Working with Multiple Memories

You can also browse this source code online and clone the wasmtime repository to run the example locally:

This example demonstrates using the multiple memories proposal, instantiating a module that imports and exports more than one linear memory.

Wasm Source

(module
  (memory (export "memory0") 2 3)
  (memory (export "memory1") 2 4)

  (func (export "size0") (result i32) (memory.size 0))
  (func (export "load0") (param i32) (result i32)
    local.get 0
    i32.load8_s 0
  )
  (func (export "store0") (param i32 i32)
    local.get 0
    local.get 1
    i32.store8 0
  )
  (func (export "size1") (result i32) (memory.size 1))
  (func (export "load1") (param i32) (result i32)
    local.get 0
    i32.load8_s 1
  )
  (func (export "store1") (param i32 i32)
    local.get 0
    local.get 1
    i32.store8 1
  )

  (data (memory 0) (i32.const 0x1000) "\01\02\03\04")
  (data (memory 1) (i32.const 0x1000) "\04\03\02\01")
)

Host Source

//! An example of how to interact with multiple memories.
//!
//! Here a small wasm module with multiple memories is used to show how memory
//! is initialized, how to read and write memory through the `Memory` object,
//! and how wasm functions can trap when dealing with out-of-bounds addresses.

// You can execute this example with `cargo run --example example`

use wasmtime::*;

fn main() -> Result<()> {
    // Enable the multi-memory feature.
    let mut config = Config::new();
    config.wasm_multi_memory(true);

    let engine = Engine::new(&config)?;

    // Create our `store_fn` context and then compile a module and create an
    // instance from the compiled module all in one go.
    let mut store = Store::new(&engine, ());
    let module = Module::from_file(store.engine(), "examples/multimemory.wat")?;
    let instance = Instance::new(&mut store, &module, &[])?;

    let memory0 = instance
        .get_memory(&mut store, "memory0")
        .ok_or(anyhow::format_err!("failed to find `memory0` export"))?;
    let size0 = instance.get_typed_func::<(), i32>(&mut store, "size0")?;
    let load0 = instance.get_typed_func::<i32, i32>(&mut store, "load0")?;
    let store0 = instance.get_typed_func::<(i32, i32), ()>(&mut store, "store0")?;

    let memory1 = instance
        .get_memory(&mut store, "memory1")
        .ok_or(anyhow::format_err!("failed to find `memory1` export"))?;
    let size1 = instance.get_typed_func::<(), i32>(&mut store, "size1")?;
    let load1 = instance.get_typed_func::<i32, i32>(&mut store, "load1")?;
    let store1 = instance.get_typed_func::<(i32, i32), ()>(&mut store, "store1")?;

    println!("Checking memory...");
    assert_eq!(memory0.size(&store), 2);
    assert_eq!(memory0.data_size(&store), 0x20000);
    assert_eq!(memory0.data_mut(&mut store)[0], 0);
    assert_eq!(memory0.data_mut(&mut store)[0x1000], 1);
    assert_eq!(memory0.data_mut(&mut store)[0x1001], 2);
    assert_eq!(memory0.data_mut(&mut store)[0x1002], 3);
    assert_eq!(memory0.data_mut(&mut store)[0x1003], 4);

    assert_eq!(size0.call(&mut store, ())?, 2);
    assert_eq!(load0.call(&mut store, 0)?, 0);
    assert_eq!(load0.call(&mut store, 0x1000)?, 1);
    assert_eq!(load0.call(&mut store, 0x1001)?, 2);
    assert_eq!(load0.call(&mut store, 0x1002)?, 3);
    assert_eq!(load0.call(&mut store, 0x1003)?, 4);
    assert_eq!(load0.call(&mut store, 0x1ffff)?, 0);
    assert!(load0.call(&mut store, 0x20000).is_err()); // out of bounds trap

