1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
//! This file declares `VMContext` and several related structs which contain
//! fields that compiled wasm code accesses directly.

mod vm_host_func_context;

use crate::{GcStore, VMGcRef};
use sptr::Strict;
use std::cell::UnsafeCell;
use std::ffi::c_void;
use std::marker;
use std::mem;
use std::ptr::{self, NonNull};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::u32;
pub use vm_host_func_context::{VMArrayCallHostFuncContext, VMNativeCallHostFuncContext};
use wasmtime_environ::VMSharedTypeIndex;
use wasmtime_environ::{BuiltinFunctionIndex, DefinedMemoryIndex, Unsigned, VMCONTEXT_MAGIC};

/// A function pointer that exposes the array calling convention.
///
/// Regardless of the underlying Wasm function type, all functions using the
/// array calling convention have the same Rust signature.
///
/// Arguments:
///
/// * Callee `vmctx` for the function itself.
///
/// * Caller's `vmctx` (so that host functions can access the linear memory of
///   their Wasm callers).
///
/// * A pointer to a buffer of `ValRaw`s where both arguments are passed into
///   this function, and where results are returned from this function.
///
/// * The capacity of the `ValRaw` buffer. Must always be at least
///   `max(len(wasm_params), len(wasm_results))`.
pub type VMArrayCallFunction =
    unsafe extern "C" fn(*mut VMOpaqueContext, *mut VMOpaqueContext, *mut ValRaw, usize);

/// A function pointer that exposes the native calling convention.
///
/// Different Wasm function types end up mapping to different Rust function
/// types, so this isn't simply a type alias the way that `VMArrayCallFunction`
/// is.
///
/// This is the default calling convention for the target (e.g. System-V or
/// fast-call) except multiple return values are handled by returning the first
/// return value in a register and everything else through a return-pointer.
#[repr(transparent)]
pub struct VMNativeCallFunction(VMFunctionBody);

/// A function pointer that exposes the Wasm calling convention.
///
/// In practice, different Wasm function types end up mapping to different Rust
/// function types, so this isn't simply a type alias the way that
/// `VMArrayCallFunction` is. However, the exact details of the calling
/// convention are left to the Wasm compiler (e.g. Cranelift or Winch). Runtime
/// code never does anything with these function pointers except shuffle them
/// around and pass them back to Wasm.
#[repr(transparent)]
pub struct VMWasmCallFunction(VMFunctionBody);

/// An imported function.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMFunctionImport {
    /// Function pointer to use when calling this imported function from Wasm.
    pub wasm_call: NonNull<VMWasmCallFunction>,

    /// Function pointer to use when calling this imported function from native code.
    pub native_call: NonNull<VMNativeCallFunction>,

    /// Function pointer to use when calling this imported function with the
    /// "array" calling convention that `Func::new` et al use.
    pub array_call: VMArrayCallFunction,

    /// The VM state associated with this function.
    ///
    /// For Wasm functions defined by core wasm instances this will be `*mut
    /// VMContext`, but for lifted/lowered component model functions this will
    /// be a `VMComponentContext`, and for a host function it will be a
    /// `VMHostFuncContext`, etc.
    pub vmctx: *mut VMOpaqueContext,
}

// Declare that this type is send/sync, it's the responsibility of users of
// `VMFunctionImport` to uphold this guarantee.
unsafe impl Send for VMFunctionImport {}
unsafe impl Sync for VMFunctionImport {}

#[cfg(test)]
mod test_vmfunction_import {
    use super::VMFunctionImport;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, VMOffsets};

    #[test]
    fn check_vmfunction_import_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMFunctionImport>(),
            usize::from(offsets.size_of_vmfunction_import())
        );
        assert_eq!(
            offset_of!(VMFunctionImport, wasm_call),
            usize::from(offsets.vmfunction_import_wasm_call())
        );
        assert_eq!(
            offset_of!(VMFunctionImport, native_call),
            usize::from(offsets.vmfunction_import_native_call())
        );
        assert_eq!(
            offset_of!(VMFunctionImport, array_call),
            usize::from(offsets.vmfunction_import_array_call())
        );
        assert_eq!(
            offset_of!(VMFunctionImport, vmctx),
            usize::from(offsets.vmfunction_import_vmctx())
        );
    }
}

/// A placeholder byte-sized type which is just used to provide some amount of type
/// safety when dealing with pointers to JIT-compiled function bodies. Note that it's
/// deliberately not Copy, as we shouldn't be carelessly copying function body bytes
/// around.
#[repr(C)]
pub struct VMFunctionBody(u8);

#[cfg(test)]
mod test_vmfunction_body {
    use super::VMFunctionBody;
    use std::mem::size_of;

    #[test]
    fn check_vmfunction_body_offsets() {
        assert_eq!(size_of::<VMFunctionBody>(), 1);
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly table
/// imported from another instance.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMTableImport {
    /// A pointer to the imported table description.
    pub from: *mut VMTableDefinition,

    /// A pointer to the `VMContext` that owns the table description.
    pub vmctx: *mut VMContext,
}

// Declare that this type is send/sync, it's the responsibility of users of
// `VMTableImport` to uphold this guarantee.
unsafe impl Send for VMTableImport {}
unsafe impl Sync for VMTableImport {}

