cranelift_codegen/ir/
dfg.rs

1//! Data flow graph tracking Instructions, Values, and blocks.
2
3use crate::entity::{self, PrimaryMap, SecondaryMap};
4use crate::ir;
5use crate::ir::builder::ReplaceBuilder;
6use crate::ir::dynamic_type::{DynamicTypeData, DynamicTypes};
7use crate::ir::instructions::{CallInfo, InstructionData};
8use crate::ir::pcc::Fact;
9use crate::ir::user_stack_maps::{UserStackMapEntry, UserStackMapEntryVec};
10use crate::ir::{
11    Block, BlockArg, BlockCall, ConstantData, ConstantPool, DynamicType, ExceptionTables,
12    ExtFuncData, FuncRef, Immediate, Inst, JumpTables, RelSourceLoc, SigRef, Signature, Type,
13    Value, ValueLabelAssignments, ValueList, ValueListPool, types,
14};
15use crate::packed_option::ReservedValue;
16use crate::write::write_operands;
17use core::fmt;
18use core::iter;
19use core::mem;
20use core::ops::{Index, IndexMut};
21use core::u16;
22
23use alloc::collections::BTreeMap;
24#[cfg(feature = "enable-serde")]
25use serde_derive::{Deserialize, Serialize};
26use smallvec::SmallVec;
27
28/// Storage for instructions within the DFG.
29#[derive(Clone, PartialEq, Hash)]
30#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
31pub struct Insts(PrimaryMap<Inst, InstructionData>);
32
33/// Allow immutable access to instructions via indexing.
34impl Index<Inst> for Insts {
35    type Output = InstructionData;
36
37    fn index(&self, inst: Inst) -> &InstructionData {
38        self.0.index(inst)
39    }
40}
41
42/// Allow mutable access to instructions via indexing.
43impl IndexMut<Inst> for Insts {
44    fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
45        self.0.index_mut(inst)
46    }
47}
48
49/// Storage for basic blocks within the DFG.
50#[derive(Clone, PartialEq, Hash)]
51#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
52pub struct Blocks(PrimaryMap<Block, BlockData>);
53
54impl Blocks {
55    /// Create a new basic block.
56    pub fn add(&mut self) -> Block {
57        self.0.push(BlockData::new())
58    }
59
60    /// Get the total number of basic blocks created in this function, whether they are
61    /// currently inserted in the layout or not.
62    ///
63    /// This is intended for use with `SecondaryMap::with_capacity`.
64    pub fn len(&self) -> usize {
65        self.0.len()
66    }
67
68    /// Reserves capacity for at least `additional` more elements to be
69    /// inserted.
70    pub fn reserve(&mut self, additional: usize) {
71        self.0.reserve(additional);
72    }
73
74    /// Returns `true` if the given block reference is valid.
75    pub fn is_valid(&self, block: Block) -> bool {
76        self.0.is_valid(block)
77    }
78
79    /// Iterate over all blocks, regardless whether a block is actually inserted
80    /// in the layout or not.
81    ///
82    /// Iterates in creation order, not layout order.
83    pub fn iter(&self) -> impl Iterator<Item = Block> {
84        self.0.keys()
85    }
86}
87
88impl Index<Block> for Blocks {
89    type Output = BlockData;
90
91    fn index(&self, block: Block) -> &BlockData {
92        &self.0[block]
93    }
94}
95
96impl IndexMut<Block> for Blocks {
97    fn index_mut(&mut self, block: Block) -> &mut BlockData {
98        &mut self.0[block]
99    }
100}
101
102/// A data flow graph defines all instructions and basic blocks in a function as well as
103/// the data flow dependencies between them. The DFG also tracks values which can be either
104/// instruction results or block parameters.
105///
106/// The layout of blocks in the function and of instructions in each block is recorded by the
107/// `Layout` data structure which forms the other half of the function representation.
108///
109#[derive(Clone, PartialEq, Hash)]
110#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
111pub struct DataFlowGraph {
112    /// Data about all of the instructions in the function, including opcodes and operands.
113    /// The instructions in this map are not in program order. That is tracked by `Layout`, along
114    /// with the block containing each instruction.
115    pub insts: Insts,
116
117    /// List of result values for each instruction.
118    ///
119    /// This map gets resized automatically by `make_inst()` so it is always in sync with the
120    /// primary `insts` map.
121    results: SecondaryMap<Inst, ValueList>,
122
123    /// User-defined stack maps.
124    user_stack_maps: alloc::collections::BTreeMap<Inst, UserStackMapEntryVec>,
125
126    /// basic blocks in the function and their parameters.
127    ///
128    /// This map is not in program order. That is handled by `Layout`, and so is the sequence of
129    /// instructions contained in each block.
130    pub blocks: Blocks,
131
132    /// Dynamic types created.
133    pub dynamic_types: DynamicTypes,
134
135    /// Memory pool of value lists.
136    ///
137    /// The `ValueList` references into this pool appear in many places:
138    ///
139    /// - Instructions in `insts` that don't have room for their entire argument list inline.
140    /// - Instruction result values in `results`.
141    /// - block parameters in `blocks`.
142    pub value_lists: ValueListPool,
143
144    /// Primary value table with entries for all values.
145    values: PrimaryMap<Value, ValueDataPacked>,
146
147    /// Facts: proof-carrying-code assertions about values.
148    pub facts: SecondaryMap<Value, Option<Fact>>,
149
150    /// Function signature table. These signatures are referenced by indirect call instructions as
151    /// well as the external function references.
152    pub signatures: PrimaryMap<SigRef, Signature>,
153
154    /// External function references. These are functions that can be called directly.
155    pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,
156
157    /// Saves Value labels.
158    pub values_labels: Option<BTreeMap<Value, ValueLabelAssignments>>,
159
160    /// Constants used within the function.
161    pub constants: ConstantPool,
162
163    /// Stores large immediates that otherwise will not fit on InstructionData.
164    pub immediates: PrimaryMap<Immediate, ConstantData>,
165
166    /// Jump tables used in this function.
167    pub jump_tables: JumpTables,
168
169    /// Exception tables used in this function.
170    pub exception_tables: ExceptionTables,
171}
172
173impl DataFlowGraph {
174    /// Create a new empty `DataFlowGraph`.
175    pub fn new() -> Self {
176        Self {
177            insts: Insts(PrimaryMap::new()),
178            results: SecondaryMap::new(),
179            user_stack_maps: alloc::collections::BTreeMap::new(),
180            blocks: Blocks(PrimaryMap::new()),
181            dynamic_types: DynamicTypes::new(),
182            value_lists: ValueListPool::new(),
183            values: PrimaryMap::new(),
184            facts: SecondaryMap::new(),
185            signatures: PrimaryMap::new(),
186            ext_funcs: PrimaryMap::new(),
187            values_labels: None,
188            constants: ConstantPool::new(),
189            immediates: PrimaryMap::new(),
190            jump_tables: JumpTables::new(),
191            exception_tables: ExceptionTables::new(),
192        }
193    }
194
195    /// Clear everything.
196    pub fn clear(&mut self) {
197        self.insts.0.clear();
198        self.results.clear();
199        self.user_stack_maps.clear();
200        self.blocks.0.clear();
201        self.dynamic_types.clear();
202        self.value_lists.clear();
203        self.values.clear();
204        self.signatures.clear();
205        self.ext_funcs.clear();
206        self.values_labels = None;
207        self.constants.clear();
208        self.immediates.clear();
209        self.jump_tables.clear();
210        self.facts.clear();
211    }
212
213    /// Get the total number of instructions created in this function, whether they are currently
214    /// inserted in the layout or not.
215    ///
216    /// This is intended for use with `SecondaryMap::with_capacity`.
217    pub fn num_insts(&self) -> usize {
218        self.insts.0.len()
219    }
220
221    /// Returns `true` if the given instruction reference is valid.
222    pub fn inst_is_valid(&self, inst: Inst) -> bool {
223        self.insts.0.is_valid(inst)
224    }
225
226    /// Get the total number of basic blocks created in this function, whether they are
227    /// currently inserted in the layout or not.
228    ///
229    /// This is intended for use with `SecondaryMap::with_capacity`.
230    pub fn num_blocks(&self) -> usize {
231        self.blocks.len()
232    }
233
234    /// Returns `true` if the given block reference is valid.
235    pub fn block_is_valid(&self, block: Block) -> bool {
236        self.blocks.is_valid(block)
237    }
238
239    /// Make a BlockCall, bundling together the block and its arguments.
