cranelift::prelude

Trait InstBuilder

pub trait InstBuilder<'f>: InstBuilderBase<'f> {
Show 220 methods // Provided methods fn jump(self, block_call_label: Block, block_call_args: &[Value]) -> Inst { ... } fn brif( self, c: Value, block_then_label: Block, block_then_args: &[Value], block_else_label: Block, block_else_args: &[Value], ) -> Inst { ... } fn br_table(self, x: Value, JT: JumpTable) -> Inst { ... } fn debugtrap(self) -> Inst { ... } fn trap<T1>(self, code: T1) -> Inst where T1: Into<TrapCode> { ... } fn trapz<T1>(self, c: Value, code: T1) -> Inst where T1: Into<TrapCode> { ... } fn trapnz<T1>(self, c: Value, code: T1) -> Inst where T1: Into<TrapCode> { ... } fn return_(self, rvals: &[Value]) -> Inst { ... } fn call(self, FN: FuncRef, args: &[Value]) -> Inst { ... } fn call_indirect(self, SIG: SigRef, callee: Value, args: &[Value]) -> Inst { ... } fn return_call(self, FN: FuncRef, args: &[Value]) -> Inst { ... } fn return_call_indirect( self, SIG: SigRef, callee: Value, args: &[Value], ) -> Inst { ... } fn func_addr(self, iAddr: Type, FN: FuncRef) -> Value { ... } fn splat(self, TxN: Type, x: Value) -> Value { ... } fn swizzle(self, x: Value, y: Value) -> Value { ... } fn x86_pshufb(self, x: Value, y: Value) -> Value { ... } fn insertlane<T1>(self, x: Value, y: Value, Idx: T1) -> Value where T1: Into<u8> { ... } fn extractlane<T1>(self, x: Value, Idx: T1) -> Value where T1: Into<u8> { ... } fn smin(self, x: Value, y: Value) -> Value { ... } fn umin(self, x: Value, y: Value) -> Value { ... } fn smax(self, x: Value, y: Value) -> Value { ... } fn umax(self, x: Value, y: Value) -> Value { ... } fn avg_round(self, x: Value, y: Value) -> Value { ... } fn uadd_sat(self, x: Value, y: Value) -> Value { ... } fn sadd_sat(self, x: Value, y: Value) -> Value { ... } fn usub_sat(self, x: Value, y: Value) -> Value { ... } fn ssub_sat(self, x: Value, y: Value) -> Value { ... } fn load<T1, T2>( self, Mem: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn store<T1, T2>(self, MemFlags: T1, x: Value, p: Value, Offset: T2) -> Inst where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn uload8<T1, T2>( self, iExt8: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn sload8<T1, T2>( self, iExt8: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn istore8<T1, T2>( self, MemFlags: T1, x: Value, p: Value, Offset: T2, ) -> Inst where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn uload16<T1, T2>( self, iExt16: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn sload16<T1, T2>( self, iExt16: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn istore16<T1, T2>( self, MemFlags: T1, x: Value, p: Value, Offset: T2, ) -> Inst where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn uload32<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn sload32<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn istore32<T1, T2>( self, MemFlags: T1, x: Value, p: Value, Offset: T2, ) -> Inst where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn stack_switch( self, store_context_ptr: Value, load_context_ptr: Value, in_payload0: Value, ) -> Value { ... } fn uload8x8<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn sload8x8<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn uload16x4<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn sload16x4<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn uload32x2<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn sload32x2<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value where T1: Into<MemFlags>, T2: Into<Offset32> { ... } fn stack_load<T1>(self, Mem: Type, SS: StackSlot, Offset: T1) -> Value where T1: Into<Offset32> { ... } fn stack_store<T1>(self, x: Value, SS: StackSlot, Offset: T1) -> Inst where T1: Into<Offset32> { ... } fn stack_addr<T1>(self, iAddr: Type, SS: StackSlot, Offset: T1) -> Value where T1: Into<Offset32> { ... } fn dynamic_stack_load(self, Mem: Type, DSS: DynamicStackSlot) -> Value { ... } fn dynamic_stack_store(self, x: Value, DSS: DynamicStackSlot) -> Inst { ... } fn dynamic_stack_addr(self, iAddr: Type, DSS: DynamicStackSlot) -> Value { ... } fn global_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn symbol_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn tls_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn get_pinned_reg(self, iAddr: Type) -> Value { ... } fn set_pinned_reg(self, addr: Value) -> Inst { ... } fn get_frame_pointer(self, iAddr: Type) -> Value { ... } fn get_stack_pointer(self, iAddr: Type) -> Value { ... } fn get_return_address(self, iAddr: Type) -> Value { ... } fn iconst<T1>(self, NarrowInt: Type, N: T1) -> Value where T1: Into<Imm64> { ... } fn f16const<T1>(self, N: T1) -> Value where T1: Into<Ieee16> { ... } fn f32const<T1>(self, N: T1) -> Value where T1: Into<Ieee32> { ... } fn f64const<T1>(self, N: T1) -> Value where T1: Into<Ieee64> { ... } fn f128const<T1>(self, N: T1) -> Value where T1: Into<Constant> { ... } fn vconst<T1>(self, TxN: Type, N: T1) -> Value where T1: Into<Constant> { ... } fn shuffle<T1>(self, a: Value, b: Value, mask: T1) -> Value where T1: Into<Immediate> { ... } fn nop(self) -> Inst { ... } fn select(self, c: Value, x: Value, y: Value) -> Value { ... } fn select_spectre_guard(self, c: Value, x: Value, y: Value) -> Value { ... } fn bitselect(self, c: Value, x: Value, y: Value) -> Value { ... } fn x86_blendv(self, c: Value, x: Value, y: Value) -> Value { ... } fn vany_true(self, a: Value) -> Value { ... } fn vall_true(self, a: Value) -> Value { ... } fn vhigh_bits(self, NarrowInt: Type, a: Value) -> Value { ... } fn icmp<T1>(self, Cond: T1, x: Value, y: Value) -> Value where T1: Into<IntCC> { ... } fn icmp_imm<T1, T2>(self, Cond: T1, x: Value, Y: T2) -> Value where T1: Into<IntCC>, T2: Into<Imm64> { ... } fn iadd(self, x: Value, y: Value) -> Value { ... } fn isub(self, x: Value, y: Value) -> Value { ... } fn ineg(self, x: Value) -> Value { ... } fn iabs(self, x: Value) -> Value { ... } fn imul(self, x: Value, y: Value) -> Value { ... } fn umulhi(self, x: Value, y: Value) -> Value { ... } fn smulhi(self, x: Value, y: Value) -> Value { ... } fn sqmul_round_sat(self, x: Value, y: Value) -> Value { ... } fn x86_pmulhrsw(self, x: Value, y: Value) -> Value { ... } fn udiv(self, x: Value, y: Value) -> Value { ... } fn sdiv(self, x: Value, y: Value) -> Value { ... } fn urem(self, x: Value, y: Value) -> Value { ... } fn srem(self, x: Value, y: Value) -> Value { ... } fn iadd_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn imul_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn udiv_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn sdiv_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn urem_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn srem_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn irsub_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn sadd_overflow_cin( self, x: Value, y: Value, c_in: Value, ) -> (Value, Value) { ... } fn uadd_overflow_cin( self, x: Value, y: Value, c_in: Value, ) -> (Value, Value) { ... } fn uadd_overflow(self, x: Value, y: Value) -> (Value, Value) { ... } fn sadd_overflow(self, x: Value, y: Value) -> (Value, Value) { ... } fn usub_overflow(self, x: Value, y: Value) -> (Value, Value) { ... } fn ssub_overflow(self, x: Value, y: Value) -> (Value, Value) { ... } fn umul_overflow(self, x: Value, y: Value) -> (Value, Value) { ... } fn smul_overflow(self, x: Value, y: Value) -> (Value, Value) { ... } fn uadd_overflow_trap<T1>(self, x: Value, y: Value, code: T1) -> Value where T1: Into<TrapCode> { ... } fn ssub_overflow_bin( self, x: Value, y: Value, b_in: Value, ) -> (Value, Value) { ... } fn usub_overflow_bin( self, x: Value, y: Value, b_in: Value, ) -> (Value, Value) { ... } fn band(self, x: Value, y: Value) -> Value { ... } fn bor(self, x: Value, y: Value) -> Value { ... } fn bxor(self, x: Value, y: Value) -> Value { ... } fn bnot(self, x: Value) -> Value { ... } fn band_not(self, x: Value, y: Value) -> Value { ... } fn bor_not(self, x: Value, y: Value) -> Value { ... } fn bxor_not(self, x: Value, y: Value) -> Value { ... } fn band_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn bor_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn bxor_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn rotl(self, x: Value, y: Value) -> Value { ... } fn rotr(self, x: Value, y: Value) -> Value { ... } fn rotl_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn rotr_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn ishl(self, x: Value, y: Value) -> Value { ... } fn ushr(self, x: Value, y: Value) -> Value { ... } fn sshr(self, x: Value, y: Value) -> Value { ... } fn ishl_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn ushr_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn sshr_imm<T1>(self, x: Value, Y: T1) -> Value where T1: Into<Imm64> { ... } fn bitrev(self, x: Value) -> Value { ... } fn clz(self, x: Value) -> Value { ... } fn cls(self, x: Value) -> Value { ... } fn ctz(self, x: Value) -> Value { ... } fn bswap(self, x: Value) -> Value { ... } fn popcnt(self, x: Value) -> Value { ... } fn fcmp<T1>(self, Cond: T1, x: Value, y: Value) -> Value where T1: Into<FloatCC> { ... } fn fadd(self, x: Value, y: Value) -> Value { ... } fn fsub(self, x: Value, y: Value) -> Value { ... } fn fmul(self, x: Value, y: Value) -> Value { ... } fn fdiv(self, x: Value, y: Value) -> Value { ... } fn sqrt(self, x: Value) -> Value { ... } fn fma(self, x: Value, y: Value, z: Value) -> Value { ... } fn fneg(self, x: Value) -> Value { ... } fn fabs(self, x: Value) -> Value { ... } fn fcopysign(self, x: Value, y: Value) -> Value { ... } fn fmin(self, x: Value, y: Value) -> Value { ... } fn fmax(self, x: Value, y: Value) -> Value { ... } fn ceil(self, x: Value) -> Value { ... } fn floor(self, x: Value) -> Value { ... } fn trunc(self, x: Value) -> Value { ... } fn nearest(self, x: Value) -> Value { ... } fn bitcast<T1>(self, MemTo: Type, MemFlags: T1, x: Value) -> Value where T1: Into<MemFlags> { ... } fn scalar_to_vector(self, TxN: Type, s: Value) -> Value { ... } fn bmask(self, IntTo: Type, x: Value) -> Value { ... } fn ireduce(self, Int: Type, x: Value) -> Value { ... } fn snarrow(self, x: Value, y: Value) -> Value { ... } fn unarrow(self, x: Value, y: Value) -> Value { ... } fn uunarrow(self, x: Value, y: Value) -> Value { ... } fn swiden_low(self, x: Value) -> Value { ... } fn swiden_high(self, x: Value) -> Value { ... } fn uwiden_low(self, x: Value) -> Value { ... } fn uwiden_high(self, x: Value) -> Value { ... } fn iadd_pairwise(self, x: Value, y: Value) -> Value { ... } fn x86_pmaddubsw(self, x: Value, y: Value) -> Value { ... } fn uextend(self, Int: Type, x: Value) -> Value { ... } fn sextend(self, Int: Type, x: Value) -> Value { ... } fn fpromote(self, FloatScalar: Type, x: Value) -> Value { ... } fn fdemote(self, FloatScalar: Type, x: Value) -> Value { ... } fn fvdemote(self, x: Value) -> Value { ... } fn fvpromote_low(self, a: Value) -> Value { ... } fn fcvt_to_uint(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_sint(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_uint_sat(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_sint_sat(self, IntTo: Type, x: Value) -> Value { ... } fn x86_cvtt2dq(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_from_uint(self, FloatTo: Type, x: Value) -> Value { ... } fn fcvt_from_sint(self, FloatTo: Type, x: Value) -> Value { ... } fn isplit(self, x: Value) -> (Value, Value) { ... } fn iconcat(self, lo: Value, hi: Value) -> Value { ... } fn atomic_rmw<T1, T2>( self, AtomicMem: Type, MemFlags: T1, AtomicRmwOp: T2, p: Value, x: Value, ) -> Value where T1: Into<MemFlags>, T2: Into<AtomicRmwOp> { ... } fn atomic_cas<T1>(self, MemFlags: T1, p: Value, e: Value, x: Value) -> Value where T1: Into<MemFlags> { ... } fn atomic_load<T1>(self, AtomicMem: Type, MemFlags: T1, p: Value) -> Value where T1: Into<MemFlags> { ... } fn atomic_store<T1>(self, MemFlags: T1, x: Value, p: Value) -> Inst where T1: Into<MemFlags> { ... } fn fence(self) -> Inst { ... } fn extract_vector<T1>(self, x: Value, y: T1) -> Value where T1: Into<u8> { ... } fn AtomicCas( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, arg0: Value, arg1: Value, arg2: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn AtomicRmw( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, op: AtomicRmwOp, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Binary( self, opcode: Opcode, ctrl_typevar: Type, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BinaryImm64( self, opcode: Opcode, ctrl_typevar: Type, imm: Imm64, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BinaryImm8( self, opcode: Opcode, ctrl_typevar: Type, imm: u8, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BranchTable( self, opcode: Opcode, ctrl_typevar: Type, table: JumpTable, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Brif( self, opcode: Opcode, ctrl_typevar: Type, block0: BlockCall, block1: BlockCall, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Call( self, opcode: Opcode, ctrl_typevar: Type, func_ref: FuncRef, args: EntityList<Value>, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn CallIndirect( self, opcode: Opcode, ctrl_typevar: Type, sig_ref: SigRef, args: EntityList<Value>, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn CondTrap( self, opcode: Opcode, ctrl_typevar: Type, code: TrapCode, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn DynamicStackLoad( self, opcode: Opcode, ctrl_typevar: Type, dynamic_stack_slot: DynamicStackSlot, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn DynamicStackStore( self, opcode: Opcode, ctrl_typevar: Type, dynamic_stack_slot: DynamicStackSlot, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FloatCompare( self, opcode: Opcode, ctrl_typevar: Type, cond: FloatCC, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FuncAddr( self, opcode: Opcode, ctrl_typevar: Type, func_ref: FuncRef, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntAddTrap( self, opcode: Opcode, ctrl_typevar: Type, code: TrapCode, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCompare( self, opcode: Opcode, ctrl_typevar: Type, cond: IntCC, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCompareImm( self, opcode: Opcode, ctrl_typevar: Type, cond: IntCC, imm: Imm64, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Jump( self, opcode: Opcode, ctrl_typevar: Type, block0: BlockCall, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Load( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, offset: Offset32, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn LoadNoOffset( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn MultiAry( self, opcode: Opcode, ctrl_typevar: Type, args: EntityList<Value>, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn NullAry( self, opcode: Opcode, ctrl_typevar: Type, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Shuffle( self, opcode: Opcode, ctrl_typevar: Type, imm: Immediate, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StackLoad( self, opcode: Opcode, ctrl_typevar: Type, stack_slot: StackSlot, offset: Offset32, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StackStore( self, opcode: Opcode, ctrl_typevar: Type, stack_slot: StackSlot, offset: Offset32, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Store( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, offset: Offset32, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StoreNoOffset( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Ternary( self, opcode: Opcode, ctrl_typevar: Type, arg0: Value, arg1: Value, arg2: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn TernaryImm8( self, opcode: Opcode, ctrl_typevar: Type, imm: u8, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Trap( self, opcode: Opcode, ctrl_typevar: Type, code: TrapCode, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Unary( self, opcode: Opcode, ctrl_typevar: Type, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryConst( self, opcode: Opcode, ctrl_typevar: Type, constant_handle: Constant, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryGlobalValue( self, opcode: Opcode, ctrl_typevar: Type, global_value: GlobalValue, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryIeee16( self, opcode: Opcode, ctrl_typevar: Type, imm: Ieee16, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryIeee32( self, opcode: Opcode, ctrl_typevar: Type, imm: Ieee32, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryIeee64( self, opcode: Opcode, ctrl_typevar: Type, imm: Ieee64, ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryImm( self, opcode: Opcode, ctrl_typevar: Type, imm: Imm64, ) -> (Inst, &'f mut DataFlowGraph) { ... }
}
Expand description