#[cfg(test)]
mod test_vmtable_import {
    use super::VMTableImport;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, VMOffsets};

    #[test]
    fn check_vmtable_import_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMTableImport>(),
            usize::from(offsets.size_of_vmtable_import())
        );
        assert_eq!(
            offset_of!(VMTableImport, from),
            usize::from(offsets.vmtable_import_from())
        );
        assert_eq!(
            offset_of!(VMTableImport, vmctx),
            usize::from(offsets.vmtable_import_vmctx())
        );
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly linear
/// memory imported from another instance.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMMemoryImport {
    /// A pointer to the imported memory description.
    pub from: *mut VMMemoryDefinition,

    /// A pointer to the `VMContext` that owns the memory description.
    pub vmctx: *mut VMContext,

    /// The index of the memory in the containing `vmctx`.
    pub index: DefinedMemoryIndex,
}

// Declare that this type is send/sync, it's the responsibility of users of
// `VMMemoryImport` to uphold this guarantee.
unsafe impl Send for VMMemoryImport {}
unsafe impl Sync for VMMemoryImport {}

#[cfg(test)]
mod test_vmmemory_import {
    use super::VMMemoryImport;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, VMOffsets};

    #[test]
    fn check_vmmemory_import_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMMemoryImport>(),
            usize::from(offsets.size_of_vmmemory_import())
        );
        assert_eq!(
            offset_of!(VMMemoryImport, from),
            usize::from(offsets.vmmemory_import_from())
        );
        assert_eq!(
            offset_of!(VMMemoryImport, vmctx),
            usize::from(offsets.vmmemory_import_vmctx())
        );
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly global
/// variable imported from another instance.
///
/// Note that unlike with functions, tables, and memories, `VMGlobalImport`
/// doesn't include a `vmctx` pointer. Globals are never resized, and don't
/// require a `vmctx` pointer to access.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMGlobalImport {
    /// A pointer to the imported global variable description.
    pub from: *mut VMGlobalDefinition,
}

// Declare that this type is send/sync, it's the responsibility of users of
// `VMGlobalImport` to uphold this guarantee.
unsafe impl Send for VMGlobalImport {}
unsafe impl Sync for VMGlobalImport {}

#[cfg(test)]
mod test_vmglobal_import {
    use super::VMGlobalImport;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, VMOffsets};

    #[test]
    fn check_vmglobal_import_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMGlobalImport>(),
            usize::from(offsets.size_of_vmglobal_import())
        );
        assert_eq!(
            offset_of!(VMGlobalImport, from),
            usize::from(offsets.vmglobal_import_from())
        );
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly linear
/// memory defined within the instance, namely the start address and the
/// size in bytes.
#[derive(Debug)]
#[repr(C)]
pub struct VMMemoryDefinition {
    /// The start address.
    pub base: *mut u8,

    /// The current logical size of this linear memory in bytes.
    ///
    /// This is atomic because shared memories must be able to grow their length
    /// atomically. For relaxed access, see
    /// [`VMMemoryDefinition::current_length()`].
    pub current_length: AtomicUsize,
}

impl VMMemoryDefinition {
    /// Return the current length of the [`VMMemoryDefinition`] by performing a
    /// relaxed load; do not use this function for situations in which a precise
    /// length is needed. Owned memories (i.e., non-shared) will always return a
    /// precise result (since no concurrent modification is possible) but shared
    /// memories may see an imprecise value--a `current_length` potentially
    /// smaller than what some other thread observes. Since Wasm memory only
    /// grows, this under-estimation may be acceptable in certain cases.
    pub fn current_length(&self) -> usize {
        self.current_length.load(Ordering::Relaxed)
    }

    /// Return a copy of the [`VMMemoryDefinition`] using the relaxed value of
    /// `current_length`; see [`VMMemoryDefinition::current_length()`].
    pub unsafe fn load(ptr: *mut Self) -> Self {
        let other = &*ptr;
        VMMemoryDefinition {
            base: other.base,
            current_length: other.current_length().into(),
        }
    }
}

#[cfg(test)]
mod test_vmmemory_definition {
    use super::VMMemoryDefinition;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, PtrSize, VMOffsets};

    #[test]
    fn check_vmmemory_definition_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMMemoryDefinition>(),
            usize::from(offsets.ptr.size_of_vmmemory_definition())
        );
        assert_eq!(
            offset_of!(VMMemoryDefinition, base),
            usize::from(offsets.ptr.vmmemory_definition_base())
        );
        assert_eq!(
            offset_of!(VMMemoryDefinition, current_length),
            usize::from(offsets.ptr.vmmemory_definition_current_length())
        );
        /* TODO: Assert that the size of `current_length` matches.
        assert_eq!(
            size_of::<VMMemoryDefinition::current_length>(),
            usize::from(offsets.size_of_vmmemory_definition_current_length())
        );
        */
    }
}

/// The fields compiled code needs to access to utilize a WebAssembly table
/// defined within the instance.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMTableDefinition {
    /// Pointer to the table data.
    pub base: *mut u8,

    /// The current number of elements in the table.
    pub current_elements: u32,
}

#[cfg(test)]
mod test_vmtable_definition {
    use super::VMTableDefinition;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, VMOffsets};