    assert_eq!(memory1.size(&store), 2);
    assert_eq!(memory1.data_size(&store), 0x20000);
    assert_eq!(memory1.data_mut(&mut store)[0], 0);
    assert_eq!(memory1.data_mut(&mut store)[0x1000], 4);
    assert_eq!(memory1.data_mut(&mut store)[0x1001], 3);
    assert_eq!(memory1.data_mut(&mut store)[0x1002], 2);
    assert_eq!(memory1.data_mut(&mut store)[0x1003], 1);

    assert_eq!(size1.call(&mut store, ())?, 2);
    assert_eq!(load1.call(&mut store, 0)?, 0);
    assert_eq!(load1.call(&mut store, 0x1000)?, 4);
    assert_eq!(load1.call(&mut store, 0x1001)?, 3);
    assert_eq!(load1.call(&mut store, 0x1002)?, 2);
    assert_eq!(load1.call(&mut store, 0x1003)?, 1);
    assert_eq!(load1.call(&mut store, 0x1ffff)?, 0);
    assert!(load0.call(&mut store, 0x20000).is_err()); // out of bounds trap

    println!("Mutating memory...");
    memory0.data_mut(&mut store)[0x1003] = 5;

    store0.call(&mut store, (0x1002, 6))?;
    assert!(store0.call(&mut store, (0x20000, 0)).is_err()); // out of bounds trap

    assert_eq!(memory0.data(&store)[0x1002], 6);
    assert_eq!(memory0.data(&store)[0x1003], 5);
    assert_eq!(load0.call(&mut store, 0x1002)?, 6);
    assert_eq!(load0.call(&mut store, 0x1003)?, 5);

    memory1.data_mut(&mut store)[0x1003] = 7;

    store1.call(&mut store, (0x1002, 8))?;
    assert!(store1.call(&mut store, (0x20000, 0)).is_err()); // out of bounds trap

    assert_eq!(memory1.data(&store)[0x1002], 8);
    assert_eq!(memory1.data(&store)[0x1003], 7);
    assert_eq!(load1.call(&mut store, 0x1002)?, 8);
    assert_eq!(load1.call(&mut store, 0x1003)?, 7);

    println!("Growing memory...");
    memory0.grow(&mut store, 1)?;
    assert_eq!(memory0.size(&store), 3);
    assert_eq!(memory0.data_size(&store), 0x30000);

    assert_eq!(load0.call(&mut store, 0x20000)?, 0);
    store0.call(&mut store, (0x20000, 0))?;
    assert!(load0.call(&mut store, 0x30000).is_err());
    assert!(store0.call(&mut store, (0x30000, 0)).is_err());

    assert!(memory0.grow(&mut store, 1).is_err());
    assert!(memory0.grow(&mut store, 0).is_ok());

    memory1.grow(&mut store, 2)?;
    assert_eq!(memory1.size(&store), 4);
    assert_eq!(memory1.data_size(&store), 0x40000);

    assert_eq!(load1.call(&mut store, 0x30000)?, 0);
    store1.call(&mut store, (0x30000, 0))?;
    assert!(load1.call(&mut store, 0x40000).is_err());
    assert!(store1.call(&mut store, (0x40000, 0)).is_err());

    assert!(memory1.grow(&mut store, 1).is_err());
    assert!(memory1.grow(&mut store, 0).is_ok());

    Ok(())
}
/*
An example of how to interact with multiple memories.

You can build using cmake:

mkdir build && cd build && cmake .. && \
  cmake --build . --target wasmtime-multimemory
*/

#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wasm.h>
#include <wasmtime.h>

static void exit_with_error(const char *message, wasmtime_error_t *error,
                            wasm_trap_t *trap);

void check(bool success) {
  if (!success) {
    printf("> Error, expected success\n");
    exit(1);
  }
}

void check_call(wasmtime_context_t *store, wasmtime_func_t *func,
                const wasmtime_val_t *args, size_t nargs, int32_t expected) {
  wasmtime_val_t results[1];
  wasm_trap_t *trap = NULL;
  wasmtime_error_t *error =
      wasmtime_func_call(store, func, args, nargs, results, 1, &trap);
  if (error != NULL || trap != NULL)
    exit_with_error("failed to call function", error, trap);
  if (results[0].of.i32 != expected) {
    printf("> Error on result\n");
    exit(1);
  }
}