240    pub fn block_call<'a>(
241        &mut self,
242        block: Block,
243        args: impl IntoIterator<Item = &'a BlockArg>,
244    ) -> BlockCall {
245        BlockCall::new(block, args.into_iter().copied(), &mut self.value_lists)
246    }
247
248    /// Get the total number of values.
249    pub fn num_values(&self) -> usize {
250        self.values.len()
251    }
252
253    /// Get an iterator over all values and their definitions.
254    pub fn values_and_defs(&self) -> impl Iterator<Item = (Value, ValueDef)> + '_ {
255        self.values().map(|value| (value, self.value_def(value)))
256    }
257
258    /// Starts collection of debug information.
259    pub fn collect_debug_info(&mut self) {
260        if self.values_labels.is_none() {
261            self.values_labels = Some(Default::default());
262        }
263    }
264
265    /// Inserts a `ValueLabelAssignments::Alias` for `to_alias` if debug info
266    /// collection is enabled.
267    pub fn add_value_label_alias(&mut self, to_alias: Value, from: RelSourceLoc, value: Value) {
268        if let Some(values_labels) = self.values_labels.as_mut() {
269            values_labels.insert(to_alias, ir::ValueLabelAssignments::Alias { from, value });
270        }
271    }
272}
273
274/// Resolve value aliases.
275///
276/// Find the original SSA value that `value` aliases, or None if an
277/// alias cycle is detected.
278fn maybe_resolve_aliases(
279    values: &PrimaryMap<Value, ValueDataPacked>,
280    value: Value,
281) -> Option<Value> {
282    let mut v = value;
283
284    // Note that values may be empty here.
285    for _ in 0..=values.len() {
286        if let ValueData::Alias { original, .. } = ValueData::from(values[v]) {
287            v = original;
288        } else {
289            return Some(v);
290        }
291    }
292
293    None
294}
295
296/// Resolve value aliases.
297///
298/// Find the original SSA value that `value` aliases.
299fn resolve_aliases(values: &PrimaryMap<Value, ValueDataPacked>, value: Value) -> Value {
300    if let Some(v) = maybe_resolve_aliases(values, value) {
301        v
302    } else {
303        panic!("Value alias loop detected for {value}");
304    }
305}
306
307/// Iterator over all Values in a DFG.
308pub struct Values<'a> {
309    inner: entity::Iter<'a, Value, ValueDataPacked>,
310}
311
312/// Check for non-values.
313fn valid_valuedata(data: ValueDataPacked) -> bool {
314    let data = ValueData::from(data);
315    if let ValueData::Alias {
316        ty: types::INVALID,
317        original,
318    } = data
319    {
320        if original == Value::reserved_value() {
321            return false;
322        }
323    }
324    true
325}
326
327impl<'a> Iterator for Values<'a> {
328    type Item = Value;
329
330    fn next(&mut self) -> Option<Self::Item> {
331        self.inner
332            .by_ref()
333            .find(|kv| valid_valuedata(*kv.1))
334            .map(|kv| kv.0)
335    }
336
337    fn size_hint(&self) -> (usize, Option<usize>) {
338        self.inner.size_hint()
339    }
340}
341
342impl ExactSizeIterator for Values<'_> {
343    fn len(&self) -> usize {
344        self.inner.len()
345    }
346}
347
348/// Handling values.
349///
350/// Values are either block parameters or instruction results.
351impl DataFlowGraph {
352    /// Allocate an extended value entry.
353    fn make_value(&mut self, data: ValueData) -> Value {
354        self.values.push(data.into())
355    }
356
357    /// The number of values defined in this DFG.
358    pub fn len_values(&self) -> usize {
359        self.values.len()
360    }
361
362    /// Get an iterator over all values.
363    pub fn values<'a>(&'a self) -> Values<'a> {
364        Values {
365            inner: self.values.iter(),
366        }
367    }
368
369    /// Check if a value reference is valid.
370    pub fn value_is_valid(&self, v: Value) -> bool {
371        self.values.is_valid(v)
372    }
373
374    /// Check whether a value is valid and not an alias.
375    pub fn value_is_real(&self, value: Value) -> bool {
376        // Deleted or unused values are also stored as aliases so this excludes
377        // those as well.
378        self.value_is_valid(value) && !matches!(self.values[value].into(), ValueData::Alias { .. })
379    }
380
381    /// Get the type of a value.
382    pub fn value_type(&self, v: Value) -> Type {
383        self.values[v].ty()
384    }
385
386    /// Get the definition of a value.
387    ///
388    /// This is either the instruction that defined it or the Block that has the value as an
389    /// parameter.
390    pub fn value_def(&self, v: Value) -> ValueDef {
391        match ValueData::from(self.values[v]) {
392            ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
393            ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize),
394            ValueData::Alias { original, .. } => {
395                // Make sure we only recurse one level. `resolve_aliases` has safeguards to
396                // detect alias loops without overrunning the stack.
397                self.value_def(self.resolve_aliases(original))
398            }
399            ValueData::Union { x, y, .. } => ValueDef::Union(x, y),
400        }
401    }
402
403    /// Determine if `v` is an attached instruction result / block parameter.
404    ///
405    /// An attached value can't be attached to something else without first being detached.
406    ///
407    /// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
408    /// determine if the original aliased value is attached.
409    pub fn value_is_attached(&self, v: Value) -> bool {
410        use self::ValueData::*;
411        match ValueData::from(self.values[v]) {
412            Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
413            Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize),
414            Alias { .. } => false,
415            Union { .. } => false,
416        }
417    }
418
419    /// Resolve value aliases.
420    ///
421    /// Find the original SSA value that `value` aliases.
422    pub fn resolve_aliases(&self, value: Value) -> Value {
423        resolve_aliases(&self.values, value)
424    }
425
426    /// Replace all uses of value aliases with their resolved values, and delete
427    /// the aliases.
428    pub fn resolve_all_aliases(&mut self) {
429        let invalid_value = ValueDataPacked::from(ValueData::Alias {
430            ty: types::INVALID,
431            original: Value::reserved_value(),
432        });
433
434        // Rewrite each chain of aliases. Update every alias along the chain
435        // into an alias directly to the final value. Due to updating every
436        // alias that it looks at, this loop runs in time linear in the number
437        // of values.
438        for mut src in self.values.keys() {
439            let value_data = self.values[src];
440            if value_data == invalid_value {
441                continue;
442            }
443            if let ValueData::Alias { mut original, .. } = value_data.into() {
444                // We don't use the type after this, we just need some place to
445                // store the resolved aliases temporarily.
446                let resolved = ValueDataPacked::from(ValueData::Alias {
447                    ty: types::INVALID,
448                    original: resolve_aliases(&self.values, original),
449                });
450                // Walk the chain again, splatting the new alias everywhere.
451                // resolve_aliases panics if there's an alias cycle, so we don't
452                // need to guard against cycles here.
453                loop {
454                    self.values[src] = resolved;
455                    src = original;
456                    if let ValueData::Alias { original: next, .. } = self.values[src].into() {
457                        original = next;
458                    } else {
459                        break;
460                    }
461                }
462            }
463        }
464
465        // Now aliases don't point to other aliases, so we can replace any use
466        // of an alias with the final value in constant time.
467
468        // Rewrite InstructionData in `self.insts`.
469        for inst in self.insts.0.values_mut() {
470            inst.map_values(
471                &mut self.value_lists,
472                &mut self.jump_tables,
473                &mut self.exception_tables,
474                |arg| {
475                    if let ValueData::Alias { original, .. } = self.values[arg].into() {
476                        original
477                    } else {
478                        arg
479                    }
480                },
481            );
482        }
483
484        // - `results` and block-params in `blocks` are not aliases, by
485        //   definition.
486        // - `dynamic_types` has no values.
487        // - `value_lists` can only be accessed via references from elsewhere.
488        // - `values` only has value references in aliases (which we've
489        //   removed), and unions (but the egraph pass ensures there are no
490        //   aliases before creating unions).
491
492        // Merge `facts` from any alias onto the aliased value. Note that if
493        // there was a chain of aliases, at this point every alias that was in
494        // the chain points to the same final value, so their facts will all be
495        // merged together.
496        for value in self.facts.keys() {
497            if let ValueData::Alias { original, .. } = self.values[value].into() {
498                if let Some(new_fact) = self.facts[value].take() {
499                    match &mut self.facts[original] {
500                        Some(old_fact) => *old_fact = Fact::intersect(old_fact, &new_fact),
501                        old_fact => *old_fact = Some(new_fact),
502                    }
503                }
504            }
505        }
506
507        // - `signatures` and `ext_funcs` have no values.