    #[test]
    fn check_vmtable_definition_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMTableDefinition>(),
            usize::from(offsets.size_of_vmtable_definition())
        );
        assert_eq!(
            offset_of!(VMTableDefinition, base),
            usize::from(offsets.vmtable_definition_base())
        );
        assert_eq!(
            offset_of!(VMTableDefinition, current_elements),
            usize::from(offsets.vmtable_definition_current_elements())
        );
    }
}

/// The storage for a WebAssembly global defined within the instance.
///
/// TODO: Pack the globals more densely, rather than using the same size
/// for every type.
#[derive(Debug)]
#[repr(C, align(16))]
pub struct VMGlobalDefinition {
    storage: [u8; 16],
    // If more elements are added here, remember to add offset_of tests below!
}

#[cfg(test)]
mod test_vmglobal_definition {
    use super::VMGlobalDefinition;
    use std::mem::{align_of, size_of};
    use wasmtime_environ::{Module, PtrSize, VMOffsets};

    #[test]
    fn check_vmglobal_definition_alignment() {
        assert!(align_of::<VMGlobalDefinition>() >= align_of::<i32>());
        assert!(align_of::<VMGlobalDefinition>() >= align_of::<i64>());
        assert!(align_of::<VMGlobalDefinition>() >= align_of::<f32>());
        assert!(align_of::<VMGlobalDefinition>() >= align_of::<f64>());
        assert!(align_of::<VMGlobalDefinition>() >= align_of::<[u8; 16]>());
    }

    #[test]
    fn check_vmglobal_definition_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMGlobalDefinition>(),
            usize::from(offsets.ptr.size_of_vmglobal_definition())
        );
    }

    #[test]
    fn check_vmglobal_begins_aligned() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(offsets.vmctx_globals_begin() % 16, 0);
    }

    #[test]
    #[cfg(feature = "gc")]
    fn check_vmglobal_can_contain_gc_ref() {
        assert!(size_of::<crate::VMGcRef>() <= size_of::<VMGlobalDefinition>());
    }
}

impl VMGlobalDefinition {
    /// Construct a `VMGlobalDefinition`.
    pub fn new() -> Self {
        Self { storage: [0; 16] }
    }

    /// Return a reference to the value as an i32.
    pub unsafe fn as_i32(&self) -> &i32 {
        &*(self.storage.as_ref().as_ptr().cast::<i32>())
    }

    /// Return a mutable reference to the value as an i32.
    pub unsafe fn as_i32_mut(&mut self) -> &mut i32 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<i32>())
    }

    /// Return a reference to the value as a u32.
    pub unsafe fn as_u32(&self) -> &u32 {
        &*(self.storage.as_ref().as_ptr().cast::<u32>())
    }

    /// Return a mutable reference to the value as an u32.
    pub unsafe fn as_u32_mut(&mut self) -> &mut u32 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u32>())
    }

    /// Return a reference to the value as an i64.
    pub unsafe fn as_i64(&self) -> &i64 {
        &*(self.storage.as_ref().as_ptr().cast::<i64>())
    }

    /// Return a mutable reference to the value as an i64.
    pub unsafe fn as_i64_mut(&mut self) -> &mut i64 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<i64>())
    }

    /// Return a reference to the value as an u64.
    pub unsafe fn as_u64(&self) -> &u64 {
        &*(self.storage.as_ref().as_ptr().cast::<u64>())
    }

    /// Return a mutable reference to the value as an u64.
    pub unsafe fn as_u64_mut(&mut self) -> &mut u64 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u64>())
    }

    /// Return a reference to the value as an f32.
    pub unsafe fn as_f32(&self) -> &f32 {
        &*(self.storage.as_ref().as_ptr().cast::<f32>())
    }

    /// Return a mutable reference to the value as an f32.
    pub unsafe fn as_f32_mut(&mut self) -> &mut f32 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<f32>())
    }

    /// Return a reference to the value as f32 bits.
    pub unsafe fn as_f32_bits(&self) -> &u32 {
        &*(self.storage.as_ref().as_ptr().cast::<u32>())
    }

    /// Return a mutable reference to the value as f32 bits.
    pub unsafe fn as_f32_bits_mut(&mut self) -> &mut u32 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u32>())
    }

    /// Return a reference to the value as an f64.
    pub unsafe fn as_f64(&self) -> &f64 {
        &*(self.storage.as_ref().as_ptr().cast::<f64>())
    }

    /// Return a mutable reference to the value as an f64.
    pub unsafe fn as_f64_mut(&mut self) -> &mut f64 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<f64>())
    }

    /// Return a reference to the value as f64 bits.
    pub unsafe fn as_f64_bits(&self) -> &u64 {
        &*(self.storage.as_ref().as_ptr().cast::<u64>())
    }

    /// Return a mutable reference to the value as f64 bits.
    pub unsafe fn as_f64_bits_mut(&mut self) -> &mut u64 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u64>())
    }

    /// Return a reference to the value as an u128.
    pub unsafe fn as_u128(&self) -> &u128 {
        &*(self.storage.as_ref().as_ptr().cast::<u128>())
    }

    /// Return a mutable reference to the value as an u128.
    pub unsafe fn as_u128_mut(&mut self) -> &mut u128 {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<u128>())
    }

    /// Return a reference to the value as u128 bits.
    pub unsafe fn as_u128_bits(&self) -> &[u8; 16] {
        &*(self.storage.as_ref().as_ptr().cast::<[u8; 16]>())
    }

