallible_from_error(error: Error) -> Result<T> {
1669 Err(error)
1670 }
1671}
1672
1673unsafe impl<T> WasmRet for Result<T>
1674where
1675 T: WasmRet,
1676{
1677 type Fallible = Self;
1678
1679 fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
1680 match self {
1681 Ok(x) => <T as WasmRet>::compatible_with_store(x, store),
1682 Err(_) => true,
1683 }
1684 }
1685
1686 unsafe fn store(
1687 self,
1688 store: &mut AutoAssertNoGc<'_>,
1689 ptr: &mut [MaybeUninit<ValRaw>],
1690 ) -> Result<()> {
1691 // SAFETY: the safety of calling this function is the same as calling
1692 // the inner `store`.
1693 unsafe { self.and_then(|val| val.store(store, ptr)) }
1694 }
1695
1696 fn may_gc() -> bool {
1697 T::may_gc()
1698 }
1699
1700 fn func_type(
1701 engine: &Engine,
1702 params: impl Iterator<Item = ValType>,
1703 ) -> Result<FuncType, OutOfMemory> {
1704 T::func_type(engine, params)
1705 }
1706
1707 fn into_fallible(self) -> Result<T> {
1708 self
1709 }
1710
1711 fn fallible_from_error(error: Error) -> Result<T> {
1712 Err(error)
1713 }
1714}
1715
1716macro_rules! impl_wasm_host_results {
1717 ($n:tt $($t:ident)*) => (
1718 #[allow(non_snake_case, reason = "macro-generated code")]
1719 unsafe impl<$($t),*> WasmRet for ($($t,)*)
1720 where
1721 $($t: WasmTy,)*
1722 {
1723 type Fallible = Result<Self>;
1724
1725 #[inline]
1726 fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
1727 let ($($t,)*) = self;
1728 $( $t.compatible_with_store(_store) && )* true
1729 }
1730
1731 #[inline]
1732 unsafe fn store(
1733 self,
1734 _store: &mut AutoAssertNoGc<'_>,
1735 _ptr: &mut [MaybeUninit<ValRaw>],
1736 ) -> Result<()> {
1737 let ($($t,)*) = self;
1738 let mut _cur = 0;
1739 $(
1740 debug_assert!(_cur < _ptr.len());
1741 // SAFETY: `store`'s unsafe contract is that `_ptr` is
1742 // appropriately sized and additionally safe to call `store`
1743 // for sub-types.
1744 unsafe {
1745 let val = _ptr.get_unchecked_mut(_cur);
1746 _cur += 1;
1747 WasmTy::store($t, _store, val)?;
1748 }
1749 )*
1750 Ok(())
1751 }
1752
1753 #[doc(hidden)]
1754 fn may_gc() -> bool {
1755 $( $t::may_gc() || )* false
1756 }
1757
1758 fn func_type(
1759 engine: &Engine,
1760 params: impl Iterator<Item = ValType>,
1761 ) -> Result<FuncType, OutOfMemory> {
1762 FuncType::try_new(
1763 engine,
1764 params,
1765 IntoIterator::into_iter([$($t::valtype(),)*]),
1766 )
1767 }
1768
1769 #[inline]
1770 fn into_fallible(self) -> Result<Self> {
1771 Ok(self)
1772 }
1773
1774 #[inline]
1775 fn fallible_from_error(error: Error) -> Result<Self> {
1776 Err(error)
1777 }
1778 }
1779 )
1780}
1781
1782for_each_function_signature!(impl_wasm_host_results);
1783
1784/// Internal trait implemented for all arguments that can be passed to
1785/// [`Func::wrap`] and [`Linker::func_wrap`](crate::Linker::func_wrap).
1786///
1787/// This trait should not be implemented by external users, it's only intended
1788/// as an implementation detail of this crate.
1789pub trait IntoFunc<T, Params, Results>: Send + Sync + 'static {
1790 /// Convert this function into a `VM{Array,Native}CallHostFuncContext` and
1791 /// internal `VMFuncRef`.
1792 #[doc(hidden)]
1793 fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory>;
1794}
1795
1796macro_rules! impl_into_func {
1797 ($num:tt $arg:ident) => {
1798 // Implement for functions without a leading `Caller` parameter,
1799 // delegating to the implementation below which does have the leading
1800 // `Caller` parameter.
1801 #[expect(non_snake_case, reason = "macro-generated code")]
1802 impl<T, F, $arg, R> IntoFunc<T, $arg, R> for F
1803 where
1804 F: Fn($arg) -> R + Send + Sync + 'static,
1805 $arg: WasmTy,
1806 R: WasmRet,
1807 T: 'static,
1808 {
1809 fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1810 let f = move |_: Caller<'_, T>, $arg: $arg| {
1811 self($arg)
1812 };
1813
1814 f.into_func(engine)
1815 }
1816 }
1817
1818 #[expect(non_snake_case, reason = "macro-generated code")]
1819 impl<T, F, $arg, R> IntoFunc<T, (Caller<'_, T>, $arg), R> for F
1820 where
1821 F: Fn(Caller<'_, T>, $arg) -> R + Send + Sync + 'static,
1822 $arg: WasmTy,
1823 R: WasmRet,
1824 T: 'static,
1825 {
1826 fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1827 HostFunc::wrap(engine, move |caller: Caller<'_, T>, ($arg,)| {
1828 self(caller, $arg)
1829 })
1830 }
1831 }
1832 };
1833 ($num:tt $($args:ident)*) => {
1834 // Implement for functions without a leading `Caller` parameter,
1835 // delegating to the implementation below which does have the leading
1836 // `Caller` parameter.
