wasmtime/runtime/func/typed.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
use super::invoke_wasm_and_catch_traps;
use crate::prelude::*;
use crate::runtime::vm::{VMFuncRef, VMOpaqueContext};
use crate::store::{AutoAssertNoGc, StoreOpaque};
use crate::{
AsContext, AsContextMut, Engine, Func, FuncType, HeapType, NoFunc, RefType, StoreContextMut,
ValRaw, ValType,
};
use core::ffi::c_void;
use core::marker;
use core::mem::{self, MaybeUninit};
use core::num::NonZeroUsize;
use core::ptr::{self, NonNull};
use wasmtime_environ::VMSharedTypeIndex;
/// A statically typed WebAssembly function.
///
/// Values of this type represent statically type-checked WebAssembly functions.
/// The function within a [`TypedFunc`] is statically known to have `Params` as its
/// parameters and `Results` as its results.
///
/// This structure is created via [`Func::typed`] or [`TypedFunc::new_unchecked`].
/// For more documentation about this see those methods.
pub struct TypedFunc<Params, Results> {
_a: marker::PhantomData<fn(Params) -> Results>,
ty: FuncType,
func: Func,
}
impl<Params, Results> Clone for TypedFunc<Params, Results> {
fn clone(&self) -> TypedFunc<Params, Results> {
Self {
_a: marker::PhantomData,
ty: self.ty.clone(),
func: self.func,
}
}
}
impl<Params, Results> TypedFunc<Params, Results>
where
Params: WasmParams,
Results: WasmResults,
{
/// An unchecked version of [`Func::typed`] which does not perform a
/// typecheck and simply assumes that the type declared here matches the
/// type of this function.
///
/// The semantics of this function are the same as [`Func::typed`] except
/// that no error is returned because no typechecking is done.
///
/// # Unsafety
///
/// This function only safe to call if `typed` would otherwise return `Ok`
/// for the same `Params` and `Results` specified. If `typed` would return
/// an error then the returned `TypedFunc` is memory unsafe to invoke.
pub unsafe fn new_unchecked(store: impl AsContext, func: Func) -> TypedFunc<Params, Results> {
let store = store.as_context().0;
Self::_new_unchecked(store, func)
}
pub(crate) unsafe fn _new_unchecked(
store: &StoreOpaque,
func: Func,
) -> TypedFunc<Params, Results> {
let ty = func.load_ty(store);
TypedFunc {
_a: marker::PhantomData,
ty,
func,
}
}
/// Returns the underlying [`Func`] that this is wrapping, losing the static
/// type information in the process.
pub fn func(&self) -> &Func {
&self.func
}
/// Invokes this WebAssembly function with the specified parameters.
///
/// Returns either the results of the call, or a [`Trap`] if one happened.
///
/// For more information, see the [`Func::typed`] and [`Func::call`]
/// documentation.
///
/// # Errors
///
/// For more information on errors see the documentation on [`Func::call`].
///
/// # Panics
///
/// This function will panic if it is called when the underlying [`Func`] is
/// connected to an asynchronous store.
///
/// [`Trap`]: crate::Trap
pub fn call(&self, mut store: impl AsContextMut, params: Params) -> Result<Results> {
let mut store = store.as_context_mut();
assert!(
!store.0.async_support(),
"must use `call_async` with async stores"
);
if Self::need_gc_before_call_raw(store.0, ¶ms) {
store.0.gc();
}
let func = self.func.vm_func_ref(store.0);
unsafe { Self::call_raw(&mut store, &self.ty, func, params) }
}
/// Invokes this WebAssembly function with the specified parameters.
///
/// Returns either the results of the call, or a [`Trap`] if one happened.
///
/// For more information, see the [`Func::typed`] and [`Func::call_async`]
/// documentation.
///
/// # Errors
///
/// For more information on errors see the documentation on [`Func::call`].