    /// Return a mutable reference to the value as u128 bits.
    pub unsafe fn as_u128_bits_mut(&mut self) -> &mut [u8; 16] {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<[u8; 16]>())
    }

    /// Return a reference to the global value as a borrowed GC reference.
    pub unsafe fn as_gc_ref(&self) -> Option<&VMGcRef> {
        let raw_ptr = self.storage.as_ref().as_ptr().cast::<Option<VMGcRef>>();
        let ret = (*raw_ptr).as_ref();
        assert!(cfg!(feature = "gc") || ret.is_none());
        ret
    }

    /// Initialize a global to the given GC reference.
    pub unsafe fn init_gc_ref(&mut self, gc_ref: Option<VMGcRef>) {
        assert!(cfg!(feature = "gc") || gc_ref.is_none());
        let raw_ptr = self.storage.as_mut().as_mut_ptr().cast::<Option<VMGcRef>>();
        ptr::write(raw_ptr, gc_ref);
    }

    /// Write a GC reference into this global value.
    pub unsafe fn write_gc_ref(&mut self, gc_store: &mut GcStore, gc_ref: Option<&VMGcRef>) {
        assert!(cfg!(feature = "gc") || gc_ref.is_none());

        let dest = &mut *(self.storage.as_mut().as_mut_ptr().cast::<Option<VMGcRef>>());
        assert!(cfg!(feature = "gc") || dest.is_none());

        gc_store.write_gc_ref(dest, gc_ref)
    }

    /// Return a reference to the value as a `VMFuncRef`.
    pub unsafe fn as_func_ref(&self) -> *mut VMFuncRef {
        *(self.storage.as_ref().as_ptr().cast::<*mut VMFuncRef>())
    }

    /// Return a mutable reference to the value as a `VMFuncRef`.
    pub unsafe fn as_func_ref_mut(&mut self) -> &mut *mut VMFuncRef {
        &mut *(self.storage.as_mut().as_mut_ptr().cast::<*mut VMFuncRef>())
    }
}

#[cfg(test)]
mod test_vmshared_type_index {
    use super::VMSharedTypeIndex;
    use std::mem::size_of;
    use wasmtime_environ::{Module, VMOffsets};

    #[test]
    fn check_vmshared_type_index() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMSharedTypeIndex>(),
            usize::from(offsets.size_of_vmshared_type_index())
        );
    }
}

/// The VM caller-checked "funcref" record, for caller-side signature checking.
///
/// It consists of function pointer(s), a type id to be checked by the
/// caller, and the vmctx closure associated with this function.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct VMFuncRef {
    /// Function pointer for this funcref if being called via the native calling
    /// convention.
    pub native_call: NonNull<VMNativeCallFunction>,

    /// Function pointer for this funcref if being called via the "array"
    /// calling convention that `Func::new` et al use.
    pub array_call: VMArrayCallFunction,

    /// Function pointer for this funcref if being called via the calling
    /// convention we use when compiling Wasm.
    ///
    /// Most functions come with a function pointer that we can use when they
    /// are called from Wasm. The notable exception is when we `Func::wrap` a
    /// host function, and we don't have a Wasm compiler on hand to compile a
    /// Wasm-to-native trampoline for the function. In this case, we leave
    /// `wasm_call` empty until the function is passed as an import to Wasm (or
    /// otherwise exposed to Wasm via tables/globals). At this point, we look up
    /// a Wasm-to-native trampoline for the function in the the Wasm's compiled
    /// module and use that fill in `VMFunctionImport::wasm_call`. **However**
    /// there is no guarantee that the Wasm module has a trampoline for this
    /// function's signature. The Wasm module only has trampolines for its
    /// types, and if this function isn't of one of those types, then the Wasm
    /// module will not have a trampoline for it. This is actually okay, because
    /// it means that the Wasm cannot actually call this function. But it does
    /// mean that this field needs to be an `Option` even though it is non-null
    /// the vast vast vast majority of the time.
    pub wasm_call: Option<NonNull<VMWasmCallFunction>>,

    /// Function signature's type id.
    pub type_index: VMSharedTypeIndex,

    /// The VM state associated with this function.
    ///
    /// The actual definition of what this pointer points to depends on the
    /// function being referenced: for core Wasm functions, this is a `*mut
    /// VMContext`, for host functions it is a `*mut VMHostFuncContext`, and for
    /// component functions it is a `*mut VMComponentContext`.
    pub vmctx: *mut VMOpaqueContext,
    // If more elements are added here, remember to add offset_of tests below!
}

unsafe impl Send for VMFuncRef {}
unsafe impl Sync for VMFuncRef {}

#[cfg(test)]
mod test_vm_func_ref {
    use super::VMFuncRef;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, PtrSize, VMOffsets};