1837 #[allow(non_snake_case, reason = "macro-generated code")]
1838 impl<T, F, $($args,)* R> IntoFunc<T, ($($args,)*), R> for F
1839 where
1840 F: Fn($($args),*) -> R + Send + Sync + 'static,
1841 $($args: WasmTy,)*
1842 R: WasmRet,
1843 T: 'static,
1844 {
1845 fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1846 let f = move |_: Caller<'_, T>, $($args:$args),*| {
1847 self($($args),*)
1848 };
1849
1850 f.into_func(engine)
1851 }
1852 }
1853
1854 #[allow(non_snake_case, reason = "macro-generated code")]
1855 impl<T, F, $($args,)* R> IntoFunc<T, (Caller<'_, T>, $($args,)*), R> for F
1856 where
1857 F: Fn(Caller<'_, T>, $($args),*) -> R + Send + Sync + 'static,
1858 $($args: WasmTy,)*
1859 R: WasmRet,
1860 T: 'static,
1861 {
1862 fn into_func(self, engine: &Engine) -> Result<HostFunc, OutOfMemory> {
1863 HostFunc::wrap(engine, move |caller: Caller<'_, T>, ( $( $args ),* )| {
1864 self(caller, $( $args ),* )
1865 })
1866 }
1867 }
1868 }
1869}
1870
1871for_each_function_signature!(impl_into_func);
1872
1873/// Trait implemented for various tuples made up of types which implement
1874/// [`WasmTy`] that can be passed to [`Func::wrap_async`].
1875pub unsafe trait WasmTyList {
1876 /// Get the value type that each Type in the list represents.
1877 fn valtypes() -> impl Iterator<Item = ValType>;
1878
1879 // Load a version of `Self` from the `values` provided.
1880 //
1881 // # Safety
1882 //
1883 // This function is unsafe as it's up to the caller to ensure that `values` are
1884 // valid for this given type.
1885 #[doc(hidden)]
1886 unsafe fn load(store: &mut AutoAssertNoGc<'_>, values: &mut [MaybeUninit<ValRaw>]) -> Self;
1887
1888 #[doc(hidden)]
1889 fn may_gc() -> bool;
1890}
1891
1892macro_rules! impl_wasm_ty_list {
1893 ($num:tt $($args:ident)*) => (
1894 #[allow(non_snake_case, reason = "macro-generated code")]
1895 unsafe impl<$($args),*> WasmTyList for ($($args,)*)
1896 where
1897 $($args: WasmTy,)*
1898 {
1899 fn valtypes() -> impl Iterator<Item = ValType> {
1900 IntoIterator::into_iter([$($args::valtype(),)*])
1901 }
1902
1903 unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _values: &mut [MaybeUninit<ValRaw>]) -> Self {
1904 let mut _cur = 0;
1905 ($({
1906 debug_assert!(_cur < _values.len());
1907 // SAFETY: this function's own contract means that `_values`
1908 // is appropriately sized/typed for the internal loads.
1909 unsafe {
1910 let ptr = _values.get_unchecked(_cur).assume_init_ref();
1911 _cur += 1;
1912 $args::load(_store, ptr)
1913 }
1914 },)*)
1915 }
1916
1917 fn may_gc() -> bool {
1918 $( $args::may_gc() || )* false
1919 }
1920 }
1921 );
1922}
1923
1924for_each_function_signature!(impl_wasm_ty_list);
1925
1926/// A structure representing the caller's context when creating a function
1927/// via [`Func::wrap`].
1928///
1929/// This structure can be taken as the first parameter of a closure passed to
1930/// [`Func::wrap`] or other constructors, and serves two purposes:
1931///
1932/// * First consumers can use [`Caller<'_, T>`](crate::Caller) to get access to
1933/// [`StoreContextMut<'_, T>`](crate::StoreContextMut) and/or get access to
1934/// `T` itself. This means that the [`Caller`] type can serve as a proxy to
1935/// the original [`Store`](crate::Store) itself and is used to satisfy
1936/// [`AsContext`] and [`AsContextMut`] bounds.
1937///
1938/// * Second a [`Caller`] can be used as the name implies, learning about the
1939/// caller's context, namely it's exported memory and exported functions. This
1940/// allows functions which take pointers as arguments to easily read the
1941/// memory the pointers point into, or if a function is expected to call
1942/// malloc in the wasm module to reserve space for the output you can do that.
1943///
1944/// Host functions which want access to [`Store`](crate::Store)-level state are
1945/// recommended to use this type.
1946pub struct Caller<'a, T: 'static> {
1947 pub(crate) store: StoreContextMut<'a, T>,
1948 caller: Instance,
1949}
1950
1951impl<T> Caller<'_, T> {
1952 fn sub_caller(&mut self) -> Caller<'_, T> {
1953 Caller {
1954 store: self.store.as_context_mut(),
1955 caller: self.caller,
1956 }
1957 }
1958
1959 /// Looks up an export from the caller's module by the `name` given.
1960 ///
1961 /// This is a low-level function that's typically used to implement passing
1962 /// of pointers or indices between core Wasm instances, where the callee
1963 /// needs to consult the caller's exports to perform memory management and
1964 /// resolve the references.