///
/// # Panics
///
/// This function will panic if it is called when the underlying [`Func`] is
/// connected to a synchronous store.
///
/// [`Trap`]: crate::Trap
#[cfg(feature = "async")]
pub async fn call_async<T>(
&self,
mut store: impl AsContextMut<Data = T>,
params: Params,
) -> Result<Results>
where
T: Send,
{
let mut store = store.as_context_mut();
assert!(
store.0.async_support(),
"must use `call` with non-async stores"
);
if Self::need_gc_before_call_raw(store.0, ¶ms) {
store.0.gc_async().await;
}
store
.on_fiber(|store| {
let func = self.func.vm_func_ref(store.0);
unsafe { Self::call_raw(store, &self.ty, func, params) }
})
.await?
}
#[inline]
pub(crate) fn need_gc_before_call_raw(_store: &StoreOpaque, _params: &Params) -> bool {
#[cfg(feature = "gc")]
{
// See the comment in `Func::call_impl_check_args`.
let num_gc_refs = _params.vmgcref_pointing_to_object_count();
if let Some(num_gc_refs) = NonZeroUsize::new(num_gc_refs) {
return _store
.unwrap_gc_store()
.gc_heap
.need_gc_before_entering_wasm(num_gc_refs);
}
}
false
}
/// Do a raw call of a typed function.
///
/// # Safety
///
/// `func` must be of the given type.
///
/// If `Self::need_gc_before_call_raw`, then the caller must have done a GC
/// just before calling this method.
pub(crate) unsafe fn call_raw<T>(
store: &mut StoreContextMut<'_, T>,
ty: &FuncType,
func: ptr::NonNull<VMFuncRef>,
params: Params,
) -> Result<Results> {
// double-check that params/results match for this function's type in
// debug mode.
if cfg!(debug_assertions) {
Self::debug_typecheck(store.0, func.as_ref().type_index);
}
// Validate that all runtime values flowing into this store indeed
// belong within this store, otherwise it would be unsafe for store
// values to cross each other.
union Storage<T: Copy, U: Copy> {
params: MaybeUninit<T>,
results: U,
}
let mut storage = Storage::<Params::ValRawStorage, Results::ValRawStorage> {
params: MaybeUninit::uninit(),
};
{
let mut store = AutoAssertNoGc::new(store.0);
params.store(&mut store, ty, &mut storage.params)?;
}
// Try to capture only a single variable (a tuple) in the closure below.
// This means the size of the closure is one pointer and is much more
// efficient to move in memory. This closure is actually invoked on the
// other side of a C++ shim, so it can never be inlined enough to make
// the memory go away, so the size matters here for performance.
let mut captures = (func, storage);
let result = invoke_wasm_and_catch_traps(store, |caller, vm| {
let (func_ref, storage) = &mut captures;
let storage_len = mem::size_of_val::<Storage<_, _>>(storage) / mem::size_of::<ValRaw>();
let storage: *mut Storage<_, _> = storage;
let storage = storage.cast::<ValRaw>();
let storage = core::ptr::slice_from_raw_parts_mut(storage, storage_len);
func_ref
.as_ref()
.array_call(vm, VMOpaqueContext::from_vmcontext(caller), storage)
});
let (_, storage) = captures;
result?;
let mut store = AutoAssertNoGc::new(store.0);
Ok(Results::load(&mut store, &storage.results))
}
/// Purely a debug-mode assertion, not actually used in release builds.
fn debug_typecheck(store: &StoreOpaque, func: VMSharedTypeIndex) {
let ty = FuncType::from_shared_type_index(store.engine(), func);
Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
.expect("params should match");
Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
.expect("results should match");
}
}
#[doc(hidden)]
#[derive(Copy, Clone)]
pub enum TypeCheckPosition {
Param,
Result,
}
/// A trait implemented for types which can be arguments and results for
/// closures passed to [`Func::wrap`] as well as parameters to [`Func::typed`].