508
509        if let Some(values_labels) = &mut self.values_labels {
510            // Debug info is best-effort. If any is attached to value aliases,
511            // just discard it.
512            values_labels.retain(|&k, _| !matches!(self.values[k].into(), ValueData::Alias { .. }));
513
514            // If debug-info says a value should have the same labels as another
515            // value, then make sure that target is not a value alias.
516            for value_label in values_labels.values_mut() {
517                if let ValueLabelAssignments::Alias { value, .. } = value_label {
518                    if let ValueData::Alias { original, .. } = self.values[*value].into() {
519                        *value = original;
520                    }
521                }
522            }
523        }
524
525        // - `constants` and `immediates` have no values.
526        // - `jump_tables` is updated together with instruction-data above.
527
528        // Delete all aliases now that there are no uses left.
529        for value in self.values.values_mut() {
530            if let ValueData::Alias { .. } = ValueData::from(*value) {
531                *value = invalid_value;
532            }
533        }
534    }
535
536    /// Turn a value into an alias of another.
537    ///
538    /// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
539    /// will behave as if they used that value `src`.
540    ///
541    /// The `dest` value can't be attached to an instruction or block.
542    pub fn change_to_alias(&mut self, dest: Value, src: Value) {
543        debug_assert!(!self.value_is_attached(dest));
544        // Try to create short alias chains by finding the original source value.
545        // This also avoids the creation of loops.
546        let original = self.resolve_aliases(src);
547        debug_assert_ne!(
548            dest, original,
549            "Aliasing {dest} to {src} would create a loop"
550        );
551        let ty = self.value_type(original);
552        debug_assert_eq!(
553            self.value_type(dest),
554            ty,
555            "Aliasing {} to {} would change its type {} to {}",
556            dest,
557            src,
558            self.value_type(dest),
559            ty
560        );
561        debug_assert_ne!(ty, types::INVALID);
562
563        self.values[dest] = ValueData::Alias { ty, original }.into();
564    }
565
566    /// Replace the results of one instruction with aliases to the results of another.
567    ///
568    /// Change all the results of `dest_inst` to behave as aliases of
569    /// corresponding results of `src_inst`, as if calling change_to_alias for
570    /// each.
571    ///
572    /// After calling this instruction, `dest_inst` will have had its results
573    /// cleared, so it likely needs to be removed from the graph.
574    ///
575    pub fn replace_with_aliases(&mut self, dest_inst: Inst, original_inst: Inst) {
576        debug_assert_ne!(
577            dest_inst, original_inst,
578            "Replacing {dest_inst} with itself would create a loop"
579        );
580
581        let dest_results = self.results[dest_inst].as_slice(&self.value_lists);
582        let original_results = self.results[original_inst].as_slice(&self.value_lists);
583
584        debug_assert_eq!(
585            dest_results.len(),
586            original_results.len(),
587            "Replacing {dest_inst} with {original_inst} would produce a different number of results."
588        );
589
590        for (&dest, &original) in dest_results.iter().zip(original_results) {
591            let ty = self.value_type(original);
592            debug_assert_eq!(
593                self.value_type(dest),
594                ty,
595                "Aliasing {} to {} would change its type {} to {}",
596                dest,
597                original,
598                self.value_type(dest),
599                ty
600            );
601            debug_assert_ne!(ty, types::INVALID);
602
603            self.values[dest] = ValueData::Alias { ty, original }.into();
604        }
605
606        self.clear_results(dest_inst);
607    }
608
609    /// Get the stack map entries associated with the given instruction.
610    pub fn user_stack_map_entries(&self, inst: Inst) -> Option<&[UserStackMapEntry]> {
611        self.user_stack_maps.get(&inst).map(|es| &**es)
612    }
613
614    /// Append a new stack map entry for the given call instruction.
615    ///
616    /// # Panics
617    ///
618    /// Panics if the given instruction is not a (non-tail) call instruction.
619    pub fn append_user_stack_map_entry(&mut self, inst: Inst, entry: UserStackMapEntry) {
620        let opcode = self.insts[inst].opcode();
621        assert!(opcode.is_safepoint());
622        self.user_stack_maps.entry(inst).or_default().push(entry);
623    }
624
625    /// Append multiple stack map entries for the given call instruction.
626    ///
627    /// # Panics
628    ///
629    /// Panics if the given instruction is not a (non-tail) call instruction.
630    pub fn append_user_stack_map_entries(
631        &mut self,
632        inst: Inst,
633        entries: impl IntoIterator<Item = UserStackMapEntry>,
634    ) {
635        for entry in entries {
636            self.append_user_stack_map_entry(inst, entry);
637        }
638    }
639
640    /// Take the stack map entries for a given instruction, leaving the
641    /// instruction without stack maps.
642    pub(crate) fn take_user_stack_map_entries(
643        &mut self,
644        inst: Inst,
645    ) -> Option<UserStackMapEntryVec> {
646        self.user_stack_maps.remove(&inst)
647    }
648}
649
650/// Where did a value come from?
651#[derive(Clone, Copy, Debug, PartialEq, Eq)]
652pub enum ValueDef {
653    /// Value is the n'th result of an instruction.
654    Result(Inst, usize),
655    /// Value is the n'th parameter to a block.
656    Param(Block, usize),
657    /// Value is a union of two other values.
658    Union(Value, Value),
659}
660
661impl ValueDef {
662    /// Unwrap the instruction where the value was defined, or panic.
663    pub fn unwrap_inst(&self) -> Inst {
664        self.inst().expect("Value is not an instruction result")
665    }
666
667    /// Get the instruction where the value was defined, if any.
668    pub fn inst(&self) -> Option<Inst> {
669        match *self {
670            Self::Result(inst, _) => Some(inst),
671            _ => None,
672        }
673    }
674
675    /// Unwrap the block there the parameter is defined, or panic.
676    pub fn unwrap_block(&self) -> Block {
677        match *self {
678            Self::Param(block, _) => block,
679            _ => panic!("Value is not a block parameter"),
680        }
681    }
682
683    /// Get the number component of this definition.
684    ///
685    /// When multiple values are defined at the same program point, this indicates the index of
686    /// this value.
687    pub fn num(self) -> usize {
688        match self {
689            Self::Result(_, n) | Self::Param(_, n) => n,
690            Self::Union(_, _) => 0,
691        }
692    }
693}
694
695/// Internal table storage for extended values.
696#[derive(Clone, Debug, PartialEq, Hash)]
697#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
698enum ValueData {
699    /// Value is defined by an instruction.
700    Inst { ty: Type, num: u16, inst: Inst },
701
702    /// Value is a block parameter.
703    Param { ty: Type, num: u16, block: Block },
704
705    /// Value is an alias of another value.
706    /// An alias value can't be linked as an instruction result or block parameter. It is used as a
707    /// placeholder when the original instruction or block has been rewritten or modified.
708    Alias { ty: Type, original: Value },
709
710    /// Union is a "fork" in representation: the value can be
711    /// represented as either of the values named here. This is used
712    /// for aegraph (acyclic egraph) representation in the DFG.
713    Union { ty: Type, x: Value, y: Value },
714}
715
716/// Bit-packed version of ValueData, for efficiency.
717///
718/// Layout:
719///
720/// ```plain
721///        | tag:2 |  type:14        |    x:24       | y:24          |
722///
723/// Inst       00     ty               inst output     inst index
724/// Param      01     ty               blockparam num  block index
725/// Alias      10     ty               0               value index
726/// Union      11     ty               first value     second value
727/// ```
728#[derive(Clone, Copy, Debug, PartialEq, Hash)]
729#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
730struct ValueDataPacked(u64);
731
732/// Encodes a value in 0..2^32 into 0..2^n, where n is less than 32
733/// (and is implied by `mask`), by translating 2^32-1 (0xffffffff)
734/// into 2^n-1 and panic'ing on 2^n..2^32-1.
735fn encode_narrow_field(x: u32, bits: u8) -> u32 {
736    let max = (1 << bits) - 1;
737    if x == 0xffff_ffff {
738        max
739    } else {
740        debug_assert!(
741            x < max,
742            "{x} does not fit into {bits} bits (must be less than {max} to \
743             allow for a 0xffffffff sentinel)"
744        );
745        x
746    }
747}
748
749/// The inverse of the above `encode_narrow_field`: unpacks 2^n-1 into
750/// 2^32-1.