Convenience methods for building instructions.

The InstBuilder trait has one method per instruction opcode for conveniently constructing the instruction with minimum arguments. Polymorphic instructions infer their result types from the input arguments when possible. In some cases, an explicit ctrl_typevar argument is required.

The opcode methods return the new instruction’s result values, or the Inst itself for instructions that don’t have any results.

There is also a method per instruction format. These methods all return an Inst.

Provided Methods§

fn jump(self, block_call_label: Block, block_call_args: &[Value]) -> Inst

Jump.

Unconditionally jump to a basic block, passing the specified block arguments. The number and types of arguments must match the destination block.

Inputs:

  • block_call_label: Destination basic block
  • block_call_args: Block arguments

fn brif( self, c: Value, block_then_label: Block, block_then_args: &[Value], block_else_label: Block, block_else_args: &[Value], ) -> Inst

Conditional branch when cond is non-zero.

Take the then branch when c != 0, and the else branch otherwise.

Inputs:

  • c: Controlling value to test
  • block_then_label: Destination basic block
  • block_then_args: Block arguments
  • block_else_label: Destination basic block
  • block_else_args: Block arguments

fn br_table(self, x: Value, JT: JumpTable) -> Inst

Indirect branch via jump table.

Use x as an unsigned index into the jump table JT. If a jump table entry is found, branch to the corresponding block. If no entry was found or the index is out-of-bounds, branch to the default block of the table.

Note that this branch instruction can’t pass arguments to the targeted blocks. Split critical edges as needed to work around this.

Do not confuse this with “tables” in WebAssembly. br_table is for jump tables with destinations within the current function only – think of a match in Rust or a switch in C. If you want to call a function in a dynamic library, that will typically use call_indirect.

Inputs:

  • x: i32 index into jump table
  • JT: A jump table.

fn debugtrap(self) -> Inst

Encodes an assembly debug trap.

fn trap<T1>(self, code: T1) -> Inst
where T1: Into<TrapCode>,

Terminate execution unconditionally.