1965 ///
1966 /// For comparison, in components, the component model handles translating
1967 /// arguments from one component instance to another and managing memory, so
1968 /// that callees don't need to be aware of their callers, which promotes
1969 /// virtualizability of APIs.
1970 ///
1971 /// # Return
1972 ///
1973 /// If an export with the `name` provided was found, then it is returned as an
1974 /// `Extern`. There are a number of situations, however, where the export may not
1975 /// be available:
1976 ///
1977 /// * The caller instance may not have an export named `name`
1978 /// * There may not be a caller available, for example if `Func` was called
1979 /// directly from host code.
1980 ///
1981 /// It's recommended to take care when calling this API and gracefully
1982 /// handling a `None` return value.
1983 pub fn get_export(&mut self, name: &str) -> Option<Extern> {
1984 // All instances created have a `host_state` with a pointer pointing
1985 // back to themselves. If this caller doesn't have that `host_state`
1986 // then it probably means it was a host-created object like `Func::new`
1987 // which doesn't have any exports we want to return anyway.
1988 self.caller.get_export(&mut self.store, name)
1989 }
1990
1991 /// Looks up an exported [`Extern`] value by a [`ModuleExport`] value.
1992 ///
1993 /// This is similar to [`Self::get_export`] but uses a [`ModuleExport`]
1994 /// value to avoid string lookups where possible. [`ModuleExport`]s can be
1995 /// obtained by calling [`Module::get_export_index`] on the [`Module`] that
1996 /// an instance was instantiated with.
1997 ///
1998 /// This method will search the module for an export with a matching entity index and return
1999 /// the value, if found.
2000 ///
2001 /// Returns `None` if there was no export with a matching entity index.
2002 ///
2003 /// [`Module::get_export_index`]: crate::Module::get_export_index
2004 /// [`Module`]: crate::Module
2005 ///
2006 /// # Panics
2007 ///
2008 /// Panics if `store` does not own this instance.
2009 ///
2010 /// # Usage
2011 /// ```
2012 /// use std::str;
2013 ///
2014 /// # use wasmtime::*;
2015 /// # fn main() -> Result<()> {
2016 /// # let mut store = Store::default();
2017 ///
2018 /// let module = Module::new(
2019 /// store.engine(),
2020 /// r#"
2021 /// (module
2022 /// (import "" "" (func $log_str (param i32 i32)))
2023 /// (func (export "foo")
2024 /// i32.const 4 ;; ptr
2025 /// i32.const 13 ;; len
2026 /// call $log_str)
2027 /// (memory (export "memory") 1)
2028 /// (data (i32.const 4) "Hello, world!"))
2029 /// "#,
2030 /// )?;
2031 ///
2032 /// let Some(module_export) = module.get_export_index("memory") else {
2033 /// bail!("failed to find `memory` export in module");
2034 /// };
2035 ///
2036 /// let log_str = Func::wrap(&mut store, move |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
2037 /// let mem = match caller.get_module_export(&module_export) {
2038 /// Some(Extern::Memory(mem)) => mem,
2039 /// _ => bail!("failed to find host memory"),
2040 /// };
2041 /// let data = mem.data(&caller)
2042 /// .get(ptr as u32 as usize..)
2043 /// .and_then(|arr| arr.get(..len as u32 as usize));
2044 /// let string = match data {
2045 /// Some(data) => match str::from_utf8(data) {
2046 /// Ok(s) => s,
2047 /// Err(_) => bail!("invalid utf-8"),
2048 /// },
2049 /// None => bail!("pointer/length out of bounds"),
2050 /// };
2051 /// assert_eq!(string, "Hello, world!");
2052 /// println!("{}", string);
2053 /// Ok(())
2054 /// });
2055 /// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
2056 /// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
2057 /// foo.call(&mut store, ())?;
2058 /// # Ok(())
2059 /// # }
2060 /// ```
2061 pub fn get_module_export(&mut self, export: &ModuleExport) -> Option<Extern> {
2062 self.caller.get_module_export(&mut self.store, export)
2063 }
2064
2065 /// Access the underlying data owned by this `Store`.
2066 ///
2067 /// Same as [`Store::data`](crate::Store::data)
2068 pub fn data(&self) -> &T {
2069 self.store.data()
2070 }
2071
2072 /// Access the underlying data owned by this `Store`.
2073 ///
2074 /// Same as [`Store::data_mut`](crate::Store::data_mut)
2075 pub fn data_mut(&mut self) -> &mut T {
2076 self.store.data_mut()
2077 }
2078
2079 /// Returns the underlying [`Engine`] this store is connected to.
2080 pub fn engine(&self) -> &Engine {
2081 self.store.engine()
2082 }
2083
2084 /// Perform garbage collection.
2085 ///
2086 /// Same as [`Store::gc`](crate::Store::gc).
2087 #[cfg(feature = "gc")]
2088 pub fn gc(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>) -> Result<()> {
2089 self.store.gc(why)
2090 }
2091
2092 /// Perform garbage collection asynchronously.
2093 ///
2094 /// Same as [`Store::gc_async`](crate::Store::gc_async).
2095 #[cfg(all(feature = "async", feature = "gc"))]
2096 pub async fn gc_async(&mut self, why: Option<&crate::GcHeapOutOfMemory<()>>)
2097 where
2098 T: Send + 'static,
2099 {
2100 self.store.gc_async(why).await;
2101 }
2102
2103 /// Returns the remaining fuel in the store.