751fn decode_narrow_field(x: u32, bits: u8) -> u32 {
752    if x == (1 << bits) - 1 { 0xffff_ffff } else { x }
753}
754
755impl ValueDataPacked {
756    const Y_SHIFT: u8 = 0;
757    const Y_BITS: u8 = 24;
758    const X_SHIFT: u8 = Self::Y_SHIFT + Self::Y_BITS;
759    const X_BITS: u8 = 24;
760    const TYPE_SHIFT: u8 = Self::X_SHIFT + Self::X_BITS;
761    const TYPE_BITS: u8 = 14;
762    const TAG_SHIFT: u8 = Self::TYPE_SHIFT + Self::TYPE_BITS;
763    const TAG_BITS: u8 = 2;
764
765    const TAG_INST: u64 = 0;
766    const TAG_PARAM: u64 = 1;
767    const TAG_ALIAS: u64 = 2;
768    const TAG_UNION: u64 = 3;
769
770    fn make(tag: u64, ty: Type, x: u32, y: u32) -> ValueDataPacked {
771        debug_assert!(tag < (1 << Self::TAG_BITS));
772        debug_assert!(ty.repr() < (1 << Self::TYPE_BITS));
773
774        let x = encode_narrow_field(x, Self::X_BITS);
775        let y = encode_narrow_field(y, Self::Y_BITS);
776
777        ValueDataPacked(
778            (tag << Self::TAG_SHIFT)
779                | ((ty.repr() as u64) << Self::TYPE_SHIFT)
780                | ((x as u64) << Self::X_SHIFT)
781                | ((y as u64) << Self::Y_SHIFT),
782        )
783    }
784
785    #[inline(always)]
786    fn field(self, shift: u8, bits: u8) -> u64 {
787        (self.0 >> shift) & ((1 << bits) - 1)
788    }
789
790    #[inline(always)]
791    fn ty(self) -> Type {
792        let ty = self.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
793        Type::from_repr(ty)
794    }
795
796    #[inline(always)]
797    fn set_type(&mut self, ty: Type) {
798        self.0 &= !(((1 << Self::TYPE_BITS) - 1) << Self::TYPE_SHIFT);
799        self.0 |= (ty.repr() as u64) << Self::TYPE_SHIFT;
800    }
801}
802
803impl From<ValueData> for ValueDataPacked {
804    fn from(data: ValueData) -> Self {
805        match data {
806            ValueData::Inst { ty, num, inst } => {
807                Self::make(Self::TAG_INST, ty, num.into(), inst.as_bits())
808            }
809            ValueData::Param { ty, num, block } => {
810                Self::make(Self::TAG_PARAM, ty, num.into(), block.as_bits())
811            }
812            ValueData::Alias { ty, original } => {
813                Self::make(Self::TAG_ALIAS, ty, 0, original.as_bits())
814            }
815            ValueData::Union { ty, x, y } => {
816                Self::make(Self::TAG_UNION, ty, x.as_bits(), y.as_bits())
817            }
818        }
819    }
820}
821
822impl From<ValueDataPacked> for ValueData {
823    fn from(data: ValueDataPacked) -> Self {
824        let tag = data.field(ValueDataPacked::TAG_SHIFT, ValueDataPacked::TAG_BITS);
825        let ty = u16::try_from(data.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS))
826            .expect("Mask should ensure result fits in a u16");
827        let x = u32::try_from(data.field(ValueDataPacked::X_SHIFT, ValueDataPacked::X_BITS))
828            .expect("Mask should ensure result fits in a u32");
829        let y = u32::try_from(data.field(ValueDataPacked::Y_SHIFT, ValueDataPacked::Y_BITS))
830            .expect("Mask should ensure result fits in a u32");
831
832        let ty = Type::from_repr(ty);
833        match tag {
834            ValueDataPacked::TAG_INST => ValueData::Inst {
835                ty,
836                num: u16::try_from(x).expect("Inst result num should fit in u16"),
837                inst: Inst::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
838            },
839            ValueDataPacked::TAG_PARAM => ValueData::Param {
840                ty,
841                num: u16::try_from(x).expect("Blockparam index should fit in u16"),
842                block: Block::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
843            },
844            ValueDataPacked::TAG_ALIAS => ValueData::Alias {
845                ty,
846                original: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
847            },
848            ValueDataPacked::TAG_UNION => ValueData::Union {
849                ty,
850                x: Value::from_bits(decode_narrow_field(x, ValueDataPacked::X_BITS)),
851                y: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
852            },
853            _ => panic!("Invalid tag {} in ValueDataPacked 0x{:x}", tag, data.0),
854        }
855    }
856}
857
858/// Instructions.
859///
860impl DataFlowGraph {
861    /// Create a new instruction.
862    ///
863    /// The type of the first result is indicated by `data.ty`. If the
864    /// instruction produces multiple results, also call
865    /// `make_inst_results` to allocate value table entries. (It is
866    /// always safe to call `make_inst_results`, regardless of how
867    /// many results the instruction has.)
868    pub fn make_inst(&mut self, data: InstructionData) -> Inst {
869        let n = self.num_insts() + 1;
870        self.results.resize(n);
871        self.insts.0.push(data)
872    }
873
874    /// Declares a dynamic vector type
875    pub fn make_dynamic_ty(&mut self, data: DynamicTypeData) -> DynamicType {
876        self.dynamic_types.push(data)
877    }
878
879    /// Returns an object that displays `inst`.
880    pub fn display_inst<'a>(&'a self, inst: Inst) -> DisplayInst<'a> {
881        DisplayInst(self, inst)
882    }
883
884    /// Returns an object that displays the given `value`'s defining instruction.
885    ///
886    /// Panics if the value is not defined by an instruction (i.e. it is a basic
887    /// block argument).
888    pub fn display_value_inst(&self, value: Value) -> DisplayInst<'_> {
889        match self.value_def(value) {
890            ir::ValueDef::Result(inst, _) => self.display_inst(inst),
891            ir::ValueDef::Param(_, _) => panic!("value is not defined by an instruction"),
892            ir::ValueDef::Union(_, _) => panic!("value is a union of two other values"),
893        }
894    }
895
896    /// Construct a read-only visitor context for the values of this instruction.
897    pub fn inst_values<'dfg>(
898        &'dfg self,
899        inst: Inst,
900    ) -> impl DoubleEndedIterator<Item = Value> + 'dfg {
901        self.inst_args(inst)
902            .iter()
903            .copied()
904            .chain(
905                self.insts[inst]
906                    .branch_destination(&self.jump_tables, &self.exception_tables)
907                    .into_iter()
908                    .flat_map(|branch| {
909                        branch
910                            .args(&self.value_lists)
911                            .filter_map(|arg| arg.as_value())
912                    }),
913            )
914            .chain(
915                self.insts[inst]
916                    .exception_table()
917                    .into_iter()
918                    .flat_map(|et| self.exception_tables[et].contexts()),
919            )
920    }
921
922    /// Map a function over the values of the instruction.
923    pub fn map_inst_values<F>(&mut self, inst: Inst, body: F)
924    where
925        F: FnMut(Value) -> Value,
926    {
927        self.insts[inst].map_values(
928            &mut self.value_lists,
929            &mut self.jump_tables,
930            &mut self.exception_tables,
931            body,
932        );
933    }
934
935    /// Overwrite the instruction's value references with values from the iterator.
936    /// NOTE: the iterator provided is expected to yield at least as many values as the instruction
937    /// currently has.
938    pub fn overwrite_inst_values<I>(&mut self, inst: Inst, mut values: I)
939    where
940        I: Iterator<Item = Value>,
941    {
942        self.insts[inst].map_values(
943            &mut self.value_lists,
944            &mut self.jump_tables,
945            &mut self.exception_tables,
946            |_| values.next().unwrap(),
947        );
948    }
949
950    /// Get all value arguments on `inst` as a slice.
951    pub fn inst_args(&self, inst: Inst) -> &[Value] {
952        self.insts[inst].arguments(&self.value_lists)
953    }
954
955    /// Get all value arguments on `inst` as a mutable slice.
956    pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
957        self.insts[inst].arguments_mut(&mut self.value_lists)
958    }
959
960    /// Get the fixed value arguments on `inst` as a slice.
961    pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
962        let num_fixed_args = self.insts[inst]
963            .opcode()
964            .constraints()
965            .num_fixed_value_arguments();
966        &self.inst_args(inst)[..num_fixed_args]
967    }
968
969    /// Get the fixed value arguments on `inst` as a mutable slice.