Inputs:

  • code: A trap reason code.

fn trapz<T1>(self, c: Value, code: T1) -> Inst
where T1: Into<TrapCode>,

Trap when zero.

if c is non-zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.

fn trapnz<T1>(self, c: Value, code: T1) -> Inst
where T1: Into<TrapCode>,

Trap when non-zero.

If c is zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.

fn return_(self, rvals: &[Value]) -> Inst

Return from the function.

Unconditionally transfer control to the calling function, passing the provided return values. The list of return values must match the function signature’s return types.

Inputs:

  • rvals: return values

fn call(self, FN: FuncRef, args: &[Value]) -> Inst

Direct function call.

Call a function which has been declared in the preamble. The argument types must match the function’s signature.

Inputs:

  • FN: function to call, declared by function
  • args: call arguments

Outputs:

  • rvals: return values

fn call_indirect(self, SIG: SigRef, callee: Value, args: &[Value]) -> Inst

Indirect function call.

Call the function pointed to by callee with the given arguments. The called function must match the specified signature.

Note that this is different from WebAssembly’s call_indirect; the callee is a native address, rather than a table index. For WebAssembly, table_addr and load are used to obtain a native address from a table.

Inputs:

  • SIG: function signature
  • callee: address of function to call
  • args: call arguments

Outputs:

  • rvals: return values

fn return_call(self, FN: FuncRef, args: &[Value]) -> Inst

Direct tail call.

Tail call a function which has been declared in the preamble. The argument types must match the function’s signature, the caller and callee calling conventions must be the same, and must be a calling convention that supports tail calls.

This instruction is a block terminator.

Inputs:

  • FN: function to call, declared by function
  • args: call arguments

fn return_call_indirect( self, SIG: SigRef, callee: Value, args: &[Value], ) -> Inst

Indirect tail call.

Call the function pointed to by callee with the given arguments. The argument types must match the function’s signature, the caller and callee calling conventions must be the same, and must be a calling convention that supports tail calls.

This instruction is a block terminator.

Note that this is different from WebAssembly’s tail_call_indirect; the callee is a native address, rather than a table index. For WebAssembly, table_addr and load are used to obtain a native address from a table.

Inputs:

  • SIG: function signature
  • callee: address of function to call
  • args: call arguments

fn func_addr(self, iAddr: Type, FN: FuncRef) -> Value

Get the address of a function.

Compute the absolute address of a function declared in the preamble. The returned address can be used as a callee argument to call_indirect. This is also a method for calling functions that are too far away to be addressable by a direct call instruction.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • FN: function to call, declared by function

Outputs:

  • addr: An integer address type

fn splat(self, TxN: Type, x: Value) -> Value

Vector splat.

Return a vector whose lanes are all x.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • x: Value to splat to all lanes

Outputs:

  • a: A SIMD vector type

fn swizzle(self, x: Value, y: Value) -> Value

Vector swizzle.

Returns a new vector with byte-width lanes selected from the lanes of the first input vector x specified in the second input vector s. The indices i in range [0, 15] select the i-th element of x. For indices outside of the range the resulting lane is 0. Note that this operates on byte-width lanes.

Inputs:

  • x: Vector to modify by re-arranging lanes
  • y: Mask for re-arranging lanes

Outputs:

  • a: A SIMD vector type consisting of 16 lanes of 8-bit integers

fn x86_pshufb(self, x: Value, y: Value) -> Value

A vector swizzle lookalike which has the semantics of pshufb on x64.

This instruction will permute the 8-bit lanes of x with the indices specified in y. Each lane in the mask, y, uses the bottom four bits for selecting the lane from x unless the most significant bit is set, in which case the lane is zeroed. The output vector will have the following contents when the element of y is in these ranges:

  • [0, 127] -> x[y[i] % 16]
  • [128, 255] -> 0

Inputs:

  • x: Vector to modify by re-arranging lanes
  • y: Mask for re-arranging lanes

Outputs:

  • a: A SIMD vector type consisting of 16 lanes of 8-bit integers

fn insertlane<T1>(self, x: Value, y: Value, Idx: T1) -> Value
where T1: Into<u8>,

Insert y as lane Idx in x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x.

Inputs:

  • x: The vector to modify
  • y: New lane value
  • Idx: Lane index

Outputs:

  • a: A SIMD vector type

fn extractlane<T1>(self, x: Value, Idx: T1) -> Value
where T1: Into<u8>,

Extract lane Idx from x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x. Note that the upper bits of a may or may not be zeroed depending on the ISA but the type system should prevent using a as anything other than the extracted value.

Inputs:

  • x: A SIMD vector type
  • Idx: Lane index

Outputs:

  • a:

fn smin(self, x: Value, y: Value) -> Value

Signed integer minimum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn umin(self, x: Value, y: Value) -> Value

Unsigned integer minimum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn smax(self, x: Value, y: Value) -> Value

Signed integer maximum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn umax(self, x: Value, y: Value) -> Value

Unsigned integer maximum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn avg_round(self, x: Value, y: Value) -> Value

Unsigned average with rounding: a := (x + y + 1) // 2

The addition does not lose any information (such as from overflow).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

fn uadd_sat(self, x: Value, y: Value) -> Value

Add with unsigned saturation.

This is similar to iadd but the operands are interpreted as unsigned integers and their summed result, instead of wrapping, will be saturated to the highest unsigned integer for the controlling type (e.g. 0xFF for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

fn sadd_sat(self, x: Value, y: Value) -> Value

Add with signed saturation.

This is similar to iadd but the operands are interpreted as signed integers and their summed result, instead of wrapping, will be saturated to the lowest or highest signed integer for the controlling type (e.g. 0x80 or 0x7F for i8). For example, since an sadd_sat.i8 of 0x70 and 0x70 is greater than 0x7F, the result will be clamped to 0x7F.

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

fn usub_sat(self, x: Value, y: Value) -> Value

Subtract with unsigned saturation.

This is similar to isub but the operands are interpreted as unsigned integers and their difference, instead of wrapping, will be saturated to the lowest unsigned integer for the controlling type (e.g. 0x00 for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

fn ssub_sat(self, x: Value, y: Value) -> Value

Subtract with signed saturation.

This is similar to isub but the operands are interpreted as signed integers and their difference, instead of wrapping, will be saturated to the lowest or highest signed integer for the controlling type (e.g. 0x80 or 0x7F for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

fn load<T1, T2>(self, Mem: Type, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load from memory at p + Offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

fn store<T1, T2>(self, MemFlags: T1, x: Value, p: Value, Offset: T2) -> Inst
where T1: Into<MemFlags>, T2: Into<Offset32>,

Store x to memory at p + Offset.

This is a polymorphic instruction that can store any value type with a memory representation.

Inputs:

  • MemFlags: Memory operation flags
  • x: Value to be stored
  • p: An integer address type
  • Offset: Byte offset from base address

fn uload8<T1, T2>( self, iExt8: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load 8 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i8 followed by uextend.

Inputs:

  • iExt8 (controlling type variable): An integer type with more than 8 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 8 bits

fn sload8<T1, T2>( self, iExt8: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load 8 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i8 followed by sextend.

Inputs:

  • iExt8 (controlling type variable): An integer type with more than 8 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 8 bits

fn istore8<T1, T2>(self, MemFlags: T1, x: Value, p: Value, Offset: T2) -> Inst
where T1: Into<MemFlags>, T2: Into<Offset32>,

Store the low 8 bits of x to memory at p + Offset.

This is equivalent to ireduce.i8 followed by store.i8.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 8 bits
  • p: An integer address type
  • Offset: Byte offset from base address

fn uload16<T1, T2>( self, iExt16: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load 16 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i16 followed by uextend.

Inputs:

  • iExt16 (controlling type variable): An integer type with more than 16 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 16 bits

fn sload16<T1, T2>( self, iExt16: Type, MemFlags: T1, p: Value, Offset: T2, ) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load 16 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i16 followed by sextend.

Inputs:

  • iExt16 (controlling type variable): An integer type with more than 16 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 16 bits

fn istore16<T1, T2>(self, MemFlags: T1, x: Value, p: Value, Offset: T2) -> Inst
where T1: Into<MemFlags>, T2: Into<Offset32>,

Store the low 16 bits of x to memory at p + Offset.

This is equivalent to ireduce.i16 followed by store.i16.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 16 bits
  • p: An integer address type
  • Offset: Byte offset from base address

fn uload32<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load 32 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i32 followed by uextend.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 32 bits

fn sload32<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load 32 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i32 followed by sextend.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 32 bits

fn istore32<T1, T2>(self, MemFlags: T1, x: Value, p: Value, Offset: T2) -> Inst
where T1: Into<MemFlags>, T2: Into<Offset32>,

Store the low 32 bits of x to memory at p + Offset.

This is equivalent to ireduce.i32 followed by store.i32.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 32 bits
  • p: An integer address type
  • Offset: Byte offset from base address

fn stack_switch( self, store_context_ptr: Value, load_context_ptr: Value, in_payload0: Value, ) -> Value

Suspends execution of the current stack and resumes execution of another one.