2104 ///
2105 /// For more information see [`Store::get_fuel`](crate::Store::get_fuel)
2106 pub fn get_fuel(&self) -> Result<u64> {
2107 self.store.get_fuel()
2108 }
2109
2110 /// Set the amount of fuel in this store to be consumed when executing wasm code.
2111 ///
2112 /// For more information see [`Store::set_fuel`](crate::Store::set_fuel)
2113 pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
2114 self.store.set_fuel(fuel)
2115 }
2116
2117 /// Configures this `Store` to yield while executing futures every N units of fuel.
2118 ///
2119 /// For more information see
2120 /// [`Store::fuel_async_yield_interval`](crate::Store::fuel_async_yield_interval)
2121 #[cfg(feature = "async")]
2122 pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
2123 self.store.fuel_async_yield_interval(interval)
2124 }
2125
2126 /// Provide an object that views Wasm stack state, including Wasm
2127 /// VM-level values (locals and operand stack), when debugging is
2128 /// enabled.
2129 ///
2130 /// See [`Store::debug_frames`] for more details.
2131 ///
2132 /// [`Store::debug_frames`]: crate::Store::debug_frames
2133 #[cfg(feature = "debug")]
2134 pub fn debug_frames(&mut self) -> Option<crate::DebugFrameCursor<'_, T>> {
2135 self.store.as_context_mut().debug_frames()
2136 }
2137}
2138
2139impl<T: 'static> AsContext for Caller<'_, T> {
2140 type Data = T;
2141 fn as_context(&self) -> StoreContext<'_, T> {
2142 self.store.as_context()
2143 }
2144}
2145
2146impl<T: 'static> AsContextMut for Caller<'_, T> {
2147 fn as_context_mut(&mut self) -> StoreContextMut<'_, T> {
2148 self.store.as_context_mut()
2149 }
2150}
2151
2152impl<'a, T: 'static> From<Caller<'a, T>> for StoreContextMut<'a, T> {
2153 fn from(caller: Caller<'a, T>) -> Self {
2154 caller.store
2155 }
2156}
2157
2158/// Representation of a host-defined function.
2159///
2160/// This is used for `Func::new` but also for `Linker`-defined functions. For
2161/// `Func::new` this is stored within a `Store`, and for `Linker`-defined
2162/// functions they wrap this up in `Arc` to enable shared ownership of this
2163/// across many stores.
2164///
2165/// Technically this structure needs a `<T>` type parameter to connect to the
2166/// `Store<T>` itself, but that's an unsafe contract of using this for now
2167/// rather than part of the struct type (to avoid `Func<T>` in the API).
2168#[doc(hidden)]
2169pub struct HostFunc {
2170 ctx: StoreBox<VMArrayCallHostFuncContext>,
2171
2172 /// Whether or not this function was defined with an `async` host function,
2173 /// meaning that it is only invokable when wasm is itself on a fiber to
2174 /// support suspension on `Poll::Pending`.
2175 ///
2176 /// This is used to propagate to an `InstancePre` and then eventually into a
2177 /// `Store` as to whether the store requires async entrypoints.
2178 asyncness: Asyncness,
2179
2180 // Stored to unregister this function's signature with the engine when this
2181 // is dropped.
2182 engine: Engine,
2183}
2184
2185// State stored inside a `VMArrayCallHostFuncContext`.
2186struct HostFuncState<F> {
2187 // The actual host function.
2188 func: F,
2189
2190 // NB: We have to keep our `VMSharedTypeIndex` registered in the engine for
2191 // as long as this function exists.
2192 _ty: RegisteredType,
2193}
2194
2195impl core::fmt::Debug for HostFunc {
2196 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
2197 f.debug_struct("HostFunc").finish_non_exhaustive()
2198 }
2199}
2200
2201impl HostFunc {
2202 /// Requires that the signature in `ctx` is already registered
2203 /// within `Engine`, which is done by [`Self::vmctx_sync`] and
2204 /// [`Self::vmctx_async`].
2205 ///
2206 /// This is an internal private constructor for this type intended to only
2207 /// be used by other constructors of this type below.
2208 fn new_raw(
2209 engine: &Engine,
2210 ctx: StoreBox<VMArrayCallHostFuncContext>,
2211 asyncness: Asyncness,
2212 ) -> Self {
2213 HostFunc {
2214 ctx,
2215 engine: engine.clone(),
2216 asyncness,
2217 }
2218 }
2219
2220 /// Constructor of a host function's `VMContext` for synchronous functions.
2221 ///
2222 /// This creates a `VMArrayCallHostFuncContext` which under the hood will
2223 /// be viewed as `VMContext` in the eventually created `VMFuncRef`.
2224 fn vmctx_sync<F, T>(
2225 engine: &Engine,
2226 ty: FuncType,
2227 func: F,
2228 ) -> Result<StoreBox<VMArrayCallHostFuncContext>, OutOfMemory>
2229 where
2230 F: Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
2231 T: 'static,
2232 {
2233 assert!(ty.comes_from_same_engine(engine));
2234
2235 unsafe {
2236 VMArrayCallHostFuncContext::new(
2237 Self::array_call_trampoline::<T, F>,
2238 ty.type_index(),
2239 try_new::<Box<_>>(HostFuncState {
2240 func,
2241 _ty: ty.into_registered_type(),
2242 })?,
2243 )
2244 }
2245 }
2246
2247 /// Constructor of a host function's `VMContext` for asynchronous functions.