970    pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
971        let num_fixed_args = self.insts[inst]
972            .opcode()
973            .constraints()
974            .num_fixed_value_arguments();
975        &mut self.inst_args_mut(inst)[..num_fixed_args]
976    }
977
978    /// Get the variable value arguments on `inst` as a slice.
979    pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
980        let num_fixed_args = self.insts[inst]
981            .opcode()
982            .constraints()
983            .num_fixed_value_arguments();
984        &self.inst_args(inst)[num_fixed_args..]
985    }
986
987    /// Get the variable value arguments on `inst` as a mutable slice.
988    pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
989        let num_fixed_args = self.insts[inst]
990            .opcode()
991            .constraints()
992            .num_fixed_value_arguments();
993        &mut self.inst_args_mut(inst)[num_fixed_args..]
994    }
995
996    /// Create result values for an instruction that produces multiple results.
997    ///
998    /// Instructions that produce no result values only need to be created with `make_inst`,
999    /// otherwise call `make_inst_results` to allocate value table entries for the results.
1000    ///
1001    /// The result value types are determined from the instruction's value type constraints and the
1002    /// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
1003    /// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
1004    ///
1005    /// The type of the first result value is also set, even if it was already set in the
1006    /// `InstructionData` passed to `make_inst`. If this function is called with a single-result
1007    /// instruction, that is the only effect.
1008    pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
1009        self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
1010    }
1011
1012    /// Create result values for `inst`, reusing the provided detached values.
1013    ///
1014    /// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
1015    /// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
1016    /// produces `None`, a new value is created.
1017    pub fn make_inst_results_reusing<I>(
1018        &mut self,
1019        inst: Inst,
1020        ctrl_typevar: Type,
1021        reuse: I,
1022    ) -> usize
1023    where
1024        I: Iterator<Item = Option<Value>>,
1025    {
1026        self.clear_results(inst);
1027
1028        let mut reuse = reuse.fuse();
1029        let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
1030
1031        for (expected, &ty) in result_tys.iter().enumerate() {
1032            let num = u16::try_from(expected).expect("Result value index should fit in u16");
1033            let value_data = ValueData::Inst { ty, num, inst };
1034            let v = if let Some(Some(v)) = reuse.next() {
1035                debug_assert_eq!(self.value_type(v), ty, "Reused {ty} is wrong type");
1036                debug_assert!(!self.value_is_attached(v));
1037                self.values[v] = value_data.into();
1038                v
1039            } else {
1040                self.make_value(value_data)
1041            };
1042            let actual = self.results[inst].push(v, &mut self.value_lists);
1043            debug_assert_eq!(expected, actual);
1044        }
1045
1046        result_tys.len()
1047    }
1048
1049    /// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
1050    pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder<'_> {
1051        ReplaceBuilder::new(self, inst)
1052    }
1053
1054    /// Clear the list of result values from `inst`.
1055    ///
1056    /// This leaves `inst` without any result values. New result values can be created by calling
1057    /// `make_inst_results` or by using a `replace(inst)` builder.
1058    pub fn clear_results(&mut self, inst: Inst) {
1059        self.results[inst].clear(&mut self.value_lists)
1060    }
1061
1062    /// Replace an instruction result with a new value of type `new_type`.
1063    ///
1064    /// The `old_value` must be an attached instruction result.
1065    ///
1066    /// The old value is left detached, so it should probably be changed into something else.
1067    ///
1068    /// Returns the new value.
1069    pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
1070        let (num, inst) = match ValueData::from(self.values[old_value]) {
1071            ValueData::Inst { num, inst, .. } => (num, inst),
1072            _ => panic!("{old_value} is not an instruction result value"),
1073        };
1074        let new_value = self.make_value(ValueData::Inst {
1075            ty: new_type,
1076            num,
1077            inst,
1078        });
1079        let num = num as usize;
1080        let attached = mem::replace(
1081            self.results[inst]
1082                .get_mut(num, &mut self.value_lists)
1083                .expect("Replacing detached result"),
1084            new_value,
1085        );
1086        debug_assert_eq!(
1087            attached,
1088            old_value,
1089            "{} wasn't detached from {}",
1090            old_value,
1091            self.display_inst(inst)
1092        );
1093        new_value
1094    }
1095
1096    /// Clone an instruction, attaching new result `Value`s and
1097    /// returning them.
1098    pub fn clone_inst(&mut self, inst: Inst) -> Inst {
1099        // First, add a clone of the InstructionData.
1100        let inst_data = self.insts[inst];
1101        // If the `inst_data` has a reference to a ValueList, clone it
1102        // as well, because we can't share these (otherwise mutating
1103        // one would affect the other).
1104        let inst_data = inst_data.deep_clone(&mut self.value_lists);
1105        let new_inst = self.make_inst(inst_data);
1106        // Get the controlling type variable.
1107        let ctrl_typevar = self.ctrl_typevar(inst);
1108        // Create new result values.
1109        let num_results = self.make_inst_results(new_inst, ctrl_typevar);
1110        // Copy over PCC facts, if any.
1111        for i in 0..num_results {
1112            let old_result = self.inst_results(inst)[i];
1113            let new_result = self.inst_results(new_inst)[i];
1114            self.facts[new_result] = self.facts[old_result].clone();
1115        }
1116        new_inst
1117    }
1118
1119    /// Get the first result of an instruction.
1120    ///
1121    /// This function panics if the instruction doesn't have any result.
1122    pub fn first_result(&self, inst: Inst) -> Value {
1123        self.results[inst]
1124            .first(&self.value_lists)
1125            .unwrap_or_else(|| panic!("{inst} has no results"))
1126    }
1127
1128    /// Test if `inst` has any result values currently.
1129    pub fn has_results(&self, inst: Inst) -> bool {
1130        !self.results[inst].is_empty()
1131    }
1132
1133    /// Return all the results of an instruction.
1134    pub fn inst_results(&self, inst: Inst) -> &[Value] {
1135        self.results[inst].as_slice(&self.value_lists)
1136    }
1137
1138    /// Return all the results of an instruction as ValueList.
1139    pub fn inst_results_list(&self, inst: Inst) -> ValueList {
1140        self.results[inst]
1141    }
1142
1143    /// Create a union of two values.
1144    pub fn union(&mut self, x: Value, y: Value) -> Value {
1145        // Get the type.
1146        let ty = self.value_type(x);
1147        debug_assert_eq!(ty, self.value_type(y));
1148        self.make_value(ValueData::Union { ty, x, y })
1149    }
1150
1151    /// Get the call signature of a direct or indirect call instruction.
1152    /// Returns `None` if `inst` is not a call instruction.
1153    pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
1154        match self.insts[inst].analyze_call(&self.value_lists, &self.exception_tables) {
1155            CallInfo::NotACall => None,
1156            CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
1157            CallInfo::DirectWithSig(_, s, _) => Some(s),
1158            CallInfo::Indirect(s, _) => Some(s),
1159        }
1160    }
1161
1162    /// Like `call_signature` but returns none for tail call
1163    /// instructions and try-call (exception-handling invoke)
1164    /// instructions.
1165    fn non_tail_call_or_try_call_signature(&self, inst: Inst) -> Option<SigRef> {
1166        let sig = self.call_signature(inst)?;
1167        match self.insts[inst].opcode() {
1168            ir::Opcode::ReturnCall | ir::Opcode::ReturnCallIndirect => None,
1169            ir::Opcode::TryCall | ir::Opcode::TryCallIndirect => None,
1170            _ => Some(sig),
1171        }
1172    }
1173
1174    // Only for use by the verifier. Everyone else should just use
1175    // `dfg.inst_results(inst).len()`.
1176    pub(crate) fn num_expected_results_for_verifier(&self, inst: Inst) -> usize {
1177        match self.non_tail_call_or_try_call_signature(inst) {
1178            Some(sig) => self.signatures[sig].returns.len(),
1179            None => {
1180                let constraints = self.insts[inst].opcode().constraints();
1181                constraints.num_fixed_results()
1182            }
1183        }
1184    }
1185
1186    /// Get the result types of the given instruction.