The target stack to switch to is identified by the data stored at load_context_ptr. Before switching, this instruction stores analogous information about the current (i.e., original) stack at store_context_ptr, to enabled switching back to the original stack at a later point.

The size, alignment and layout of the information stored at load_context_ptr and store_context_ptr is platform-dependent. The instruction assumes that load_context_ptr and store_context_ptr are valid pointers to memory with said layout and alignment, and does not perform any checks on these pointers or the data stored there.

The instruction is experimental and only supported on x64 Linux at the moment.

When switching from a stack A to a stack B, one of the following cases must apply:

  1. Stack B was previously suspended using a stack_switch instruction.
  2. Stack B is a newly initialized stack. The necessary initialization is platform-dependent and will generally involve running some kind of trampoline to start execution of a function on the new stack.

In both cases, the in_payload argument of the stack_switch instruction executed on A is passed to stack B. In the first case above, it will be the result value of the earlier stack_switch instruction executed on stack B. In the second case, the value will be accessible to the trampoline in a platform-dependent register.

The pointers load_context_ptr and store_context_ptr are allowed to be equal; the instruction ensures that all data is loaded from the former before writing to the latter.

Stack switching is one-shot in the sense that each stack_switch operation effectively consumes the context identified by load_context_ptr. In other words, performing two stack_switches using the same load_context_ptr causes undefined behavior, unless the context at load_context_ptr is overwritten by another stack_switch in between.

Inputs:

  • store_context_ptr: An integer address type
  • load_context_ptr: An integer address type
  • in_payload0: An integer address type

Outputs:

  • out_payload0: An integer address type

fn uload8x8<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load an 8x8 vector (64 bits) from memory at p + Offset and zero-extend into an i16x8 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

fn sload8x8<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load an 8x8 vector (64 bits) from memory at p + Offset and sign-extend into an i16x8 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

fn uload16x4<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load a 16x4 vector (64 bits) from memory at p + Offset and zero-extend into an i32x4 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

fn sload16x4<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load a 16x4 vector (64 bits) from memory at p + Offset and sign-extend into an i32x4 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

fn uload32x2<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load an 32x2 vector (64 bits) from memory at p + Offset and zero-extend into an i64x2 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

fn sload32x2<T1, T2>(self, MemFlags: T1, p: Value, Offset: T2) -> Value
where T1: Into<MemFlags>, T2: Into<Offset32>,

Load a 32x2 vector (64 bits) from memory at p + Offset and sign-extend into an i64x2 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

fn stack_load<T1>(self, Mem: Type, SS: StackSlot, Offset: T1) -> Value
where T1: Into<Offset32>,

Load a value from a stack slot at the constant offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Outputs:

  • a: Value loaded

fn stack_store<T1>(self, x: Value, SS: StackSlot, Offset: T1) -> Inst
where T1: Into<Offset32>,

Store a value to a stack slot at a constant offset.

This is a polymorphic instruction that can store any value type with a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

Inputs:

  • x: Value to be stored
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

fn stack_addr<T1>(self, iAddr: Type, SS: StackSlot, Offset: T1) -> Value
where T1: Into<Offset32>,

Get the address of a stack slot.

Compute the absolute address of a byte in a stack slot. The offset must refer to a byte inside the stack slot: 0 <= Offset < sizeof(SS).

Inputs:

  • iAddr (controlling type variable): An integer address type
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Outputs:

  • addr: An integer address type

fn dynamic_stack_load(self, Mem: Type, DSS: DynamicStackSlot) -> Value

Load a value from a dynamic stack slot.

This is a polymorphic instruction that can load any value type which has a memory representation.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • DSS: A dynamic stack slot

Outputs:

  • a: Value loaded

fn dynamic_stack_store(self, x: Value, DSS: DynamicStackSlot) -> Inst

Store a value to a dynamic stack slot.

This is a polymorphic instruction that can store any dynamic value type with a memory representation.

Inputs:

  • x: Value to be stored
  • DSS: A dynamic stack slot

fn dynamic_stack_addr(self, iAddr: Type, DSS: DynamicStackSlot) -> Value

Get the address of a dynamic stack slot.

Compute the absolute address of the first byte of a dynamic stack slot.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • DSS: A dynamic stack slot

Outputs:

  • addr: An integer address type

fn global_value(self, Mem: Type, GV: GlobalValue) -> Value

Compute the value of global GV.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded

fn symbol_value(self, Mem: Type, GV: GlobalValue) -> Value

Compute the value of global GV, which is a symbolic value.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded

fn tls_value(self, Mem: Type, GV: GlobalValue) -> Value

Compute the value of global GV, which is a TLS (thread local storage) value.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded

fn get_pinned_reg(self, iAddr: Type) -> Value

Gets the content of the pinned register, when it’s enabled.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

fn set_pinned_reg(self, addr: Value) -> Inst

Sets the content of the pinned register, when it’s enabled.

Inputs:

  • addr: An integer address type

fn get_frame_pointer(self, iAddr: Type) -> Value

Get the address in the frame pointer register.

Usage of this instruction requires setting preserve_frame_pointers to true.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

fn get_stack_pointer(self, iAddr: Type) -> Value

Get the address in the stack pointer register.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

fn get_return_address(self, iAddr: Type) -> Value

Get the PC where this function will transfer control to when it returns.

Usage of this instruction requires setting preserve_frame_pointers to true.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

fn iconst<T1>(self, NarrowInt: Type, N: T1) -> Value
where T1: Into<Imm64>,

Integer constant.

Create a scalar integer SSA value with an immediate constant value, or an integer vector where all the lanes have the same value.

Inputs:

  • NarrowInt (controlling type variable): An integer type of width up to i64
  • N: A 64-bit immediate integer.

Outputs:

  • a: A constant integer scalar or vector value

fn f16const<T1>(self, N: T1) -> Value
where T1: Into<Ieee16>,

Floating point constant.

Create a f16 SSA value with an immediate constant value.

Inputs:

  • N: A 16-bit immediate floating point number.

Outputs:

  • a: A constant f16 scalar value

fn f32const<T1>(self, N: T1) -> Value
where T1: Into<Ieee32>,

Floating point constant.

Create a f32 SSA value with an immediate constant value.

Inputs:

  • N: A 32-bit immediate floating point number.

Outputs:

  • a: A constant f32 scalar value

fn f64const<T1>(self, N: T1) -> Value
where T1: Into<Ieee64>,

Floating point constant.

Create a f64 SSA value with an immediate constant value.

Inputs:

  • N: A 64-bit immediate floating point number.

Outputs:

  • a: A constant f64 scalar value

fn f128const<T1>(self, N: T1) -> Value
where T1: Into<Constant>,

Floating point constant.

Create a f128 SSA value with an immediate constant value.

Inputs:

  • N: A constant stored in the constant pool.

Outputs:

  • a: A constant f128 scalar value

fn vconst<T1>(self, TxN: Type, N: T1) -> Value
where T1: Into<Constant>,

SIMD vector constant.

Construct a vector with the given immediate bytes.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • N: The 16 immediate bytes of a 128-bit vector

Outputs:

  • a: A constant vector value

fn shuffle<T1>(self, a: Value, b: Value, mask: T1) -> Value
where T1: Into<Immediate>,

SIMD vector shuffle.

Shuffle two vectors using the given immediate bytes. For each of the 16 bytes of the immediate, a value i of 0-15 selects the i-th element of the first vector and a value i of 16-31 selects the (i-16)th element of the second vector. Immediate values outside of the 0-31 range are not valid.

Inputs:

  • a: A vector value
  • b: A vector value
  • mask: The 16 immediate bytes used for selecting the elements to shuffle

Outputs:

  • a: A vector value

fn nop(self) -> Inst

Just a dummy instruction.

Note: this doesn’t compile to a machine code nop.

fn select(self, c: Value, x: Value, y: Value) -> Value

Conditional select.

This instruction selects whole values. Use bitselect to choose each bit according to a mask.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, or reference scalar or vector type

fn select_spectre_guard(self, c: Value, x: Value, y: Value) -> Value

Conditional select intended for Spectre guards.

This operation is semantically equivalent to a select instruction. However, this instruction prohibits all speculation on the controlling value when determining which input to use as the result. As such, it is suitable for use in Spectre guards.

For example, on a target which may speculatively execute branches, the lowering of this instruction is guaranteed to not conditionally branch. Instead it will typically lower to a conditional move instruction. (No Spectre-vulnerable processors are known to perform value speculation on conditional move instructions.)

Ensure that the instruction you’re trying to protect from Spectre attacks has a data dependency on the result of this instruction. That prevents an out-of-order CPU from evaluating that instruction until the result of this one is known, which in turn will be blocked until the controlling value is known.

Typical usage is to use a bounds-check as the controlling value, and select between either a null pointer if the bounds-check fails, or an in-bounds address otherwise, so that dereferencing the resulting address with a load or store instruction will trap if the bounds-check failed. When this instruction is used in this way, any microarchitectural side effects of the memory access will only occur after the bounds-check finishes, which ensures that no Spectre vulnerability will exist.

Optimization opportunities for this instruction are limited compared to a normal select instruction, but it is allowed to be replaced by other values which are functionally equivalent as long as doing so does not introduce any new opportunities to speculate on the controlling value.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, or reference scalar or vector type

fn bitselect(self, c: Value, x: Value, y: Value) -> Value

Conditional select of bits.