2248 ///
2249 /// This creates a `VMArrayCallHostFuncContext` which under the hood will
2250 /// be viewed as `VMContext` in the eventually created `VMFuncRef`.
2251 ///
2252 /// Note that `ctx: U` is forwarded directly to `func`. This is subtly
2253 /// different than closing over data in `F` because the future returned by
2254 /// `F` can't refer to any data it closes over. The purpose of `U` is to
2255 /// enable the returned future to be able to close over data generally
2256 /// captured in the closures generated here.
2257 #[cfg(feature = "async")]
2258 fn vmctx_async<F, T, U>(
2259 engine: &Engine,
2260 ty: FuncType,
2261 ctx: U,
2262 func: F,
2263 ) -> Result<StoreBox<VMArrayCallHostFuncContext>, OutOfMemory>
2264 where
2265 F: for<'a> Fn(
2266 Caller<'a, T>,
2267 &'a mut [MaybeUninit<ValRaw>],
2268 &'a U,
2269 ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
2270 + Send
2271 + Sync
2272 + 'static,
2273 T: 'static,
2274 U: Send + Sync + 'static,
2275 {
2276 // Eventually we want to remove `with_blocking` + `block_on` from
2277 // Wasmtime. For now this is the attempt to keep it as low-level as
2278 // possible.
2279 //
2280 // Generally it's a lie to run async things on top of sync things and
2281 // it's caused many headaches. For now it's the best that can be done.
2282 Self::vmctx_sync(engine, ty, move |Caller { store, caller }, args| {
2283 store.with_blocking(|store, cx| {
2284 cx.block_on(core::pin::Pin::from(func(
2285 Caller { store, caller },
2286 args,
2287 &ctx,
2288 )))
2289 })?
2290 })
2291 }
2292
2293 /// Entrypoint of WebAssembly back into the host.
2294 ///
2295 /// This is the standard wasmtime "array call signature" which then
2296 /// delegates internally to the host. This assumes that `callee_vmctx` is a
2297 /// `VMArrayCallHostFuncContext` which was built above with
2298 /// `HostFuncState<F>` internally. This internal function is then used to
2299 /// dispatch based on the arguments.
2300 ///
2301 /// Details handled by this wrapper are:
2302 ///
2303 /// * Host panics are handled (`enter_host_from_wasm`)
2304 /// * `F` is loaded from `callee_vmctx`
2305 /// * `Caller` is constructed to pass to `F`
2306 /// * A GC LIFO scope is maintained around the execution of `F`.
2307 /// * Call hooks for entering/leaving the host are maintained.
2308 unsafe extern "C" fn array_call_trampoline<T, F>(
2309 callee_vmctx: NonNull<VMOpaqueContext>,
2310 caller_vmctx: NonNull<VMContext>,
2311 args: NonNull<ValRaw>,
2312 args_len: usize,
2313 ) -> bool
2314 where
2315 F: Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + 'static,
2316 T: 'static,
2317 {
2318 let run = |store: &mut dyn crate::vm::VMStore, instance: InstanceId| {
2319 // SAFETY: correct usage of this trampoline requires correct
2320 // ascription of `T`, so it's the caller's responsibility to line
2321 // this up.
2322 let mut store = unsafe { store.unchecked_context_mut() };
2323
2324 // Handle the entry call hook, with a corresponding exit call hook
2325 // below.
2326 store.0.call_hook(CallHook::CallingHost)?;
2327
2328 // SAFETY: this function itself requires that the `vmctx` is
2329 // valid to use here.
2330 let state = unsafe {
2331 let vmctx = VMArrayCallHostFuncContext::from_opaque(callee_vmctx);
2332 vmctx.as_ref().host_state()
2333 };
2334
2335 // Double-check ourselves in debug mode, but we control the
2336 // `Any` here so an unsafe downcast should also work.
2337 //
2338 // SAFETY: this function is only usable with `F`.
2339 let state = unsafe {
2340 debug_assert!(state.is::<HostFuncState<F>>());
2341 &*(state as *const _ as *const HostFuncState<F>)
2342 };
2343
2344 let (gc_lifo_scope, ret) = {
2345 let gc_lifo_scope = store.0.gc_roots().enter_lifo_scope();
2346
2347 let mut args = NonNull::slice_from_raw_parts(args.cast(), args_len);
2348 // SAFETY: it's a contract of this function itself that the values
2349 // provided are valid to view as a slice.
2350 let args = unsafe { args.as_mut() };
2351
2352 let ret = (state.func)(
2353 Caller {
2354 caller: Instance::from_wasmtime(instance, store.0),
2355 store: store.as_context_mut(),
2356 },
2357 args,
2358 );
2359
2360 (gc_lifo_scope, ret)
2361 };
2362
2363 store.0.exit_gc_lifo_scope(gc_lifo_scope);
2364
2365 // Note that if this returns a trap then `ret` is discarded
2366 // entirely.
2367 store.0.call_hook(CallHook::ReturningFromHost)?;
2368
2369 ret
2370 };
2371
2372 // SAFETY: this is an entrypoint of wasm which requires correct type
2373 // ascription of `T` itself, meaning that this should be safe to call
2374 // both `enter_host_from_wasm` as well as `unchecked_context_mut`.