1187    pub fn inst_result_types<'a>(
1188        &'a self,
1189        inst: Inst,
1190        ctrl_typevar: Type,
1191    ) -> impl iter::ExactSizeIterator<Item = Type> + 'a {
1192        return match self.non_tail_call_or_try_call_signature(inst) {
1193            Some(sig) => InstResultTypes::Signature(self, sig, 0),
1194            None => {
1195                let constraints = self.insts[inst].opcode().constraints();
1196                InstResultTypes::Constraints(constraints, ctrl_typevar, 0)
1197            }
1198        };
1199
1200        enum InstResultTypes<'a> {
1201            Signature(&'a DataFlowGraph, SigRef, usize),
1202            Constraints(ir::instructions::OpcodeConstraints, Type, usize),
1203        }
1204
1205        impl Iterator for InstResultTypes<'_> {
1206            type Item = Type;
1207
1208            fn next(&mut self) -> Option<Type> {
1209                match self {
1210                    InstResultTypes::Signature(dfg, sig, i) => {
1211                        let param = dfg.signatures[*sig].returns.get(*i)?;
1212                        *i += 1;
1213                        Some(param.value_type)
1214                    }
1215                    InstResultTypes::Constraints(constraints, ctrl_ty, i) => {
1216                        if *i < constraints.num_fixed_results() {
1217                            let ty = constraints.result_type(*i, *ctrl_ty);
1218                            *i += 1;
1219                            Some(ty)
1220                        } else {
1221                            None
1222                        }
1223                    }
1224                }
1225            }
1226
1227            fn size_hint(&self) -> (usize, Option<usize>) {
1228                let len = match self {
1229                    InstResultTypes::Signature(dfg, sig, i) => {
1230                        dfg.signatures[*sig].returns.len() - *i
1231                    }
1232                    InstResultTypes::Constraints(constraints, _, i) => {
1233                        constraints.num_fixed_results() - *i
1234                    }
1235                };
1236                (len, Some(len))
1237            }
1238        }
1239
1240        impl ExactSizeIterator for InstResultTypes<'_> {}
1241    }
1242
1243    /// Compute the type of an instruction result from opcode constraints and call signatures.
1244    ///
1245    /// This computes the same sequence of result types that `make_inst_results()` above would
1246    /// assign to the created result values, but it does not depend on `make_inst_results()` being
1247    /// called first.
1248    ///
1249    /// Returns `None` if asked about a result index that is too large.
1250    pub fn compute_result_type(
1251        &self,
1252        inst: Inst,
1253        result_idx: usize,
1254        ctrl_typevar: Type,
1255    ) -> Option<Type> {
1256        self.inst_result_types(inst, ctrl_typevar).nth(result_idx)
1257    }
1258
1259    /// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
1260    pub fn ctrl_typevar(&self, inst: Inst) -> Type {
1261        let constraints = self.insts[inst].opcode().constraints();
1262
1263        if !constraints.is_polymorphic() {
1264            types::INVALID
1265        } else if constraints.requires_typevar_operand() {
1266            // Not all instruction formats have a designated operand, but in that case
1267            // `requires_typevar_operand()` should never be true.
1268            self.value_type(
1269                self.insts[inst]
1270                    .typevar_operand(&self.value_lists)
1271                    .unwrap_or_else(|| {
1272                        panic!(
1273                            "Instruction format for {:?} doesn't have a designated operand",
1274                            self.insts[inst]
1275                        )
1276                    }),
1277            )
1278        } else {
1279            self.value_type(self.first_result(inst))
1280        }
1281    }
1282}
1283
1284/// basic blocks.
1285impl DataFlowGraph {
1286    /// Create a new basic block.
1287    pub fn make_block(&mut self) -> Block {
1288        self.blocks.add()
1289    }
1290
1291    /// Get the number of parameters on `block`.
1292    pub fn num_block_params(&self, block: Block) -> usize {
1293        self.blocks[block].params(&self.value_lists).len()
1294    }
1295
1296    /// Get the parameters on `block`.
1297    pub fn block_params(&self, block: Block) -> &[Value] {
1298        self.blocks[block].params(&self.value_lists)
1299    }
1300
1301    /// Get the types of the parameters on `block`.
1302    pub fn block_param_types(&self, block: Block) -> impl Iterator<Item = Type> + '_ {
1303        self.block_params(block).iter().map(|&v| self.value_type(v))
1304    }
1305
1306    /// Append a parameter with type `ty` to `block`.
1307    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
1308        let param = self.values.next_key();
1309        let num = self.blocks[block].params.push(param, &mut self.value_lists);
1310        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
1311        self.make_value(ValueData::Param {
1312            ty,
1313            num: num as u16,
1314            block,
1315        })
1316    }
1317
1318    /// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
1319    /// Returns the position of `val` before removal.
1320    ///
1321    /// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
1322    /// last `block` parameter. This can disrupt all the branch instructions jumping to this
1323    /// `block` for which you have to change the branch argument order if necessary.
1324    ///
1325    /// Panics if `val` is not a block parameter.
1326    pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
1327        let (block, num) =
1328            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
1329                (block, num)
1330            } else {
1331                panic!("{val} must be a block parameter");
1332            };
1333        self.blocks[block]
1334            .params
1335            .swap_remove(num as usize, &mut self.value_lists);
1336        if let Some(last_arg_val) = self.blocks[block]
1337            .params
1338            .get(num as usize, &self.value_lists)
1339        {
1340            // We update the position of the old last arg.
1341            let mut last_arg_data = ValueData::from(self.values[last_arg_val]);
1342            if let ValueData::Param { num: old_num, .. } = &mut last_arg_data {
1343                *old_num = num;
1344                self.values[last_arg_val] = last_arg_data.into();
1345            } else {
1346                panic!("{last_arg_val} should be a Block parameter");
1347            }
1348        }
1349        num as usize
1350    }
1351
1352    /// Removes `val` from `block`'s parameters by a standard linear time list removal which
1353    /// preserves ordering. Also updates the values' data.
1354    pub fn remove_block_param(&mut self, val: Value) {
1355        let (block, num) =
1356            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
1357                (block, num)
1358            } else {
1359                panic!("{val} must be a block parameter");
1360            };
1361        self.blocks[block]
1362            .params
1363            .remove(num as usize, &mut self.value_lists);
1364        for index in num..(self.num_block_params(block) as u16) {
1365            let packed = &mut self.values[self.blocks[block]
1366                .params
1367                .get(index as usize, &self.value_lists)
1368                .unwrap()];
1369            let mut data = ValueData::from(*packed);
1370            match &mut data {
1371                ValueData::Param { num, .. } => {
1372                    *num -= 1;
1373                    *packed = data.into();
1374                }
1375                _ => panic!(
1376                    "{} must be a block parameter",
1377                    self.blocks[block]
1378                        .params
1379                        .get(index as usize, &self.value_lists)
1380                        .unwrap()
1381                ),
1382            }
1383        }
1384    }
1385
1386    /// Append an existing value to `block`'s parameters.
1387    ///
1388    /// The appended value can't already be attached to something else.
1389    ///
1390    /// In almost all cases, you should be using `append_block_param()` instead of this method.
1391    pub fn attach_block_param(&mut self, block: Block, param: Value) {
1392        debug_assert!(!self.value_is_attached(param));
1393        let num = self.blocks[block].params.push(param, &mut self.value_lists);
1394        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
1395        let ty = self.value_type(param);
1396        self.values[param] = ValueData::Param {
1397            ty,
1398            num: num as u16,
1399            block,
1400        }
1401        .into();
1402    }
1403
1404    /// Replace a block parameter with a new value of type `ty`.
1405    ///
1406    /// The `old_value` must be an attached block parameter. It is removed from its place in the list
1407    /// of parameters and replaced by a new value of type `new_type`. The new value gets the same
1408    /// position in the list, and other parameters are not disturbed.
1409    ///
1410    /// The old value is left detached, so it should probably be changed into something else.
1411    ///
1412    /// Returns the new value.
1413    pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
1414        // Create new value identical to the old one except for the type.
1415        let (block, num) =
1416            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[old_value]) {
1417                (block, num)
1418            } else {
1419                panic!("{old_value} must be a block parameter");
1420            };
1421        let new_arg = self.make_value(ValueData::Param {
1422            ty: new_type,
1423            num,
1424            block,
1425        });
1426
1427        self.blocks[block]
1428            .params
1429            .as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
1430        new_arg
1431    }
1432
1433    /// Detach all the parameters from `block` and return them as a `ValueList`.
1434    ///
1435    /// This is a quite low-level operation. Sensible things to do with the detached block parameters
1436    /// is to put them back on the same block with `attach_block_param()` or change them into aliases
1437    /// with `change_to_alias()`.