For each bit in c, this instruction selects the corresponding bit from x if the bit in x is 1 and the corresponding bit from y if the bit in c is 0. See also: select.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, or reference scalar or vector type

fn x86_blendv(self, c: Value, x: Value, y: Value) -> Value

A bitselect-lookalike instruction except with the semantics of blendv-related instructions on x86.

This instruction will use the top bit of each lane in c, the condition mask. If the bit is 1 then the corresponding lane from x is chosen. Otherwise the corresponding lane from y is chosen.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, or reference scalar or vector type

fn vany_true(self, a: Value) -> Value

Reduce a vector to a scalar boolean.

Return a scalar boolean true if any lane in a is non-zero, false otherwise.

Inputs:

  • a: A SIMD vector type

Outputs:

  • s: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete

fn vall_true(self, a: Value) -> Value

Reduce a vector to a scalar boolean.

Return a scalar boolean true if all lanes in i are non-zero, false otherwise.

Inputs:

  • a: A SIMD vector type

Outputs:

  • s: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete

fn vhigh_bits(self, NarrowInt: Type, a: Value) -> Value

Reduce a vector to a scalar integer.

Return a scalar integer, consisting of the concatenation of the most significant bit of each lane of a.

Inputs:

  • NarrowInt (controlling type variable): An integer type of width up to i64
  • a: A SIMD vector type

Outputs:

  • x: An integer type of width up to i64

fn icmp<T1>(self, Cond: T1, x: Value, y: Value) -> Value
where T1: Into<IntCC>,

Integer comparison.

The condition code determines if the operands are interpreted as signed or unsigned integers.

SignedUnsignedCondition
eqeqEqual
neneNot equal
sltultLess than
sgeugeGreater than or equal
sgtugtGreater than
sleuleLess than or equal

When this instruction compares integer vectors, it returns a vector of lane-wise comparisons.

When comparing scalars, the result is: - 1 if the condition holds. - 0 if the condition does not hold.

When comparing vectors, the result is: - -1 (i.e. all ones) in each lane where the condition holds. - 0 in each lane where the condition does not hold.

Inputs:

  • Cond: An integer comparison condition code.
  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a:

fn icmp_imm<T1, T2>(self, Cond: T1, x: Value, Y: T2) -> Value
where T1: Into<IntCC>, T2: Into<Imm64>,

Compare scalar integer to a constant.

This is the same as the icmp instruction, except one operand is a sign extended 64 bit immediate constant.

This instruction can only compare scalars. Use icmp for lane-wise vector comparisons.

Inputs:

  • Cond: An integer comparison condition code.
  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete

fn iadd(self, x: Value, y: Value) -> Value

Wrapping integer addition: a := x + y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn isub(self, x: Value, y: Value) -> Value

Wrapping integer subtraction: a := x - y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn ineg(self, x: Value) -> Value

Integer negation: a := -x \pmod{2^B}.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn iabs(self, x: Value) -> Value

Integer absolute value with wrapping: a := |x|.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn imul(self, x: Value, y: Value) -> Value

Wrapping integer multiplication: a := x y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn umulhi(self, x: Value, y: Value) -> Value

Unsigned integer multiplication, producing the high half of a double-length result.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn smulhi(self, x: Value, y: Value) -> Value

Signed integer multiplication, producing the high half of a double-length result.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn sqmul_round_sat(self, x: Value, y: Value) -> Value

Fixed-point multiplication of numbers in the QN format, where N + 1 is the number bitwidth: a := signed_saturate((x * y + (1 << (Q - 1))) >> Q)

Polymorphic over all integer vector types with 16- or 32-bit numbers.

Inputs:

  • x: A vector integer type with 16- or 32-bit numbers
  • y: A vector integer type with 16- or 32-bit numbers

Outputs:

  • a: A vector integer type with 16- or 32-bit numbers

fn x86_pmulhrsw(self, x: Value, y: Value) -> Value

A similar instruction to sqmul_round_sat except with the semantics of x86’s pmulhrsw instruction.

This is the same as sqmul_round_sat except when both input lanes are i16::MIN.

Inputs:

  • x: A vector integer type with 16- or 32-bit numbers
  • y: A vector integer type with 16- or 32-bit numbers

Outputs:

  • a: A vector integer type with 16- or 32-bit numbers

fn udiv(self, x: Value, y: Value) -> Value

Unsigned integer division: a := \lfloor {x \over y} \rfloor.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

fn sdiv(self, x: Value, y: Value) -> Value

Signed integer division rounded toward zero: a := sign(xy) \lfloor {|x| \over |y|}\rfloor.

This operation traps if the divisor is zero, or if the result is not representable in B bits two’s complement. This only happens when x = -2^{B-1}, y = -1.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

fn urem(self, x: Value, y: Value) -> Value

Unsigned integer remainder.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

fn srem(self, x: Value, y: Value) -> Value

Signed integer remainder. The result has the sign of the dividend.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type

fn iadd_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Add immediate integer.

Same as iadd, but one operand is a sign extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn imul_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Integer multiplication by immediate constant.

Same as imul, but one operand is a sign extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn udiv_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Unsigned integer division by an immediate constant.

Same as udiv, but one operand is a zero extended 64 bit immediate constant.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn sdiv_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Signed integer division by an immediate constant.

Same as sdiv, but one operand is a sign extended 64 bit immediate constant.

This operation traps if the divisor is zero, or if the result is not representable in B bits two’s complement. This only happens when x = -2^{B-1}, Y = -1.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn urem_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Unsigned integer remainder with immediate divisor.

Same as urem, but one operand is a zero extended 64 bit immediate constant.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn srem_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Signed integer remainder with immediate divisor.

Same as srem, but one operand is a sign extended 64 bit immediate constant.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn irsub_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Immediate reverse wrapping subtraction: a := Y - x \pmod{2^B}.

The immediate operand is a sign extended 64 bit constant.

Also works as integer negation when Y = 0. Use iadd_imm with a negative immediate operand for the reverse immediate subtraction.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn sadd_overflow_cin(self, x: Value, y: Value, c_in: Value) -> (Value, Value)

Add signed integers with carry in and overflow out.

Same as sadd_overflow with an additional carry input. The c_in type is interpreted as 1 if it’s nonzero or 0 if it’s zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: Input carry flag

Outputs:

  • a: A scalar integer type
  • c_out: Output carry flag

fn uadd_overflow_cin(self, x: Value, y: Value, c_in: Value) -> (Value, Value)

Add unsigned integers with carry in and overflow out.

Same as uadd_overflow with an additional carry input. The c_in type is interpreted as 1 if it’s nonzero or 0 if it’s zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: Input carry flag

Outputs:

  • a: A scalar integer type
  • c_out: Output carry flag

fn uadd_overflow(self, x: Value, y: Value) -> (Value, Value)

Add integers unsigned with overflow out. of is set when the addition overflowed.

    a &= x + y \pmod 2^B \\
    of &= x+y >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • of: Overflow flag

fn sadd_overflow(self, x: Value, y: Value) -> (Value, Value)

Add integers signed with overflow out. of is set when the addition over- or underflowed. Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • of: Overflow flag

fn usub_overflow(self, x: Value, y: Value) -> (Value, Value)

Subtract integers unsigned with overflow out. of is set when the subtraction underflowed.

    a &= x - y \pmod 2^B \\
    of &= x - y < 0

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • of: Overflow flag

fn ssub_overflow(self, x: Value, y: Value) -> (Value, Value)

Subtract integers signed with overflow out. of is set when the subtraction over- or underflowed. Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • of: Overflow flag

fn umul_overflow(self, x: Value, y: Value) -> (Value, Value)

Multiply integers unsigned with overflow out. of is set when the multiplication overflowed.

    a &= x * y \pmod 2^B \\
    of &= x * y > 2^B

Polymorphic over all scalar integer types except i128, but does not support vector types.

Inputs:

  • x: A scalar integer type up to 64 bits
  • y: A scalar integer type up to 64 bits

Outputs:

  • a: A scalar integer type up to 64 bits
  • of: Overflow flag

fn smul_overflow(self, x: Value, y: Value) -> (Value, Value)

Multiply integers signed with overflow out. of is set when the multiplication over- or underflowed. Polymorphic over all scalar integer types except i128, but does not support vector types.

Inputs:

  • x: A scalar integer type up to 64 bits
  • y: A scalar integer type up to 64 bits

Outputs:

  • a: A scalar integer type up to 64 bits
  • of: Overflow flag

fn uadd_overflow_trap<T1>(self, x: Value, y: Value, code: T1) -> Value
where T1: Into<TrapCode>,

Unsigned addition of x and y, trapping if the result overflows.

Accepts 32 or 64-bit integers, and does not support vector types.

Inputs:

  • x: A 32 or 64-bit scalar integer type
  • y: A 32 or 64-bit scalar integer type
  • code: A trap reason code.

Outputs:

  • a: A 32 or 64-bit scalar integer type

fn ssub_overflow_bin(self, x: Value, y: Value, b_in: Value) -> (Value, Value)

Subtract signed integers with borrow in and overflow out.

Same as ssub_overflow with an additional borrow input. The b_in type is interpreted as 1 if it’s nonzero or 0 if it’s zero. The computation performed here is x - (y + (b_in != 0)).