    #[test]
    fn check_vm_func_ref_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMFuncRef>(),
            usize::from(offsets.ptr.size_of_vm_func_ref())
        );
        assert_eq!(
            offset_of!(VMFuncRef, native_call),
            usize::from(offsets.ptr.vm_func_ref_native_call())
        );
        assert_eq!(
            offset_of!(VMFuncRef, array_call),
            usize::from(offsets.ptr.vm_func_ref_array_call())
        );
        assert_eq!(
            offset_of!(VMFuncRef, wasm_call),
            usize::from(offsets.ptr.vm_func_ref_wasm_call())
        );
        assert_eq!(
            offset_of!(VMFuncRef, type_index),
            usize::from(offsets.ptr.vm_func_ref_type_index())
        );
        assert_eq!(
            offset_of!(VMFuncRef, vmctx),
            usize::from(offsets.ptr.vm_func_ref_vmctx())
        );
    }
}

macro_rules! define_builtin_array {
    (
        $(
            $( #[$attr:meta] )*
            $name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
        )*
    ) => {
        /// An array that stores addresses of builtin functions. We translate code
        /// to use indirect calls. This way, we don't have to patch the code.
        #[repr(C)]
        pub struct VMBuiltinFunctionsArray {
            $(
                $name: unsafe extern "C" fn(
                    $(define_builtin_array!(@ty $param)),*
                ) $( -> define_builtin_array!(@ty $result))?,
            )*
        }

        impl VMBuiltinFunctionsArray {
            #[allow(unused_doc_comments)]
            pub const INIT: VMBuiltinFunctionsArray = VMBuiltinFunctionsArray {
                $(
                    $name: crate::libcalls::raw::$name,
                )*
            };
        }
    };

    (@ty i32) => (u32);
    (@ty i64) => (u64);
    (@ty reference) => (*mut u8);
    (@ty pointer) => (*mut u8);
    (@ty vmctx) => (*mut VMContext);
}

wasmtime_environ::foreach_builtin_function!(define_builtin_array);

const _: () = {
    assert!(
        mem::size_of::<VMBuiltinFunctionsArray>()
            == mem::size_of::<usize>()
                * (BuiltinFunctionIndex::builtin_functions_total_number() as usize)
    )
};

/// The storage for a WebAssembly invocation argument
///
/// TODO: These could be packed more densely, rather than using the same size for every type.
#[derive(Debug, Copy, Clone)]
#[repr(C, align(16))]
pub struct VMInvokeArgument([u8; 16]);

#[cfg(test)]
mod test_vm_invoke_argument {
    use super::VMInvokeArgument;
    use std::mem::{align_of, size_of};
    use wasmtime_environ::{Module, PtrSize, VMOffsets};

    #[test]
    fn check_vm_invoke_argument_alignment() {
        assert_eq!(align_of::<VMInvokeArgument>(), 16);
    }

    #[test]
    fn check_vmglobal_definition_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            size_of::<VMInvokeArgument>(),
            usize::from(offsets.ptr.size_of_vmglobal_definition())
        );
    }
}

impl VMInvokeArgument {
    /// Create a new invocation argument filled with zeroes
    pub fn new() -> Self {
        Self([0; 16])
    }
}

/// Structure used to control interrupting wasm code.
#[derive(Debug)]
#[repr(C)]
pub struct VMRuntimeLimits {
    /// Current stack limit of the wasm module.
    ///
    /// For more information see `crates/cranelift/src/lib.rs`.
    pub stack_limit: UnsafeCell<usize>,

    /// Indicator of how much fuel has been consumed and is remaining to
    /// WebAssembly.
    ///
    /// This field is typically negative and increments towards positive. Upon
    /// turning positive a wasm trap will be generated. This field is only
    /// modified if wasm is configured to consume fuel.
    pub fuel_consumed: UnsafeCell<i64>,

    /// Deadline epoch for interruption: if epoch-based interruption
    /// is enabled and the global (per engine) epoch counter is
    /// observed to reach or exceed this value, the guest code will
    /// yield if running asynchronously.
    pub epoch_deadline: UnsafeCell<u64>,

    /// The value of the frame pointer register when we last called from Wasm to
    /// the host.
    ///
    /// Maintained by our Wasm-to-host trampoline, and cleared just before
    /// calling into Wasm in `catch_traps`.
    ///
    /// This member is `0` when Wasm is actively running and has not called out
    /// to the host.
    ///
    /// Used to find the start of a a contiguous sequence of Wasm frames when
    /// walking the stack.
    pub last_wasm_exit_fp: UnsafeCell<usize>,

    /// The last Wasm program counter before we called from Wasm to the host.
    ///
    /// Maintained by our Wasm-to-host trampoline, and cleared just before
    /// calling into Wasm in `catch_traps`.
    ///
    /// This member is `0` when Wasm is actively running and has not called out
    /// to the host.
    ///
    /// Used when walking a contiguous sequence of Wasm frames.
    pub last_wasm_exit_pc: UnsafeCell<usize>,

    /// The last host stack pointer before we called into Wasm from the host.
    ///
    /// Maintained by our host-to-Wasm trampoline, and cleared just before
    /// calling into Wasm in `catch_traps`.
    ///
    /// This member is `0` when Wasm is actively running and has not called out
    /// to the host.
    ///
    /// When a host function is wrapped into a `wasmtime::Func`, and is then
    /// called from the host, then this member has the sentinal value of `-1 as
    /// usize`, meaning that this contiguous sequence of Wasm frames is the
    /// empty sequence, and it is not safe to dereference the
    /// `last_wasm_exit_fp`.
    ///
    /// Used to find the end of a contiguous sequence of Wasm frames when
    /// walking the stack.
    pub last_wasm_entry_sp: UnsafeCell<usize>,
}