1438    pub fn detach_block_params(&mut self, block: Block) -> ValueList {
1439        self.blocks[block].params.take()
1440    }
1441
1442    /// Detach all of an instruction's result values.
1443    ///
1444    /// This is a quite low-level operation. A sensible thing to do with the
1445    /// detached results is to change them into aliases with
1446    /// `change_to_alias()`.
1447    pub fn detach_inst_results(&mut self, inst: Inst) {
1448        self.results[inst].clear(&mut self.value_lists);
1449    }
1450
1451    /// Merge the facts for two values. If both values have facts and
1452    /// they differ, both values get a special "conflict" fact that is
1453    /// never satisfied.
1454    pub fn merge_facts(&mut self, a: Value, b: Value) {
1455        let a = self.resolve_aliases(a);
1456        let b = self.resolve_aliases(b);
1457        match (&self.facts[a], &self.facts[b]) {
1458            (Some(a), Some(b)) if a == b => { /* nothing */ }
1459            (None, None) => { /* nothing */ }
1460            (Some(a), None) => {
1461                self.facts[b] = Some(a.clone());
1462            }
1463            (None, Some(b)) => {
1464                self.facts[a] = Some(b.clone());
1465            }
1466            (Some(a_fact), Some(b_fact)) => {
1467                assert_eq!(self.value_type(a), self.value_type(b));
1468                let merged = Fact::intersect(a_fact, b_fact);
1469                crate::trace!(
1470                    "facts merge on {} and {}: {:?}, {:?} -> {:?}",
1471                    a,
1472                    b,
1473                    a_fact,
1474                    b_fact,
1475                    merged,
1476                );
1477                self.facts[a] = Some(merged.clone());
1478                self.facts[b] = Some(merged);
1479            }
1480        }
1481    }
1482}
1483
1484/// Contents of a basic block.
1485///
1486/// Parameters on a basic block are values that dominate everything in the block. All
1487/// branches to this block must provide matching arguments, and the arguments to the entry block must
1488/// match the function arguments.
1489#[derive(Clone, PartialEq, Hash)]
1490#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1491pub struct BlockData {
1492    /// List of parameters to this block.
1493    params: ValueList,
1494}
1495
1496impl BlockData {
1497    fn new() -> Self {
1498        Self {
1499            params: ValueList::new(),
1500        }
1501    }
1502
1503    /// Get the parameters on `block`.
1504    pub fn params<'a>(&self, pool: &'a ValueListPool) -> &'a [Value] {
1505        self.params.as_slice(pool)
1506    }
1507}
1508
1509/// Object that can display an instruction.
1510pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);
1511
1512impl<'a> fmt::Display for DisplayInst<'a> {
1513    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1514        let dfg = self.0;
1515        let inst = self.1;
1516
1517        if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
1518            write!(f, "{first}")?;
1519            for v in rest {
1520                write!(f, ", {v}")?;
1521            }
1522            write!(f, " = ")?;
1523        }
1524
1525        let typevar = dfg.ctrl_typevar(inst);
1526        if typevar.is_invalid() {
1527            write!(f, "{}", dfg.insts[inst].opcode())?;
1528        } else {
1529            write!(f, "{}.{}", dfg.insts[inst].opcode(), typevar)?;
1530        }
1531        write_operands(f, dfg, inst)
1532    }
1533}
1534
1535/// Parser routines. These routines should not be used outside the parser.
1536impl DataFlowGraph {
1537    /// Set the type of a value. This is only for use in the parser, which needs
1538    /// to create invalid values for index padding which may be reassigned later.
1539    #[cold]
1540    fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
1541        assert_eq!(
1542            self.value_type(v),
1543            types::INVALID,
1544            "this function is only for assigning types to previously invalid values"
1545        );
1546        self.values[v].set_type(t);
1547    }
1548
1549    /// Check that the given concrete `Type` has been defined in the function.
1550    pub fn check_dynamic_type(&mut self, ty: Type) -> Option<Type> {
1551        debug_assert!(ty.is_dynamic_vector());
1552        if self
1553            .dynamic_types
1554            .values()
1555            .any(|dyn_ty_data| dyn_ty_data.concrete().unwrap() == ty)
1556        {
1557            Some(ty)
1558        } else {
1559            None
1560        }
1561    }
1562
1563    /// Create result values for `inst`, reusing the provided detached values.
1564    /// This is similar to `make_inst_results_reusing` except it's only for use
1565    /// in the parser, which needs to reuse previously invalid values.
1566    #[cold]
1567    pub fn make_inst_results_for_parser(
1568        &mut self,
1569        inst: Inst,
1570        ctrl_typevar: Type,
1571        reuse: &[Value],
1572    ) -> usize {
1573        let mut reuse_iter = reuse.iter().copied();
1574        let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
1575        for ty in result_tys {
1576            if ty.is_dynamic_vector() {
1577                self.check_dynamic_type(ty)
1578                    .unwrap_or_else(|| panic!("Use of undeclared dynamic type: {ty}"));
1579            }
1580            if let Some(v) = reuse_iter.next() {
1581                self.set_value_type_for_parser(v, ty);
1582            }
1583        }
1584
1585        self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
1586    }
1587
1588    /// Similar to `append_block_param`, append a parameter with type `ty` to
1589    /// `block`, but using value `val`. This is only for use by the parser to
1590    /// create parameters with specific values.
1591    #[cold]
1592    pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) {
1593        let num = self.blocks[block].params.push(val, &mut self.value_lists);
1594        assert!(num <= u16::MAX as usize, "Too many parameters on block");
1595        self.values[val] = ValueData::Param {
1596            ty,
1597            num: num as u16,
1598            block,
1599        }
1600        .into();
1601    }
1602
1603    /// Create a new value alias. This is only for use by the parser to create
1604    /// aliases with specific values, and the printer for testing.
1605    #[cold]
1606    pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
1607        assert_ne!(src, Value::reserved_value());
1608        assert_ne!(dest, Value::reserved_value());
1609
1610        let ty = if self.values.is_valid(src) {
1611            self.value_type(src)
1612        } else {
1613            // As a special case, if we can't resolve the aliasee yet, use INVALID
1614            // temporarily. It will be resolved later in parsing.
1615            types::INVALID
1616        };
1617        let data = ValueData::Alias { ty, original: src };
1618        self.values[dest] = data.into();
1619    }
1620
1621    /// If `v` is already defined as an alias, return its destination value.
1622    /// Otherwise return None. This allows the parser to coalesce identical
1623    /// alias definitions, and the printer to identify an alias's immediate target.
1624    #[cold]
1625    pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
1626        if let ValueData::Alias { original, .. } = ValueData::from(self.values[v]) {
1627            Some(original)
1628        } else {
1629            None
1630        }
1631    }
1632
1633    /// Compute the type of an alias. This is only for use in the parser.
1634    /// Returns false if an alias cycle was encountered.
1635    #[cold]
1636    pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
1637        if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
1638            let old_ty = self.value_type(v);
1639            let new_ty = self.value_type(resolved);
1640            if old_ty == types::INVALID {
1641                self.set_value_type_for_parser(v, new_ty);
1642            } else {
1643                assert_eq!(old_ty, new_ty);
1644            }
1645            true
1646        } else {
1647            false
1648        }
1649    }
1650
1651    /// Create an invalid value, to pad the index space. This is only for use by
1652    /// the parser to pad out the value index space.
1653    #[cold]
1654    pub fn make_invalid_value_for_parser(&mut self) {
1655        let data = ValueData::Alias {
1656            ty: types::INVALID,
1657            original: Value::reserved_value(),
1658        };
1659        self.make_value(data);
1660    }
1661
1662    /// Check if a value reference is valid, while being aware of aliases which
1663    /// may be unresolved while parsing.
1664    #[cold]
1665    pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
1666        if !self.value_is_valid(v) {
1667            return false;
1668        }
1669        if let ValueData::Alias { ty, .. } = ValueData::from(self.values[v]) {
1670            ty != types::INVALID
1671        } else {
1672            true
1673        }
1674    }
1675}
1676
1677#[cfg(test)]
1678mod tests {
1679    use super::*;
1680    use crate::cursor::{Cursor, FuncCursor};
1681    use crate::ir::{Function, Opcode, TrapCode};
1682    use alloc::string::ToString;
1683
1684    #[test]
1685    fn make_inst() {
1686        let mut dfg = DataFlowGraph::new();
1687
1688        let idata = InstructionData::UnaryImm {
1689            opcode: Opcode::Iconst,
1690            imm: 0.into(),
1691        };
1692        let inst = dfg.make_inst(idata);
1693
1694        dfg.make_inst_results(inst, types::I32);
1695        assert_eq!(inst.to_string(), "inst0");
1696        assert_eq!(dfg.display_inst(inst).to_string(), "v0 = iconst.i32 0");
1697
1698        // Immutable reference resolution.