2375 unsafe { vm::Instance::enter_host_from_wasm(caller_vmctx, run) }
2376 }
2377 /// Analog of [`Func::new_unchecked`]
2378 ///
2379 /// # Panics
2380 ///
2381 /// Panics if the given function type is not associated with the given
2382 /// engine.
2383 ///
2384 /// # Safety
2385 ///
2386 /// The `func` provided must operate according to the `ty` provided to
2387 /// ensure it's reading the correctly-typed parameters and writing the
2388 /// correctly-typed results.
2389 pub unsafe fn new_unchecked<T>(
2390 engine: &Engine,
2391 ty: FuncType,
2392 func: impl Fn(Caller<'_, T>, &mut [MaybeUninit<ValRaw>]) -> Result<()> + Send + Sync + 'static,
2393 ) -> Result<Self, OutOfMemory>
2394 where
2395 T: 'static,
2396 {
2397 Ok(HostFunc::new_raw(
2398 engine,
2399 Self::vmctx_sync(engine, ty, func)?,
2400 Asyncness::No,
2401 ))
2402 }
2403
2404 /// Analog of [`Func::new`]
2405 ///
2406 /// # Panics
2407 ///
2408 /// Panics if the given function type is not associated with the given
2409 /// engine.
2410 pub fn new<T>(
2411 engine: &Engine,
2412 ty: FuncType,
2413 func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
2414 ) -> Result<Self, OutOfMemory>
2415 where
2416 T: 'static,
2417 {
2418 // NB: this is "duplicated" below in `new_async`, so try to keep the
2419 // two in sync.
2420 Ok(HostFunc::new_raw(
2421 engine,
2422 Self::vmctx_sync(engine, ty.clone(), move |mut caller, values| {
2423 // SAFETY: Wasmtime in general provides the guarantee that
2424 // `values` matches `ty`, so this should be safe.
2425 let mut vec = unsafe { Self::load_untyped_params(caller.store.0, &ty, values) };
2426 let (params, results) = vec.split_at_mut(ty.params().len());
2427 func(caller.sub_caller(), params, results)?;
2428 Self::store_untyped_results(caller.store, &ty, vec, values)
2429 })?,
2430 Asyncness::No,
2431 ))
2432 }
2433
2434 /// Analog of [`Func::new_async`]
2435 ///
2436 /// # Panics
2437 ///
2438 /// Panics if the given function type is not associated with the given
2439 /// engine.
2440 #[cfg(feature = "async")]
2441 pub fn new_async<T, F>(engine: &Engine, ty: FuncType, func: F) -> Result<Self, OutOfMemory>
2442 where
2443 F: for<'a> Fn(
2444 Caller<'a, T>,
2445 &'a [Val],
2446 &'a mut [Val],
2447 ) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
2448 + Send
2449 + Sync
2450 + 'static,
2451 T: Send + 'static,
2452 {
2453 // NB: this is "duplicated" above in `new`, so try to keep the two in
2454 // sync.
2455 Ok(HostFunc::new_raw(
2456 engine,
2457 Self::vmctx_async(
2458 engine,
2459 ty.clone(),
2460 (ty, func),
2461 move |mut caller, values, (ty, func)| {
2462 Box::new(async move {
2463 // SAFETY: Wasmtime in general provides the guarantee that
2464 // `values` matches `ty`, so this should be safe.
2465 let mut vec =
2466 unsafe { Self::load_untyped_params(caller.store.0, &ty, values) };
2467 let (params, results) = vec.split_at_mut(ty.params().len());
2468 core::pin::Pin::from(func(caller.sub_caller(), params, results)).await?;
2469 Self::store_untyped_results(caller.store, &ty, vec, values)
2470 })
2471 },
2472 )?,
2473 Asyncness::Yes,
2474 ))
2475 }
2476
2477 /// Loads the the parameters of `ty` from `params` into a vector.
2478 ///
2479 /// This additionally pushes space onto the vector for all results to split
2480 /// the vector into params/results halves.
2481 ///
2482 /// # Safety
2483 ///
2484 /// Requires that `params` matches the parameters loaded by `P`.
2485 unsafe fn load_untyped_params(
2486 store: &mut StoreOpaque,
2487 ty: &FuncType,
2488 params: &mut [MaybeUninit<ValRaw>],
2489 ) -> Vec<Val> {
2490 let mut val_vec = store.take_hostcall_val_storage();
2491 debug_assert!(val_vec.is_empty());
2492 let nparams = ty.params().len();
2493 val_vec.reserve(nparams + ty.results().len());
2494 let mut store = AutoAssertNoGc::new(store);
2495 for (i, ty) in ty.params().enumerate() {
2496 val_vec.push(unsafe { Val::_from_raw(&mut store, params[i].assume_init(), &ty) })
2497 }
2498
2499 val_vec.extend((0..ty.results().len()).map(|_| Val::null_func_ref()));
2500 val_vec
2501 }
2502
2503 /// Stores the results, at the end of `args_then_results` according to `ty`,
2504 /// into `storage`.
2505 fn store_untyped_results<T>(
2506 mut store: StoreContextMut<'_, T>,
2507 ty: &FuncType,
2508 mut args_then_results: Vec<Val>,
2509 storage: &mut [MaybeUninit<ValRaw>],
2510 ) -> Result<()> {
2511 // Unlike our arguments we need to dynamically check that the return
2512 // values produced are correct. There could be a bug in `func` that
2513 // produces the wrong number, wrong types, or wrong stores of
2514 // values, and we need to catch that here.