// The `VMRuntimeLimits` type is a pod-type with no destructor, and we don't
// access any fields from other threads, so add in these trait impls which are
// otherwise not available due to the `fuel_consumed` and `epoch_deadline`
// variables in `VMRuntimeLimits`.
unsafe impl Send for VMRuntimeLimits {}
unsafe impl Sync for VMRuntimeLimits {}

impl Default for VMRuntimeLimits {
    fn default() -> VMRuntimeLimits {
        VMRuntimeLimits {
            stack_limit: UnsafeCell::new(usize::max_value()),
            fuel_consumed: UnsafeCell::new(0),
            epoch_deadline: UnsafeCell::new(0),
            last_wasm_exit_fp: UnsafeCell::new(0),
            last_wasm_exit_pc: UnsafeCell::new(0),
            last_wasm_entry_sp: UnsafeCell::new(0),
        }
    }
}

#[cfg(test)]
mod test_vmruntime_limits {
    use super::VMRuntimeLimits;
    use memoffset::offset_of;
    use std::mem::size_of;
    use wasmtime_environ::{Module, PtrSize, VMOffsets};

    #[test]
    fn vmctx_runtime_limits_offset() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            offsets.vmctx_runtime_limits(),
            offsets.ptr.vmcontext_runtime_limits().into()
        );
    }

    #[test]
    fn field_offsets() {
        let module = Module::new();
        let offsets = VMOffsets::new(size_of::<*mut u8>() as u8, &module);
        assert_eq!(
            offset_of!(VMRuntimeLimits, stack_limit),
            usize::from(offsets.ptr.vmruntime_limits_stack_limit())
        );
        assert_eq!(
            offset_of!(VMRuntimeLimits, fuel_consumed),
            usize::from(offsets.ptr.vmruntime_limits_fuel_consumed())
        );
        assert_eq!(
            offset_of!(VMRuntimeLimits, epoch_deadline),
            usize::from(offsets.ptr.vmruntime_limits_epoch_deadline())
        );
        assert_eq!(
            offset_of!(VMRuntimeLimits, last_wasm_exit_fp),
            usize::from(offsets.ptr.vmruntime_limits_last_wasm_exit_fp())
        );
        assert_eq!(
            offset_of!(VMRuntimeLimits, last_wasm_exit_pc),
            usize::from(offsets.ptr.vmruntime_limits_last_wasm_exit_pc())
        );
        assert_eq!(
            offset_of!(VMRuntimeLimits, last_wasm_entry_sp),
            usize::from(offsets.ptr.vmruntime_limits_last_wasm_entry_sp())
        );
    }
}

/// The VM "context", which is pointed to by the `vmctx` arg in Cranelift.
/// This has information about globals, memories, tables, and other runtime
/// state associated with the current instance.
///
/// The struct here is empty, as the sizes of these fields are dynamic, and
/// we can't describe them in Rust's type system. Sufficient memory is
/// allocated at runtime.
#[derive(Debug)]
#[repr(C, align(16))] // align 16 since globals are aligned to that and contained inside
pub struct VMContext {
    /// There's some more discussion about this within `wasmtime/src/lib.rs` but
    /// the idea is that we want to tell the compiler that this contains
    /// pointers which transitively refers to itself, to suppress some
    /// optimizations that might otherwise assume this doesn't exist.
    ///
    /// The self-referential pointer we care about is the `*mut Store` pointer
    /// early on in this context, which if you follow through enough levels of
    /// nesting, eventually can refer back to this `VMContext`
    pub _marker: marker::PhantomPinned,
}

impl VMContext {
    /// Helper function to cast between context types using a debug assertion to
    /// protect against some mistakes.
    #[inline]
    pub unsafe fn from_opaque(opaque: *mut VMOpaqueContext) -> *mut VMContext {
        // Note that in general the offset of the "magic" field is stored in
        // `VMOffsets::vmctx_magic`. Given though that this is a sanity check
        // about converting this pointer to another type we ideally don't want
        // to read the offset from potentially corrupt memory. Instead it would
        // be better to catch errors here as soon as possible.
        //
        // To accomplish this the `VMContext` structure is laid out with the
        // magic field at a statically known offset (here it's 0 for now). This
        // static offset is asserted in `VMOffsets::from` and needs to be kept
        // in sync with this line for this debug assertion to work.
        //
        // Also note that this magic is only ever invalid in the presence of
        // bugs, meaning we don't actually read the magic and act differently
        // at runtime depending what it is, so this is a debug assertion as
        // opposed to a regular assertion.
        debug_assert_eq!((*opaque).magic, VMCONTEXT_MAGIC);
        opaque.cast()
    }
}

/// A "raw" and unsafe representation of a WebAssembly value.
///
/// This is provided for use with the `Func::new_unchecked` and
/// `Func::call_unchecked` APIs. In general it's unlikely you should be using
/// this from Rust, rather using APIs like `Func::wrap` and `TypedFunc::call`.
///
/// This is notably an "unsafe" way to work with `Val` and it's recommended to
/// instead use `Val` where possible. An important note about this union is that
/// fields are all stored in little-endian format, regardless of the endianness
/// of the host system.
#[allow(missing_docs)]
#[repr(C)]
#[derive(Copy, Clone)]
pub union ValRaw {
    /// A WebAssembly `i32` value.
    ///
    /// Note that the payload here is a Rust `i32` but the WebAssembly `i32`
    /// type does not assign an interpretation of the upper bit as either signed
    /// or unsigned. The Rust type `i32` is simply chosen for convenience.
    ///
    /// This value is always stored in a little-endian format.
    i32: i32,