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: Input borrow flag

Outputs:

  • a: A scalar integer type
  • b_out: Output borrow flag

fn usub_overflow_bin(self, x: Value, y: Value, b_in: Value) -> (Value, Value)

Subtract unsigned integers with borrow in and overflow out.

Same as usub_overflow with an additional borrow input. The b_in type is interpreted as 1 if it’s nonzero or 0 if it’s zero. The computation performed here is x - (y + (b_in != 0)).

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: Input borrow flag

Outputs:

  • a: A scalar integer type
  • b_out: Output borrow flag

fn band(self, x: Value, y: Value) -> Value

Bitwise and.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

fn bor(self, x: Value, y: Value) -> Value

Bitwise or.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

fn bxor(self, x: Value, y: Value) -> Value

Bitwise xor.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

fn bnot(self, x: Value) -> Value

Bitwise not.

Inputs:

  • x: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

fn band_not(self, x: Value, y: Value) -> Value

Bitwise and not.

Computes x & ~y.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

fn bor_not(self, x: Value, y: Value) -> Value

Bitwise or not.

Computes x | ~y.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

fn bxor_not(self, x: Value, y: Value) -> Value

Bitwise xor not.

Computes x ^ ~y.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

fn band_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Bitwise and with immediate.

Same as band, but one operand is a zero extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn bor_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Bitwise or with immediate.

Same as bor, but one operand is a zero extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn bxor_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Bitwise xor with immediate.

Same as bxor, but one operand is a zero extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

fn rotl(self, x: Value, y: Value) -> Value

Rotate left.

Rotate the bits in x by y places.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

fn rotr(self, x: Value, y: Value) -> Value

Rotate right.

Rotate the bits in x by y places.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

fn rotl_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Rotate left by immediate.

Same as rotl, but one operand is a zero extended 64 bit immediate constant.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

fn rotr_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Rotate right by immediate.

Same as rotr, but one operand is a zero extended 64 bit immediate constant.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

fn ishl(self, x: Value, y: Value) -> Value

Integer shift left. Shift the bits in x towards the MSB by y places. Shift in zero bits to the LSB.

The shift amount is masked to the size of x.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= x \cdot 2^s \pmod{2^B}.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

fn ushr(self, x: Value, y: Value) -> Value

Unsigned shift right. Shift bits in x towards the LSB by y places, shifting in zero bits to the MSB. Also called a logical shift.

The shift amount is masked to the size of x.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= \lfloor x \cdot 2^{-s} \rfloor.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

fn sshr(self, x: Value, y: Value) -> Value

Signed shift right. Shift bits in x towards the LSB by y places, shifting in sign bits to the MSB. Also called an arithmetic shift.

The shift amount is masked to the size of x.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type

fn ishl_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Integer shift left by immediate.

The shift amount is masked to the size of x.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

fn ushr_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Unsigned shift right by immediate.

The shift amount is masked to the size of x.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

fn sshr_imm<T1>(self, x: Value, Y: T1) -> Value
where T1: Into<Imm64>,

Signed shift right by immediate.

The shift amount is masked to the size of x.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

fn bitrev(self, x: Value) -> Value

Reverse the bits of a integer.

Reverses the bits in x.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

fn clz(self, x: Value) -> Value

Count leading zero bits.

Starting from the MSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

fn cls(self, x: Value) -> Value

Count leading sign bits.

Starting from the MSB after the sign bit in x, count the number of consecutive bits identical to the sign bit. When x is 0 or -1, returns one less than the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

fn ctz(self, x: Value) -> Value

Count trailing zeros.

Starting from the LSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

fn bswap(self, x: Value) -> Value

Reverse the byte order of an integer.

Reverses the bytes in x.

Inputs:

  • x: A multi byte scalar integer type

Outputs:

  • a: A multi byte scalar integer type

fn popcnt(self, x: Value) -> Value

Population count

Count the number of one bits in x.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

fn fcmp<T1>(self, Cond: T1, x: Value, y: Value) -> Value
where T1: Into<FloatCC>,

Floating point comparison.

Two IEEE 754-2008 floating point numbers, x and y, relate to each other in exactly one of four ways:

== ==========================================
UN Unordered when one or both numbers is NaN.
EQ When `x = y`. (And `0.0 = -0.0`).
LT When `x < y`.
GT When `x > y`.
== ==========================================

The 14 floatcc condition codes each correspond to a subset of the four relations, except for the empty set which would always be false, and the full set which would always be true.

The condition codes are divided into 7 ‘ordered’ conditions which don’t include UN, and 7 unordered conditions which all include UN.

+-------+------------+---------+------------+-------------------------+
|Ordered             |Unordered             |Condition                |
+=======+============+=========+============+=========================+
|ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
+-------+------------+---------+------------+-------------------------+
|eq     |EQ          |ueq      |UN | EQ     |Equal                    |
+-------+------------+---------+------------+-------------------------+
|one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
+-------+------------+---------+------------+-------------------------+
|lt     |LT          |ult      |UN | LT     |Less than                |
+-------+------------+---------+------------+-------------------------+
|le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
+-------+------------+---------+------------+-------------------------+
|gt     |GT          |ugt      |UN | GT     |Greater than             |
+-------+------------+---------+------------+-------------------------+
|ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
+-------+------------+---------+------------+-------------------------+

The standard C comparison operators, <, <=, >, >=, are all ordered, so they are false if either operand is NaN. The C equality operator, ==, is ordered, and since inequality is defined as the logical inverse it is unordered. They map to the floatcc condition codes as follows:

==== ====== ============
C    `Cond` Subset
==== ====== ============
`==` eq     EQ
`!=` ne     UN | LT | GT
`<`  lt     LT
`<=` le     LT | EQ
`>`  gt     GT
`>=` ge     GT | EQ
==== ====== ============

This subset of condition codes also corresponds to the WebAssembly floating point comparisons of the same name.

When this instruction compares floating point vectors, it returns a vector with the results of lane-wise comparisons.

When comparing scalars, the result is: - 1 if the condition holds. - 0 if the condition does not hold.

When comparing vectors, the result is: - -1 (i.e. all ones) in each lane where the condition holds. - 0 in each lane where the condition does not hold.

Inputs:

  • Cond: A floating point comparison condition code
  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a:

fn fadd(self, x: Value, y: Value) -> Value

Floating point addition.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

fn fsub(self, x: Value, y: Value) -> Value

Floating point subtraction.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

fn fmul(self, x: Value, y: Value) -> Value

Floating point multiplication.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

fn fdiv(self, x: Value, y: Value) -> Value

Floating point division.

Unlike the integer division instructions andudiv`, this can’t trap. Division by zero is infinity or NaN, depending on the dividend.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

fn sqrt(self, x: Value) -> Value

Floating point square root.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

fn fma(self, x: Value, y: Value, z: Value) -> Value

Floating point fused multiply-and-add.

Computes a := xy+z without any intermediate rounding of the product.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number
  • z: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

fn fneg(self, x: Value) -> Value

Floating point negation.

Note that this is a pure bitwise operation.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit inverted

fn fabs(self, x: Value) -> Value

Floating point absolute value.

Note that this is a pure bitwise operation.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit cleared

fn fcopysign(self, x: Value, y: Value) -> Value

Floating point copy sign.

Note that this is a pure bitwise operation. The sign bit from y is copied to the sign bit of x.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit changed to that of y

fn fmin(self, x: Value, y: Value) -> Value

Floating point minimum, propagating NaNs using the WebAssembly rules.

If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if each input NaN consists of a mantissa whose most significant bit is 1 and the rest is 0, then the output has the same form. Otherwise, the output mantissa’s most significant bit is 1 and the rest is unspecified.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The smaller of x and y

fn fmax(self, x: Value, y: Value) -> Value

Floating point maximum, propagating NaNs using the WebAssembly rules.

If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if each input NaN consists of a mantissa whose most significant bit is 1 and the rest is 0, then the output has the same form. Otherwise, the output mantissa’s most significant bit is 1 and the rest is unspecified.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The larger of x and y

fn ceil(self, x: Value) -> Value

Round floating point round to integral, towards positive infinity.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

fn floor(self, x: Value) -> Value

Round floating point round to integral, towards negative infinity.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

fn trunc(self, x: Value) -> Value

Round floating point round to integral, towards zero.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

fn nearest(self, x: Value) -> Value

Round floating point round to integral, towards nearest with ties to even.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

fn bitcast<T1>(self, MemTo: Type, MemFlags: T1, x: Value) -> Value
where T1: Into<MemFlags>,

Reinterpret the bits in x as a different type.

The input and output types must be storable to memory and of the same size. A bitcast is equivalent to storing one type and loading the other type from the same address, both using the specified MemFlags.

Note that this operation only supports the big or little MemFlags. The specified byte order only affects the result in the case where input and output types differ in lane count/size. In this case, the operation is only valid if a byte order specifier is provided.

Inputs:

  • MemTo (controlling type variable):
  • MemFlags: Memory operation flags
  • x: Any type that can be stored in memory

Outputs:

  • a: Bits of x reinterpreted

fn scalar_to_vector(self, TxN: Type, s: Value) -> Value

Copies a scalar value to a vector value. The scalar is copied into the least significant lane of the vector, and all other lanes will be zero.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • s: A scalar value

Outputs:

  • a: A vector value

fn bmask(self, IntTo: Type, x: Value) -> Value

Convert x to an integer mask.