///
/// This trait should not be implemented by user types. This trait may change at
/// any time internally. The types which implement this trait, however, are
/// stable over time.
///
/// For more information see [`Func::wrap`] and [`Func::typed`]
pub unsafe trait WasmTy: Send {
// Do a "static" (aka at time of `func.typed::<P, R>()`) ahead-of-time type
// check for this type at the given position. You probably don't need to
// override this trait method.
#[doc(hidden)]
#[inline]
fn typecheck(engine: &Engine, actual: ValType, position: TypeCheckPosition) -> Result<()> {
let expected = Self::valtype();
debug_assert!(expected.comes_from_same_engine(engine));
debug_assert!(actual.comes_from_same_engine(engine));
match position {
// The caller is expecting to receive a `T` and the callee is
// actually returning a `U`, so ensure that `U <: T`.
TypeCheckPosition::Result => actual.ensure_matches(engine, &expected),
// The caller is expecting to pass a `T` and the callee is expecting
// to receive a `U`, so ensure that `T <: U`.
TypeCheckPosition::Param => match (expected.as_ref(), actual.as_ref()) {
// ... except that this technically-correct check would overly
// restrict the usefulness of our typed function APIs for the
// specific case of concrete reference types. Let's work through
// an example.
//
// Consider functions that take a `(ref param $some_func_type)`
// parameter:
//
// * We cannot have a static `wasmtime::SomeFuncTypeRef` type
// that implements `WasmTy` specifically for `(ref null
// $some_func_type)` because Wasm modules, and their types,
// are loaded dynamically at runtime.
//
// * Therefore the embedder's only option for `T <: (ref null
// $some_func_type)` is `T = (ref null nofunc)` aka
// `Option<wasmtime::NoFunc>`.
//
// * But that static type means they can *only* pass in the null
// function reference as an argument to the typed function.
// This is way too restrictive! For ergonomics, we want them
// to be able to pass in a `wasmtime::Func` whose type is
// `$some_func_type`!
//
// To lift this constraint and enable better ergonomics for
// embedders, we allow `top(T) <: top(U)` -- i.e. they are part
// of the same type hierarchy and a dynamic cast could possibly
// succeed -- for the specific case of concrete heap type
// parameters, and fall back to dynamic type checks on the
// arguments passed to each invocation, as necessary.
(Some(expected_ref), Some(actual_ref)) if actual_ref.heap_type().is_concrete() => {
expected_ref
.heap_type()
.top()
.ensure_matches(engine, &actual_ref.heap_type().top())
}
_ => expected.ensure_matches(engine, &actual),
},
}
}
// The value type that this Type represents.
#[doc(hidden)]
fn valtype() -> ValType;
#[doc(hidden)]
fn may_gc() -> bool {
match Self::valtype() {
ValType::Ref(_) => true,
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 | ValType::V128 => false,
}
}
// Dynamic checks that this value is being used with the correct store
// context.
#[doc(hidden)]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
// Dynamic checks that `self <: actual` for concrete type arguments. See the
// comment above in `WasmTy::typecheck`.
//
// Only ever called for concrete reference type arguments, so any type which
// is not in a type hierarchy with concrete reference types can implement
// this with `unreachable!()`.
#[doc(hidden)]
fn dynamic_concrete_type_check(
&self,
store: &StoreOpaque,
nullable: bool,
actual: &HeapType,
) -> Result<()>;
// Is this a GC-managed reference that actually points to a GC object? That
// is, `self` is *not* an `i31`, null reference, or uninhabited type.
//
// Note that it is okay if this returns false positives (i.e. `true` for
// `Rooted<AnyRef>` without actually looking up the rooted `anyref` in the
// store and reflecting on it to determine whether it is actually an
// `i31`). However, it is not okay if this returns false negatives.
#[doc(hidden)]
#[inline]
fn is_vmgcref_and_points_to_object(&self) -> bool {
Self::valtype().is_vmgcref_type_and_points_to_object()
}
// Store `self` into `ptr`.