    /// A WebAssembly `i64` value.
    ///
    /// Note that the payload here is a Rust `i64` but the WebAssembly `i64`
    /// type does not assign an interpretation of the upper bit as either signed
    /// or unsigned. The Rust type `i64` is simply chosen for convenience.
    ///
    /// This value is always stored in a little-endian format.
    i64: i64,

    /// A WebAssembly `f32` value.
    ///
    /// Note that the payload here is a Rust `u32`. This is to allow passing any
    /// representation of NaN into WebAssembly without risk of changing NaN
    /// payload bits as its gets passed around the system. Otherwise though this
    /// `u32` value is the return value of `f32::to_bits` in Rust.
    ///
    /// This value is always stored in a little-endian format.
    f32: u32,

    /// A WebAssembly `f64` value.
    ///
    /// Note that the payload here is a Rust `u64`. This is to allow passing any
    /// representation of NaN into WebAssembly without risk of changing NaN
    /// payload bits as its gets passed around the system. Otherwise though this
    /// `u64` value is the return value of `f64::to_bits` in Rust.
    ///
    /// This value is always stored in a little-endian format.
    f64: u64,

    /// A WebAssembly `v128` value.
    ///
    /// The payload here is a Rust `[u8; 16]` which has the same number of bits
    /// but note that `v128` in WebAssembly is often considered a vector type
    /// such as `i32x4` or `f64x2`. This means that the actual interpretation
    /// of the underlying bits is left up to the instructions which consume
    /// this value.
    ///
    /// This value is always stored in a little-endian format.
    v128: [u8; 16],

    /// A WebAssembly `funcref` value (or one of its subtypes).
    ///
    /// The payload here is a pointer which is runtime-defined. This is one of
    /// the main points of unsafety about the `ValRaw` type as the validity of
    /// the pointer here is not easily verified and must be preserved by
    /// carefully calling the correct functions throughout the runtime.
    ///
    /// This value is always stored in a little-endian format.
    funcref: *mut c_void,

    /// A WebAssembly `externref` value (or one of its subtypes).
    ///
    /// The payload here is a compressed pointer value which is
    /// runtime-defined. This is one of the main points of unsafety about the
    /// `ValRaw` type as the validity of the pointer here is not easily verified
    /// and must be preserved by carefully calling the correct functions
    /// throughout the runtime.
    ///
    /// This value is always stored in a little-endian format.
    externref: u32,

    /// A WebAssembly `anyref` value (or one of its subtypes).
    ///
    /// The payload here is a compressed pointer value which is
    /// runtime-defined. This is one of the main points of unsafety about the
    /// `ValRaw` type as the validity of the pointer here is not easily verified
    /// and must be preserved by carefully calling the correct functions
    /// throughout the runtime.
    ///
    /// This value is always stored in a little-endian format.
    anyref: u32,
}

// The `ValRaw` type is matched as `wasmtime_val_raw_t` in the C API so these
// are some simple assertions about the shape of the type which are additionally
// matched in C.
const _: () = {
    assert!(std::mem::size_of::<ValRaw>() == 16);
    assert!(std::mem::align_of::<ValRaw>() == 8);
};

// This type is just a bag-of-bits so it's up to the caller to figure out how
// to safely deal with threading concerns and safely access interior bits.
unsafe impl Send for ValRaw {}
unsafe impl Sync for ValRaw {}

impl std::fmt::Debug for ValRaw {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        struct Hex<T>(T);
        impl<T: std::fmt::LowerHex> std::fmt::Debug for Hex<T> {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                let bytes = std::mem::size_of::<T>();
                let hex_digits_per_byte = 2;
                let hex_digits = bytes * hex_digits_per_byte;
                write!(f, "0x{:0width$x}", self.0, width = hex_digits)
            }
        }

        unsafe {
            f.debug_struct("ValRaw")
                .field("i32", &Hex(self.i32))
                .field("i64", &Hex(self.i64))
                .field("f32", &Hex(self.f32))
                .field("f64", &Hex(self.f64))
                .field("v128", &Hex(u128::from_le_bytes(self.v128)))
                .field("funcref", &self.funcref)
                .field("externref", &Hex(self.externref))
                .field("anyref", &Hex(self.anyref))
                .finish()
        }
    }
}

impl ValRaw {
    /// Creates a WebAssembly `i32` value
    #[inline]
    pub fn i32(i: i32) -> ValRaw {
        // Note that this is intentionally not setting the `i32` field, instead
        // setting the `i64` field with a zero-extended version of `i`. For more
        // information on this see the comments on `Lower for Result` in the
        // `wasmtime` crate. Otherwise though all `ValRaw` constructors are
        // otherwise constrained to guarantee that the initial 64-bits are
        // always initialized.
        ValRaw::u64(i.unsigned().into())
    }

    /// Creates a WebAssembly `i64` value
    #[inline]
    pub fn i64(i: i64) -> ValRaw {
        ValRaw { i64: i.to_le() }
    }