2515 let results = &args_then_results[ty.params().len()..];
2516 for (i, (ret, ty)) in results.iter().zip(ty.results()).enumerate() {
2517 ret.ensure_matches_ty(store.0, &ty)
2518 .context("function attempted to return an incompatible value")?;
2519 storage[i].write(ret.to_raw(store.as_context_mut())?);
2520 }
2521
2522 // Restore our `val_vec` back into the store so it's usable for the next
2523 // hostcall to reuse our own storage.
2524 args_then_results.truncate(0);
2525 store.0.save_hostcall_val_storage(args_then_results);
2526 Ok(())
2527 }
2528
2529 /// Analog of [`Func::wrap`]
2530 pub fn wrap<T, F, P, R>(engine: &Engine, func: F) -> Result<Self, OutOfMemory>
2531 where
2532 F: Fn(Caller<'_, T>, P) -> R + Send + Sync + 'static,
2533 P: WasmTyList,
2534 R: WasmRet,
2535 T: 'static,
2536 {
2537 // NB: this entire function is "duplicated" below in `wrap_async`, so
2538 // try to keep the two in sync.
2539 let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()))?;
2540
2541 let ctx = Self::vmctx_sync(engine, ty, move |mut caller, args| {
2542 // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2543 // wasmtime's ambient correctness.
2544 let params = unsafe { Self::load_typed_params(caller.store.0, args) };
2545 let ret = func(caller.sub_caller(), params).into_fallible();
2546 // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2547 // wasmtime's ambient correctness.
2548 unsafe { Self::store_typed_results(caller.store.0, ret, args) }
2549 })?;
2550 Ok(HostFunc::new_raw(engine, ctx, Asyncness::No))
2551 }
2552
2553 /// Analog of [`Func::wrap_async`]
2554 #[cfg(feature = "async")]
2555 pub fn wrap_async<T, F, P, R>(engine: &Engine, func: F) -> Result<Self, OutOfMemory>
2556 where
2557 F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
2558 + Send
2559 + Sync
2560 + 'static,
2561 P: WasmTyList,
2562 R: WasmRet,
2563 T: Send + 'static,
2564 {
2565 // NB: this entire function is "duplicated" above in `wrap`, so try to
2566 // keep the two in sync.
2567 let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()))?;
2568
2569 let ctx = Self::vmctx_async(engine, ty, func, move |mut caller, args, func| {
2570 Box::new(async move {
2571 // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2572 // wasmtime's ambient correctness.
2573 let params = unsafe { Self::load_typed_params(caller.store.0, args) };
2574 let ret = core::pin::Pin::from(func(caller.sub_caller(), params)).await;
2575 // SAFETY: `args` matching `ty` is provided by `HostFunc` and
2576 // wasmtime's ambient correctness.
2577 unsafe { Self::store_typed_results(caller.store.0, ret.into_fallible(), args) }
2578 })
2579 })?;
2580 Ok(HostFunc::new_raw(engine, ctx, Asyncness::Yes))
2581 }
2582
2583 /// Loads the typed parameters from `params`
2584 ///
2585 /// # Safety
2586 ///
2587 /// Requires that `params` matches the parameters loaded by `P`.
2588 unsafe fn load_typed_params<P>(store: &mut StoreOpaque, params: &mut [MaybeUninit<ValRaw>]) -> P
2589 where
2590 P: WasmTyList,
2591 {
2592 let mut store = if P::may_gc() {
2593 AutoAssertNoGc::new(store)
2594 } else {
2595 unsafe { AutoAssertNoGc::disabled(store) }
2596 };
2597 // SAFETY: this function's own safety contract is the same as `P::load`.
2598 unsafe { P::load(&mut store, params) }
2599 }
2600
2601 /// Stores the results of `R` into the array provided.
2602 ///
2603 /// # Safety
2604 ///
2605 /// Requires that `ret` matches the result `storage` space. See `WasmRet`
2606 /// for more safety info.
2607 unsafe fn store_typed_results<R>(
2608 store: &mut StoreOpaque,
2609 ret: R,
2610 storage: &mut [MaybeUninit<ValRaw>],
2611 ) -> Result<()>
2612 where
2613 R: WasmRet,
2614 {
2615 ensure!(
2616 ret.compatible_with_store(store),
2617 "host function attempted to return cross-`Store` value to Wasm",
2618 );
2619
2620 let mut store = if R::may_gc() {
2621 AutoAssertNoGc::new(store)
2622 } else {
2623 unsafe { AutoAssertNoGc::disabled(store) }
2624 };
2625 // SAFETY: this safety contract is the same as this own function's
2626 // safety contract.
2627 unsafe {
2628 ret.store(&mut store, storage)?;
2629 }
2630 Ok(())
2631 }
2632
2633 /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2634 /// it.
2635 ///
2636 /// # Unsafety
2637 ///
2638 /// Can only be inserted into stores with a matching `T` relative to when
2639 /// this `HostFunc` was first created.
2640 pub unsafe fn to_func(self: &Arc<Self>, store: &mut StoreOpaque) -> Func {
2641 self.validate_store(store);
2642 let (funcrefs, modules) = store.func_refs_and_modules();
2643 let funcref = funcrefs.push_arc_host(self.clone(), modules);
2644 // SAFETY: this funcref was just pushed within the store, so it's safe
2645 // to say this store owns it.