//
// NB: We _must not_ trigger a GC when passing refs from host code into Wasm
// (e.g. returned from a host function or passed as arguments to a Wasm
// function). After insertion into the activations table, the reference is
// no longer rooted. If multiple references are being sent from the host
// into Wasm and we allowed GCs during insertion, then the following events
// could happen:
//
// * Reference A is inserted into the activations table. This does not
// trigger a GC, but does fill the table to capacity.
//
// * The caller's reference to A is removed. Now the only reference to A is
// from the activations table.
//
// * Reference B is inserted into the activations table. Because the table
// is at capacity, a GC is triggered.
//
// * A is reclaimed because the only reference keeping it alive was the
// activation table's reference (it isn't inside any Wasm frames on the
// stack yet, so stack scanning and stack maps don't increment its
// reference count).
//
// * We transfer control to Wasm, giving it A and B. Wasm uses A. That's a
// use-after-free bug.
//
// In conclusion, to prevent uses-after-free bugs, we cannot GC while
// converting types into their raw ABI forms.
#[doc(hidden)]
fn store(self, store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()>;
// Load a version of `Self` from the `ptr` provided.
//
// # Safety
//
// This function is unsafe as it's up to the caller to ensure that `ptr` is
// valid for this given type.
#[doc(hidden)]
unsafe fn load(store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self;
}
macro_rules! integers {
($($primitive:ident/$get_primitive:ident => $ty:ident)*) => ($(
unsafe impl WasmTy for $primitive {
#[inline]
fn valtype() -> ValType {
ValType::$ty
}
#[inline]
fn compatible_with_store(&self, _: &StoreOpaque) -> bool {
true
}
#[inline]
fn dynamic_concrete_type_check(&self, _: &StoreOpaque, _: bool, _: &HeapType) -> Result<()> {
unreachable!()
}
#[inline]
fn store(self, _store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
ptr.write(ValRaw::$primitive(self));
Ok(())
}
#[inline]
unsafe fn load(_store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
ptr.$get_primitive()
}
}
)*)
}
integers! {
i32/get_i32 => I32
i64/get_i64 => I64
u32/get_u32 => I32
u64/get_u64 => I64
}
macro_rules! floats {
($($float:ident/$int:ident/$get_float:ident => $ty:ident)*) => ($(
unsafe impl WasmTy for $float {
#[inline]
fn valtype() -> ValType {
ValType::$ty
}
#[inline]
fn compatible_with_store(&self, _: &StoreOpaque) -> bool {
true
}
#[inline]
fn dynamic_concrete_type_check(&self, _: &StoreOpaque, _: bool, _: &HeapType) -> Result<()> {
unreachable!()
}
#[inline]
fn store(self, _store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
ptr.write(ValRaw::$float(self.to_bits()));
Ok(())
}
#[inline]
unsafe fn load(_store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
$float::from_bits(ptr.$get_float())
}
}
)*)
}
floats! {
f32/u32/get_f32 => F32
f64/u64/get_f64 => F64
}
unsafe impl WasmTy for NoFunc {
#[inline]
fn valtype() -> ValType {
ValType::Ref(RefType::new(false, HeapType::NoFunc))
}
#[inline]
fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
match self._inner {}
}
#[inline]
fn dynamic_concrete_type_check(&self, _: &StoreOpaque, _: bool, _: &HeapType) -> Result<()> {
match self._inner {}
}
#[inline]
fn is_vmgcref_and_points_to_object(&self) -> bool {
match self._inner {}
}
#[inline]
fn store(self, _store: &mut AutoAssertNoGc<'_>, _ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
match self._inner {}
}
#[inline]
unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _ptr: &ValRaw) -> Self {
unreachable!("NoFunc is uninhabited")
}
}
unsafe impl WasmTy for Option<NoFunc> {
#[inline]
fn valtype() -> ValType {
ValType::Ref(RefType::new(true, HeapType::NoFunc))
}
#[inline]
fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
true
}
#[inline]
fn dynamic_concrete_type_check(
&self,
_: &StoreOpaque,
nullable: bool,
ty: &HeapType,
) -> Result<()> {
if nullable {
// `(ref null nofunc) <: (ref null $f)` for all function types `$f`.