Non-zero maps to all 1s and zero maps to all 0s.

Inputs:

  • IntTo (controlling type variable): An integer type
  • x: A scalar whose values are truthy

Outputs:

  • a: An integer type

fn ireduce(self, Int: Type, x: Value) -> Value

Convert x to a smaller integer type by discarding the most significant bits.

This is the same as reducing modulo 2^n.

Inputs:

  • Int (controlling type variable): A scalar integer type
  • x: A scalar integer type, wider than the controlling type

Outputs:

  • a: A scalar integer type

fn snarrow(self, x: Value, y: Value) -> Value

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the signed maximum and minimum.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

fn unarrow(self, x: Value, y: Value) -> Value

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the unsigned maximum and minimum.

Note that all input lanes are considered signed: any negative lanes will overflow and be replaced with the unsigned minimum, 0x00.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

fn uunarrow(self, x: Value, y: Value) -> Value

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the unsigned maximum and minimum.

Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

fn swiden_low(self, x: Value) -> Value

Widen the low lanes of x using signed extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

fn swiden_high(self, x: Value) -> Value

Widen the high lanes of x using signed extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

fn uwiden_low(self, x: Value) -> Value

Widen the low lanes of x using unsigned extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

fn uwiden_high(self, x: Value) -> Value

Widen the high lanes of x using unsigned extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

fn iadd_pairwise(self, x: Value, y: Value) -> Value

Does lane-wise integer pairwise addition on two operands, putting the combined results into a single vector result. Here a pair refers to adjacent lanes in a vector, i.e. i2 + (i2+1) for i == num_lanes/2. The first operand pairwise add results will make up the low half of the resulting vector while the second operand pairwise add results will make up the upper half of the resulting vector.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
  • y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

fn x86_pmaddubsw(self, x: Value, y: Value) -> Value

An instruction with equivalent semantics to pmaddubsw on x86.

This instruction will take signed bytes from the first argument and multiply them against unsigned bytes in the second argument. Adjacent pairs are then added, with saturating, to a 16-bit value and are packed into the result.

Inputs:

  • x: A SIMD vector type consisting of 16 lanes of 8-bit integers
  • y: A SIMD vector type consisting of 16 lanes of 8-bit integers

Outputs:

  • a: A SIMD vector with exactly 8 lanes of 16-bit values

fn uextend(self, Int: Type, x: Value) -> Value

Convert x to a larger integer type by zero-extending.

Each lane in x is converted to a larger integer type by adding zeroes. The result has the same numerical value as x when both are interpreted as unsigned integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • Int (controlling type variable): A scalar integer type
  • x: A scalar integer type, narrower than the controlling type

Outputs:

  • a: A scalar integer type

fn sextend(self, Int: Type, x: Value) -> Value

Convert x to a larger integer type by sign-extending.

Each lane in x is converted to a larger integer type by replicating the sign bit. The result has the same numerical value as x when both are interpreted as signed integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • Int (controlling type variable): A scalar integer type
  • x: A scalar integer type, narrower than the controlling type

Outputs:

  • a: A scalar integer type

fn fpromote(self, FloatScalar: Type, x: Value) -> Value

Convert x to a larger floating point format.

Each lane in x is converted to the destination floating point format. This is an exact operation.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have fewer bits than the input lanes.

Inputs:

  • FloatScalar (controlling type variable): A scalar only floating point number
  • x: A scalar only floating point number, narrower than the controlling type

Outputs:

  • a: A scalar only floating point number

fn fdemote(self, FloatScalar: Type, x: Value) -> Value

Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have more bits than the input lanes.

Inputs:

  • FloatScalar (controlling type variable): A scalar only floating point number
  • x: A scalar only floating point number, wider than the controlling type

Outputs:

  • a: A scalar only floating point number

fn fvdemote(self, x: Value) -> Value

Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

Fvdemote differs from fdemote in that with fvdemote it targets vectors. Fvdemote is constrained to having the input type being F64x2 and the result type being F32x4. The result lane that was the upper half of the input lane is initialized to zero.

Inputs:

  • x: A SIMD vector type consisting of 2 lanes of 64-bit floats

Outputs:

  • a: A SIMD vector type consisting of 4 lanes of 32-bit floats

fn fvpromote_low(self, a: Value) -> Value

Converts packed single precision floating point to packed double precision floating point.

Considering only the lower half of the register, the low lanes in x are interpreted as single precision floats that are then converted to a double precision floats.

The result type will have half the number of vector lanes as the input. Fvpromote_low is constrained to input F32x4 with a result type of F64x2.

Inputs:

  • a: A SIMD vector type consisting of 4 lanes of 32-bit floats

Outputs:

  • x: A SIMD vector type consisting of 2 lanes of 64-bit floats

fn fcvt_to_uint(self, IntTo: Type, x: Value) -> Value

Converts floating point scalars to unsigned integer.

Only operates on x if it is a scalar. If x is NaN or if the unsigned integral value cannot be represented in the result type, this instruction traps.

Inputs:

  • IntTo (controlling type variable): An scalar only integer type
  • x: A scalar only floating point number

Outputs:

  • a: An scalar only integer type

fn fcvt_to_sint(self, IntTo: Type, x: Value) -> Value

Converts floating point scalars to signed integer.

Only operates on x if it is a scalar. If x is NaN or if the unsigned integral value cannot be represented in the result type, this instruction traps.

Inputs:

  • IntTo (controlling type variable): An scalar only integer type
  • x: A scalar only floating point number

Outputs:

  • a: An scalar only integer type

fn fcvt_to_uint_sat(self, IntTo: Type, x: Value) -> Value

Convert floating point to unsigned integer as fcvt_to_uint does, but saturates the input instead of trapping. NaN and negative values are converted to 0.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

fn fcvt_to_sint_sat(self, IntTo: Type, x: Value) -> Value

Convert floating point to signed integer as fcvt_to_sint does, but saturates the input instead of trapping. NaN values are converted to 0.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

fn x86_cvtt2dq(self, IntTo: Type, x: Value) -> Value

A float-to-integer conversion instruction for vectors-of-floats which has the same semantics as cvttp{s,d}2dq on x86. This specifically returns INT_MIN for NaN or out-of-bounds lanes.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

fn fcvt_from_uint(self, FloatTo: Type, x: Value) -> Value

Convert unsigned integer to floating point.

Each lane in x is interpreted as an unsigned integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

fn fcvt_from_sint(self, FloatTo: Type, x: Value) -> Value

Convert signed integer to floating point.

Each lane in x is interpreted as a signed integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

fn isplit(self, x: Value) -> (Value, Value)

Split an integer into low and high parts.

Vectors of integers are split lane-wise, so the results have the same number of lanes as the input, but the lanes are half the size.

Returns the low half of x and the high half of x as two independent values.

Inputs:

  • x: An integer type of width i16 upwards

Outputs:

  • lo: The low bits of x
  • hi: The high bits of x

fn iconcat(self, lo: Value, hi: Value) -> Value

Concatenate low and high bits to form a larger integer type.

Vectors of integers are concatenated lane-wise such that the result has the same number of lanes as the inputs, but the lanes are twice the size.

Inputs:

  • lo: An integer type of width up to i64
  • hi: An integer type of width up to i64

Outputs:

  • a: The concatenation of lo and hi

fn atomic_rmw<T1, T2>( self, AtomicMem: Type, MemFlags: T1, AtomicRmwOp: T2, p: Value, x: Value, ) -> Value
where T1: Into<MemFlags>, T2: Into<AtomicRmwOp>,

Atomically read-modify-write memory at p, with second operand x. The old value is returned. p has the type of the target word size, and x may be any integer type; note that some targets require specific target features to be enabled in order to support 128-bit integer atomics. The type of the returned value is the same as the type of x. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
  • MemFlags: Memory operation flags
  • AtomicRmwOp: Atomic Read-Modify-Write Ops
  • p: An integer address type
  • x: Value to be atomically stored

Outputs:

  • a: Value atomically loaded

fn atomic_cas<T1>(self, MemFlags: T1, p: Value, e: Value, x: Value) -> Value
where T1: Into<MemFlags>,

Perform an atomic compare-and-swap operation on memory at p, with expected value e, storing x if the value at p equals e. The old value at p is returned, regardless of whether the operation succeeds or fails. p has the type of the target word size, and x and e must have the same type and the same size, which may be any integer type; note that some targets require specific target features to be enabled in order to support 128-bit integer atomics. The type of the returned value is the same as the type of x and e. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • e: Expected value in CAS
  • x: Value to be atomically stored

Outputs:

  • a: Value atomically loaded

fn atomic_load<T1>(self, AtomicMem: Type, MemFlags: T1, p: Value) -> Value
where T1: Into<MemFlags>,

Atomically load from memory at p.

This is a polymorphic instruction that can load any value type which has a memory representation. It can only be used for integer types; note that some targets require specific target features to be enabled in order to support 128-bit integer atomics. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
  • MemFlags: Memory operation flags
  • p: An integer address type

Outputs:

  • a: Value atomically loaded

fn atomic_store<T1>(self, MemFlags: T1, x: Value, p: Value) -> Inst
where T1: Into<MemFlags>,

Atomically store x to memory at p.