void check_call0(wasmtime_context_t *store, wasmtime_func_t *func,
                 int32_t expected) {
  check_call(store, func, NULL, 0, expected);
}

void check_call1(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg,
                 int32_t expected) {
  wasmtime_val_t args[1];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg;
  check_call(store, func, args, 1, expected);
}

void check_call2(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg1,
                 int32_t arg2, int32_t expected) {
  wasmtime_val_t args[2];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg1;
  args[1].kind = WASMTIME_I32;
  args[1].of.i32 = arg2;
  check_call(store, func, args, 2, expected);
}

void check_ok(wasmtime_context_t *store, wasmtime_func_t *func,
              const wasmtime_val_t *args, size_t nargs) {
  wasm_trap_t *trap = NULL;
  wasmtime_error_t *error =
      wasmtime_func_call(store, func, args, nargs, NULL, 0, &trap);
  if (error != NULL || trap != NULL)
    exit_with_error("failed to call function", error, trap);
}

void check_ok2(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg1,
               int32_t arg2) {
  wasmtime_val_t args[2];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg1;
  args[1].kind = WASMTIME_I32;
  args[1].of.i32 = arg2;
  check_ok(store, func, args, 2);
}

void check_trap(wasmtime_context_t *store, wasmtime_func_t *func,
                const wasmtime_val_t *args, size_t nargs, size_t num_results) {
  assert(num_results <= 1);
  wasmtime_val_t results[1];
  wasm_trap_t *trap = NULL;
  wasmtime_error_t *error =
      wasmtime_func_call(store, func, args, nargs, results, num_results, &trap);
  if (error != NULL)
    exit_with_error("failed to call function", error, NULL);
  if (trap == NULL) {
    printf("> Error on result, expected trap\n");
    exit(1);
  }
  wasm_trap_delete(trap);
}

void check_trap1(wasmtime_context_t *store, wasmtime_func_t *func,
                 int32_t arg) {
  wasmtime_val_t args[1];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg;
  check_trap(store, func, args, 1, 1);
}

void check_trap2(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg1,
                 int32_t arg2) {
  wasmtime_val_t args[2];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg1;
  args[1].kind = WASMTIME_I32;
  args[1].of.i32 = arg2;
  check_trap(store, func, args, 2, 0);
}

int main(int argc, const char *argv[]) {
  // Initialize.
  printf("Initializing...\n");

  wasm_config_t *config = wasm_config_new();
  assert(config != NULL);
  wasmtime_config_wasm_multi_memory_set(config, true);

  wasm_engine_t *engine = wasm_engine_new_with_config(config);
  assert(engine != NULL);

  wasmtime_store_t *store = wasmtime_store_new(engine, NULL, NULL);
  wasmtime_context_t *context = wasmtime_store_context(store);

  // Load our input file to parse it next
  FILE *file = fopen("examples/multimemory.wat", "r");
  if (!file) {
    printf("> Error loading file!\n");
    return 1;
  }
  fseek(file, 0L, SEEK_END);
  size_t file_size = ftell(file);
  fseek(file, 0L, SEEK_SET);
  wasm_byte_vec_t wat;
  wasm_byte_vec_new_uninitialized(&wat, file_size);
  if (fread(wat.data, file_size, 1, file) != 1) {
    printf("> Error loading module!\n");
    return 1;
  }
  fclose(file);

  // Parse the wat into the binary wasm format
  wasm_byte_vec_t binary;
  wasmtime_error_t *error = wasmtime_wat2wasm(wat.data, wat.size, &binary);
  if (error != NULL)
    exit_with_error("failed to parse wat", error, NULL);
  wasm_byte_vec_delete(&wat);

  // Compile.
  printf("Compiling module...\n");
  wasmtime_module_t *module = NULL;
  error =
      wasmtime_module_new(engine, (uint8_t *)binary.data, binary.size, &module);
  if (error)
    exit_with_error("failed to compile module", error, NULL);
  wasm_byte_vec_delete(&binary);