Ok(())
} else {
bail!("argument type mismatch: expected non-nullable (ref {ty}), found null reference")
}
}
#[inline]
fn store(self, _store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
ptr.write(ValRaw::funcref(ptr::null_mut()));
Ok(())
}
#[inline]
unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _ptr: &ValRaw) -> Self {
None
}
}
unsafe impl WasmTy for Func {
#[inline]
fn valtype() -> ValType {
ValType::Ref(RefType::new(false, HeapType::Func))
}
#[inline]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
store.store_data().contains(self.0)
}
#[inline]
fn dynamic_concrete_type_check(
&self,
store: &StoreOpaque,
_nullable: bool,
expected: &HeapType,
) -> Result<()> {
let expected = expected.unwrap_concrete_func();
self.ensure_matches_ty(store, expected)
.context("argument type mismatch for reference to concrete type")
}
#[inline]
fn store(self, store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
let abi = self.vm_func_ref(store);
ptr.write(ValRaw::funcref(abi.cast::<c_void>().as_ptr()));
Ok(())
}
#[inline]
unsafe fn load(store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
let p = NonNull::new(ptr.get_funcref()).unwrap().cast();
Func::from_vm_func_ref(store, p)
}
}
unsafe impl WasmTy for Option<Func> {
#[inline]
fn valtype() -> ValType {
ValType::FUNCREF
}
#[inline]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
if let Some(f) = self {
store.store_data().contains(f.0)
} else {
true
}
}
fn dynamic_concrete_type_check(
&self,
store: &StoreOpaque,
nullable: bool,
expected: &HeapType,
) -> Result<()> {
if let Some(f) = self {
let expected = expected.unwrap_concrete_func();
f.ensure_matches_ty(store, expected)
.context("argument type mismatch for reference to concrete type")
} else if nullable {
Ok(())
} else {
bail!("argument type mismatch: expected non-nullable (ref {expected}), found null reference")
}
}
#[inline]
fn store(self, store: &mut AutoAssertNoGc<'_>, ptr: &mut MaybeUninit<ValRaw>) -> Result<()> {
let raw = if let Some(f) = self {
f.vm_func_ref(store).as_ptr()
} else {
ptr::null_mut()
};
ptr.write(ValRaw::funcref(raw.cast::<c_void>()));
Ok(())
}
#[inline]
unsafe fn load(store: &mut AutoAssertNoGc<'_>, ptr: &ValRaw) -> Self {
let ptr = NonNull::new(ptr.get_funcref())?.cast();
Some(Func::from_vm_func_ref(store, ptr))
}
}
/// A trait used for [`Func::typed`] and with [`TypedFunc`] to represent the set of
/// parameters for wasm functions.
///
/// This is implemented for bare types that can be passed to wasm as well as
/// tuples of those types.
pub unsafe trait WasmParams: Send {
#[doc(hidden)]
type ValRawStorage: Copy;
#[doc(hidden)]
fn typecheck(
engine: &Engine,
params: impl ExactSizeIterator<Item = crate::ValType>,
position: TypeCheckPosition,
) -> Result<()>;
#[doc(hidden)]
fn vmgcref_pointing_to_object_count(&self) -> usize;
#[doc(hidden)]
fn store(
self,
store: &mut AutoAssertNoGc<'_>,
func_ty: &FuncType,
dst: &mut MaybeUninit<Self::ValRawStorage>,
) -> Result<()>;
}
// Forward an impl from `T` to `(T,)` for convenience if there's only one
// parameter.