This is a polymorphic instruction that can store any value type with a memory representation. It can only be used for integer types; note that some targets require specific target features to be enabled in order to support 128-bit integer atomics This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • MemFlags: Memory operation flags
  • x: Value to be atomically stored
  • p: An integer address type

fn fence(self) -> Inst

A memory fence. This must provide ordering to ensure that, at a minimum, neither loads nor stores of any kind may move forwards or backwards across the fence. This operation is sequentially consistent.

fn extract_vector<T1>(self, x: Value, y: T1) -> Value
where T1: Into<u8>,

Return a fixed length sub vector, extracted from a dynamic vector.

Inputs:

  • x: The dynamic vector to extract from
  • y: 128-bit vector index

Outputs:

  • a: New fixed vector

fn AtomicCas( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, arg0: Value, arg1: Value, arg2: Value, ) -> (Inst, &'f mut DataFlowGraph)

AtomicCas(imms=(flags: ir::MemFlags), vals=3, blocks=0)

fn AtomicRmw( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, op: AtomicRmwOp, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

AtomicRmw(imms=(flags: ir::MemFlags, op: ir::AtomicRmwOp), vals=2, blocks=0)

fn Binary( self, opcode: Opcode, ctrl_typevar: Type, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

Binary(imms=(), vals=2, blocks=0)

fn BinaryImm64( self, opcode: Opcode, ctrl_typevar: Type, imm: Imm64, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

BinaryImm64(imms=(imm: ir::immediates::Imm64), vals=1, blocks=0)

fn BinaryImm8( self, opcode: Opcode, ctrl_typevar: Type, imm: u8, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

BinaryImm8(imms=(imm: ir::immediates::Uimm8), vals=1, blocks=0)

fn BranchTable( self, opcode: Opcode, ctrl_typevar: Type, table: JumpTable, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

BranchTable(imms=(table: ir::JumpTable), vals=1, blocks=0)

fn Brif( self, opcode: Opcode, ctrl_typevar: Type, block0: BlockCall, block1: BlockCall, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

Brif(imms=(), vals=1, blocks=2)

fn Call( self, opcode: Opcode, ctrl_typevar: Type, func_ref: FuncRef, args: EntityList<Value>, ) -> (Inst, &'f mut DataFlowGraph)

Call(imms=(func_ref: ir::FuncRef), vals=0, blocks=0)

fn CallIndirect( self, opcode: Opcode, ctrl_typevar: Type, sig_ref: SigRef, args: EntityList<Value>, ) -> (Inst, &'f mut DataFlowGraph)

CallIndirect(imms=(sig_ref: ir::SigRef), vals=1, blocks=0)

fn CondTrap( self, opcode: Opcode, ctrl_typevar: Type, code: TrapCode, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

CondTrap(imms=(code: ir::TrapCode), vals=1, blocks=0)

fn DynamicStackLoad( self, opcode: Opcode, ctrl_typevar: Type, dynamic_stack_slot: DynamicStackSlot, ) -> (Inst, &'f mut DataFlowGraph)

DynamicStackLoad(imms=(dynamic_stack_slot: ir::DynamicStackSlot), vals=0, blocks=0)

fn DynamicStackStore( self, opcode: Opcode, ctrl_typevar: Type, dynamic_stack_slot: DynamicStackSlot, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

DynamicStackStore(imms=(dynamic_stack_slot: ir::DynamicStackSlot), vals=1, blocks=0)

fn FloatCompare( self, opcode: Opcode, ctrl_typevar: Type, cond: FloatCC, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

FloatCompare(imms=(cond: ir::condcodes::FloatCC), vals=2, blocks=0)

fn FuncAddr( self, opcode: Opcode, ctrl_typevar: Type, func_ref: FuncRef, ) -> (Inst, &'f mut DataFlowGraph)

FuncAddr(imms=(func_ref: ir::FuncRef), vals=0, blocks=0)

fn IntAddTrap( self, opcode: Opcode, ctrl_typevar: Type, code: TrapCode, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

IntAddTrap(imms=(code: ir::TrapCode), vals=2, blocks=0)

fn IntCompare( self, opcode: Opcode, ctrl_typevar: Type, cond: IntCC, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

IntCompare(imms=(cond: ir::condcodes::IntCC), vals=2, blocks=0)

fn IntCompareImm( self, opcode: Opcode, ctrl_typevar: Type, cond: IntCC, imm: Imm64, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

IntCompareImm(imms=(cond: ir::condcodes::IntCC, imm: ir::immediates::Imm64), vals=1, blocks=0)

fn Jump( self, opcode: Opcode, ctrl_typevar: Type, block0: BlockCall, ) -> (Inst, &'f mut DataFlowGraph)

Jump(imms=(), vals=0, blocks=1)

fn Load( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, offset: Offset32, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

Load(imms=(flags: ir::MemFlags, offset: ir::immediates::Offset32), vals=1, blocks=0)

fn LoadNoOffset( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

LoadNoOffset(imms=(flags: ir::MemFlags), vals=1, blocks=0)

fn MultiAry( self, opcode: Opcode, ctrl_typevar: Type, args: EntityList<Value>, ) -> (Inst, &'f mut DataFlowGraph)

MultiAry(imms=(), vals=0, blocks=0)

fn NullAry( self, opcode: Opcode, ctrl_typevar: Type, ) -> (Inst, &'f mut DataFlowGraph)

NullAry(imms=(), vals=0, blocks=0)

fn Shuffle( self, opcode: Opcode, ctrl_typevar: Type, imm: Immediate, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

Shuffle(imms=(imm: ir::Immediate), vals=2, blocks=0)

fn StackLoad( self, opcode: Opcode, ctrl_typevar: Type, stack_slot: StackSlot, offset: Offset32, ) -> (Inst, &'f mut DataFlowGraph)

StackLoad(imms=(stack_slot: ir::StackSlot, offset: ir::immediates::Offset32), vals=0, blocks=0)

fn StackStore( self, opcode: Opcode, ctrl_typevar: Type, stack_slot: StackSlot, offset: Offset32, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

StackStore(imms=(stack_slot: ir::StackSlot, offset: ir::immediates::Offset32), vals=1, blocks=0)

fn Store( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, offset: Offset32, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

Store(imms=(flags: ir::MemFlags, offset: ir::immediates::Offset32), vals=2, blocks=0)

fn StoreNoOffset( self, opcode: Opcode, ctrl_typevar: Type, flags: MemFlags, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

StoreNoOffset(imms=(flags: ir::MemFlags), vals=2, blocks=0)

fn Ternary( self, opcode: Opcode, ctrl_typevar: Type, arg0: Value, arg1: Value, arg2: Value, ) -> (Inst, &'f mut DataFlowGraph)

Ternary(imms=(), vals=3, blocks=0)

fn TernaryImm8( self, opcode: Opcode, ctrl_typevar: Type, imm: u8, arg0: Value, arg1: Value, ) -> (Inst, &'f mut DataFlowGraph)

TernaryImm8(imms=(imm: ir::immediates::Uimm8), vals=2, blocks=0)

fn Trap( self, opcode: Opcode, ctrl_typevar: Type, code: TrapCode, ) -> (Inst, &'f mut DataFlowGraph)

Trap(imms=(code: ir::TrapCode), vals=0, blocks=0)

fn Unary( self, opcode: Opcode, ctrl_typevar: Type, arg0: Value, ) -> (Inst, &'f mut DataFlowGraph)

Unary(imms=(), vals=1, blocks=0)

fn UnaryConst( self, opcode: Opcode, ctrl_typevar: Type, constant_handle: Constant, ) -> (Inst, &'f mut DataFlowGraph)

UnaryConst(imms=(constant_handle: ir::Constant), vals=0, blocks=0)

fn UnaryGlobalValue( self, opcode: Opcode, ctrl_typevar: Type, global_value: GlobalValue, ) -> (Inst, &'f mut DataFlowGraph)

UnaryGlobalValue(imms=(global_value: ir::GlobalValue), vals=0, blocks=0)

fn UnaryIeee16( self, opcode: Opcode, ctrl_typevar: Type, imm: Ieee16, ) -> (Inst, &'f mut DataFlowGraph)

UnaryIeee16(imms=(imm: ir::immediates::Ieee16), vals=0, blocks=0)

fn UnaryIeee32( self, opcode: Opcode, ctrl_typevar: Type, imm: Ieee32, ) -> (Inst, &'f mut DataFlowGraph)

UnaryIeee32(imms=(imm: ir::immediates::Ieee32), vals=0, blocks=0)

fn UnaryIeee64( self, opcode: Opcode, ctrl_typevar: Type, imm: Ieee64, ) -> (Inst, &'f mut DataFlowGraph)

UnaryIeee64(imms=(imm: ir::immediates::Ieee64), vals=0, blocks=0)

fn UnaryImm( self, opcode: Opcode, ctrl_typevar: Type, imm: Imm64, ) -> (Inst, &'f mut DataFlowGraph)

UnaryImm(imms=(imm: ir::immediates::Imm64), vals=0, blocks=0)

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementors§

§

impl<'f, T> InstBuilder<'f> for T
where T: InstBuilderBase<'f>,

Any type implementing InstBuilderBase gets all the InstBuilder methods for free.