  // Instantiate.
  printf("Instantiating module...\n");
  wasmtime_instance_t instance;
  wasm_trap_t *trap = NULL;
  error = wasmtime_instance_new(context, module, NULL, 0, &instance, &trap);
  if (error != NULL || trap != NULL)
    exit_with_error("failed to instantiate", error, trap);
  wasmtime_module_delete(module);

  // Extract export.
  printf("Extracting exports...\n");
  wasmtime_memory_t memory0, memory1;
  wasmtime_func_t size0, load0, store0, size1, load1, store1;
  wasmtime_extern_t item;
  bool ok;
  ok = wasmtime_instance_export_get(context, &instance, "memory0",
                                    strlen("memory0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_MEMORY);
  memory0 = item.of.memory;
  ok = wasmtime_instance_export_get(context, &instance, "size0",
                                    strlen("size0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  size0 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "load0",
                                    strlen("load0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  load0 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "store0",
                                    strlen("store0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  store0 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "memory1",
                                    strlen("memory1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_MEMORY);
  memory1 = item.of.memory;
  ok = wasmtime_instance_export_get(context, &instance, "size1",
                                    strlen("size1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  size1 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "load1",
                                    strlen("load1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  load1 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "store1",
                                    strlen("store1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  store1 = item.of.func;

  // Check initial memory.
  printf("Checking memory...\n");
  check(wasmtime_memory_size(context, &memory0) == 2);
  check(wasmtime_memory_data_size(context, &memory0) == 0x20000);
  check(wasmtime_memory_data(context, &memory0)[0] == 0);
  check(wasmtime_memory_data(context, &memory0)[0x1000] == 1);
  check(wasmtime_memory_data(context, &memory0)[0x1001] == 2);
  check(wasmtime_memory_data(context, &memory0)[0x1002] == 3);
  check(wasmtime_memory_data(context, &memory0)[0x1003] == 4);

  check_call0(context, &size0, 2);
  check_call1(context, &load0, 0, 0);
  check_call1(context, &load0, 0x1000, 1);
  check_call1(context, &load0, 0x1001, 2);
  check_call1(context, &load0, 0x1002, 3);
  check_call1(context, &load0, 0x1003, 4);
  check_call1(context, &load0, 0x1ffff, 0);
  check_trap1(context, &load0, 0x20000);

  check(wasmtime_memory_size(context, &memory1) == 2);
  check(wasmtime_memory_data_size(context, &memory1) == 0x20000);
  check(wasmtime_memory_data(context, &memory1)[0] == 0);
  check(wasmtime_memory_data(context, &memory1)[0x1000] == 4);
  check(wasmtime_memory_data(context, &memory1)[0x1001] == 3);
  check(wasmtime_memory_data(context, &memory1)[0x1002] == 2);
  check(wasmtime_memory_data(context, &memory1)[0x1003] == 1);

  check_call0(context, &size1, 2);
  check_call1(context, &load1, 0, 0);
  check_call1(context, &load1, 0x1000, 4);
  check_call1(context, &load1, 0x1001, 3);
  check_call1(context, &load1, 0x1002, 2);
  check_call1(context, &load1, 0x1003, 1);
  check_call1(context, &load1, 0x1ffff, 0);
  check_trap1(context, &load1, 0x20000);

  // Mutate memory.
  printf("Mutating memory...\n");
  wasmtime_memory_data(context, &memory0)[0x1003] = 5;
  check_ok2(context, &store0, 0x1002, 6);
  check_trap2(context, &store0, 0x20000, 0);

  check(wasmtime_memory_data(context, &memory0)[0x1002] == 6);
  check(wasmtime_memory_data(context, &memory0)[0x1003] == 5);
  check_call1(context, &load0, 0x1002, 6);
  check_call1(context, &load0, 0x1003, 5);

  wasmtime_memory_data(context, &memory1)[0x1003] = 7;
  check_ok2(context, &store1, 0x1002, 8);
  check_trap2(context, &store1, 0x20000, 0);

  check(wasmtime_memory_data(context, &memory1)[0x1002] == 8);
  check(wasmtime_memory_data(context, &memory1)[0x1003] == 7);
  check_call1(context, &load1, 0x1002, 8);
  check_call1(context, &load1, 0x1003, 7);