unsafe impl<T> WasmParams for T
where
T: WasmTy,
{
type ValRawStorage = <(T,) as WasmParams>::ValRawStorage;
fn typecheck(
engine: &Engine,
params: impl ExactSizeIterator<Item = crate::ValType>,
position: TypeCheckPosition,
) -> Result<()> {
<(T,) as WasmParams>::typecheck(engine, params, position)
}
#[inline]
fn vmgcref_pointing_to_object_count(&self) -> usize {
T::is_vmgcref_and_points_to_object(self) as usize
}
#[inline]
fn store(
self,
store: &mut AutoAssertNoGc<'_>,
func_ty: &FuncType,
dst: &mut MaybeUninit<Self::ValRawStorage>,
) -> Result<()> {
<(T,) as WasmParams>::store((self,), store, func_ty, dst)
}
}
macro_rules! impl_wasm_params {
($n:tt $($t:ident)*) => {
#[allow(non_snake_case)]
unsafe impl<$($t: WasmTy,)*> WasmParams for ($($t,)*) {
type ValRawStorage = [ValRaw; $n];
fn typecheck(
_engine: &Engine,
mut params: impl ExactSizeIterator<Item = crate::ValType>,
_position: TypeCheckPosition,
) -> Result<()> {
let mut _n = 0;
$(
match params.next() {
Some(t) => {
_n += 1;
$t::typecheck(_engine, t, _position)?
},
None => bail!("expected {} types, found {}", $n, params.len() + _n),
}
)*
match params.next() {
None => Ok(()),
Some(_) => {
_n += 1;
bail!("expected {} types, found {}", $n, params.len() + _n)
},
}
}
#[inline]
fn vmgcref_pointing_to_object_count(&self) -> usize {
let ($(ref $t,)*) = self;
0 $(
+ $t.is_vmgcref_and_points_to_object() as usize
)*
}
#[inline]
fn store(
self,
_store: &mut AutoAssertNoGc<'_>,
_func_ty: &FuncType,
_ptr: &mut MaybeUninit<Self::ValRawStorage>,
) -> Result<()> {
let ($($t,)*) = self;
let mut _i = 0;
$(
if !$t.compatible_with_store(_store) {
bail!("attempt to pass cross-`Store` value to Wasm as function argument");
}
if $t::valtype().is_ref() {
let param_ty = _func_ty.param(_i).unwrap();
let ref_ty = param_ty.unwrap_ref();
let heap_ty = ref_ty.heap_type();
if heap_ty.is_concrete() {
$t.dynamic_concrete_type_check(_store, ref_ty.is_nullable(), heap_ty)?;
}
}
let dst = map_maybe_uninit!(_ptr[_i]);
$t.store(_store, dst)?;
_i += 1;
)*
Ok(())
}
}
};
}
for_each_function_signature!(impl_wasm_params);
/// A trait used for [`Func::typed`] and with [`TypedFunc`] to represent the set of
/// results for wasm functions.
pub unsafe trait WasmResults: WasmParams {
#[doc(hidden)]
unsafe fn load(store: &mut AutoAssertNoGc<'_>, abi: &Self::ValRawStorage) -> Self;
}
// Forwards from a bare type `T` to the 1-tuple type `(T,)`
unsafe impl<T: WasmTy> WasmResults for T {
unsafe fn load(store: &mut AutoAssertNoGc<'_>, abi: &Self::ValRawStorage) -> Self {
<(T,) as WasmResults>::load(store, abi).0
}
}
macro_rules! impl_wasm_results {
($n:tt $($t:ident)*) => {
#[allow(non_snake_case, unused_variables)]
unsafe impl<$($t: WasmTy,)*> WasmResults for ($($t,)*) {
unsafe fn load(store: &mut AutoAssertNoGc<'_>, abi: &Self::ValRawStorage) -> Self {
let [$($t,)*] = abi;
($($t::load(store, $t),)*)
}
}
};
}
for_each_function_signature!(impl_wasm_results);