2646 unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2647 }
2648
2649 /// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
2650 /// it.
2651 ///
2652 /// This function is similar to, but not equivalent, to `HostFunc::to_func`.
2653 /// Notably this function requires that the `Arc<Self>` pointer is otherwise
2654 /// rooted within the `StoreOpaque` via another means. When in doubt use
2655 /// `to_func` above as it's safer.
2656 ///
2657 /// # Unsafety
2658 ///
2659 /// Can only be inserted into stores with a matching `T` relative to when
2660 /// this `HostFunc` was first created.
2661 ///
2662 /// Additionally the `&Arc<Self>` is not cloned in this function. Instead a
2663 /// raw pointer to `Self` is stored within the `Store` for this function.
2664 /// The caller must arrange for the `Arc<Self>` to be "rooted" in the store
2665 /// provided via another means, probably by pushing to
2666 /// `StoreOpaque::rooted_host_funcs`.
2667 ///
2668 /// Similarly, the caller must arrange for `rooted_func_ref` to be rooted in
2669 /// the same store and additionally be a valid pointer.
2670 pub unsafe fn to_func_store_rooted(
2671 self: &Arc<Self>,
2672 store: &mut StoreOpaque,
2673 rooted_func_ref: Option<NonNull<VMFuncRef>>,
2674 ) -> Func {
2675 self.validate_store(store);
2676
2677 match rooted_func_ref {
2678 Some(funcref) => {
2679 // SAFETY: it's a contract of this function itself that
2680 // `funcref` is safe to read.
2681 unsafe {
2682 debug_assert!(funcref.as_ref().wasm_call.is_some());
2683 }
2684 // SAFETY: it's a contract of this function that `funcref` is
2685 // owned by `store`.
2686 unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2687 }
2688 None => {
2689 debug_assert!(self.func_ref().wasm_call.is_some());
2690
2691 // SAFETY: it's an unsafe contract of this function that we are
2692 // rooted within the store to say that the store owns a copy of
2693 // this funcref.
2694 unsafe { Func::from_vm_func_ref(store.id(), self.func_ref().into()) }
2695 }
2696 }
2697 }
2698
2699 /// Same as [`HostFunc::to_func`], different ownership.
2700 unsafe fn into_func(self, store: &mut StoreOpaque) -> Func {
2701 self.validate_store(store);
2702
2703 // This function could be called by a guest at any time, and it requires
2704 // fibers, so the store now required async entrypoints.
2705 store.set_async_required(self.asyncness);
2706
2707 let (funcrefs, modules) = store.func_refs_and_modules();
2708 let funcref = funcrefs.push_box_host(Box::new(self), modules);
2709 // SAFETY: this funcref was just pushed within `store`, so it's safe to
2710 // say it's owned by the store's id.
2711 unsafe { Func::from_vm_func_ref(store.id(), funcref) }
2712 }
2713
2714 fn validate_store(&self, store: &mut StoreOpaque) {
2715 // This assert is required to ensure that we can indeed safely insert
2716 // `self` into the `store` provided, otherwise the type information we
2717 // have listed won't be correct. This is possible to hit with the public
2718 // API of Wasmtime, and should be documented in relevant functions.
2719 assert!(
2720 Engine::same(&self.engine, store.engine()),
2721 "cannot use a store with a different engine than a linker was created with",
2722 );
2723 }
2724
2725 pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
2726 self.func_ref().type_index
2727 }
2728
2729 pub(crate) fn func_ref(&self) -> &VMFuncRef {
2730 unsafe { self.ctx.get().as_ref().func_ref() }
2731 }
2732
2733 pub(crate) fn asyncness(&self) -> Asyncness {
2734 self.asyncness
2735 }
2736}
2737
2738#[cfg(test)]
2739mod tests {
2740 use super::*;
2741 use crate::{Module, Store};
2742
2743 #[test]
2744 #[cfg_attr(miri, ignore)]
2745 fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
2746 let mut store = Store::<()>::default();
2747 let module = Module::new(
2748 store.engine(),
2749 r#"
2750 (module
2751 (func (export "f")
2752 nop
2753 )
2754 )
2755 "#,
2756 )?;
2757 let instance = Instance::new(&mut store, &module, &[])?;
2758
2759 // Each time we `get_func`, we call `Func::from_wasmtime` which adds a
2760 // new entry to `StoreData`, so `f1` and `f2` will have different
2761 // indices into `StoreData`.
2762 let f1 = instance.get_func(&mut store, "f").unwrap();
2763 let f2 = instance.get_func(&mut store, "f").unwrap();
2764
2765 // But their hash keys are the same.
2766 assert!(
2767 f1.hash_key(&mut store.as_context_mut().0)
2768 == f2.hash_key(&mut store.as_context_mut().0)
2769 );
2770
2771 // But the hash keys are different from different funcs.
2772 let instance2 = Instance::new(&mut store, &module, &[])?;
2773 let f3 = instance2.get_func(&mut store, "f").unwrap();
2774 assert!(
2775 f1.hash_key(&mut store.as_context_mut().0)
2776 != f3.hash_key(&mut store.as_context_mut().0)
2777 );
2778
2779 Ok(())
2780 }
2781}