    /// Creates a WebAssembly `i32` value
    #[inline]
    pub fn u32(i: u32) -> ValRaw {
        // See comments in `ValRaw::i32` for why this is setting the upper
        // 32-bits as well.
        ValRaw::u64(i.into())
    }

    /// Creates a WebAssembly `i64` value
    #[inline]
    pub fn u64(i: u64) -> ValRaw {
        ValRaw::i64(i as i64)
    }

    /// Creates a WebAssembly `f32` value
    #[inline]
    pub fn f32(i: u32) -> ValRaw {
        // See comments in `ValRaw::i32` for why this is setting the upper
        // 32-bits as well.
        ValRaw::u64(i.into())
    }

    /// Creates a WebAssembly `f64` value
    #[inline]
    pub fn f64(i: u64) -> ValRaw {
        ValRaw { f64: i.to_le() }
    }

    /// Creates a WebAssembly `v128` value
    #[inline]
    pub fn v128(i: u128) -> ValRaw {
        ValRaw {
            v128: i.to_le_bytes(),
        }
    }

    /// Creates a WebAssembly `funcref` value
    #[inline]
    pub fn funcref(i: *mut c_void) -> ValRaw {
        ValRaw {
            funcref: Strict::map_addr(i, |i| i.to_le()),
        }
    }

    /// Creates a WebAssembly `externref` value
    #[inline]
    pub fn externref(e: u32) -> ValRaw {
        assert!(cfg!(feature = "gc") || e == 0);
        ValRaw {
            externref: e.to_le(),
        }
    }

    /// Creates a WebAssembly `anyref` value
    #[inline]
    pub fn anyref(r: u32) -> ValRaw {
        assert!(cfg!(feature = "gc") || r == 0);
        ValRaw { anyref: r.to_le() }
    }

    /// Gets the WebAssembly `i32` value
    #[inline]
    pub fn get_i32(&self) -> i32 {
        unsafe { i32::from_le(self.i32) }
    }

    /// Gets the WebAssembly `i64` value
    #[inline]
    pub fn get_i64(&self) -> i64 {
        unsafe { i64::from_le(self.i64) }
    }

    /// Gets the WebAssembly `i32` value
    #[inline]
    pub fn get_u32(&self) -> u32 {
        self.get_i32().unsigned()
    }

    /// Gets the WebAssembly `i64` value
    #[inline]
    pub fn get_u64(&self) -> u64 {
        self.get_i64().unsigned()
    }

    /// Gets the WebAssembly `f32` value
    #[inline]
    pub fn get_f32(&self) -> u32 {
        unsafe { u32::from_le(self.f32) }
    }

    /// Gets the WebAssembly `f64` value
    #[inline]
    pub fn get_f64(&self) -> u64 {
        unsafe { u64::from_le(self.f64) }
    }

    /// Gets the WebAssembly `v128` value
    #[inline]
    pub fn get_v128(&self) -> u128 {
        unsafe { u128::from_le_bytes(self.v128) }
    }

    /// Gets the WebAssembly `funcref` value
    #[inline]
    pub fn get_funcref(&self) -> *mut c_void {
        unsafe { Strict::map_addr(self.funcref, |i| usize::from_le(i)) }
    }

    /// Gets the WebAssembly `externref` value
    #[inline]
    pub fn get_externref(&self) -> u32 {
        let externref = u32::from_le(unsafe { self.externref });
        assert!(cfg!(feature = "gc") || externref == 0);
        externref
    }

    /// Gets the WebAssembly `anyref` value
    #[inline]
    pub fn get_anyref(&self) -> u32 {
        let anyref = u32::from_le(unsafe { self.anyref });
        assert!(cfg!(feature = "gc") || anyref == 0);
        anyref
    }
}

/// An "opaque" version of `VMContext` which must be explicitly casted to a
/// target context.
///
/// This context is used to represent that contexts specified in
/// `VMFuncRef` can have any type and don't have an implicit
/// structure. Neither wasmtime nor cranelift-generated code can rely on the
/// structure of an opaque context in general and only the code which configured
/// the context is able to rely on a particular structure. This is because the
/// context pointer configured for `VMFuncRef` is guaranteed to be
/// the first parameter passed.
///
/// Note that Wasmtime currently has a layout where all contexts that are casted
/// to an opaque context start with a 32-bit "magic" which can be used in debug
/// mode to debug-assert that the casts here are correct and have at least a
/// little protection against incorrect casts.
pub struct VMOpaqueContext {
    pub(crate) magic: u32,
    _marker: marker::PhantomPinned,
}

impl VMOpaqueContext {
    /// Helper function to clearly indicate that casts are desired.
    #[inline]
    pub fn from_vmcontext(ptr: *mut VMContext) -> *mut VMOpaqueContext {
        ptr.cast()
    }

    /// Helper function to clearly indicate that casts are desired.
    #[inline]
    pub fn from_vm_array_call_host_func_context(
        ptr: *mut VMArrayCallHostFuncContext,
    ) -> *mut VMOpaqueContext {
        ptr.cast()
    }

    /// Helper function to clearly indicate that casts are desired.
    #[inline]
    pub fn from_vm_native_call_host_func_context(
        ptr: *mut VMNativeCallHostFuncContext,
    ) -> *mut VMOpaqueContext {
        ptr.cast()
    }
}