1699        {
1700            let immdfg = &dfg;
1701            let ins = &immdfg.insts[inst];
1702            assert_eq!(ins.opcode(), Opcode::Iconst);
1703        }
1704
1705        // Results.
1706        let val = dfg.first_result(inst);
1707        assert_eq!(dfg.inst_results(inst), &[val]);
1708
1709        assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
1710        assert_eq!(dfg.value_type(val), types::I32);
1711
1712        // Replacing results.
1713        assert!(dfg.value_is_attached(val));
1714        let v2 = dfg.replace_result(val, types::F64);
1715        assert!(!dfg.value_is_attached(val));
1716        assert!(dfg.value_is_attached(v2));
1717        assert_eq!(dfg.inst_results(inst), &[v2]);
1718        assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
1719        assert_eq!(dfg.value_type(v2), types::F64);
1720    }
1721
1722    #[test]
1723    fn no_results() {
1724        let mut dfg = DataFlowGraph::new();
1725
1726        let idata = InstructionData::Trap {
1727            opcode: Opcode::Trap,
1728            code: TrapCode::unwrap_user(1),
1729        };
1730        let inst = dfg.make_inst(idata);
1731        assert_eq!(dfg.display_inst(inst).to_string(), "trap user1");
1732
1733        // Result slice should be empty.
1734        assert_eq!(dfg.inst_results(inst), &[]);
1735    }
1736
1737    #[test]
1738    fn block() {
1739        let mut dfg = DataFlowGraph::new();
1740
1741        let block = dfg.make_block();
1742        assert_eq!(block.to_string(), "block0");
1743        assert_eq!(dfg.num_block_params(block), 0);
1744        assert_eq!(dfg.block_params(block), &[]);
1745        assert!(dfg.detach_block_params(block).is_empty());
1746        assert_eq!(dfg.num_block_params(block), 0);
1747        assert_eq!(dfg.block_params(block), &[]);
1748
1749        let arg1 = dfg.append_block_param(block, types::F32);
1750        assert_eq!(arg1.to_string(), "v0");
1751        assert_eq!(dfg.num_block_params(block), 1);
1752        assert_eq!(dfg.block_params(block), &[arg1]);
1753
1754        let arg2 = dfg.append_block_param(block, types::I16);
1755        assert_eq!(arg2.to_string(), "v1");
1756        assert_eq!(dfg.num_block_params(block), 2);
1757        assert_eq!(dfg.block_params(block), &[arg1, arg2]);
1758
1759        assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0));
1760        assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1));
1761        assert_eq!(dfg.value_type(arg1), types::F32);
1762        assert_eq!(dfg.value_type(arg2), types::I16);
1763
1764        // Swap the two block parameters.
1765        let vlist = dfg.detach_block_params(block);
1766        assert_eq!(dfg.num_block_params(block), 0);
1767        assert_eq!(dfg.block_params(block), &[]);
1768        assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
1769        dfg.attach_block_param(block, arg2);
1770        let arg3 = dfg.append_block_param(block, types::I32);
1771        dfg.attach_block_param(block, arg1);
1772        assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]);
1773    }
1774
1775    #[test]
1776    fn replace_block_params() {
1777        let mut dfg = DataFlowGraph::new();
1778
1779        let block = dfg.make_block();
1780        let arg1 = dfg.append_block_param(block, types::F32);
1781
1782        let new1 = dfg.replace_block_param(arg1, types::I64);
1783        assert_eq!(dfg.value_type(arg1), types::F32);
1784        assert_eq!(dfg.value_type(new1), types::I64);
1785        assert_eq!(dfg.block_params(block), &[new1]);
1786
1787        dfg.attach_block_param(block, arg1);
1788        assert_eq!(dfg.block_params(block), &[new1, arg1]);
1789
1790        let new2 = dfg.replace_block_param(arg1, types::I8);
1791        assert_eq!(dfg.value_type(arg1), types::F32);
1792        assert_eq!(dfg.value_type(new2), types::I8);
1793        assert_eq!(dfg.block_params(block), &[new1, new2]);
1794
1795        dfg.attach_block_param(block, arg1);
1796        assert_eq!(dfg.block_params(block), &[new1, new2, arg1]);
1797
1798        let new3 = dfg.replace_block_param(new2, types::I16);
1799        assert_eq!(dfg.value_type(new1), types::I64);
1800        assert_eq!(dfg.value_type(new2), types::I8);
1801        assert_eq!(dfg.value_type(new3), types::I16);
1802        assert_eq!(dfg.block_params(block), &[new1, new3, arg1]);
1803    }
1804
1805    #[test]
1806    fn swap_remove_block_params() {
1807        let mut dfg = DataFlowGraph::new();
1808
1809        let block = dfg.make_block();
1810        let arg1 = dfg.append_block_param(block, types::F32);
1811        let arg2 = dfg.append_block_param(block, types::F32);
1812        let arg3 = dfg.append_block_param(block, types::F32);
1813        assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]);
1814
1815        dfg.swap_remove_block_param(arg1);
1816        assert_eq!(dfg.value_is_attached(arg1), false);
1817        assert_eq!(dfg.value_is_attached(arg2), true);
1818        assert_eq!(dfg.value_is_attached(arg3), true);
1819        assert_eq!(dfg.block_params(block), &[arg3, arg2]);
1820        dfg.swap_remove_block_param(arg2);
1821        assert_eq!(dfg.value_is_attached(arg2), false);
1822        assert_eq!(dfg.value_is_attached(arg3), true);
1823        assert_eq!(dfg.block_params(block), &[arg3]);
1824        dfg.swap_remove_block_param(arg3);
1825        assert_eq!(dfg.value_is_attached(arg3), false);
1826        assert_eq!(dfg.block_params(block), &[]);
1827    }
1828
1829    #[test]
1830    fn aliases() {
1831        use crate::ir::InstBuilder;
1832        use crate::ir::condcodes::IntCC;
1833
1834        let mut func = Function::new();
1835        let block0 = func.dfg.make_block();
1836        let mut pos = FuncCursor::new(&mut func);
1837        pos.insert_block(block0);
1838
1839        // Build a little test program.
1840        let v1 = pos.ins().iconst(types::I32, 42);
1841
1842        // Make sure we can resolve value aliases even when values is empty.
1843        assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
1844
1845        let arg0 = pos.func.dfg.append_block_param(block0, types::I32);
1846        let (s, c) = pos.ins().uadd_overflow(v1, arg0);
1847        let iadd = match pos.func.dfg.value_def(s) {
1848            ValueDef::Result(i, 0) => i,
1849            _ => panic!(),
1850        };
1851
1852        // Remove `c` from the result list.
1853        pos.func.stencil.dfg.results[iadd].remove(1, &mut pos.func.stencil.dfg.value_lists);
1854
1855        // Replace `uadd_overflow` with a normal `iadd` and an `icmp`.
1856        pos.func.dfg.replace(iadd).iadd(v1, arg0);
1857        let c2 = pos.ins().icmp(IntCC::Equal, s, v1);
1858        pos.func.dfg.change_to_alias(c, c2);
1859
1860        assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
1861        assert_eq!(pos.func.dfg.resolve_aliases(c), c2);
1862    }
1863
1864    #[test]
1865    fn cloning() {
1866        use crate::ir::InstBuilder;
1867
1868        let mut func = Function::new();
1869        let mut sig = Signature::new(crate::isa::CallConv::SystemV);
1870        sig.params.push(ir::AbiParam::new(types::I32));
1871        let sig = func.import_signature(sig);
1872        let block0 = func.dfg.make_block();
1873        let mut pos = FuncCursor::new(&mut func);
1874        pos.insert_block(block0);
1875        let v1 = pos.ins().iconst(types::I32, 0);
1876        let v2 = pos.ins().iconst(types::I32, 1);
1877        let call_inst = pos.ins().call_indirect(sig, v1, &[v1]);
1878        let func = pos.func;
1879
1880        let call_inst_dup = func.dfg.clone_inst(call_inst);
1881        func.dfg.inst_args_mut(call_inst)[0] = v2;
1882        assert_eq!(v1, func.dfg.inst_args(call_inst_dup)[0]);
1883    }
1884}