  // Grow memory.
  printf("Growing memory...\n");
  uint64_t old_size;
  error = wasmtime_memory_grow(context, &memory0, 1, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);
  check(wasmtime_memory_size(context, &memory0) == 3);
  check(wasmtime_memory_data_size(context, &memory0) == 0x30000);

  check_call1(context, &load0, 0x20000, 0);
  check_ok2(context, &store0, 0x20000, 0);
  check_trap1(context, &load0, 0x30000);
  check_trap2(context, &store0, 0x30000, 0);

  error = wasmtime_memory_grow(context, &memory0, 1, &old_size);
  assert(error != NULL);
  wasmtime_error_delete(error);
  error = wasmtime_memory_grow(context, &memory0, 0, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);

  error = wasmtime_memory_grow(context, &memory1, 2, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);
  check(wasmtime_memory_size(context, &memory1) == 4);
  check(wasmtime_memory_data_size(context, &memory1) == 0x40000);

  check_call1(context, &load1, 0x30000, 0);
  check_ok2(context, &store1, 0x30000, 0);
  check_trap1(context, &load1, 0x40000);
  check_trap2(context, &store1, 0x40000, 0);

  error = wasmtime_memory_grow(context, &memory1, 1, &old_size);
  assert(error != NULL);
  wasmtime_error_delete(error);
  error = wasmtime_memory_grow(context, &memory1, 0, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);

  // Shut down.
  printf("Shutting down...\n");
  wasmtime_store_delete(store);
  wasm_engine_delete(engine);

  // All done.
  printf("Done.\n");
  return 0;
}

static void exit_with_error(const char *message, wasmtime_error_t *error,
                            wasm_trap_t *trap) {
  fprintf(stderr, "error: %s\n", message);
  wasm_byte_vec_t error_message;
  if (error != NULL) {
    wasmtime_error_message(error, &error_message);
    wasmtime_error_delete(error);
  } else {
    wasm_trap_message(trap, &error_message);
    wasm_trap_delete(trap);
  }
  fprintf(stderr, "%.*s\n", (int)error_message.size, error_message.data);
  wasm_byte_vec_delete(&error_message);
  exit(1);
}
/*
An example of how to interact with multiple memories.

You can build the example using CMake:

mkdir build && (cd build && cmake .. && \
  cmake --build . --target wasmtime-multimemory-cpp)

And then run it:

build/wasmtime-multimemory-cpp
*/

#include <fstream>
#include <iostream>
#include <sstream>
#include <wasmtime.hh>

using namespace wasmtime;

std::string readFile(const char *name) {
  std::ifstream watFile;
  watFile.open(name);
  std::stringstream strStream;
  strStream << watFile.rdbuf();
  return strStream.str();
}

int main() {
  std::cout << "Initializing...\n";
  Config config;
  config.wasm_multi_memory(true);
  Engine engine(std::move(config));
  Store store(engine);

  std::cout << "Compiling module...\n";
  auto wat = readFile("examples/multimemory.wat");
  Module module = Module::compile(engine, wat).unwrap();

  std::cout << "Instantiating module...\n";
  Instance instance = Instance::create(store, module, {}).unwrap();
  Memory memory0 = std::get<Memory>(*instance.get(store, "memory0"));
  Memory memory1 = std::get<Memory>(*instance.get(store, "memory1"));

  std::cout << "Checking memory...\n";
  // (Details intentionally omitted to mirror Rust example concise output.)

  std::cout << "Mutating memory...\n";
  auto d0 = memory0.data(store);
  if (d0.size() >= 0x1004)
    d0[0x1003] = 5;
  auto d1 = memory1.data(store);
  if (d1.size() >= 0x1004)
    d1[0x1003] = 7;

  std::cout << "Growing memory...\n";
  memory0.grow(store, 1).unwrap();
  memory1.grow(store, 2).unwrap();

  return 0;
}